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This article presents some applications of time-series procedures to solve two typical problems that arise
when analyzing demographic information in developing countries: (1) unavailability of annual time series
of population growth rates (PGRs) and their corresponding population time series and (2) inappropriately
defined population growth goals in official population programs. These problems are considered as situa-
tions that require combining information of population time series. Firstly, we suggest the use of temporal
disaggregation techniques to combine census data with vital statistics information in order to estimate
annual PGRs. Secondly, we apply multiple restricted forecasting to combine the official targets on future
PGRs with the disaggregated series. Then, we propose a mechanism to evaluate the compatibility of the
demographic goals with the annual data. We apply the aforementioned procedures to data of the Mexico
City Metropolitan Zone divided by concentric rings and conclude that the targets established in the official
program are not feasible. Hence, we derive future PGRs that are both in line with the official targets and
with the historical demographic behavior. We conclude that growth population programs should be based
on this kind of analysis to be supported empirically. So, through specialized multivariate time-series tech-
niques, we propose to obtain first an optimal estimate of a disaggregate vector of population time series
and then, produce restricted forecasts in agreement with some data-based population policies here derived.

Keywords: compatibility testing; demographic forecasting; measurement error; multivariate time series;
preliminary series; VAR models

1. Introduction

Unavailability of annual population growth rates (PGRs) represents a problem for policy and
decision-makers, particularly in developing countries. This problem occurs in México in spite of
the fact that census data are generated regularly every 10 years and that annual vital statistics
of births and deaths are also available. Another problem is that inappropriate targets of PGRs
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are usually proposed in the official programs for political reasons. Demographers typically apply
easy-to-use, but suboptimal, tools to solve those problems. Besides, there is no unique solution
to those problems due to the subjectivity involved in its application. For instance, a demographer
would solve the previous problems by interpolating the census data to obtain annual data and then
he/she would use personal beliefs to describe the patterns of fertility, mortality, and migration,
in order to build scenarios of the future population growth. It should be clear that in such a case,
it is not possible to associate a confidence level or credibility to the scenarios. This is in contrast
with our proposal, because we suggest solving those problems from a statistical point of view and
using optimality criteria. Another point worth emphasizing is that demographers tend to rely on
univariate procedures, while our proposal involves multivariate techniques.

Our proposal goes as follows, firstly we use a disaggregation technique to estimate time series
of population growth, based primarily on census data and demographic information in the form
of vital statistics; secondly, we employ a multiple restricted forecasting technique, with its com-
patibility testing companion, to analyze the official goals for population growth proposed by the
Government. Thus, in order to estimate unavailable annual population data of the Metropolitan
Zone of Mexico City (MZMC), we combine decennial census data with annual vital statistics
using temporal disaggregation. The combination involves multiple time-series data, since we
consider that the MZMC is composed by the Central City and three concentric rings, as shown
in Figure 1. The geographic units (delegations and municipalities) that compose these rings are
available from the authors on request. On the other hand, to evaluate the feasibility of the official
goals for the PGR of each ring, we combine the targets with the annual disaggregated series. Thus,
we generate multiple restricted forecasts with a vector auto-regressive (VAR) model and carry
out compatibility testing.

In Mexico, demographic data can be obtained from several sources of information, two of the
most important are: (1) censuses carried out every 10 years (the most recent in year 2000) by
the National Institute of Statistics and Geography (INEGI) [15,16], and (2) annual data on vital

Figure 1. MZMC and its composition in concentric rings.
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statistics given by births and deaths from 1940 up to 2000, for the Federal District (DF) and the
State of Mexico (SM). These data can be obtained from the Secretariat of Health [27,28] since
1940 up to 1993 and from INEGI [17,18] for years 1994–2000.

We propose to disaggregate low-frequency demographic time-series data on cumulative PGRs,
available every decade, with the aid of auxiliary data observed with high frequency (annual vital
statistics). Then, the resulting annual estimates will follow the annual pattern provided by the
auxiliary data and satisfy the restrictions imposed by the census data. We apply a temporal disag-
gregation procedure to the census population series for each and every ring, including the Central
City, and the resulting estimates will be reasonable in demographic terms, since the population of
the rings will add up to the total population for the MZMC. The disaggregation technique that we
will use is that proposed by Guerrero and Nieto [10]. Then, we shall employ multiple restricted
forecasting, with its corresponding compatibility testing procedure, to evaluate the demographic
targets established for the PGRs of each ring. These targets appear in the population program for
the DF [7]. The previous time-series techniques have already appeared in the literature, but their
typical applications are in economics. We now apply them in demography with success. That is
our main contribution, besides providing a new result that serves to take into account that the
multiple restricted forecasting technique is applied to a vector of estimated time series, which is
then considered to have a measurement error.

Some substantial results obtained in this work are the following. When using the temporal
disaggregation technique, we obtained annual series estimates of cumulative PGR that behave
as expected, according to the demographic logic. Besides, adequacy of the estimates for all
rings was validated empirically by comparing them against data coming from an interdecade
population counting. Then, when applying multiple restricted forecasting with the official targets
as restrictions, we observed some incompatibility with the demographic dynamics and concluded
that the proposed targets are not feasible. As a result, we proposed some other targets that became
statistically compatible with the historical behavior (to reach this conclusion we performed a test
at the 5% significance level). In particular for the case of Mexico, we did not find any trace of
a previous work that focus on the demographic problem we deal with, neither with an approach
similar to ours, nor with other approaches, to disaggregate series or to evaluate targets.

