
  Royal Statistical Society and Wiley are collaborating with JSTOR to digitize, preserve and extend access to Journal of the 
Royal Statistical Society. Series B (Statistical Methodology).

http://www.jstor.org

Invariant Co-Ordinate Selection [with Discussion] 
Author(s): David E. Tyler, Frank Critchley, Lutz Dümbgen and Hannu Oja 
Source:  Journal of the Royal Statistical Society. Series B (Statistical Methodology), Vol. 71, No. 3

 (Jun., 2009), pp. 549-592
Published by:  for the  Wiley Royal Statistical Society
Stable URL:  http://www.jstor.org/stable/40247589
Accessed: 23-11-2015 17:50 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/
 info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content 
in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. 
For more information about JSTOR, please contact support@jstor.org.

This content downloaded from 163.117.20.121 on Mon, 23 Nov 2015 17:50:55 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org
http://www.jstor.org/action/showPublisher?publisherCode=black
http://www.jstor.org/action/showPublisher?publisherCode=rss
http://www.jstor.org/stable/40247589
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


J. R. Statist Soc. B (2009) 
71, Part 3, pp. 549-592 

Invariant co-ordinate selection 

David E. Tyler, 

Rutgers University, Piscataway, USA 

Frank Critchley, 
The Open University, Milton Keynes, UK 

Lutz Dumbgen 

University of Berne, Switzerland 

and Hannu Oja 

University of Tampere, Finland 

[Read before The Royal Statistical Society at a meeting organized by the Research Section on 
Wednesday, December 17th, 2008, Professor I. L. Dryden in the Chair] 

Summary. A general method for exploring multivariate data by comparing different estimates of 
multivariate scatter is presented. The method is based on the eigenvalue-eigenvector decom- 
position of one scatter matrix relative to another. In particular, it is shown that the eigenvectors 
can be used to generate an affine invariant co-ordinate system for the multivariate data. Conse- 
quently, we view this method as a method for invariant co-ordinate selection. By plotting the data 
with respect to this new invariant co-ordinate system, various data structures can be revealed. 
For example, under certain independent components models, it is shown that the invariant co- 
ordinates correspond to the independent components. Another example pertains to mixtures of 
elliptical distributions. In this case, it is shown that a subset of the invariant co-ordinates cor- 
responds to Fisher's linear discriminant subspace, even though the class identifications of the 
data points are unknown. Some illustrative examples are given. 

Keywords: Affine invariance; Cluster analysis; Independent components analysis; Mixture 
models; Multivariate diagnostics; Multivariate scatter; Principal components; Projection pursuit; 
Robust statistics 

1. Introduction 

When sampling from a multivariate normal distribution, the sample mean vector and sample 
variance-covariance matrix are a sufficient summary of the data set. To protect against non- 
normality, and in particular against longer-tailed distributions and outliers, we can replace the 
sample mean and covariance matrix with robust estimates of multivariate location and scatter 
(or pseudoco variance). A variety of robust estimates of the multivariate location vector and 
scatter matrix have been proposed. Among them are multivariate M-estimates (Huber, 1981; 
Maronna, 1976), the minimum volume ellipsoid estimate and the minimum covariance determi- 
nant estimate (Rousseeuw, 1986), S-estimates (Davies, 1987; Lopuhaâ, 1985), projection-based 
estimates (Maronna et al., 1992; Tyler, 1994), r-estimates (Lopuhaâ, 1991), constrained M-esti- 
mates (Kent and Tyler, 1996) and MM estimates (Tatsuoka and Tyler, 2000; Tyler, 2002), as well 
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as one-step versions of these estimates (Lopuhaâ, 1999). After computing robust estimates of 
multivariate location and scatter, outliers can often be detected by examining the corresponding 
robust Mahalanobis distances; see for example Rousseeuw and Leroy (1987). 

Summarizing a multivariate data set via a location and a scatter statistic, and then inspecting 
the corresponding Mahalanobis distance plot for possible outliers, is appropriate if the bulk of 
the data arises from a multivariate normal distribution or, more generally, from an elliptically 
symmetric distribution. However, if the data arise from a distribution which is not symmetric, 
then different location statistics are estimating different notions of central tendency. Moreover, 
if the data arise from a distribution other than an elliptically symmetric distribution, even one 
which is symmetric, then different scatter statistics are not necessarily estimating the same pop- 
ulation quantity but rather are reflecting different aspects of the underlying distribution. This 
suggests that comparing different estimates of multivariate scatter may help to reveal interesting 
departures from an elliptically symmetric distribution. Such data structures may not be apparent 
in a Mahalanobis distance plot. 

In this paper, we present a general multivariate method based on the comparison of different 
estimates of multivariate scatter. This method is based on the eigenvalue-eigenvector decom- 
position of one scatter matrix relative to another. An important property of this decomposition 
is that the corresponding eigenvectors generate an affine invariant co-ordinate system for the 
multivariate observations, and so we view this method as a method for invariant co-ordinate 
selection (ICS). By plotting the data with respect to this new invariant co-ordinate system, vari- 
ous data structures can be revealed. For example, when the data arise from a mixture of elliptical 
distributions, the space that is spanned by a subset of the invariant co-ordinates gives an estimate 
of Fisher's linear discriminant subspace, even though the class identifications of the data points 
are unknown. Another example pertains to certain independent components models. Here the 
variables that are obtained by using the invariant co-ordinates correspond to estimates of the 
independent components. 

The paper is organized as follows. Section 2 sets up some notation and concepts to be used in 
the paper. In particular, the general concept of affine equivariant scatter matrices is reviewed in 
Section 2.1 and some classes of scatter matrices are briefly reviewed in Section 2.2. The idea of 
comparing two different scatter matrices by using the eigenvalue-eigenvector decomposition of 
one scatter matrix relative to another is discussed in Section 3, with the invariance properties of the 
ICS transformation being given in Section 4. Section 5 gives a theoretical study of the ICS transfor- 
mation under the aforementioned elliptical mixture models (Section 5.1), and under independent 
components models (Section 5.2). The results in Section 5.1 represent a broad generalization 
of results given under the heading of generalized principal components analysis by Ruiz-Gazen 
(1993) and Caussinus and Ruiz-Gazen (1993, 1995). Readers who are primarily interested in 
how ICS works in practice may wish to skip Section 5 at a first reading. In Section 6, a general 
discussion on the choice of scatter matrices that we may consider when implementing ICS, along 
with some examples illustrating the utility of the ICS transformation for diagnostic plots, is given. 
Further discussion, open research questions and the relationship of ICS to other approaches are 
given in Section 7. All formal proofs are reserved for Appendix A. An R package entitled ICS 
(Nordhausen, Oja and Tyler, 2008) is freely available for implementing the ICS methods. 

2. Scatter matrices 

2. 1. Affine equivariance 
Let F y denote the distribution function of the multivariate random variable Y eMp, and let 

Vp represent the set of all symmetric positive definite matrices of order p. Affine equivariant 
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multivariate location and scatter functional, say n(FY) e?(\p and V(FY) eVp respectively, are 
functions of the distribution satisfying the property that for K* = AY + b, with A non-singular 
and b e 5H*\ 

H(FY*) = Aii(FY) + b9 

V(FY*) = AV(FY)A'. 

Classical examples of affine equivariant location and scatter functional are the mean vector 
Hy = E[Y] and the variance-covariance matrix £y = E[(Y - [iY){Y - VyY] respectively, provided 
that they exist. For our purposes, affine equivariance of the scatter matrix can be relaxed slightly 
to require only affine equivariance of its shape components. A shape component of a scatter 
matrix V e Vp refers to any function of F, say <S( V), such that 

S(V)=S(XV) for any A >0. (2) 

Thus, we say that the 'shape' of V(FY) is affine equivariant if 

V(FY*)<xAV(FY)A'. (3) 

For a /7-dimensional sample of size n,Y = {y\,...,yn}, affine equivariant multivariate loca- 
tion and scatter statistics, say ft and V respectively, are defined by applying the above definition 
to the empirical distribution function, i.e. they are statistics satisfying the property that, for any 
non-singular A and any b e Wp, 

yi^y* = Ayi+b for i=\,...,n^({i,V)-+({i*,V*) = (A{i + b,AV A'). (4) 

Likewise, the shape of V is said to be affine equivariant if 

V*ocAVA'. (5) 

The sample mean vector y and sample variance-covariance matrix Sn are examples of affine 

equivariant location and scatter statistics respectively, as are all the estimates that were cited in 
Section 1. 

Typically, in practice, V is normalized so that it is consistent at the multivariate normal model 
for the variance-covariance matrix. The normalized version is thus given as V = V/(3, where 

P > 0 is such that V(FZ) = /3I when Z has a standard multivariate normal distribution. For our 

purposes, it is sufficient to consider only the unnormalized scatter matrix V since our proposed 
methods depend only on the scatter matrix up to proportionality, i.e. only on the shape of the 
scatter matrix. 

Under elliptical symmetry, affine equivariant location and scatter functionals have relatively 
simple forms. Recall that an elliptically symmetric distribution is defined to be one arising from 
an affine transformation of a spherically symmetric distribution, i.e., if Z~ QZ for any p x p 
orthogonal matrix g, then the distribution of Y = AZ + \x is said to have an elliptically sym- 
metric distribution with centre \i e Np and shape matrix T = AAf\ see for example Bilodeau and 
Brenner (1999). If the distribution of Y is also absolutely continuous, then it has a density of 
the form 

/(>;;/x,r,^)=det(r)-1/2^{(3;-//)T-1(>;-/i)} foryeW, (6) 

for some non-negative function g and with F e Vp. As defined, the shape parameter F of an 

elliptically symmetric distribution is only well defined up to a scalar multiple, i.e., if F satis- 
fies the definition of a shape matrix for a given elliptically symmetric distribution, then ÀF 
also does for any À > 0. In the absolutely continuous case, if no restrictions are placed on 
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the function g, then the parameter F is confounded with g. One could normalize the shape 
parameter by setting, for example, det(F) = 1 or tr(F) = p. Again, this is not necessary for our 
purposes since only the shape components of F, as defined in expression (2), are of interest 
in this paper, and these shape components for an elliptically symmetric distribution are well 
defined. 

Under elliptical symmetry, any affine equivariant location functional corresponds to the 
centre of symmetry and any affine equivariant scatter functional is proportional to the shape 
matrix, i.e. n(Fy) = fi and V(Fy) oc F. In particular, fiy = M and E^ocF when the first and second 
moments exist respectively. More generally, if V(Fy) is any functional satisfying condition (3), 
then V(FY)(xT. 

As noted in Section 1 , for general distributions, affine equivariant location functional are 
not necessarily equal and affine equivariant scatter functional are not necessarily proportional 
to each other. The corresponding sample versions of these functional are therefore estimating 
different population features. The difference in these functional reflects in some way how the 
distribution differs from an elliptically symmetric distribution. 

Remark 1. The class of distributions for which all affine equivariant location functional are 
equal and all equivariant scatter functional are proportional to each other is broader than the 
class of elliptical distributions. For example, this can be shown to be true for Fy when Y = AZ + fj, 
with the distribution of Z being exchangeable and symmetric in each component, i.e. Z ~ DJZ 
for any permutation matrix J and any diagonal matrix D having diagonal elements ±1. We 
conjecture that this is the broadest class for which this property holds. This class contains the 
elliptical symmetric distributions, since these correspond to Z having a spherically symmetric 
distribution. 

2.2. Classes of scatter statistics 

Conceptually, the simplest alternatives to the sample mean y and sample covariance matrix Sn 
are the weighted sample means and sample covariance matrices respectively, with the weights 
dependent on the classical Mahalanobis distances. These are defined by 

n I n 

fi=J2 «iWyi/EMi(Jo,/)» 

V = E u2(soj)(yi-y)(yi-yy/E ' K2(*o,i), 
/=1 ' 1=1 

where so,/ = iyi - y)'$n 
X (yi ~ y)> an<^ u 1 W anc* U2 (s) are some appropriately chosen weight func- 

tions. Other simple alternatives to the sample covariance matrix can be obtained by applying 
only the scatter equation above to the sample of pairwise differences, i.e. to the symmetrized 
data set 

V* = {yi-yj\iJ=U--.9n9i*j}9 (8) 

for which the sample mean is 0. Even though the weighted mean and covariance matrix, as well 
as the symmetrized version of the weighted covariance matrix, may downweight outliers, they 
have unbounded influence functions and zero breakdown points. 

A more robust class of multivariate location and scatter statistics is given by the multivariate 
M-estimates, which can be viewed as adaptively weighted sample means and sample covari- 
ance matrices respectively. More specifically, they are defined as solutions to the M-estimating 
equations 
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n in 

V = £ U2(si){yi-(i)(yi-il)f I it u3(si)9 
i=\ ' 1=1 

where s/ = (>>/ - /£)' V (y, - /2), and «i 0), U2(s) and «3(5) are again some appropriately cho- 
sen weight functions. We refer the reader to Huber (1981) and Maronna (1976) for the general 
theory regarding the multivariate M-estimates. The equations given in expression (9) are impli- 
cit equations in (/î, V) since the weights depend on the Mahalanobis distances relative to 
(/2, V), i.e. on d/(/î, V) = Jst. Nevertheless, relatively simple algorithms exist for computing 
the multivariate M-estimates. The maximum likelihood estimates of the parameters /i and T 
of an elliptical distribution for a given spread function g in expression (6) are special cases of 
M-estimates. 