The rest of this paper is organized as follows. In Section 2, we present the temporal disaggre-
gation technique to be used and describe the procedure for multiple restricted forecasting, with
its companion compatibility testing (for estimated processes). In addition, we show how to incor-
porate measurement error variability for variables measured with error (in our case, obtained by
temporally disaggregating the census data). Section 3 illustrates the application of the aforemen-
tioned techniques to the four rings included in the MZMC. First, with temporal disaggregation we
obtain estimated annual series of cumulative PGR for each ring and years 1940–2000. The second
application provides us with multiple restricted forecasts for the concentric rings and allows us to
analyze their respective compatibilities with the official targets. We make some comments about
these targets and deduce feasible goals for the future PGR. In Section 4, we conclude with some
final comments. The Appendixes show how we: (i) corrected the vital statistics series for outly-
ing observations, (ii) generated the preliminary series required by the disaggregation procedure,
and (iii) incorporated the measurement error in the restricted forecasting procedure, for a proper
combination of the goals with the annual estimated series.

2. Methodology

2.1 Temporal disaggregation of multiple time series

Several proposals aimed at solving the temporal disaggregation problem of multiple time series
are generalizations of univariate disaggregation procedures. The main limit of those methods is
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that they assume specific structures for the random error involved: white noise [3,26], random
walk [4], or multivariate AR(1) [25]. Therefore, they can be considered as general devices that
are usually applied without taking into account the particular features of the data under study.
As such, they are general rather than data-specific procedures and their appropriateness cannot
be judged empirically. Rather than assuming a specific structure a priori, we follow Guerrero
and Nieto’s suggestion [10] of deducing the structure from the observed data and assume only
that a VAR model of order p is appropriate to capture the dynamics of the random error. So,
the main advantage of this approach is its objectivity, since it is fully supported and suggested
by the data. Moreover, it is derived from theoretical results and produces a statistically optimal
estimate of the disaggregated multiple time series. We consider these to be key elements and they
should be underlined because the proposed approach will be employed for the first time (as far
as we know) to demographic information. Besides, it is important to note that the vital statistics
available correspond to the DF and the SM, not to the rings, and this fact precluded the use of the
alternative disaggregation procedures.

It should be noticed that instead of disaggregating the multiple population time series, we
could have used a different approach such as the Mixed Data Sampling (MIDAS) regressions
as in [2,6]. With such an approach, we could merge data with different frequencies of observa-
tion (say decennial and annual) into a single regression equation to produce efficient forecasts
of the higher frequency series. With this approach we would not require disaggregating the time
series and could proceed directly to generate forecasts, but then we would require to extend
that idea to the multiple equation case and derive the corresponding restricted forecasting for-
mulas for such a situation. Thus, it would be interesting to employ the MIDAS approach in a
future work and analyze its eventual improvement of the multiple unrestricted and restricted
forecasts.

Let us first define ZDt = (Zit , . . . , Zkt )
′ as the k-dimensional column vector of non-observable

variables at time t , for t = 1, . . . , mn, where n is the number of complete periods and m is the
intraperiod frequency (m = 10 years in a decade), while ZD = (Z′

D1, . . . , Z′
Dmn)

′ is a stacked
vector that contains the vectors ZDt . Besides, WDt and WD are defined as vectors of preliminary
data corresponding to ZDt and ZD , respectively. We want to estimate ZD on the basis of WD and
the identity

YD = CDZD, (1)

where YD is a kn-dimensional vector that contains the aggregated data of ZD , and CD is a known
kn × kmn constant matrix. The following result was established in [10].

Proposition 1 The best linear unbiased estimator of ZD , given WD and YD is

ẐD = WD + AD(YD − CDWD) (2)

with

Cov(ẐD − ZD|WD) = (Iknm − ADCD)�−1(P ⊗ �a)�
−1′ (3)

in which

AD = �−1(P ⊗ �a)�
−1′C ′

D[CD�−1(P ⊗ �a)�
−1C ′

D]+, (4)
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where the superscript + denotes Moore–Penrose inverse. The kmn × kmn matrix � is built from
the matrix coefficients π1,…, πp of the polynomial involved by the VAR model, as follows

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ik 0 0 0 0
−π1 Ik 0 0 0

...
. . .

...

−πp −πp−1 −πp−2 0 0
0 −πp −πp−1 0 0

...
. . .

...

0 0 0 −π1 Ik

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Moreover, P is an mn × mn positive definite matrix derived from the data and �a is the error
variance–covariance matrix of the VAR model. We refer the reader to the original paper [10] for
details on these definitions and the method itself. The operational procedure derived from this
proposition consists of two stages. In the first stage, we obtain a preliminary disaggregated series
{WD} on the basis of the theory underlying the phenomenon under study and fit a VAR model
with deterministic terms to that series. From such a model and the expressions in Proposition 1
(with P = I ) we obtain a tentatively estimated series {Z̄D} and test for whiteness of the series
produced by �̂(Z̄D −WD). If this series behaves as white noise we conclude that the tentative
series is statistically supported and call it the final disaggregated series. Otherwise, we go to the
second stage where we look for a VAR representation of the differences in order to obtain an
estimate of the matrix P and derive the final estimate ẐD, using again Proposition 1.

2.2 Multiple unrestricted forecasts

Let Zt = (Zit , . . . , Zkt )
′ be a vector of k variables observed at time t , for t = 1, . . . , N . In our

case, the multiple time series {Zt } comes from an application of the disaggregation procedure and
admits the VAR(p) representation

�(B)Zt = �Dt + at , (5)

where �(B) is a matrix polynomial of order p < ∞ in the backshift operator B such that
BXt = Xt−1 for every variable X and subindex t . Dt is a vector containing the deterministic
variables (usually a constant and a linear trend), � is a matrix of coefficients that capture the
deterministic effects, and {at } is a k-dimensional Gaussian zero-mean white noise process with
positive definite covariance matrix E(ata′

t ) = �a .
Further, let Z = (Z′

1, . . . , Z′
N)′ be the vector of known data and let ZF = (Z′

N+1, . . . , Z′
N+H )′

be the vector of future values, with H ≥ 1 the forecast horizon. The optimal linear forecast of
ZN+h, in minimum mean square (MSE) error sense, is given for h = 1, . . . , H , by

E(ZN+h|Z) = �Dt + �1E(ZN+h−1|Z) + · · · + �pE(ZN+h−p|Z) (6)

with E(ZN+h|Z) = ZN+h for h ≤ 0. The corresponding forecast errors are given by

ZF − E(ZF |Z) = �aF , (7)

where aF = (a′
N+1, . . . , a′

N+H )′ ∼ N(0, IH ⊗ �a) and � is the kH × kH lower triangular matrix
with the identity Ik in its main diagonal, �1 in its first subdiagonal, �2 in its second subdiagonal,
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and so on. Where the � matrices are obtained recursively from the following expressions:

�0 = Ik, �j = �j + �j−1�1 + �j−2�2 + · · · + �1�j−1 for j = 1, . . . , H − 1, (8)

with �j = 0 if j > p or j < 0 [29]. Thus, the multiple unrestricted forecasts are conditionally
unbiased and their MSE matrix is given by

MSE = �(IH ⊗ �a)�
′. (9)

2.3 Multiple restricted forecasts

We now consider that some additional information is available in the form of a vector Y =
(Y1, . . . , YM)′ that imposes M ≥ 0 independent linear restrictions on the future values of the
vector Z. These restrictions come from an external source to the time-series model and are related
to ZF by means of

Y = CZF + u, (10)

where u ∼ N(0M, �u). In our case, the restrictions are targets on the population rate of growth
and in order to test for their compatibility with the unrestricted forecasts, we assume they are
certain, so that �u = 0. Besides, C is an M × kH matrix of rank M given by C = [c1 · · · cM ]′
where cm = (cm,1, . . . , cm,kH ) for m = 1, . . . , M .

Using Equations (7) and (10) Pankratz [24], showed that the optimal restricted forecast of ZF is

ZR
F,H = E(ZF |Z) + A[Y − CE(ZF |Z)] (11)

with

MSE(ZR
F,H ) = (IH − AC)�E(ZF |Z) and A = �E(ZF |Z)C

′�−1, (12)

where

�E(ZF |Z) = �(IH ⊗ �a)�
′ and � = C�(IH ⊗ �a)�

′C ′. (13)

Expressions (11)–(13) can be obtained also by applying Theorem 1 of Nieto and Guerrero [23]
without the normality assumption required by Pankratz’s result.

2.4 Compatibility testing

Combining information should be judged from an empirical point of view, because the restrictions
imposed to the series by the population goals may contradict the observed behavior of the series.
To this end, we use the following statistic proposed by Guerrero and Peña [11,12]

K = d′�−1d ∼ χ2
M, (14)

where d = Y − CE(ZF |Z). Then, Y − CE(ZF |Z) lies in the compatibility region if the calculated
statistic Kcalc is not greater than χ2

M(α), the (1 − α)th quantile of a Chi-square distribution with
M degrees of freedom, and we declare Y incompatible with CE(ZF |Z) at the 100 α% significance
level if Kcalc > χ2

M(α). We can also use partial compatibility test statistics, denoted as Kpar, to
evaluate the compatibility of specific restrictions with unrestricted forecasts.
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2.5 VAR forecasting and compatibility testing with estimated processes

In a VAR model with estimated parameters the forecasts are conditionally unbiased and asymp-
totically valid [5]. Also, it can be shown that the vector of optimum restricted forecasts with an
estimated process is given by

Ẑ
R

F,H = E(ẐF |Z) + Â[Y − CE(ẐF |Z)], (15)

where

Â = �̂E(ẐF |Z)C
′�̂−1, �̂ = C�̂E(ẐF |Z)C

′ (16)

and

�̂E(ẐF |Z) ≈ �̂E(ZF |Z) + N−1�̂a. (17)

Moreover, its estimated MSE matrix is given by

̂MSE(Ẑ
R

F,H ) = (I − ÂC)�̂E(ẐF |Z). (18)

Compatibility testing should also be modified for estimated processes. Gomez and Guerrero [8],
showed that the appropriate test statistic is given by

K̄ = d̂′�̂−1d̂
M

∼ FM,T −Mp−1, (19)

where d̂ = Y − CEẐF |Z. So that, Y is not in the compatibility region at the α significance level
if K̄calc ≥ FM,T −Mp−1(α) with FM,T −Mp−1(α) being the (1 − α)th quantile of the FM,T −Mp−1

distribution. This statistic will be used below for examining compatibility between official targets
and unrestricted forecasts. Similarly, we will apply partial compatibility test statistics, K̄par, to
evaluate the compatibility between specific restrictions and unrestricted forecasts.