From a robustness perspective, an often-cited drawback to the multivariate M-estimates 
is their relatively low breakdown in higher dimension. Specifically, their breakdown point is 
bounded above by l/(/?+ 1). Subsequently, numerous high breakdown point estimates have 
been proposed, such as the minimum volume ellipsoid, the minimum covariance determinant, 
the S-estimates, the projection-based estimates, the r-estimates, the constrained M-estimates 
and the MM estimates, all of which are cited in Section 1 . All the high breakdown point estimates 
are computationally intensive and, except for small data sets, are usually computed by using 
approximate or probabilistic algorithms. The computational complexity of high breakdown 

point multivariate estimates is especially challenging for extremely large data sets in high dimen- 
sions, and this remains an open and active area of research. 

The definition of the weighted sample means and covariance matrices given by expression (7) 
can be readily generalized by using any initial affine equivariant location and scatter statistic, 
say /20 and Vo respectively, i.e. 

n I n 

v = £ U2(soj)(yi - Po)(yi - PqY/T, ' 
"2(^0,/), 

i=\ ' i=\ 

where now so,/ = (yi - M^o1 (yi ~ M- In the univariate setting such weighted sample means 
and variances are sometimes referred to as one-step ^-estimates (Hampel et al , 1986; Mosteller 
and Tukey, 1977), and so we refer to their multivariate versions as multivariate one-step W- 
estimates. Given a location and a scatter statistic, a corresponding one-step W-estimate pro- 
vides a computationally simple choice for an alternative location and scatter statistic. 

Any method that one uses for obtaining location and scatter statistics for a data set Y can 
also be applied to its symmetrized version Ys to produce a scatter statistic. For symmetrized 
data, any affine equivariant location statistic is always 0. 

The functional or population versions of the location and scatter statistics that were discussed 
in this section are readily obtained by replacing the empirical distribution of Y with the popu- 
lation distribution function Fy. For the M-estimates and the one-step ^-estimates, this simply 
implies replacing the averages in expressions (9) and (10) respectively with expected values. For 

symmetrized data, the functional versions are obtained by replacing the empirical distribution 
of Ys with its almost sure limit F£, the distribution function of Ys = Y\ - Y 2, where Y\ and Y 2 
are independent copies of Y. 
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3. Comparing scatter matrices 

Comparing positive definite symmetric matrices arises naturally within a variety of multivariate 
statistical problems. Perhaps the most obvious case is when we wish to compare the covariance 
structures of two or more different groups; see for example Flury ( 1 988). Other well-known cases 
occur in multivariate analysis of variance, wherein interest lies in comparing the within-group 
and between-group sum of squares and cross-products matrices, and in canonical correlation 
analysis, wherein interest lies in comparing the covariance matrix of one set of variables with 
the covariance matrix of its linear predictor based on another set of variables. These methods 
involve either multiple populations or two different sets of variables. Less attention has been 
given to the comparison of different estimates of scatter for a single set of variables from a single 
population. Some work in this direction, though, can be found in Art et al. (1982), Caussinus 
and Ruiz-Gazen (1990, 1993, 1995), Caussinus et al (2003) and Ruiz-Gazen (1993), which will 
be discussed in later sections. 

Typically, the difference between two positive definite symmetric matrices can be summa- 
rized by considering the eigenvalues and eigenvectors of one matrix with respect to the other. 
More specifically, suppose that V\ e Vp and V2 e Vp. An eigenvalue, say pj, and a correspond- 
ing eigenvector, say hj, of V2 relative to V\ correspond to a non-trivial solution to the matrix 
equations 

V2hj = pjVihj. (11) 

Equivalently, pj and hj are an eigenvalue and corresponding eigenvector respectively of Vf1 V2. 
Since most readers are probably more familiar with the eigenvalue-eigenvector theory of 
symmetric matrices, we note that pj also represents an eigenvalue of the symmetric matrix 
M = Vj~ 

/ V2 V\~ 
^ € V, where V^ eVp denotes the unique positive definite symmetric square 

root of V\ . Hence, we can choose p ordered eigenvalues, p\ ^ p2 ̂  . . . > pp > 0, and an ortho- 
normal set of eigenvectors g7, y = 1, ...,/?, such that Mqj = pjqj. The relationship between hj 
and the eigenvectors of M is given by qj oc v\/2hj, and so h • V\ hj = 0 for i ̂  j. This yields the 
following simultaneous diagonalization of Vi and V2: 

H'ViH = Dl, 

H'V2H = D2 

where H = (h\...hp)9 D\ and D2 are diagonal matrices with positive entries and D^XD2 = 
A = diag(pi,...,p/7). Without loss of generality, we can take D\ = I by normalizing hj so 
that hfjV\hj = 1. Alternatively, we can take D2 = I. Such a normalization is not necessary 
for our purposes and we simply prefer the general form (12) since it reflects the exchange- 
ability between the roles of V\ and V2. Note that the matrix V[lV2 has the spectral value 
decomposition 

Vf1V2 = ^A^"1. (13) 

Various useful interpretations of the eigenvalues and eigenvectors in equation (11) can be 
given whenever V\ and V2 are two different scatter matrices for the same population or sample. 
We first note that the eigenvalues p\, . . . ,pp are the maximal invariants under affine transfor- 
mation for comparing Vi and V2, i.e., if we define a function G(V\, V2) such that G(V\, V2) = 

G(AViAr, A V2Ar) for any non-singular^, then G(Vi, V2) = G(DU D2) = G(I, A), with D\, D2 
and A being defined as above. Furthermore A is invariant under such transformations. Since 
scatter matrices tend to be well defined only up to a scalar multiple, it is more natural to be 
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interested in the difference between Vi and V2 UP to proportionality. In this case, if we con- 
sider a function G(V\9 V2) such that G(V\,V2) = G(\\AV\A', X2A V2A1) for any non-singular A 
and any Ai >0 and A2 >0, then G(V\, V2) = G{I, A/det(A)1//7}, i.e. maximal invariants in this 
case are 

(pi,...,Pp)/ n Pi) 

or, in other words, we are interested in (p\ , . . . , pp) up to a common scalar multiplier. 
A more useful interpretation of the eigenvalues arises from the following optimality property, 

which follows readily from standard eigenvalue-eigenvector theory. For h e W, let 

K(h) = tiV2h/tiV\h. (14) 

For V\ = V\ (Fy) and V2 = V2(Fy), K(h) represents the square of the ratio of two different mea- 
sures of scale for the variable h'Y . Recall that the classical measure of kurtosis corresponds to 
the fourth power of the ratio of two scale measures, namely the fourth root of the fourth central 
moment and the standard deviation. Thus, the value of k{K)2 can be viewed as a generalized 
measure of 'relative' kurtosis. The term relative is used here since the scatter matrices V\ and 
V2 are not necessarily normalized. If both V\ and V2 are normalized so that they are both con- 
sistent for the variance-covariance matrix under a multivariate normal model, then a deviation 
of K(h) from 1 would indicate non-normality. In general, though, the ratio n{h\)2 /n(h2)2 does 
not depend on any particular normalization. 

The maximal possible value of k{H) over h e Np is p\ with the maximum being achieved in 
the direction of h\. Likewise, the minimal possible value of n{h) is pp with the minimum being 
achieved in the direction of hp. More generally, we have 

sup{K(h)\heMp,h'V\hj = OJ=\,...,m-\}=pm, (15) 

with the supremum being obtained at hm, and 

inî{K(h)\heMp,h'Vlhj = OJ = m + \,...,p}=pm, (16) 

with the infimum being obtained at hm . These successive optimality results suggest that plotting 
the data or distribution by using the co-ordinates Z = H'Y may reveal interesting structures. We 

explore this idea in later sections. 

Remark 2. An alternative motivation for the transformation Z = H'Y is as follows. Suppose 
that Y is first 'standardized' by using a scatter functional V\(F) satisfying condition (3), i.e. 
X=V\ (Fy)~l/2Y. If Y is elliptically symmetric about /iy, then X is spherically symmetric about 
the centre \ix = V\(Fy)~^2fiy. If a second scatter functional is then applied to X, say V2(F) 
satisfying condition (3), then V2(Fx) oc /, and hence no projection of X is any more interesting 
than any other projection of A^. However, if Y is not elliptically symmetric, then V2(Fx) is not 

necessarily proportional to /. This suggests that a principal components analysis of X based 
on V2(Fx) may reveal some interesting projections. By taking the spectral value decomposi- 
tion V2(FX) = QDQ\ where Q is an orthogonal matrix, and then constructing the principal 
component variables Q'X, we obtain 

Q'X = H'Y = Z, withZ) = A, (17) 

whenever H is normalized so that H'V\(FY)H = L 
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4. Invariant co-ordinate systems 

In this and the following section we study the properties of the transformation Z = H'Y in more 
detail, and in Section 6 we give some examples illustrating the utility of the transformation 
when used in diagnostic plots. For simplicity, unless otherwise stated, we hereafter state any 
theoretical properties by using the functional or population version of scatter matrices. The 

sample version then follows as a special case based on the empirical distributions. Examples 
are, of course, given for the sample version. The following condition is assumed throughout and 
the following notation is used hereafter. 

Condition 1. For Y e Mp having distribution FY, let V\ (F) and Vi(F) be two scatter functional 
satisfying condition (3). Further, suppose that both V\ (F) and Vi(F) are uniquely defined at FY. 

Definition 1. Let H(F) = (h \ (F) . . . hp(F)) be a matrix of eigenvectors defined as in equations 
(11) and (12), with p\(F)^ . . . ̂  pp(F) being the corresponding eigenvalues, whenever V\ and 
Vi are taken to be V\ (F) and V2(F) respectively. 

It is well known that principal component variables are invariant under translations and 
orthogonal transformations of the original variables, but not invariant under other general 
affine transformations. An important property of the transformation that is proposed here, i.e. 
Z = H(FY)fY, is that the resulting variables are invariant under any affine transformation. 

Theorem 1. In addition to condition 1 , suppose that the roots p\ (Fy), . . . , pp(FY) are all dis- 
tinct. Then for the affine transformation K* = AY + b, with A being non-singular, 

pj(FY*) = 1pj(FY) fory = l,...,/7 (18) 

for some 7 > 0. Moreover, the components of Z = H(FY)'Y and Z* = H(FY* )'Y* differ at most 
by co-ordinatewise location and scale, i.e., for some constants a\,...9ap and /3i , . . . , /?p, with 

a, 7^0 for y=l,...,/?, 

ZJ=ajZj + 0j for 7 = 1, ...,/?. (19) 

Owing to property (19) we refer to the transformed variables Z = H(FY)fY as an invariant 
co-ordinate system, and the method for obtaining them as ICS. If a univariate standardization 
is applied to the transformed variables, then the standardized versions of Zj and Z* differ only 
by a factor of it 1. 

A generalization of the previous theorem, which allows for possible multiple roots, can be 
stated as follows. 

Theorem 2. Let Y , Y* , Z and Z* be defined as in theorem 1 . In addition to condition 1 , suppose 
that the roots p\ (FY), . . . , pp(FY) consist of m distinct values, say p(i) > . . . > p(m>, with p(k) 
having multiplicity pk for k = 1, . . . ,m, and hence p\ + . . . + pm = p. Then, expression (18) 
still holds. Furthermore, suppose that we partition Zr = (Zr(1), . . . , Z[m)), where Z(*) e MPk. 
Then, for some non-singular matrix C* of order pu and some pk -dimensional vector /?*, 

Z(% = CkZ{k) + pk for *= 1, . . . ,m, (20) 

i.e. the space that is spanned by the components of Z*k) is the same as the space that is spanned 
by the components of Z^. 

As with any eigenvalue-eigenvector problem, eigenvectors are not well defined. For a distinct 
root, the eigenvector is well defined up to a scalar multiple. For a multiple root, say with multi- 
plicity po, the corresponding po eigenvectors can be chosen to be any linearly independent 
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vectors spanning the corresponding /?o-diniensional eigenspace. Consequently Z(*) in theorem 2 
is not well defined. One could construct some arbitrary rule for defining Z(*) uniquely. However, 
this is not necessary here since, no matter which rule we may use to define Z^) uniquely, the 
results of theorem 2 hold. 

5. Invariant co-ordinate selection under non-elliptical models 

When Y has an elliptically symmetric distribution, all the roots p\ (Fy), . . . , pp(Fy) are equal, 
and so the ICS transformation Z = H(Fy)'Y is arbitrary. The aim of ICS though is to detect 
departures of Y from an elliptically symmetric distribution. In this section, the behaviour of 
the ICS transformation is demonstrated theoretically for two classes of non-elliptically sym- 
metric models, namely for mixtures of elliptical distributions and for independent components 
models. 

5. 1 . Mixture of elliptical distributions 
In practice, data often appear to arise from mixture distributions, with the mixing being the result 
of some unmeasured grouping variable. Uncovering the different groups is typically viewed as a 

problem in cluster analysis. One clustering method, which was proposed by Art et al (1982), is 
based on first reducing the dimension of the clustering problem by attempting to identify Fisher's 
linear discriminant subspace. To do this, they gave an iterative algorithm for approximating the 

within-group sum of squares and cross-products matrix, say Wn, and then considered the eigen- 
vectors of W~x (Tn - Wn), where Tn is the total sum-of-squares and cross-products matrix. The 

approach that was proposed by Art et al (1982) was motivated primarily by heuristic arguments 
and was supported by a Monte Carlo study. 