2.6 Incorporating measurement error variability

From now on, we denote Central City population by ccpt , first ring population by frpt , second
ring population by srpt , third ring population by trpt , MZMC population by mzmct , DF popu-
lation by dfpt , and SM population by smpt . In this application, it is very important to note that
the multiple VAR forecasts are not obtained from actual observations of the variables of interest,
but from estimated data (hence, measured with error) derived as an application of the disaggre-
gation technique. This is an important point that must be emphasized because VAR forecasts
are generally produced from observed time series, which is not the case here. In fact, the VAR
model is used to forecast an unobserved disaggregated multiple time series which came out from
an unbiased estimation procedure. Hence, the estimated series will be assumed to be equal to
the true, but unobserved, time series plus an error term, that we call a measurement error. In
Appendix 3 we show how to incorporate the measurement error variability into the restricted
forecasting formula.

Thus, to take into account these measurement errors into the forecasts we define the 80 × 80
matrix of estimated measurement error variances

�̂ε = I20 ⊗ diag(σ̄ 2(ccp), σ̄ 2(frp), σ̄ 2(srp), σ̄ 2(trp)), (20)
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where ⊗ denotes the Kronecker product and every element in the diagonal matrix is an average
of the respective elements σ̂ 2

t (ccp), σ̂ 2
t (frp), σ̂ 2

t (srp), and σ̂ 2
t (trp) for t = 1981, 1982,. . .,2000.

These estimated variances are taken from the diagonal of the covariance matrices produced by the
disaggregation procedure. We considered the errors of the last two decades because the forecasts
are required for a 20-year horizon, from 2001 to 2020. The matrix �̂ε was added to Equations
(17) and (18) to include the effect of measurement errors. Without it we could get a false idea of
the variability associated with the multiple restricted forecasts, the compatibility test would not
be strictly valid, and the evaluation of official targets would lead to erroneous conclusions.

It is convenient to mention that Nieto [22] has provided another approach to solve essentially
the same problem considered here. His solution produces optimal forecast in the context of the
so-called ex ante prediction of unobservable multivariate time series. Thus, it would be interesting
to apply his results in a future work that postulates a multivariate structural model.

3. Applications

3.1 Application 1: temporal disaggregation

In this application, temporal disaggregation of the census data is equivalent to interpolate them by
annual figures. We require first preliminary series for each concentric ring and to get them it was
necessary to correct the annual births series for outlying observations (in Appendix 1 we apply
the technique proposed by Gómez et al. [9]). Then, we employed the algorithm in Appendix 2
to focus the problem from a demographic, rather than a statistical point of view, see for example
[1]. We did that to obtain a better subject matter interpretation of the resulting annual population
series.

The computations were performed with the packages E-Views 5.1 (Quantitative Micro Soft-
ware) and Matlab 7 (MathWorks, Inc.). The data are available from the authors on request. Let
zccpt , zfrpt , zsrpt , and ztrpt be the non-observable variables at time representing the cumulative
PGR of the Central City and the rings. The number of complete periods is n = 6 (decades) and
m = 10 is the number of annual observations in a decade. Let zccp = (zccp′

1, . . . , zccp′
mn)

′ be a
stacked vector of the mn values of zccp. The vectors zfrp, zsrp, and ztrp are defined similarly.
Then, we define the vectors of preliminary series wccp, wfrp, wsrp, and wtrp corresponding to
zccp, zfrp, zsrp, and ztrp.

The temporal restrictions are specified by means of YD = (I6 ⊗ C0)ZD , where C0 = [09 1]
with 09 a 9-dimensional zero vector. The six elements of the vector YD are the cumulative PGR
for the rings, coming from the census data, i.e. for the years ending in 0 from 1950 up to 2000.
No contemporaneous restrictions are used in this case, since they are considered implicitly by the
temporal restrictions. Therefore, the multivariate application of this technique became a univariate
application, and we applied the disaggregation procedure to each univariate time series (for each
ring) separately.

In the first stage, we built an autoregressive model to represent the behavior of the preliminary
series for each ring. In the second stage, we used another autoregressive model for the differences
between the tentatively estimated series and the preliminary series. We present the estimation
results in Table 1.

Standard errors for the disaggregated series were obtained as square roots of the elements in the
diagonal of the estimated covariance matrix (3). Then, we obtained prediction intervals (PI) from
these estimates. These PI look as ‘bubbles’ in Figure 2, because there is no uncertainty associated
with the observed values for the census years.

The polynomials of order 4 in the models for the second and third rings look strange, but they
were required to get a stationary behavior of their stochastic structures, since the method assumes
that all kind of non-stationarities in the data can be taken into account by way of deterministic
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Table 1. Estimated autoregressive models used for univariate temporal disaggregation (t-statistics in
parentheses).

Rings First stage Second stage

ccpt ŵccpt = 1.881
(29.67)

ŵccpt−1 − 0.883
(−13.93)

ŵccpt−2,

�̂ = 7.42 × 10−5

φ̂1 = 3.572
(36.56)

, φ̂2 = −4.820
(−17.11)

, φ̂3 = 2.913
(10.59)

,

φ̂4 = −0.666
(−7.29)

,

�̂ = 7.41 × 10−8

frpt
̂wfrpt = 0.014t

(3.90)
− 0.001t2

(−3.33)
+ 0.986

(28.33)

̂wfrpt−1

− 0.110
(−10.31)

̂wfrpt−10, �̂ = 1.16 × 10−4

φ̂1 = 1.903
(28.46)

, φ̂2 = −0.916
(−12.90)

,

φ̂10 = 0.686
(7.60)

, φ̂11 = −1.339
(−8.52)

,

φ̂12 = 0.664
(7.99)

, �̂ = 1.33 × 10−5

srpt ŵsrpt = 0.001
(4.32)

t2 −2.17 × 10−5

(−5.31)
t3

+ 1.43 × 10−7

(5.16)
t4 + 1.236

(9.30)
ŵsrpt−1

− 0.411
(−3.28)