Subsequently, Ruiz-Gazen (1993) and Caussinus and Ruiz-Gazen (1993, 1995) showed for a 
location mixture of multivariate normal distributions with equal variance-covariance matrices 
that Fisher's linear discriminant subspace can be consistently estimated even when the group 
identification is not known, provided that the dimension, say q, of the subspace is known. Their 
results are based on the eigenvectors that are associated with the q largest eigenvalues of S[lnSn, 
where Sn is the sample variance-covariance matrix and S\,n is either the one-step ^-estimate (7) 
or its symmetrized version. They also required that the S\nn differs from Sn by only a small pertur- 
bation, since their proof involves expanding the functional version of S\,n about the functional 
version of Sn. In this subsection, it is shown that these results can be extended essentially to any 
pair of scatter matrices, and also that the results hold under mixtures of elliptical distributions 
with proportional scatter parameters. 

For simplicity, we first consider properties of the ICS transformation for a mixture of two mul- 
tivariate normal distributions with proportional covariance matrices. Considering proportional 
covariance matrices allows for the inclusion of a point mass contamination as one of the mix- 
ture components, since a point mass contamination is obtained by letting the proportionality 
constant go to 0. 

Theorem 3. In addition to condition 1 , suppose that 

Y~d(l-a)Np(m,r) + aNp(tJL2,Xr)9 

where 0 < a < 1 , /xi # /X2, A > 0 and TeVp. Then either 

(a) p\{FY)>P2(FY) = ... = pp{FY), 
(b) pi(Fy) = ...=pp-\(Fy)>pp(Fy),ot 
(c) p\(FY) = ... = Pp(FY). 
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For /?>2, if case (a) holds, then h\(Fy) ocT~{ (fi\ - \ij) and, if case (b) holds, then hp(FY)<x 
r^C/xi - /i2). For /7 = 2, if p\(Fy)> p2(Fy), then either h\(FY) or h2(Fy) is proportional to 

Thus, depending on whether case (a) or case (b) holds, h\ or hp respectively corresponds to 
Fisher's linear discriminant function (see for example Mardia et al. (1980)), even though the 
group identity is unknown. An intuitive explanation about why we might expect this to hold 
is that any estimate of scatter contains information on the between-group variability, i.e. the 
difference between /xj and //2, and the within-group variability or shape, i.e. F. Thus, one might 
expect that we could separate these two sources of variability by using two different estimates of 
scatter. This intuition though is not used in our proof of theorem 3; nor is our proof based on 
generalizing the perturbation arguments that were used by Ruiz-Gazen (1993) and Caussinus 
and Ruiz-Gazen (1995) in deriving their aforementioned results. Rather, the proof of theorem 
3 that is given in Appendix A relies solely on invariance arguments. 

Whether case (a) or case (b) holds in theorem 3 depends on the choice of V\(F) and Vi{F) 
and on the nature of the mixture. Obviously, if case (a) holds and then the roles of V\(F) and 
Vi(F) are reversed, then case (b) would hold. Case (c) holds only in very specific situations. In 
particular, case (c) holds if fi\ =/X2> in which case Y has an elliptically symmetric distribution. 
When fi\ 7^/i2, i.e. when the mixture is not elliptical itself, it is still possible for case (c) to hold. 
This though is dependent not only on the specific choice of V\(F) and Vi(F) but also on the 
particular value of the parameters a, /j,\ , /j>2, F and A. 

For example, suppose that V\ (F) = £(F), the population covariance matrix, and V2(F) = JC(F) 
where 

JC(F) = E[(Y-^YyE(F)-\Y-fiy)x(Y-fiy)(Y-fiYy]. (21) 

Beside being analytically tractable, the scatter functional JC(F) is one which arises in a classical 
algorithm for independent components analysis and is discussed in more detail in later sections. 
For the special case A = 1 and when ii\ ^ H2, if we let rj = a( 1 - a), then it can be shown that case 
(a) holds for 77 > 1 /6, case (b) holds for 77 < 1 /6 and case (c) holds for 77 = 1 /6. Also, for any of these 
three cases, we have p\ (FY) - pP(FY) = rj\\- 6r]\62/(\ + rjO)2, where 0 = (/11 - /i2)T"1 (/ii - /i2). 

Other examples have been studied in Caussinus and Ruiz-Gazen (1993, 1995). In their work, 
V2(F) = £(/*) and Vi (F) corresponds to the functional version of the symmetrized version of 
the one-step W -estimate (7). Paraphrasing, they showed for the case A = 1 and for the class of 
weight functions U2(s) = u((3s) that case (a) holds for sufficiently small (3 provided that 77 < 1/6. 
They did not note, though, that case (a) or (b) can hold for other values of (3 and 77. The reason 
that the condition 77 < 1/6 arises in their work, as well as in the discussion in the previous par- 
agraph, is because their proof involves expanding u((3s) about u(s), with the matrix JC(F) then 
appearing in the linear term of the corresponding expansion of the one-step ^-estimate about 

Theorem 3 readily generalizes to a mixture of two elliptical distributions with equal shape 
matrices, but with possibly different location vectors and different spread functions, i.e., if Y 
has density 

fY{y) = (l-(*) f(y;tiur9gi) + af(y;ii2,r9g2)9 

where 0 < a < 1 , //j ^ ^2 and f(y; //, F, g) is defined by expression (6), then the results of theorem 
3 hold. Note that this mixture distribution includes the case where both mixture components 
are from the same elliptical family but with proportional shape matrices. This special case cor- 
responds to setting g2 (s)=g\(s/\), and hence f(y;fi29T9g2) = f(y;fi29 AF,#i). 
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An extension of these results to a mixture of k elliptically symmetric distributions with pos- 
sibly different centres and different spread functions, but with equal shape matrices, is given 
in the following theorem. Stated more heuristically, this theorem implies that Fisher's linear 
discriminant subspace (see for example Mardia et al. (1980)) corresponds to the span of some 
subset of the invariant co-ordinates, even though the group identifications are not known. 

Theorem 4. In addition to condition 1 , suppose that Y has density 

My)=det(r)-v2Zaj9j{(y-»jyr-l(y-Vj)}, 
7=1 

where a/>0 for j= 1,. . .,&, a\ + . . . + a* = 1, TeVp and g\,...,gk are non-negative func- 
tions. Also, suppose that the centres /lm, . . . ,/i* span some ^-dimensional hyperplane, with 

0<q<p. Then, using the notation of theorem 2 for multiple roots, there is at least one root 

P(j),j = 1 , . . . , m, with multiplicity greater than or equal to p - q. Furthermore, if no root has 

multiplicity greater than p - q, then there is a root with multiplicity p - q, say /9(r), such that 

span{r-1(/i7-^)|7=l,...,/:-l} = span{//(/(Fr)}, (22) 

where Hq(FY) = (h\(FY), . . . , /*,,,+.. .+/7/_, (Fy), hpx+...+Pt+x (FK), . . . , hp(FY)). 

The condition in theorem 4 that only one root has multiplicity p - q and no other root has 
a greater multiplicity reduces to case (a)-(b) in theorem 3 when k = 2. Analogously to the dis- 
cussion given after theorem 3, this condition generally holds except for special cases. For a 

given choice of V\(Fy) and Vi(Fy), these special cases depend on the particular values of the 

parameters. 

5.2. Independent components analysis models 

Independent components analysis (ICA) is a highly popular method within many applied areas 
which routinely encounter multivariate data. For a good overview, see Hyvârinen et al. (1981). 
The most common ICA model presumes that Y arises as a convolution of/? independent com- 

ponents or variables, i.e. Y = BX, where B is non-singular, and the components of X, say 
X\ , . . . , Xp, are independent. The main objective of ICA is to recover the mixing matrix B so 
that we can 'unmix' Y to obtain independent components X* = B~x Y. Under this ICA model, 
there is some indeterminacy in the mixing matrix B, since the model can also be expressed as 
Y = BoXo, where Bo = #(?A and Xo = A" ! Q'X, Q being a permutation matrix and A a diagonal 
matrix with non-zero entries. The components of Xo are then also independent. Under the con- 
dition that at most one of the independent components X\,...,XP has a normal distribution, 
it is well known that this is the only indeterminacy for B, and consequently the independent 
components X = B~x Y are well defined up to permutations and componentwise scaling factors. 

The relationship between ICS and ICA for symmetric distributions is given in the next 
theorem. 

Theorem 5. In addition to condition 1 , suppose that Y = BX + fi, where B is non-singular, and 
the components of X, say X\ , . . . , Xp, are mutually independent. Further, suppose that X is 

symmetric about 0, i.e. X ~ d -X, and the roots p\ (f>), - pP{FY) are all distinct. Then, the 
transformed variable Z = H(Fy)'Y consists of independent components or, more specifically, 
Z and X differ by at most a permutation and/or componentwise location and scale. 

From the proof of theorem 5, it can be noted that the condition that X be symmetrically 
distributed about 0 can be relaxed to require that only p - 1 of the components of X be sym- 
metrically distributed about 0. It is also worth noting that the condition that all the roots be 
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distinct is more restrictive than the condition that at most one of the components of X is nor- 
mal. This follows since it is straightforward to show in general that, if the distributions of two 
components of A" differ from each other by only a location shift and/or scale change, then there 
is at least one root having multiplicity greater than 1 . 

If X is not symmetric about 0, then we can symmetrize Y before applying theorem 5, i.e. 
suppose that Y = BX + fj, with X having independent components, and let Y\ and Yi be inde- 
pendent copies of Y. Then Ys = Y\ - Yi = BXS, where Xs = X\ - X2 is symmetric about zero 
and has independent components. Thus, theorem 5 can be applied to Ys. Moreover, since the 
convolution matrix B is the same for both Y and Fs, it follows that the transformed variable 
Z = H(Fy)rY and X differ by at most a permutation and/or componentwise location and scale, 
where Fy refers to the symmetrized distribution of Fy, i.e. the distribution of Ys. 

An alternative to symmetrizing Y is to choose both V\ (F) and Vi{F) so that they satisfy the 
following independence property. 

Definition L An affine equivariant scatter functional V(F) is said to have the 'independence 
property' if V(Fx) is a diagonal matrix whenever the components of A' are mutually independent, 
provided that V(Fx) exists. 

Assuming this property, Oja et al (2006) proposed to use principal components on standard- 
ized variables as defined in remark 2 to obtain a solution to the ICA problem. Their solution 
can be restated as follows. 

Theorem 6. In addition to condition 1 , suppose that Y = BX + n, where B is non-singular, 
and the components of X, say X\ , . . . , Xp, are mutually independent. Further, suppose that 
both scatter functionals V\(F) and ViiF) satisfy the independence property that is given in 
definition 1 , and the roots p\ (Fy), ...,pp(FY) are all distinct. Then, the transformed variable 
Z = H(FY)'Y consists of independent components or, more specifically, Z and X differ by at 
most a permutation and/or componentwise location and scale. 

The covariance matrix £(F) is of course well known to satisfy definition 1. It is also straight- 
forward to show that the scatter functional JC(F) that is defined in equation (21) does as well. 
Theorem 6 represents a generalization of an early ICA algorithm that was proposed by Cardoso 
(1989) based on the spectral value decomposition of a kurtosis matrix. Cardoso's algorithm, 
which he called the fourth-order blind identification algorithm, can be shown to be equivalent 
to choosing Vi(F) = E(F) and V2(F) = IC(F) in theorem 6. 

It is worth noting that the independence property that is given by definition 1 is weaker than 
the property 

Xi and Xj are independent =» V(Fx)tj = 0. (23) 

The covariance matrix satisfies property (23), whereas JC(F) does not. 
An often overlooked observation is that property (23) does not hold for robust scatter func- 

tionals in general, i.e. independence does not necessarily imply a zero pseudocorrelation. It is 
an open problem what scatter functionals other than the covariance matrix, if any, satisfy prop- 
erty (23). Furthermore, robust scatter functionals tend not to satisfy in general even the weaker 
definition 1 . At symmetric distributions, though, the independence property can be shown to 
hold for general scatter matrices in the following sense. 

Theorem 7. Let V(F) be a scatter functional satisfying condition (3). Suppose that the distribu- 
tion of X is symmetric about some centre \x e ?flp, with the components of X being mutually 
independent. If V(Fx) exists, then it is a diagonal matrix. 
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Consequently, given a scatter functional V(F), we can construct a new scatter functional 
satisfying definition 1 by defining Vs (F) = V(FS), where Fs represents the symmetrized distri- 
bution of F. Using symmetrization to obtain scatter functional which satisfy the independence 
property has been studied recently by Taskinen et al (2007). 

Finally, we note that the results of this section can be generalized in two directions. First, 
we consider the case of multiple roots, and next we consider the case where only blocks of the 
components of A" are independent. 

Theorem 8. In addition to condition 1 , suppose that Y = BX + /i, where B is non-singular, 
and the components of A\ say X\ , . . . , Xp, are mutually independent. Further, suppose that 
either 

(a) X is symmetric about 0, i.e. X^^-X, or 
(b) both V\(F) and V2(F) satisfy definition 1. 

Then, using the notation of theorem 2 for multiple roots, for the transformed variable Z = 

H{FY)'Y the random vectors Z(i), . . . , Z(m) are mutually independent. 

Theorem 9. In addition to condition 1 , suppose that Y = BX + /i, where B is non-singu- 
lar, and X' = (X'(1), • • • , X'(m)) has mutually independent components X(\) e MP] , . . . , X{m) e 
MPm, with p\+ . . . + pm = p. Further, suppose that X is symmetric about 0, and the roots 

pi (Fy ),..., pp(FY) are all distinct. Then, there is a partition [J\ , . . . , Jm } of { 1 , . . . , p} with the 

cardinality of Jk being pk for k = 1 , . . . , m such that for the transformed variable Z = H(FY)fY 
the random vectors 

Z(i) = {Zj, j e J\ },..., Z(m) = {Zj, jeJm} 

are mutually independent. More specifically, Z(y) and X(7) are affine transformations of each 
other. 

From the proof of theorem 9 in Appendix A, it can be noted that the theorem still holds if one 
of the X(j)S is not symmetric. If the distribution of X is not symmetric, theorems 8 and 9 can be 

applied to Ks, the symmetrized version of Y. To generalize theorem 6 to the case where blocks of 
the components of X are independent, a modification of the independence property is needed. 
Such generalizations of definition 1, theorem 6 and theorem 7 are fairly straightforward and so 
are not treated formally here. 

Remark 3. The general case of multiple roots for the setting that is given in theorem 9 is more 

problematic. The problem stems from the possibility that a multiple root may not be associated 
with a particular X(y) but rather with two or more different X(y)s. For example, consider the case 
X' = (X'(1), X(2)), with X(i) g m2 and X{2) e JH. For this case, V\ (Fx)~] V2(FX) is block diagonal 
with diagonal blocks of order 2 and 1 . The three eigenvalues p\ (Fy), pi(FY) and p^iFy) corres- 

pond to the two eigenvalues of the diagonal block of order 2 and to the last diagonal element, 
but not necessarily respectively. So, if p\(FY) = pi(FY) > pi(FY), this does not imply that the 
last diagonal element corresponds to pi(FY), and hence Z(d e ffi2 and Z(2) 6 JR, as defined in 
theorem 2, are not necessarily independent. 

6. Discussion and examples 

Although the theoretical results of this paper essentially apply to any pair of scatter matrices, in 

practice the choice of scatter matrices can affect the resulting ICS method. From our experience, 
for some data sets, the choice of the scatter matrices does not seem to have a big influence on the 
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diagnostic plots of the ICS variables, particularly when the data are consistent with one of the 
mixture models or one of the independent component models that were considered in Section 
5. For some other data sets, however, the resulting diagnostic plots can be quite sensitive to the 
choice of the scatter matrices. In general, different pairs of scatter matrices may reveal different 
types of structure in the data, since departures from an elliptical distribution can come in many 
forms. Consequently, it is doubtful whether any specific pair of scatter matrices is best for all 
situations. Rather than choosing two scatter matrices beforehand, especially when one is in a 
purely exploratory situation having no idea of what to expect, it would be reasonable to consider 
a number of different pairs of scatter matrices and to consider the resulting ICS transformations 
as complementary. 

A general sense of how the choice of the pair of scatter matrices may impact the resulting ICS 
method can be obtained by a basic understanding of the properties of the scatter matrices being 
used. For the purpose of this discussion, we divide the scatter matrices into three broad classes. 
Class I scatter statistics will refer to those which are not robust in the sense that their breakdown 
point is essentially zero. This class includes the sample covariance matrix, as well as the one-step 
^-estimates defined by expression (7) and their symmetrized version. Other scatter statistics 
which lie within this class are the multivariate sign and rank scatter matrices; see for example 
Visuri et al (2000). Class II scatter statistics will refer to those which are moderately robust in the 
sense that they have bounded influence functions as well as positive breakdown points, but with 
breakdown points being no greater than \/{p + 1). This class primarily includes the multivariate 
M-estimates, but it also includes among others the sample covariance matrices that are obtained 
after applying either convex hull peeling or ellipsoid hull peeling to the data; see Donoho and 
Gasko (1992). Class III scatter statistics will refer to the high breakdown point scatter matrices 
which are discussed in Section 2.2. The symmetrized version of a class II or III scatter matrix, 
as well as the one-step H^-estimates of scatter (10) which uses an initial class II or III scatter 
matrix for down weighting, are viewed respectively as class II or III scatter matrices themselves. 

If one or both scatter matrices are from class I, then the resulting ICS transformation may be 
heavily influenced by a few outliers at the expense of finding other structures in the data. In addi- 
tion, even if there are no spurious outliers and a mixture model or an independent components 
model of the form that was discussed in Section 5 holds, but with long-tailed distributions, then 
the resulting sample ICS transformation may be an inefficient estimate of the corresponding 
population ICS transformation. Simulation studies that were reported in Nordhausen, Oja and 
Ollila (2008) have shown that for ICA an improved performance is obtained by choosing robust 
scatter matrices for the ICS transformation. Nevertheless, since they are simple to compute, 
the use of class I scatter matrices can be useful if the data set is known not to contain any 
spurious outliers or if the objective of the diagnostics is to find such outliers, as recommended 
in Caussinus and Ruiz-Gazen (1990). 

If we use class II or III scatter matrices, then we can still find spurious outliers by plotting 
the corresponding robust Mahalanobis distances. The resulting ICS transformation, though, 
would not be heavily affected by the spurious outliers. Outliers affect class II scatter matrices 
more so than class III scatter matrices, although even a high proportion of spurious outliers 
may not necessarily affect the class II scatter matrices. For outliers to affect a class II scatter 
matrix heavily, they usually need to lie in a cluster; see for example Dùmbgen and Tyler (2005). 
The results of Section 5.1 though suggest that such clustered outliers can be identified after 
making an ICS transformation, even if they cannot be identified by using a robust Mahalanobis 
distance based on a class II statistic. 

Using two class III scatter matrices for an ICS transformation may not necessarily give 
good results, unless we are interested only in the structure of the 'inner' 50% of the data. For 
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example, suppose that the data arise from a 60^0 mixture of two multivariate normal distribu- 
tions with widely separated means but equal covariance matrices. A class III scatter matrix is 
then primarily determined by the properties of the 60% component. Consequently, when using 
two class III scatter matrices for ICS the corresponding ICS roots will tend to be equal or nearly 
equal. In the case where all the roots are equal, theorem 3 does not apply. In the case where the 
roots are nearly equal, owing to sampling variation, the sample ICS transformation may not 
satisfactorily uncover Fisher's linear discriminant function. 

A reasonable general choice for the pair of scatter matrices to use for an ICS transformation 
would be to use one class II and one class III scatter matrix. If we wish to avoid the com- 
putational complexity that is involved with a class III scatter matrix, then using two class II 
scatter matrices may be adequate. In particular, we could choose a class II scatter matrix whose 
breakdown point is close to l/(p+ 1), such as the M-estimate corresponding to the maximum 
likelihood estimate for an elliptical Cauchy distribution (Dumbgen and Tyler, 2005), together 
with a corresponding one-step W^-estimate for which ^(s) =su2(s) -+ 0 as s-> oo. Such a 

one-step W-estimate of scatter has a redescending influence function. From our experience, the 
use of a class III scatter matrix for ICS does not seem to reveal any data structures that cannot 
be obtained otherwise. 

The remarks and recommendations that are made here are highly conjectural. The question 
of what pairs of scatter matrices are best at detecting specific types of departure from an elliptical 
distribution remains a broad open problem. In particular, it would be of interest to discover 
for what types of data structures it would be advantageous to use at least one class III scatter 
matrix in the ICS method. Most likely, some advantages may arise when working with very high 
dimensional data sets, in which case the computational intensity that is needed to compute a 
class III scatter matrix is greatly amplified; see for example Rousseeuw and van Driessen (1999). 

We demonstrate some of the concepts in the following examples. These examples illustrate 
for several data sets the use of the ICS transformation for constructing diagnostic plots. They 
also serve as illustrations of the theory that has been presented in the previous sections. 

6.1. Example 1 
Rousseeuw and van Driessen (1999) analysed a data set consisting of n = 677 metal plates on 
which p = 9 characteristics are measured. For this data set they computed the sample mean 
and covariance matrix as well as the minimum covariance determinant estimate of centre and 
scatter. Their paper helps to illustrate the advantage of using high breakdown point multivariate 
estimates, or class III statistics, for uncovering multiple outliers in a data set. 

For our illustration, we choose two class II location and scatter statistics. The first estimate 

(/îb V\) is taken to be the maximum likelihood estimate that is derived from an elliptical Cau- 

chy distribution. This corresponds to an M-estimate (9) with u\(s) = U2(s) = (p+ l)/(s+ 1) 
and ui(s) = 1. The M-estimating equations for this M-estimate are known to admit a unique 
solution in general, which can be found via a simple reweighting algorithm regardless of the 
initial value. 

For our second estimate (/22, Vi)-, we take the sample mean vector and sample covariance 
matrix, using only the inner 50% of the data as measured by the Mahalanobis distances that 
are derived by using the Cauchy M-estimate, i.e. di(p,\,V\). This corresponds to a multivariate 

one-step H^-estimate of scatter (10) with u\(s) = u2(s) = I(s^\) and 113(5) = 1, and with initial 
estimates /20 = fi\ and Vo = ô\ V\ , where â = medianj d{ \(i\ , V\ ), 1 = 1 ,...,«}. 

Figs l(a) and l(b) show the Mahalanobis distances plots for di(p,\ , V\) and d;(/i2, Vi) respec- 
tively, with Fig. l(c) being a scatter plot of these two sets of distances. These plots are somewhat 
similar to the plots that are based on the classical Mahalanobis distances and those based on 
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the minimum covariance determinant given in Rousseeuw and van Driessen (1999). As noted 
in Rousseeuw and van Driessen (1999), Figs l(b) and l(c) indicate that there are at least three 
distinct groups: the first 100 points, those with index 491-565 and the rest. The index itself is a 
factor that is not taken into account in obtaining the Mahalanobis distances. It represents an 
order of production and is clearly an important factor. The effect of the index is also apparent 
in some of the plots of the individual variables. 

The comparative Mahalanobis distance plot that is given in Fig. l(c) indicates that the data 
do not arise from an elliptically symmetric distribution. Otherwise, the scatter plot of the two 
distances would be approximately linear since the two location statistics would be estimating 
the same centre and the two scatter matrices would be estimating the same population shape 
matrix up to a proportionality constant, and consequently the resulting Mahalanobis distances 
would be approximately proportional to each other. The non-elliptical nature of the data can 
most likely be attributed to a mixture resulting from the index factor. 

Fig. 1 . Example 1 : Mahalanobis distances based on (a) ^ , (b) l?2 and (c) ^ versus l?2 
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The affine invariant plots that are given in Fig. 1 do not reveal whether the three groups that 
are observed in the plots correspond to three clusters, since the Mahalanobis distances give 
no indication of the relative distance of the points from each other. A more complete affine 
invariant view of the data can be obtained from a pairs plot of the ICS transformation of the 
data based on the scatter matrices Vi and V2 described above. For this analysis, the resulting 
ICS roots are (/51,...,p9) = (19.94, 5.27, 3.68, 3.41, 2.89,2.61, 2.12, 1.69, 1.62). Fig. 2(a) shows 
the scatter plot for the first two ICS components, with Figs 2(b) and 2(c) showing the first two 
ICS components separately. The three groups can also be seen in these plots. Moreover, we can 
ascertain how the groups differ. In particular, it can be noted that the group that is associated 
with index 491-565 essentially lies in a particular direction from the rest of the data, namely 
that determined by the first ICS component, whereas the first 100 points essentially lie in a 
different direction, determined by the second ICS component. Finally, if we plot the other ICS 
components, various isolated outliers also become visible. 

Fig. 2. Example 1 : first and second ICS co-ordinates based on l^ and l?2 
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6.2. Example 2 
The pairs plot that is given in Fig. 3(a) arises from simulation of a random sample of size n = 500 
from a p = 4 dimensional distribution. Arguably nothing seems particularly remarkable about 
this data set. The sample variance-covariance matrix of the data set in Fig. 3(a) is the identity 
matrix and so a principal components analysis does not indicate any particular direction of 
interest. If we apply an ICS transformation to these data, however, we can uncover an interest- 
ing hidden structure in the data as seen in the pairs plot given in Fig. 3(b). The corresponding 
ICS roots are {p\ , p2, p3, p4) = (1 .49, 1 . 1 3, 0.81 , 0.73). For this example, the original data yt cor- 
respond to an affine transformation of a distribution that is generated by simulating a uniform 
distribution on the unit circle, to which independent normal noise with mean 0 and standard 
deviation 0.01 is added, concatenated with a standard normal distribution and a /-distribution 
on 5 degrees of freedom. Note that, no matter how the simulated data are affinely transformed, 
the resulting ICS co-ordinates are always given by Fig. 3(b). 