ŵsrpt−2, �̂ = 3.26 × 10−4

φ̂1 = 2.375
(20.92)

, φ̂2 = −2.047
(−9.83)

,

φ̂3 = 0.650
(6.10)

, φ̂10 = 0.851
(12.51)

,

φ̂11 = − 2.042
(−11.08)

, φ̂12 = 1.777
(−11.079)

,

φ̂13 = −0.572
(−5.42)

, �̂ = 2.52 × 10−5

trpt ̂wtrpt = 2.10 × 10−4

(4.98)
t2 −2.39 × 10−8

(−5.71)
t4

+ 1.30
(10.45)

̂wtrpt−1 − 0.466
(−4.25)

̂wtrpt−2,

�̂ = 7.49 × 10−5

φ̂1 = 2.514
(24.69)

, φ̂2 = −2.176
(−10.97)

,

φ̂13 = 0.659
(6.49)

, �̂ = 2.35 × 10−5

elements. Thus, all models used in the first and second stages have characteristic polynomials
with roots outside the unit circle. Moreover, we could not reject the white noise hypotheses for
the univariate residuals at the 5% significance level. As it was expected, the annual disaggregated
series satisfy the temporal restrictions imposed by the observed census data. Some selected results
appear in Table 2.

To validate the previous results empirically, we made use of the data obtained in an interdecade
population counting carried out in Mexico in 1995. Table 3 shows the observed population figures
obtained in that counting [19,20]. All the corresponding values for the rings fall within the 95%
PI for the disaggregated values.

3.2 Application 2: evaluating population goals

To obtain multiple unrestricted forecasts, we first estimated a VAR model for the population
series selecting its order by the likelihood ratio testing scheme with upper bound p = 5. The
deterministic element in each equation of the VAR model was only a constant. The results are

H 1
0 : π5 = 0 vs. H 1

1 : π5 
= 0, χ2(16) = 6.69,

H 2
0 : π4 = 0 vs. H 2

1 : π4 
= 0|π5 = 0, χ2(16) = 11.85,

H 3
0 : π3 = 0 vs. H 3

1 : π3 
= 0|π5 = π4 = 0, χ2(16) = 13.96,

H 4
0 : π4 = 0 vs. H 4

1 : π2 
= 0|π5 = π4 = π3 = 0, χ2(16) = 64.17,
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Figure 2. Temporal disaggregation of ccpt (top left), frpt (top right), srpt (bottom left), trpt (bottom right).
Solid lines denote preliminary series, dashed lines are disaggregate series with their 95% prediction intervals
and dots are census data.

Table 2. Disaggregated series: preliminary and final, with standard errors (100 × SE).

Year Prelim. Final SE Prelim. Final SE Prelim. Final SE Prelim. Final SE

ccpt frpt srpt trpt

1941 0.042 0.043 0.001 0.156 0.163 0.031 0.040 0.042 0.018 0.019 0.022 0.017
1942 0.061 0.065 0.003 0.257 0.276 0.057 0.057 0.065 0.047 0.020 0.031 0.045
1943 0.080 0.092 0.005 0.352 0.388 0.078 0.075 0.094 0.079 0.021 0.045 0.076
1944 0.101 0.126 0.008 0.443 0.499 0.092 0.094 0.130 0.107 0.024 0.065 0.104
1945 0.126 0.168 0.011 0.532 0.610 0.098 0.117 0.176 0.125 0.029 0.092 0.123
1946 0.149 0.213 0.012 0.617 0.718 0.096 0.139 0.225 0.129 0.033 0.120 0.128
1947 0.179 0.269 0.012 0.705 0.828 0.085 0.167 0.282 0.117 0.044 0.155 0.117
1948 0.207 0.324 0.010 0.788 0.931 0.066 0.194 0.335 0.089 0.052 0.186 0.090
1949 0.235 0.379 0.006 0.867 1.027 0.038 0.219 0.381 0.049 0.058 0.212 0.050
1950 0.264 0.434 0.000 0.945 1.115 0.000 0.247 0.417 0.000 0.067 0.236 0.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1991 0.157 0.239 0.012 3.365 3.444 0.070 3.440 3.528 0.080 2.059 2.016 0.055
1992 0.156 0.228 0.023 3.380 3.446 0.115 3.482 3.560 0.148 2.104 2.062 0.104
1993 0.156 0.219 0.033 3.395 3.451 0.145 3.524 3.591 0.200 2.149 2.114 0.142
1994 0.150 0.206 0.040 3.406 3.456 0.162 3.562 3.619 0.231 2.190 2.167 0.167
1995 0.141 0.192 0.043 3.415 3.462 0.168 3.598 3.648 0.242 2.228 2.219 0.175
1996 0.130 0.177 0.043 3.422 3.469 0.164 3.632 3.679 0.233 2.265 2.270 0.168
1997 0.117 0.163 0.039 3.429 3.476 0.147 3.666 3.712 0.203 2.302 2.320 0.145
1998 0.103 0.148 0.030 3.435 3.484 0.117 3.700 3.747 0.151 2.338 2.368 0.107
1999 0.088 0.132 0.017 3.442 3.489 0.072 3.733 3.781 0.082 2.374 2.413 0.058
2000 0.109 0.153 0.000 3.447 3.492 0.000 3.766 3.811 0.000 2.410 2.454 0.000
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Table 3. Observed and disaggregated cumulative PGR values for 1995.