The two scatter matrices that are used here for the ICS transformation are the sample covari- 
ance matrix Sn and the sample version of the scatter matrix K,(F) given in equation (21), 
namely 

iCn = - £{(>>/ - y)V (yi -y)x (yi - y)(yi - 9)'}. (24) 
ni=\ 

K,n can be viewed as a one-step ̂ -estimate of scatter (7) obtained by weighting each point 
by its classical Mahalanobis distance squared, i.e. choosing u2(s) = s and «3(5) = 1, with s/ = 
(yi - y)'Snl (yi ~ 9)- ̂ s an estimate of scatter, K,n is obtained by actually upweighting outliers. 
Even though neither Sn nor Kn are robust estimates of scatter, they can uncover the structure 
in this particular data set since it contains no spurious outliers. Such a structure would be diffi- 
cult to detect, with or without spurious outliers, if we were to consider only the Mahalanobis 
distances or a robust version of them. Similar results to those displayed in Fig. 3(b) arise when 
using almost any other pair of scatter matrices for the ICS transformation. 

Fig. 3. Example 2: (a) a simulated four-dimensional data set and (b) the ICS co-ordinates by using Sn and 
ICn 
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Note that none of the theorems that were given in Section 5.2 are directly applicable to this 
example, but rather this example is of the type that is discussed in remark 3. For the functional 
version of this example, we have X' = (X'(1), X(2), X^)), with the distribution of X(\) e W2 being 
that of the uniform distribution on the unit circle plus bivariate spherical normal noise with 
variances 0.1, X(2) €ffl having a standard normal distribution, X^) effi having a f -distribution 
on 5 degrees of freedom and with X(i), X^ and X(3) being mutually independent. By using 
invariance arguments, it can be shown that, regardless of the choice of the two scatter matrices, 
at least two of the roots p\ (Fy), . . . , P4(Fy) are equal, and hence there are at most three distinct 
roots. For the case of three distinct roots, the two ICS variables that are associated with the 
multiple root correspond to an affine transformation of X(i), and the ICS variables that are 
associated with the two distinct roots correspond to univariate linear transformations of X(2) 
and X(3). The case of three distinct roots tends to hold except for very special choices ofV\(F) 
and V2 ( F) . In particular, it can be shown to hold for the choice Vi ( F) = D ( F) and V2 ( F) = K ( F) , 
with the smallest root being the multiple root, the largest root being associated with Xq) and 
the second-largest root being associated with X(3). Hence, the results that are displayed in Fig. 3 
are as expected. 

6. 3. Other examples 
We briefly explain here the results of some other examples. The first is the classical Fisher iris 
data, which can be found in the statistical package R (R Development Core Team, 2005). This 
data set consists of p = 4 measurements, namely sepal length, sepal width, petal length and 

petal width, on n = 150 iris flowers. The 150 flowers belong to three different varieties of irises. 

Suppose that we ignore the group classification of the data and perform an ICS transformation 
of the n = 1 50 data points by using the sample covariance matrix and a Cauchy M-estimate. 
It turns out that the first ICS component is almost identical with the first linear discriminant 
function that we would obtain if we did a discriminant analysis using the varieties as the group 
variable, with a sample correlation between the two being 0.99, even though the former does 
not take the group classification into account. The results of the ICS method for this example 
are similar for almost any pair of scatter matrices that we may choose. This can be attributed 
to the data being consistent with the mixture models that are discussed in Section 5.1 together 
with the absence of any obvious outliers. 

The next example uses the modified wood gravity data set that was given in Rousseeuw and 

Leroy (1987). This data set is frequently used as an example illustrating outlier detection meth- 
ods. It consists of n = 20 observations in p = 6 dimensions, of which four of the observations 
are artificial outliers that had been put into the data set by the original authors. Rousseeuw and 

Leroy (1987) demonstrated how classical outlier detection methods fail to uncover these outliers, 
whereas they are readily uncovered by using Mahalanobis distances based on high breakdown 

point location and scatter statistics. For this data set, we compute a Cauchy M-estimate and a t2 
M-estimate, which have breakdown points of 1/7 = 0.143 and 1/8 = 0.125 respectively. Unlike 

example 1 , neither corresponding Mahalanobis distance plot, which are given by Figs 4(a) and 

4(b), reveals any outliers, and the two plots are fairly similar. Since the proportion of contam- 
ination is 4/20 = 0.20, we would not expect that the Mahalanobis distances based on either of 
the two M-estimates would reveal the outliers if the outliers formed a cluster; see Tyler (2002). 
However, if the outliers do form a cluster then the results of Section 5.1 suggest an ICS trans- 
formation based on these two scatter estimates may separate the main cluster of data from the 
cluster of four outliers. Such is the case here, with all four outliers clearly appearing in the first 
ICS co-ordinate; see Fig. 4(c). The results here are again not heavily dependent on the scatter 
matrices being used in the ICS transformation. 
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Fig. 4. Example of ICS on the modified wood gravity data set 

As a final example, consider the RANDU data set which can be also be found in R (R Devel- 
opment Core Team, 2005); Fig. 5(a). This consists of n = 300 observations in p = 3 dimensions 
which are supposedly obtained by a random-number generator. In reality, though, the data lie 
on parallel planes which are not apparent in the original co-ordinates. However, if we transform 
this data set to the ICS co-ordinates by using the sample covariance matrix Sn and the one-step 
^-estimate based on pairwise differences given by 

v= 
2 

"g f (yi-yjKyi-yjY (25) 
n(n-\) /=w=/+1 {(yi-yjys-^yj-yj)}^ 

then the parallel plane structure in the data becomes apparent in a pairs plot; see Fig. 5(b). 
In the last example, the presumed distribution from which the data arise is not an ellipti- 

cal distribution but rather a uniform distribution within the unit cube, which falls within the 
class of distributions that was discussed in remark 1 . Thus, we might expect that a departure 
from this presumed distribution would be reflected in an ICS analysis. The parallel lines in the 
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Fig. 5. Example of ICS on the RANDU data set 

data set may be viewed as arising from a location mixture of symmetric singular distributions. 
Consequently the behaviour of an ICS transformation for mixture distributions that was given 
in Section 5.1, although not directly applicable since the mixture components are not strictly 
elliptically distributed, gives some rationale about why such a pattern can be detected. For this 
example, though, the resulting ICS pairs plots are fairly sensitive to the choice of the scatter 
matrices being used. In particular, if we replace the square term in the denominator of equation 
(25) with a power of q, then for q < 1 .5 the lines in the RANDU data set are not very apparent. 
In contrast, the results do not appear to be heavily dependent on q for q > 1 .5. 

7. Concluding remarks 

7. 1 . Relationship to projection pursuit 
Aside from its relationship to mixture models and to ICA, the concept underlying the ICS 
method has similarities to projection pursuit methods, and in particular to what Huber (1985) 
referred to as class III projection pursuit approaches, i.e. approaches which investigate the affine 
invariant aspects of the data. In projection pursuit, we typically seek interesting, usually meaning 
non-normal, projections of the data; see for example Cook et al. (1993), Friedman and Tukey 
(1974), Huber (1985) and Jones and Sibson (1987). The evaluation of what makes a projection 
interesting in the projection pursuit context depends solely on the distribution of the particular 
projection. In general, the pursuit in projection pursuit methods tends to be computationally 
intensive. In contrast, the value of K,(h) that is given by equation (14) used in ICS is not strictly 
a function of the distribution of the linear combination h'Y but rather is dependent on the 
multivariate distribution F through V\(F) and ViiF). The sequential optimization of n{h) as 
given by equations (15) and (16) has an analytic solution in terms of eigenvectors and so is not 
computationally intensive. In this sense, ICS can be viewed as a projection pursuit without the 
pursuit effort. 

The relationship between projection pursuit itself and ICA is well documented; see for 
example Hyvârinen et al (2001). Almost all algorithms proposed for the ICA problem tend 
to be of a projection pursuit nature. One notable exception, though, is the previously cited 
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algorithm that was proposed by Cardosa (1989). It is also worth noting that a relationship 
between projection pursuit based on kurtosis and multivariate normal mixtures has been 
observed by Pena and Prieto (2001). They showed that, for a mixture of two multivariate 
normal distributions with equal covariance matrices, either the projection which minimizes 
or the projection which maximizes the classical kurtosis coefficient corresponds to Fisher's 
linear discrimination function between the two elements of the mixture. An analogous result 
was obtained by Yenyukov (1988) when using the ratio of a robust variance to the sample 
variance as a projection index. He also proposed to use K,(h) based on the sample covariance 
matrix and a robust estimate of the covariance matrix as an approximation to such a projection 
index. 

7.2. Other related methods 
As noted in Section 1, ICS can be viewed as a more general formulation of what was referred to 
by Ruiz-Gazen (1993) and Caussinus and Ruiz-Gazen (1995) as generalized principal compo- 
nents analysis. They used this terminology since the matrix equation (1 1) is commonly referred 
to as a generalized eigenvalue-eigenvector problem. The term generalized principal components 
analysis, however, is often used in the literature to describe various unrelated generalizations of 
principal components. Hence, to distinguish this method from other methods that are referred to 
as generalized principal components, as well as to emphasize a central property of the method, 
we use the term ICS. Furthermore, we do not view ICS as a generalization of principal com- 

ponents analysis; nor do we consider ICS to be a competitor to either principal components 
analysis or to a robust version of principal components analysis, but rather as a complementary 
method. Principal components analysis is concerned with understanding the spread or scatter 
of a data cloud, which is a property which cannot be identified within an affine invariant setting. 
As suggested by Huber (1985), a fuller understanding of a data set is obtained by exploring its 
affine invariant aspects in addition to its location-scale information. 

Recently, Critchley et al. (2007) proposed to perform a principal components analysis on 
standardized data, as described in remark 2, which they referred to as principal axis analysis. 
Their proposal thus corresponds to the special case of the ICS transformation when we take 

V\ = Sn, the sample covariance matrix, and V2 to be a one-step reweighted covariance matrix 
with the weights corresponding to the inverse of the classical squared Mahalanobis distances, 
i.e. V2 is a one-step H^-estimate as defined in expression (7) with weight functions ui{s) = 1 /s and 
ut)(s) = 1, using the sample mean and covariance matrix as the initial estimates. They referred to 
their approach as principal axis analysis since V2 depends on the standardized sample vectors 
Xi = Snl/2(Yj - Y) only through their pairs of opposed directions ±X//||X/||. Within Critchley 
et al (2007), heuristic arguments are given to motivate the use of principal axis analysis for 

detecting well-separated clusters when the data arise from a mixture of elliptical distributions, 
even one with possibly different shape matrices. 

Another approach for generating affine invariant co-ordinates, which is well known within 
the area of multivariate non-parametric statistics, is the transformation-retransformation (TR) 
approach that was proposed by Chakraborty and Chaudhuri (1996, 1998). The basic idea behind 
the TR approach in the one-sample problem is to transform the multivariate data by multiply- 
ing each observation by the inverse of a matrix containing p of the observations. The TR 

approach though is not invariant under permutation of the n observations, unless either the p 
observations that are used for standardizing are chosen randomly or some permutation invari- 
ant criterion is used to select them. In any event, it is difficult to express the TR approach 
in terms of functionals, and this makes the theoretical properties of the TR transformation 
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problematic to study. The TR transformation, however, is not meant to be an exploratory 
transformation of the data, but rather a step that is used for generating affine invariant multi- 
variate non-parametric tests. Likewise, an ICS transformation can also be used for generating 
such tests (see for example Nordhausen et al. (2006)), or in general for defining multivariate 
versions of univariate concepts. An affine equivariant componentwise multivariate median for 
Y e Wp, for example, can be defined by //y, where //r = (median(Zi ), . . . , median(Zp)) H{FY)~X 
with Z = H(Fy)'Y corresponding to an ICS transformation. In such settings, the main focus 
of ICS is not on dimension reduction but rather on the complete affine invariant co-ordinate 
system. 

7. 3. Summary and continuing research 
In this paper, we have introduced the concept of ICS as a general affine invariant method for 
exploring multivariate data. After removing the effect of the centre and scatter from a multivar- 
iate data set, ICS essentially addresses the question of whether there is anything else of interest 
in the data set. The paper also shows how an ICS transformation theoretically behaves under 
elliptical mixture models and under ICA models. 

From a statistical modelling perspective, one might argue that ICA models may seem imprac- 
tical except for very specific problems. Nevertheless, ICA algorithms have become increasingly 
popular in many areas that routinely apply multivariate methods and often yield interesting 
results even when the ICA model may seem unrealistic. One of the original goals of this paper 
was to give a model-free explanation about why this might be so. The results in this paper relating 
ICS with both mixture models and with ICA provide one such explanation. 

As noted in Section 6, the theoretical results of this paper apply to essentially any choice of two 
scatter matrices. The statistical variability and the robustness properties of the ICS transforma- 
tions though do depend on the particular scatter matrices being used. The results concerning 
ICS under mixture models that was given in Section 5.1 suggest that the method may have 
some natural robustness properties, at least in terms of detecting clusters of outliers, even if the 
estimates themselves are not particularly robust. 