Observed Lower 95% Estimated by Upper 95%
Rings (interdecade counting) limit disaggregation limit

ccpt 0.195 0.171 0.192 0.213
frpt 3.485 3.279 3.462 3.545
srpt 3.706 3.529 3.648 3.767
trpt 2.255 2.132 2.219 2.305

so that p = 2 was deemed reasonably adequate. The estimated arrays π̂1, π̂2, D̂t , and �̂z are as
follows (t-values in parentheses and – denotes a non-significant coefficient, at the 5% level)

π̂1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1.516
(10.02)

− − −
− 1.505

(8.06)
− −

− − 1.387
(6.18)

−
− − − 1.307

(6.07)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, π̂2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.619
(−4.22)

− − −
− −0.451

(−2.27)
− −

− − − −
− − − −

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

D̂t =

⎡
⎢⎢⎢⎣

−
0.039
(1.98)

−
−

⎤
⎥⎥⎥⎦ , �̂Z = 10−5

⎡
⎢⎢⎣

6.64 −0.13 1.28 2.63
−0.13 16.2 16.9 5.67
1.28 16.9 34.2 13.0
2.63 5.67 13.0 8.59

⎤
⎥⎥⎦ .

The residuals produced individual Ljung–Box statistics that do not led us to reject the white noise
hypotheses at the 5% significance level. That is,

{zccpt } : Q(10) = 16.047, Q(20) = 30.005, Q(30) = 35.244,

{zfrpt } : Q(10) = 9.122, Q(20) = 22.267, Q(30) = 29.001,

{zsrpt } : Q(10) = 12.157, Q(20) = 16.757, Q(30) = 21.084,

{ztrpt } : Q(10) = 20.386∗, Q(20) = 30.079, Q(30) = 33.705

(* in this case, the individual Ljung–Box statistic does not reject the white noise hypothesis at the
1% significance level).

We also computed the multivariate portmanteau statistic Q̂h = T 2 ∑h
j=1 (T − j)−1tr (Ĉ ′

j Ĉ
−1
0

Ĉj Ĉ
−1
0 ) where Ĉj = ∑T

t=j+1 ât â
′
t−j /T and ât are the k-dimensional residuals of the estimated

VAR(p) model, with Q̂h ∼ χ2(k2(h − p)), where k = 4 is the number of variables, p = 2 is the
lag order of the fitted model, and h was chosen as 6 (for details on the use of this test, see [21]).
We obtained Q̂6 = 43.466 and compared this value with χ2(64)0.95 = 83.68 so that we could not
reject the white noise hypothesis for the errors at the 5% level.

3.3 Unrestricted forecasts

The 2005 Population interdecade census reported population figures for every geographic unit
considered in the MZCM [13,14]. However, in 2009 INEGI made some adjustments to those
figures and produced new estimated population figures. The official cumulative PGR, its forecast
for each and every ring, and its corresponding 95% PI are shown in Table 4. There we see that all
the official cumulative PGR figures fall within its probability interval.
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Table 4. Officially estimated and forecasted cumulative PGR values for 2005.

Estimated figure Lower 95% Unrestricted Upper 95%
Rings (interdecade counting) limit forecast limit

ccpt 0.147 0.034 0.104 0.175
frpt 3.477 3.350 3.458 3.567
srpt 3.866 3.856 4.008 4.160
trpt 2.694 2.534 2.627 2.720
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Figure 3. Unrestricted forecasts for 2001–2020 with 95% prediction intervals. Dots are official figures for
ccpt , trpt , frpt and srpt (from bottom to top).

In Figure 3, we show the multiple unrestricted forecasts together with their PIs and the official
figures reported in 2009.

3.4 Restricted forecasts and compatibility testing

In 1997, the DF Government presented a population program [7]. Part B of that program included
intended growth rates for the Central City and the rings. The specific demographic goals for
population growth of the rings are: (a) to reach a growth rate of 0.4% between 2006 and 2010
and 0.9% between 2010 and 2020 for the Central City; (b) to reduce the growth rate to 0.3%
between 2000 and 2003, increase it to 0.5% in 2006–2010, and reduce it to 0.3% between 2010
and 2020 for the first ring; (c) to reduce the growth rate to 1.2% between 2000 and 2003, to
1.1% between 2003 and 2006, to 0.7% of 2006–2010, and to 0.5% in the following decade for
the second ring; (d) to reduce the growth rate to 2.4% between 2000 and 2003, to 2.2% between
2003 and 2006, to 0.8% between 2006 and 2010, and to 0.7 in the following decade for the third
ring. We understood these values as goals to be reached at the end of every period and translated
them into binding restrictions to be imposed on the forecasts of the cumulative PGR, as shown
in Table 5.
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Table 5. Restricted forecasts for the concentric rings.

Year
Restricted
forecast 2003 2006 2010 2020

ẑccpt Without target Without target ̂Fzccp2005 + 0.0045 ẑccp2010 + 0.00910

ẑfrpt zfrp2000 + 0.0033 Without target ̂Fzfrp2005 + 0.0055 ẑfrp2010 + 0.00310

ẑsrpt zsrp2000 + 0.0123 ẑsrp2003 + 0.0113 ẑsrp2006 + 0.0074 ẑsrp2010 + 0.00510

ẑtrpt ztrp2000 + 0.0243 ẑtrp2003 + 0.0223 ẑtrp2006 + 0.0084 ẑtrp2010 + 0.00710

Note: zfrp2000, zsrp2000, ztrp2000 are observed 2000 census data. ̂Fzccp2005 and ̂Fzfrp2005 are unrestricted forecasts of ccpt

and frpt produced by the VAR(2) model.