As with all eigenvector methods, the stability of the ICS transformations will depend on the 
spread of the theoretical roots p\(F),...9pp(F), which in turn depends on the choice of the 
scatter matrices. The effects of the choice of the scatter matrices on the resulting ICS method, 
as well as the statistical properties that are associated with ICS methods, are currently being 
studied by the authors and their students. Rather than choose two scatter matrices beforehand, 
one promising strategy seems to be to allow the data to choose two scatter matrices from among 
a large class of scatter matrices based on the observed separation of the respective roots. Such 
a data-driven approach unfortunately makes a theoretical study of the statistical properties of 
the resulting method far more challenging. 
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Appendix A: Proofs 

A. 1. Proof of theorems 1 and 2 
From property (3), it follows that there are 71 > 0 and 72 > 0 such that V\ (FY* ) = 71 A V\ (FY)Ar and V2(FY* ) = 
J2AV2(FY)A'. By définition, V2(FY*) hj(FY*) = pj(FY*) V\(FY*) hj(FY*) and so 

V2(FY)Afhj(FY*) = ypj(FY*) Vx(FY)A'hj{FY*), (26) 

where 7 = 71/72. This implies that condition (18) holds. If pj(FY) is a distinct root, then equation (26) also 
implies that hj(FY) = cijA' hj(FY*) for some scalar a} ̂ 0, and so 

Zj = hj{FY)'Y = aj hj(FY*)'AY = aJ Jij(FY*)'(Y* -b)=ajZ* -bh 

which completes the proof for theorem 1. Consider now the case of a multiple root, say pik) =pj\(FY) = 
• • - = Pji{FY) where j2 = j\ +pk- 1, and let H{k)(F) = (hj\ (F), . . . , hj2(F)). As a consequence of a multiple 
root, the exact choice H{k)(F) is somewhat arbitrary unless some rule is specified about how to choose its 
columns. However, the span of Hik)(F) is uniquely defined and so, no matter what rule we use to define 
H(k)(F), equation (26) implies that H(k)(FY) = A' H{k)(FY*)B'k for some non-singular matrix Bk. This implies 
that 

Zik) = H(k)(FY)y = BkH(k)(FY*yAY = BkHik)(FY*)\Y*-b) = BkZfk)-bj, 

which completes the proof for theorem 2. 

A.2. Proof of theorems 3 and 4 
Since theorem 3 is a special case of theorem 4, it is only necessary to prove the latter. Using the notation 
of theorem 4, let Mo = F"1/2(M - nk\'k), where M = (p,\ . . . p,k) and 1* e JH* is a vector of Is. Since Mo has 
rank q, the triangular decomposition for matrices gives 

with P being an orthogonal matrix of order p and Tu being an upper triangular matrix of order q. The 
distribution of X = PT~i/2(Y - fik) is then a mixture of k spherical distributions with centres t\, . . . , tk, 
where t{/+\ = ... = tk=O, and spread functions gtj=\,...,k, i.e. the density of X is given by 

fx(x) = Y,otjgj{{x-tj)'(x-tj)}. 

The distributions of X and QX are thus the same for any orthogonal Q of the form 

where lq is the identity matrix of order q and Q22 is an orthogonal matrix of order p - q. Thus, given a 
scatter functional V(F) satisfying condition (3), V(FX) = V(FQX) oc Q V{FX)Q', for any such g, and so 

{ x)~\Vn(Fxy V22(Fx))-\Q22Vn(Fxy Q22V22{FX)Q'22) 
{Z/) 

for any orthogonal matrix Q22. Note that equality holds in expression (27) rather than just proportionality 
since the upper block diagonal matrices are equal (and non-zero). By making appropriate choices for Q22 
in expression (27) we obtain V\2(FX) = 0 and V22{Fx) = ^Ip-q, for some 7 > 0. Thus, for the two scatter 
functionals VX(F) and V2(F), 

v,(«- *(*,- (*"<*>- *"<'«> (J>7i)/). 
This matrix has at least one root with multiplicity greater than or equal to p - q. By theorem 2, we know 
that the roots of V\ {FY)~X V2(FY) are proportional to the roots of Vi (Fx)~l V2(FX), and so at least one of 
the roots p{j) has a multiplicity that is greater than or equal to p - q. 

Suppose now that no root has multiplicity greater than p - q, which by theorem 2 applies to 
V\ (Fx)~] V2(FX) as well as to Vi (FY)~l V2(FY). For Vi (F*)"1 V2(FX), one root with multiplicity p-q must 
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be 72/71 . Also, the ̂ -dimensional subspace that is spanned by the eigenvectors of Vi (Fx)~l V2(FX), other 
than those associated with 72/71, is the same as the subspace that is spanned by (Iq O)', or equivalently 
it is the same as the subspace that is spanned by T. From the shape equivariant property (3), we 
have V](FX)-]V2(FX) ex PT]/2Vl(FY)-]V2(FY)r-]/2P, and so it follows that if a is an eigenvector of 
V\(FX)~]V2(FX) then h = r~]/2Pa is an eigenvector of Vi(fV)-1 V2(FY). If the eigenvector a is associated 
with the root 72/71 , then h is associated with some root, say p(/), with multiplicity p - q. The subspace that 
is spanned by all the eigenvectors of V\ (FY)~X V2(FY), other than those associated with p(/), is thus the same 
as the subspace that is spanned by r~x/2 PT = r~l/2 M0 = T-] (M ~M*)> and hence equation (22) holds. 

A.3. Proof of theorem 5 
The symmetry of A\ along with X having independent components, implies that X ~d SX for any diagonal 
matrix S having only 1 s and - 1 s as entries, i.e. for matrices of the form S = diag(± 1 , . . . , ± 1 ). So, for any 
scatter functional V(F) which satisfies the shape equivariant property (3), it follows that V(FX) = V(FSX) = 
S V(FX)S, for any such S. The last equality follows from property (3) since the diagonal components of 
V(FX) and S V(FX)S are the same. By choosing S = (- 1 , 1 , . . . , 1 ), we note that all the off-diagonal terms in 
the first row and in the first column of V(FX) must be 0. Continuing, we conclude that V(FX) is a diagonal 
matrix. 

For the two scatter functionals V\(F) and V2(F), V\(FX)~] V2(FX) is a diagonal matrix. By theorem 1, 
it follows that Vi(Fx)~l V2{Fx)oiPa A(FY)P^ where A(F» = diag{pi(FK),. . .,pp(FY)} and PG is a per- 
mutation matrix. Using property (3) again gives 

VdFYy] V2(FY)oc(BY] V\(Fxyl V2{FX)B' <x(BYx Pa A(FY)PjB\ 

which by the spectral value decomposition (13) implies that H(FY) = (B')~l PaV for some non-singular 
diagonal matrix V. The theorem then follows since 

Z = H{FY)'Y = VPâB-x{BX + ii) = VP(lX + VP^B-xp,. 

A.4. Proof of theorem 6 
It follows immediately that, if V(F) is a scatter functional satisfying definition 1, then V(FX) is a diagonal 
matrix. The remainder of the proof is then identical to the proof of theorem 5. 

A. 5. Proof of theorem 7 
By equivariance, we can assume without loss of generality that p, = 0. The proof is then given by the first 

part of the proof to theorem 5. 

A. 6. Proof of theorem 8 
The proof of theorem 8 is analogous to the proof of theorems 5 and 6. The only difference is that the 
matrix V at the end of the proof is not necessarily a diagonal matrix, but rather a block diagonal matrix 
with diagonal blocks of order p\,...,pm. 

A. 7. Proof of theorem 9 
The proof of theorem 9 is a generalization of the proof for theorem 5. For this proof, a reference to the 
blocks of a matrix of order p refers to the partitioning of the matrix in blocks of dimension /?, x pj for 
/, j = 1 , . . . , m. The symmetry condition on X, along with the assumption that X has mutually indepen- 
dent subvectors, implies that X ~d SX for any block diagonal matrix S having diagonal blocks of the form 

±IPk, k = 1, ... ,m. So, for any scatter functional V(F) which satisfies the shape equivariant property (3), 
it follows that V(FX) = V(FSx) = S V(FX)S, for any such S. The last equality follows from property (3) 
since the block diagonal components of V(FX) and <S V(FX)S are the same. By choosing the first diagonal 
block of S to be -IPX and the other diagonal blocks to be IPk for k = 2, ...,/?, and then continuing in this 
fashion, we conclude that V(FX) is a block diagonal matrix. 

For the two scatter functionals V\(F) and V2(F), V\(FX)-X V2(FX) is a block diagonal matrix. Apply- 
ing the spectral value decomposition (13) to the block diagonal elements gives V\jj(Fx)~x V2jj{Fx) = 
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HjAjHj\ with Aj being a diagonal matrix of order p} ; for j = 1, . . . ,m. Let A be the diagonal matrix 
of order p with diagonal blocks A,, and let H be the block diagonal matrix of order p with diago- 
nal blocks Hj. Thus, V\(FX)-1 V2(FX) = HAH~X. It follows from theorem 2 that Aoc Pa A(FY)P^ where 
A(FY) ocdiagjpi (FY), . . . , /^(/v)} and /^ is a block permutation matrix. Applying property (3) again gives 

Vi(FYr] V2{Fy)ol(B')-] V\(Fx)-' V2{FX)B' ol(B')-x HPa A(Fy)P;H~x B' . 

Comparing this with the spectral value decomposition (13) for V\(FY)~X Vi(FY) gives H(FY) = 
(£')"' HPaV for some non-singular diagonal matrix V. Thus, 

Z = H(FY)'Y = VP'aH' B~\BX + n) = VP(lH' X + (5, 

where 0 = VP^H' B~X [i. Since VPJ = PGV, it then follows that 

p;(z-(3) = (z'{X),...,z\m))'-p(;(3=vH'x, 
with Z(j) = DjHjX(j), for j = 1, . . . , m. Hence, theorem 9 holds. 
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Discussion on the paper by Tyler, Critchley, Dùmbgen and Oja 

J. T. Kent (University of Leeds) 
This is a delightful paper. Like many of the best ideas in statistics, it is based on a simple, yet elegant, idea 
which leads to powerful new methods of discovering patterns in data. All the user needs to do is to specify 
two scatter functionals (effectively two metrics for the specific set of data) and then to carry out a relative 
eigenanalysis. As the examples of the paper make clear, this new methodology has proved its value in a 
wide range of settings. 

Dual metrics have a long history in multivariate analysis. The simplest example is perhaps principal com- 
ponent analysis itself, which involves the eigendecomposition of one matrix (typically a sample covariance 
matrix) with respect to another matrix (typically the identity matrix, which is often implicit). Another 
example arises in multivariate analysis of variance, which is also called discriminant analysis, in terms of 
the 'between-' and 'within-'groups sums of squares and products matrices B and W (or, alternatively, in 
terms of T = B + W and HO, though in this case prior knowledge of the grouping structure is needed. These 
two examples involve quadratic functions of the data, whereas the focus in this paper is on non-quadratic 
functions of the data. 

The simplest non-quadratic function of a random variable U is the kurtosis, which takes the form 
kurt(L0 = E(U4) - 3, when U is centred and scaled to have mean 0 and variance 1. It is useful to distin- 
guish three cases: 

(a) kurt((/) = 0, which holds under normality, and the alternatives 
(b) kurt(L0>Oand 
(c) kurt(f/)<0, 
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which can be termed the 'super-Gaussian' and 'sub-Gaussian' cases respectively. The super-Gaussian case 
arises for long-tailed distributions, whereas the sub-Gaussian case arises for what might be called 'bal- 
anced' mixtures of two normal distributions with different means. Here balanced means that the mixing 
proportions are not too far from \ and the variances are not too dissimilar. When the variances are equal, 
it is possible to characterize the class of balanced mixtures explicitly; see, for example, Section 5.1 of the 
paper or Pena and Prieto (2001). 

One way to look for structure in a /^-dimensional random vector Y (with mean 0 and covariance matrix 
E) is to look for a linear combination a to maximize the absolute kurtosis, |kurt(«'y)|, and this criterion 
forms the basis of one of the standard algorithms in independent component analysis (ICA). However, 
the above paragraph suggests that, when clustering is suspected, a better approach might be to minimize 
the signed kurtosis k\\vi(a'Y), which leads to what can be termed a 'sub-ICA' algorithm; see, for example 
Bugrien and Kent (2005) for more details. 

The set of all fourth-order moments forms a four-way array (and hence does not define a metric). Since 
the kurtosis involves a quartic function of a acting on this four- way array, optimization for either of these 
algorithms must generally be carried out numerically. 

The paper finesses its way out of this numerical problem by replacing the full four- way array of fourth- 
order moments by a matrix of selected fourth-order moments, /C = E{(Y'Y,~lY)YY'} in equation (21), and 
replacing the quartic optimization by a quadratic optimization. Thus a natural question is which criterion 
offers more insight into the structure of multivariate data, 

kurt(tf'y) or a'JCa/a'Ea? 
Further, do any insights here offer any guidance to the analysis of more general scatter functionals? 

Several other questions also spring to mind. 

(a) Ordering of eigenvalues: the paper makes little distinction between Vf1 V2 and V{] V\ . Would it be 
helpful to label one of the matrices as 'more robust' than the other and to distinguish between the 
interpretation of the largest eigenvalue and the smallest (cf. sub-ICA above)? 

(b) Estimating the centre of the data: this topic has received little discussion in the paper, but it seems 
potentially important. Does choice of location functional matter, especially for skew data? Or does 
symmetrization successfully deal with the issue? If symmetrization is not used, would it be desirable 
to enforce a common estimate of location when defining the matrices V\ and Vi? 

(c) Third moments: this paper works with and extends fourth moments (kurtosis). Is it worth investi- 
gating and extending third moments (skewness)? 

(d) High dimension: the examples in this paper involve data sets of fairly modest dimension. Are there 
opportunities for insights with high dimensional data (n < p or n <£ p), after regularizing? 

Let me end with a more philosophical question. The authors motivate the methods in the paper by using 
ideas from robustness theory, which was developed to protect against outliers. However, this paper is more 
concerned with pattern detection, which is a more subtle problem. Is it merely serendipity that methods 
developed for one problem provide tools for another, or is there something deeper going on? 

This has been a fascinating paper opening up a whole new direction in the search for patterns in multi- 
variate data. It gives me great pleasure to propose the vote of thanks. 

Trevor Ringrose (Cranfield University, Swindon) 
Multivariate analysis often seems to be a randomly assorted grab-bag of vaguely related methods rather 
than a coherent field, so it is very encouraging to see a paper which shows the connections between several 
methods and even more importantly opens up a wide array of potentially useful generalizations and special 
cases. 

The authors rightly point out that when different robust estimators of ostensibly the same parameter 
produce different answers this is not necessarily a bad thing, as there is information in these differences. 
Similarly in introductory statistics lectures we often mention that the mean, median and mode are all 
roughly the same for samples from symmetrical distributions, so it tells us something useful if they are all 
different. The paper offers a convincing method for making such comparisons in a multivariate setting, 
which the reader can understand by analogy with the very similar use of within-groups and between-groups 
covariance matrices in multivariate analysis of variance and canonical variate analysis. 

However, the job of the seconder of the vote of thanks is to be more critical, so we might ask the obvious 
question of how well do the methods proposed work in practice, and in particular what do they add to 
what we already have? Some of the examples are not very convincing. It was admitted during the verbal 
presentation that the outlying cluster can in fact be seen quite clearly in a matrix plot of the wood gravity 
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data. Ignoring the distinction between response and explanatory variables (as in the paper) a biplot of 
the principal component analysis (PCA) solution (79% of variance on the first two axes) clearly picks out 
the cluster and shows that they have above-average values on x2 and x5 and below-average values for the 
other variables, as can then be seen clearly in the raw data. Similarly, distinguishing between the species in 
Fisher's iris data is trivially easy because again a simple matrix plot shows very clear differences in petal 
sizes, and the authors note in Nordhausen et al. (2008) that simple PCA does almost as well as invariant 
co-ordinate selection. Admittedly this is a mainly theoretical paper so these data sets were chosen for 
illustration rather than real interest, but even given this they still seem excessively easy. Similarly, the pic- 
ture mixing example of invariant co-ordinate selection as independent component analysis in Nordhausen 
et al. (2008), pages 24-26, can be performed almost equally well (in R) by using PCA, and in this example 
PCA seems to cope better with cases where the number of output mixtures exceeds the number of input 
signals. 

It is a criticism of all of us that we tend to use and reuse the same toy examples in published work, which 
might easily make the cynical outsider suspicious that our methods work only in certain restricted cases. 
In particular, I would like to propose a moratorium on further published use of Fisher's iris data! 

I have two final comments. Firstly, the paper concentrates very much on the co-ordinate scores on the 
new axes, but in many cases the eigenvector coefficients will also be of interest. Can meaningful biplots 
be produced? Secondly, the final paragraph mentions data-driven choice of scatter matrices based on 
the observed separation of eigenvalues (with larger separations regarded as better, one assumes). Sample 
eigenvalues are usually more spread out than population eigenvalues anyway, and this will then tend 
to pick the biggest of these overestimates of the separation. Is this good or bad, though? It might turn 
out to be good when searching for outliers but bad when trying to model the bulk of a distribution. 

While reading the paper it seemed very clear that the authors must have started the work separately and 
from differing perspectives. One of the authors confirmed that this was indeed so: that they had worked 
independently until three of them realized that they had all talked about the same thing at a conference. 
It is a pleasingly self-referential aspect of the paper that these three independent components of the work 
can be unmixed by the reader. 

The criticisms above are very minor, however, as this is a very interesting paper which points the way to 
many more papers developing the methods and their practical application. In recent years developments 
in multivariate statistics seem to have fallen behind those in areas such as regression modelling and Bayes- 
ian methods, and this paper should help to spark new interest in the field. This paper is a very welcome 
addition, and I have no hesitation in seconding the vote of thanks. 

The vote of thanks was passed by acclamation. 

Davy Paindaveine (Université Libre de Bruxelles) 
Beyond the role that it plays in detecting departures from ellipticity, invariant co-ordinate selection (ICS) is 

potentially useful to choose a proper model for the data at hand among the many multivariate models that 
are available in the literature: (mixtures of) elliptical models, the independent component (IC) models of 
Section 5.2 (see also Nordhausen et al. (2009b)), skew elliptical models (see, for example, Genton (2004)), 
etc. This discussion partly supports this claim by proposing an informal graphical method that allows us 
to 'test' the null hypothesis Hloc under which IC models are appropriate. ̂  

In Fig. l(c), it is shown how a couple of location-scatter estimates (/2,, V/), / = 1 , 2, can be used to detect 

departures from ellipticity, on the basis of the fact that, for any such couple and under ellipticity, we 
should have d,(/22, V2) ̂  A d,-(/2,, Vi) for some A > 0. For ftjf, we could similarly think of using three - 

or four - different scatter estimates to derive - typically, via theorem 5 - a couple of consistent estimates 
Hh 1= 1,2, for the underlying mixing matrix H (clearly, it is crucial to adopt a common normalization 
for H\, H2 and H here, such as the Z-standardization in the R package ICS; see Nordhausen et al (2008) 
for details). Although proper (Frobenius-type) distances between the resulting H\ and H2 would provide 
natural test statistics for Ttf, a direct graphical tool, in the same spirit as in Fig. l(c), is the scatter plot of 
ICS distances (^cs(#i),4cs(tt2)), /= 1, . . . ,*, with 

^ICS(^):=V{(^^-/i!cs)'(A!cs)-2(^^-/^!cs)}, 

where /2jcs is the vector of marginal medians for the /th ICS and Â,ICS is the diagonal matrix collecting the 
corresponding marginal median absolute deviations. Under Hloc, all points in such scatter plots should 

roughly sit on the main diagonal, which allows us to detect possible violations ofHlf. 
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Fig. 6. Scatter plots of ICS distance (d)cs(H^ ), d)cs(H2)), / = 1 ,. . . ,n, with hi, = H(9h , V,2 ) 

The choice of the various scatter matrices is, here as well, a delicate issue. But one might still argue 
that combining scatter matrices with different robustness properties could reveal interesting features. This 
is illustrated (with the same data as in Section 6.1) in Fig. 6, where, interestingly, only the plot based 
exclusively on robust scatter matrices seems to be compatible with H1^. 

As shown beautifully in the paper, though, the relevance of ICS extends far beyond IC models, and I 
congratulate the authors for one of the most refreshing and inspiring works of the decade in the field of 
multivariate statistics. 

Mervyn Stone ( University College London) 
This useful paper starts with Cartesian co-ordinates that come with any data, graduates to matrices and 
ends up with affine invariance - in other words, next door to the open-air geometry of co-ordinate freedom! 

I doubt whether the authors depended on the algebra of Sections 2-4 to be confident that that would 
happen - before writing the computer program that does have to use co-ordinates and matrices. Readers 
of the paper might have been spared the algebra - if only that great exponent of co-ordinate freedom, Paul 
Halmos, had gone deeper into probability and statistics to wean us off co-ordinates and matrices wherever 
and whenever these impede understanding. 

It is not too late to supply the alternative thin gruel. 

(a) A few concepts and terms from the thinnest and least influential books on multivariate analysis: V 
is the vector space of variables (made out of/? names) and S is its dual space of evaluators e whose 
evaluation of variable v (a possible 'observation' if v is a name) is the bilinear product [e, v]. V\ and 
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Vi are inner products on V and also so-called 'covariance operators' (linear V -  S). 
(b) Realization that fixed point theory can open the door to a simplified equivalent eigenanalysis for 

V\ and V2: S = { v : ( Vi + V2)(u, u) = 1 and ( Vi + V2)(u, u) ̂  0 for some fixed u} is the closed surface 
of a (Vj + V2) -hemisphere in V. The transformation T :S-+ S that is defined by s -> p(s) V{1 V\s 
is continuous. So S has a fixed point h with V2h = p(h)V\h and, as a consequence, you can take it 
from here with a willingness to 'go to the pictures'. 

(c) The pictures that I refer to here are downloadable and are more fully explained in Stone (2008). Their 
reassuring features are affine invariants as obvious as three lines meeting in a point - and simply 
discovering them can be a more rewarding and liberating activity for a statistician than sudoku. 

Christian Hennig (University College London) 
The authors did a good job in providing a framework for a class of projection methods to visualize multi- 
variate data sets. The comments on the choice of shape matrices mainly focus on robustness aspects. I 
think that other considerations are important as well, and in many situations the choice matters more 
than the paper suggests. 

Fig. 7. ICS plot with Sn and JCn 
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I show a situation in which the choices that are suggested in the paper and the ICS software package do 
not work well, and an alternative shape matrix does better. 

This needs a definition of quality, depending on the patterns of interest, which are clusterings here. 
What should a good projection method deliver in a benchmark situation with a one-dimensional 
interesting pattern in a three-dimensional data set? The analogue of what is expected in a high dimen- 
sional situation is that the pattern should appear along either the first or the last invariant co-ordinate. 

The three variables of the example data set have been generated independently from a ^-distribution, 
a uniform distribution and a mixture with 300 points from J\f(0, 1), 300 points from A/"(4, 2.25) and 400 
points from A/"(12, 1). Fig. 7 shows the solution with the default of the ICS software (V\ = Sn and V2 = JCn; 
this is similar to the solution with Vi maximum likelihood (ML) for Cauchy, V2 ML for t2). The cluster 
pattern is not optimally visible along the third co-ordinate. In Fig. 8, ML for t2 and the minimum covariance 
determinant (MCD) have been used. This shows the pattern along the second co-ordinate. 

Fig. 9 shows the best solution, which stems from MCD as V2 and V\ (local shape') defined as follows. 

(a) Compute a matrix of Mahalanobis distances between points (based on the MCD with 20% break- 
down point, say). 

Fig. 8. ICS plot with ML for t2 and MCD 
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Fig. 9. ICS plot with local shape and MCD 

(b) For every point, compute the covariance matrix of its 10% nearest neighbours. 
(c) Standardize all these matrices by their traces to unify the influence of every point. 
(d) Pool the covariance matrices. 

Using this matrix together with a global covariance matrix brings forth those co-ordinates along which 
the local structure differs from the global structure. 

Here is another idea. 

(a) Compute an affine invariant clustering of the data. 
(b) Use the pooled within-cluster covariance matrix. 

Conlusion: if clustering is of interest, it is advantageous to choose scatter matrices to explore global versus 
within-cluster structure. 

A. P. Dawid (University of Cambridge) 
The central idea of this paper is very neat: that, in the presence of two different measures of scatter, defining 
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two different inner products over the variables, we can apply simultaneous diagonalization to define a 
'natural' set of basic variables for further analysis and display of the data. However, this set is natural only 
to the extent that the chosen pair of scatter measures can be considered natural. But, even in this case, why 
stop at two such measures? - in many problems there will be a wide variety of interesting scatter measures. 
Unfortunately the theory as presented requires, not one, not three, but exactly two scatter measures. 

Is there anything useful that can be said about an appropriate treatment (in a symmetrical fashion) of 
more than two? 

The following contributions were received in writing after the meeting. 

Henri Caussinus {Institut de Mathématiques de Toulouse) and Anne Ruiz-Gazen ( Toulouse School of 
Economies) 
We congratulate the authors for their very interesting paper which brings significant improvements in the 
theoretical knowledge of scatter matrices comparison. From our perspective several issues deserve further 
attention. The first issue is the choice of the dimension of the graphical display, which has been a crucial 
concern since the earlier time of the projection pursuit approach (Sun, 1991): which projections are signifi- 
cant, i.e. which projections contain a genuine structure rather than merely random variation corresponding 
to elliptical distributions? For example, within the framework of theorem 4, what is the value of k or, more 
precisely, what is the dimension of the subspace containing the k[ip. The answer to this practical question 
rests on the distribution of eigenvalues of the matrix product involved. We gave very preliminary theoretical 
results for specific scatter matrices in Caussinus et al (2003a) for the detection of outliers and in Caussinus 
et al (2003b) for the detection of groups. Another issue is the complementary use of invariant co-ordinate 
selection and classification. The co-ordinates that are selected by invariant co-ordinate selection can be 
used to visualize possible groups, to suggest their number and to improve the efficiency of clustering algo- 
rithms. These various aspects were illustrated in Caussinus and Ruiz-Gazen (2007) as an encouragement 
for further research. A third issue concerns the choice of the (class of) scatter matrices to be compared with 
respect to the structure of interest. From our experience, many choices lead to displaying outliers. Since, 
in practice, outliers are often present in the data sets, they can mask other interesting features. To display 
groups or special structures like those of example 2 or the RANDU data set, much care is needed in the 
choice of scatter estimators to be compared, and all the more so in the presence of outliers. It seems that 
scatter matrices resting on pairwise differences are of special interest. A class of scatter matrices depends 
on a tuning parameter whose choice is also challenging. As quoted by Tyler and his colleagues, some of 
our results lead to choosing small values of this parameter; this is basically the case when looking for 
outliers. However, in other cases of interest, our practice and some limited unpublished results lead to 
different values, e.g. 2, the value which appears in Caussinus et al (2003a). We hope that the authors will 
be interested in further investigating these various issues. 