To take the previous restrictions into account, we define the Y vector as in Equation (10) and
the C matrix with the following structure

C =

⎡
⎢⎢⎣

03×9 I3 03×68

02×22 I2 02×56

04×36 I4 04×40

04×76 I4

⎤
⎥⎥⎦ ,

where 0i×j are i × j zero matrices and Ii are i-dimensional identity matrices.
We carried out compatibility testing of these goals and obtained the value Kcalc = 3.45 which

is significant at the 5% level, as compared with an FM,T −Mp−1 distribution with M = 13 and
T − Mp − 1 = 33 degrees of freedom. Therefore, the goals are jointly incompatible with the
expected behavior of the multiple population series. However, the partial compatibility tests
indicate that the goals ẑccp2010 and ẑccp2020 may be considered compatible at the 0.07% and
0.05% significance level, respectively.

Although the set of goals established in the population program are not jointly compatible, we
shall elaborate on them and make a proposal on the PGRs for the rings. The idea is to find a
set of population targets that are compatible with the empirical evidence provided by the annual
disaggregated series. Our proposal looks for population targets that produce a smooth population
pattern, in agreement with the demographic logic, if no catastrophic or anomalous situation occurs.
By so doing, we obtained the multiple compatibility test statistic Kcalc = 0.74 with p-value 7.12%.

Since the unrestricted forecast for the Central City population has a clear decreasing trend, we
suggest reaching a cumulative PGR of 0 at the end of 2010 and fix a negative cumulative PGR of
0.18% at the end of 2020. For the first ring, all the targets of population growth were compatibles,
but to get a smooth pattern of population we propose a cumulative PGR of 3.5% at the end of
2003, 3.38% in 2010, and 3% in 2020.

Our proposal for the cumulative PGR, based on the demographic dynamics presented by the
series for the second ring, is 3.9% at the end of 2003 and 3.98% in 2006, then it should go up to
4.06% in 2010 and 4.1% at the end of 2020. For the third ring, our proposal is to modify only
the first target at the end of 2003, that is, to reach a cumulative PGR of 2.55%, then reach 2.64%
at the end of 2006, 2.68% in 2010, and 2.77% in 2020. In Table 6 we see that all the individual
restrictions of our proposal are compatible with the disaggregated series at the 5% significance
level, so that they are empirically supported.

Finally, in Figure 4 we can see the expected behavior of the population series for the Central
City and the rings. The observed patterns are reasonably smooth for all the series except for the
Central City population. We think this is a consequence of imposing constraints on that series
that essentially tend to lower its cumulative PGR, so that the restricted forecasts have to bend the
smooth curve in order to fulfill the constraints. In summary, we conclude that the goals proposed

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
i
l
v
a
,
 
E
l
i
u
d
]
 
A
t
:
 
1
3
:
5
4
 
6
 
F
e
b
r
u
a
r
y
 
2
0
1
1



812 E. Silva et al.

Table 6. Compatibility testing for growth rates with our proposal.

Restriction Kparc M, T − Mp − 1 Significance

frp2003 0.073 1, 57 0.788
srp2003 0.550 1, 57 0.461
trp2003 0.400 1, 57 0.530
srp2006 0.368 1, 57 0.547
trp2006 0.013 1, 57 0.910
ccp2010 1.196 1, 57 0.279
frp2010 0.374 1, 57 0.544
srp2010 0.031 1, 57 0.862
trp2010 0.197 1, 57 0.659
ccp2020 1.052 1, 57 0.309
frp2020 0.004 1, 57 0.951
srp2020 0.190 1, 57 0.665
trp2020 0.394 1, 57 0.533
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Figure 4. Restricted forecasts and 95% prediction intervals for the rings with our proposed goal for ccpt ,
trpt , frpt and srpt (from bottom to top).

for the Central City should be different than those presented in the official population program,
while those for the rings must be in general only slightly different.

4. Conclusions

We presented first an application of a temporal disaggregation technique to a demographic time
series. The most time-consuming part of such a technique involved the generation of an appropriate
preliminary series from demographic considerations. We think it was worth doing it this way
because the quality of the final results depends heavily on the quality of such a series. This task is
much simpler to perform in economic contexts, because usually there are economic indexes that
play the role of a basic auxiliary variable when obtaining a preliminary estimate of the unobserved
series. In the case considered here, we were forced to perform a meticulous search for demographic
data and events by geographic unit and year.
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The application of restricted forecasting and compatibility testing to demographic data was
carried out in order to evaluate the feasibility of the targets proposed in an official population
program for the MZMC. This analysis indicates that before suggesting demographic goals, it is
necessary to evaluate their empirical feasibility in an objective way.

In general, it can be noticed that temporal disaggregation produced convincing results because
we took great care to generate an adequate preliminary series. Also, it was possible to determine
new goals consistent with the population dynamics. Of course, the methodological strategies
presented here can also be used to solve similar problems with demographic information in other
developing countries or in any other geographic zone where the need of combining demographic
information arises. In fact, according with the results obtained in this paper, we could say that
both temporal disaggregation and restricted forecasting are efficient statistical tools that serve to
consolidate this type of data. Moreover, we are convinced that growth population programs could
be made feasible and monitored afterwards with this kind of analysis.

This article provides evidence on the appropriateness and accessibility of specialized statisti-
cal techniques, that have been developed and traditionally employed for economic analysis, in
the demographic field. We hope this work motivates specialists in these fields to identify new
potential applications or possibilities of methodological developments that will ultimately help
practitioners to get more information from their data and support better decision-making. It is
worth stressing that the procedures applied here can be used with other kind of demographic
data, such as those related with fertility, marriage, divorce, and migration. By so doing, we could
evaluate the feasibility of official population programs for the population determinants jointly, in
different contexts and around the world.
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Appendix 1. Correcting the annual birth series for outliers

We used annual vital statistics of births and deaths for years t = 1941, 1942, . . . , 2000 for the
DF and the SM. The vital statistics in year t are: ddft deaths in the DF, bdft births in the DF,
ngdft = bdft − ddft natural growth in the DF, dsmt deaths in the SM, bsmt births in the SM, and
ngsmt = bsmt − dsmt natural growth in the SM.We corrected the annual {bsmt} series for outliers
in years 1983, 1984, and 1985. This series was regressed on marriages nsmt of the SM, a dummy
variable i77t that accounts for a structural change in 1977 due to a birth control policy (valued 0
from 1940 up to 1976 and 1 from 1977 onwards), three dummies for the aforementioned outliers
iit with i = 1, 2, 3, and lagged values of births bsmt−1 to account for its own inertia. Optimal
corrected values were obtained as indicated in [9], from the model expressed in logarithms and
t = 1941, 1942, . . . , 2000,

log(bsmt ) = β1i77t + β2 log(nsmt−1) +
5∑

i=3

βiiit + β6 log(bsmt−1) + at ,

where at is a random error from a 0-mean Gaussian white noise process. Since the dummy variable
i3t was not significant at the 5% level, it was omitted. The results of the final estimated model are
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(t-statistics in parentheses),

β̂1 = −0.11
(−2.13)

, β̂2 = 0.21
(−3.18)

, β̂3 = −0.68
(−6.75)

, β̂4 = −0.24
(−2.30)

, β̂6 = 0.83
(−15.42)

with R2 = 0.977 and σ̂a = 0.098. The Ljung–Box Q statistic for serial autocorrelation took on
the followings values Q(3) = 1.23, Q(5) = 2.98, and Q(10) = 13.17, which did not provide
evidence of inadequacy of the model.

Appendix 2. Obtaining the preliminary series

The algorithm to get preliminary series for the rings from data on the DF and the SM goes as
follows.

I. Calculate ngdft and ngsmt , for t = 1941, 1942, . . . , 2000.
II. Calculate dfpt and smpt as partial populations of the DF and the SM dfpt = dfp2000−n +∑2000

j=2000−n+1 ngdfj and smpt = smp2000−n + ∑2000
j=2000−n+1 ngsmj with n = 60.

III. Consider the population proportions of the rings with respect to dfpt∗ + smpt∗ for the census
years t∗ = 1940, 1950, . . . , 2000, represented by rccpt∗, rfrpt∗, rsrpt∗, and rtrpt∗. Calculate
the proportions for the intercensus years t, given by rccpt , rfrpt , rsrpt , and rtprt , assuming
a linear behavior. The series of estimated proportions satisfy the relationship rmzmcpt =
rccpt + rfrpt + rsrpt + rtrpt for t = 1941, 1942, . . . , 2000.

IV. Calculate the series of population proportions for the rings with ccp+
t = rccpt (dfpt + smpt ),

srp+
t = rsrpt (dfpt + smpt ), and trp+

t = rtrpt (dfpt + smpt ) for t = 1941, 1942, . . . , 2000.
V. Calculate the differences attributable to migration for the rings: migccpt∗ = ccpct∗ − ccp+

t∗ ,
migfrpt∗ = frpct∗ − frp+

t∗ ,migsrpt∗ = srpct∗ − srp+
t∗ , and migtrpt∗ = trpct∗ − trp+

t∗ for t∗ =
1940, 1950, . . . , 2000, where ccpct∗ , frpct∗ , srpct∗ , and trpct∗ are census populations at years
t∗. Suppose migration behaves uniformly in time and add one-tenth of these differences to
the annual estimates series obtained in the previous step.

VI. Calculate ccpt = ccp+
t + 0.1 ∗ migccpt∗ , frpt = frp+

t + 0.1 ∗ migfrpt∗ , srpt = srp+
t + 0.1 ∗

migsrpt∗, and trpt = trp+
t + 0.1 ∗ migtrpt∗ for t = 1941, 1942, . . . , 2000.

VII. Finally, estimate the cumulative PGR between 1940 and each year from 1941 to 2000, for
every ring, as r = loge(pt/p1940).

Appendix 3. Incorporating measurement error variability

Let {Z∗
t } and {Zt } be series of observable and unobservable values, respectively, that admit sta-

tionary VAR representations of order 1 ≤ p < ∞ with all non-stationarities taken into account
by the deterministic effects, so that their Wold’s representations are Z∗

t = Dt + �(B)at and
Zt = Dt + �(B)at + εt with Dt a vector of deterministic components that includes the con-
stant term, at ∼ N(0, �a), and εt is the measurement error which we assume is uncorrelated with
the whole sequence {at }. Then, we recall the notation in Section 2.2 to write

Z∗ = D + �aF and Z = D + �aF + εF (A1)

with aF ∼ N(0, IH ⊗ �a) and εF ∼ N(0, �ε) and E(aF ε′
F ) = 0, where �ε is given in Equation

(20) and D is a vector of deterministic elements. We then write ZF = D + �δF , with

δF ∼ N(0, (IH ⊗ �a) + �−1�ε�
−1′) (A2)

to obtain again expressions (11)–(13), with

A = [�(IH ⊗ �a)�
′ + �ε]C ′�−1 (A3)

and

� = C[�(IH ⊗ �a)�
′ + �ε]C ′. (A4)
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