Christophe Croux (Katholieke Universiteit Leuven) 
This paper introduces a new tool for multivariate data analysis, called invariant co-ordinate selection. I 
consider the ideas in this paper to be new and innovative, and this paper is very likely to result in a new 
stream of research in multivariate analysis. I congratulate the authors for this fascinating paper, and for 
the clear exposition of their work. 

The method is quite easy to put in practice: you compute eigenvalues and eigenvectors of V\ and V2, 
with V\ and V2 two scatter matrices. The idea only works if V\ and V2 are different scatter matrices. The 
reason why this method has not been discovered earlier is probably because most statisticians only use 
the covariance matrix. Scatter matrices are well known in the robustness literature, but application of 
the methods here does not require the scatter matrices to be robust. What I consider as most important 
contributions are as follows. 

(a) The introduction of an 'invariant co-ordinate system': an affine transformation of the data is not 
changing the co-ordinate system. Principal component analysis only has this property for orthog- 
onal transformations. The invariant co-ordinate system depends on the choice of the two scatter 
matrices and yields arbitrary transformations for elliptical distributions. Also in principal compo- 
nents, one computes eigenvectors of a chosen scatter matrix (most often the covariance matrix), 
and one obtains arbitrary rotations for spherical distributions. 

(b) The result that invariant co-ordinate selection retrieves 
(i) the independent components of the independent component analysis model and 
(ii) Fisher's linear discriminant subspace for mixtures of elliptical distributions. 
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If we have neither a mixture of elliptical distributions, nor an independent component analysis model, 
then the interpretation of the selected co-ordinates is relying on a projection pursuit argument, where one 
generalizes a generalized measure of kurtosis. Note that this measure of kurtosis is defined conditionally 
on a given multivariate distribution. For an arbitrary univariate distribution, it is not so clear how this 
generalized measure of kurtosis is defined. 

Whereas most of the theory in multivariate statistics relies on elliptical distributions, the authors go one 
step beyond this and open a whole new area of research. I liked reading the paper, and I congratulate the 
authors once more. 

Peter Filzmoser ( Vienna University of Technology) 
I congratulate the authors for this interesting contribution that combines and generalizes several ap- 
proaches. The work of Caussinus and Ruiz-Gazen on generalized principal components analysis is 
generalized, and Fisher's linear discriminant subspace turns out to be a special case. Also independent 
component analysis and projection pursuit are taken into account. For the latter method, invariant co- 
ordinate selection (ICS) does not require the pursuit effort. In contrast, one could evaluate the co-ordinate 
pairs resulting from ICS for their 'interestingness', thereby using standard projection pursuit indices. More- 
over, as already indicated by the authors, different pairs of scatter matrices could be used to find interesting 
projections. A further idea could be to use linear combinations of scatter matrices and to combine them in 
the same way as is done now with equation ( 1 3). Depending on the coefficients for the linear combinations, 
different insights into the multivariate data structure could be obtained. 

An interesting aspect of ICS is that the pairs plots offer the possibility of interpreting the outliers. For 
instance, in example 1 (Fig. 2) the directions of the first two ICS components refer to the contributions of 
the nine variables. Thus, by inspecting these 'loadings' it could be possible to interpret the outlier groups 
in terms of the original variables. 

Finally, thanks to the available R package 'ICS' I did some experiments with high dimensional data. I 
generated two multivariate normally distributed data clouds in 1000 dimensions, the first cloud consisting 
of 2000 observations, and the second of 200, and both centred at the origin. The covariance matrices are 
the identity matrix for the first cloud and the identity matrix multiplied by 1 .2 for the second cloud. Thus, 
it is practically impossible to distinguish both groups in any pairs plot. With the default parameters for 
the 'ics' function we can see slightly different behaviour of both groups in the first and last ICS directions. 
When taking the classical covariance matrix of the original and of the weighted data, with weights obtained 
from a multivariate outlier detection method, we can clearly see both groups. Here I used an outlier detec- 
tion method that is not affine equivariant (Filzmoser et al, 2008) and, although theoretical results for ICS 
would no longer hold, the practical results are very useful. 

Marc Hallin (Université Libre de Bruxelles) 
This paper, which brings together and unifies fundamental ideas from several statistical areas - principal 
components, discriminant analysis, robustness, invariance, statistical depth, flexible modelling, indepen- 
dent component analysis, . . . - is certainly among the most stimulating and refreshing that I have read for 
many years. 

Focusing on the use of two distinct measures of scatter (or shape) V\ (F) and V2(F)\n detecting departures 
from ellipticity, one question, which is not examined by the authors, naturally comes to mind: for given non- 
elliptical F, is there any such thing as a 'most efficient' or 'most contrasting' choice of F \-+ Vj(F), j = 1 , 2 - 

maximizing, for instance, some adequate distance between the scaled version of (p\ , . . . , pp) and ( 1 ,. . . , 1 )? 
This question, quite presumably, is related to the problem of constructing 'optimal' tests for sphericity 
(robust alternatives to the traditional Mauchly (1940) and John (1972) tests can be found in Tyler (1982, 
1987) and Hallin and Paindaveine (2006)). Answering such a question would be most useful, for instance 
in the problem of recovering, in an optimal way, independent components in independent components 
analysis models. 

Affine invariance or equivariance, however, is not the only invariance property that we could require 
for the scatter matrices F\-+ Vj(F),j=\,2. Another group of transformations, of equal relevance, is not 
mentioned, which also preserves ellipticity: the group of monotone radial transformations. More precisely, 
assuming that some location 6 = 0(F) has been chosen, consider a scatter functional F\-+V(F) (in the sense 
of this paper), and let 

rv:={(Y-0yv-l(Y-0)}l/2, 
Uv:=V-]/2(Y-6)/\\V-]/2(Y-0)\\ = V-]/2(Y-0)/rv. 
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Then, Y (with distribution function FY) is elliptical if and only if Y^ :=9 + g(rv)Vl/2Uv (with distribution 
function FK» ) is also elliptical, where r v+ g(r) is an arbitrary continuous monotone increasing transforma- 
tion of 1R+ such that #(0) = 0 and linv^ooj^r)} = oo. Classical invariance arguments suggest that V(FK») 
be proportional (shape equivalent) to V(FY) for any g and FY - a property that the scatter functionals 
considered in the paper only have when restricted to the family of elliptical FYs. This invariance under 
radial transformations severely restricts the class of admissible scatter functionals; note that the functional 
that was proposed by Tyler ( 1 987) satisfies the condition - but other solutions do exist. 

In the empirical version (denote by FYl) the empirical distribution function for a sample Y\ , . . . , Yn of size 
w), similar invariance arguments imply that Vin) := V(FYn)) should be measurable with respect to LV<»> , := 
(V(fI))-|/2(K/ -0)/||(V(II)rI/2(y; ; -0)|| and the ranks R™tt)U of the distances rvlH)u :={(K, -0)/(V("))~l(H - 

0) } 
' I2 , i = 1 , . . . , n . This is not easily achieved for finite «, but it holds for the M -estimator that was proposed 

by Tyler (1987) and, under asymptotic form, for the /^-estimators of shape that were developed in Hallin 
et ai (2006). 

Daniel Pena and Julia Viladomat ( Universidad Carlos III de Madrid) 
The authors present a very general method to generate an affine invariant co-ordinate system by projecting 
the data onto some eigenvectors of the matrix Vf1 V2, where Vi and V2 are any pair of (robust) affine equi- 
variant scatter matrices. These projections are shown to reveal departures from an elliptical distribution 
and can be seen as a projection pursuit method based on kurtosis (see equation (14)). Projection directions 
maximizing and minimizing kurtosis were shown to be useful for robust multivariate estimation in Pena 
and Prieto (2001b), who also proved the optimality properties of these directions for clustering (Pena and 
Prieto, 2001a). They used numerical optimization to find these optimal directions. An important contri- 
bution of this paper is that these directions can also be obtained as eigenvectors of some general class of 
kurtosis matrices. 

Thus, we have two ways of finding extreme directions of kurtosis. The first way is through numerical 
optimization and the second finds the eigenvectors of some generalized kurtosis matrix. In Pena et ai 
(2008) we have compared these two approaches in a particular case. Given a multivariate random vec- 
tor X with mean fi and covariance matrix S, we propose to compute the eigenvectors of the kurtosis 
matrix K = E(ZTZZZT), where Z = E"I/2(X - /i). Using this matrix is equivalent to choosing V\ = E, and 
V2 = E{ZTZ(X - p)(X - /z)T} in this paper. We then show that if the ratio n/p is large, where n is the 
sample size and p the dimension, the estimation of a matrix of dimension p is reliable and estimating its 
eigenvectors becomes accurate and useful. Also, in this case numerical optimization is computationally 
intensive. However, when n/p is small, estimating the elements of the matrix has limited precision and the 
eigenvectors are not useful for showing the clusters. Since the use of the kurtosis matrix K is based on an 
existent kurtosis-based algorithm, we can use the algorithm in Pena and Prieto (2001a) when n/p is small. 
An interesting problem is the performance of these two procedures under the more general situation of 
different scatter matrices. Then the use of just any pair of robust scatter matrices does not guarantee the 
identification of the clusters, whereas the directions of extreme kurtosis have been found to be effective in 
this situation. 

Werner A. Stahel and Martin Mâchler (Eidgenôssiche Technische Hochschule, Zurich) 
The paper introduces an elegant piece of theory and derives a very useful tool for finding patterns in 
multivariate data. We warmly congratulate the authors for this work. 

This comment recalls a benchmark distribution for multivariate tools that aim at good robustness prop- 
erties, which was introduced in section 5.5a of Hampel et ai (1986), which we shall call the 'barrow 
wheel'. It is a mixture of a flat normal distribution contaminated with a portion e=\/p of gross errors 
concentrated near a one-dimensional subspace. Let 

Go=fl--W/,{O,diag(^,l,...,l)} + -//, 
\ PJ P 

where p is the dimension and H is the distribution of Y, where Y{]) has a symmetric distribution with 
(yd))2 ^X2_j and is independent of K(2), . . . , Y{p) -.A/^O,^ /,,_i) (Fig. 10(b)). Then, this distribution is 
rotated such that the X(1)-axis points in the space diagonal direction (1, 1,. . . ,1), and the components are 
rescaled to obtain G. Note that the covariance matrix of both Go and G will tend to /,, for a\ ->> 0 and a2 - 0, 
and all known 'cheap alternatives' to high breakdown ('class III') point covariance estimation fail to detect 
the outlier part H. For more details and R functions, see ht tp: //stat . ethz . ch/research/areas/ 
robustness. 
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Fig. 10. Scatter plot matrices of a sample from the barrow wheel distribution, p = 4, and of the invariant co- 
ordinates obtained from it 

Is the barrow wheel an artificial situation? The 'wheel' describes a multivariate normal distribution with 
a strong linear relationship between variables - a situation which multivariate statistics searches for. The 
outliers are 'nasty', but making them more realistic does not render the problem of detecting the structure 
much easier. Robust multivariate procedures should therefore pass this benchmark. 

Fig. 10(a) shows a sample from G for p = 4 and v\ =0.1 and a2 = 0.2. Any structure seems difficult 
to spot. The invariant co-ordinate selection that is obtained from ilsing the robust MCD covariance as 
V2 and the empirical covariance matrix as V\ shows the structure very clearly (Fig. 10(b)). Note that the 
outliers would appear in the last co-ordinates if we followed the advice of the authors to use a mildly or 
non-robust scatter estimate as V\ and a more robust estimate as V2. 
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Thus, invariant co-ordinate selection passes the benchmark - if a high breakdown scatter matrix is used. 
The cheaper alternative that is based on a class II scatter matrix and a one-step ^-estimate applied to it 
(Section 6 of the paper) will generally miss the structure. If a full class III estimate is too expensive, we 
recommend simply restricting the number of elemental subsets of the usual resampling algorithm to find 
such an estimate and using the respective 'unsecure' estimate as V2. 

The authors replied later, in writing, as follows. 

We thank all the discussants for their insightful and generally encouraging remarks. Many of the points 
that were made by them have also been major concerns of ours, and we hope that our paper stimulates 
others to develop this topic further. The discussants have already pointed the way to many important open 
problems. 

Rather than respond to the discussants one by one, we address their main recurring themes. 

Choice of scatter and statistical variability 
One of the more prominent themes in the contributions is the choice of the scatter matrices. This is cer- 
tainly a major topic deserving a better understanding. A good choice for the scatter matrices, though, will 
probably depend on the problem at hand, e.g. whether interest lies in a mixture problem, an independent 
components analysis (ICA) problem or some other problem. 

Much of the discussions tends to focus on the role of invariant co-ordinate selection (ICS) in detecting 
mixtures or clusters. In this setting, it seems natural that one should try to define one scatter matrix so 
that it can be viewed as a measure of within-group scatter. This is essentially the idea behind Dr Hennig's 
proposal for a local shape matrix. (As defined, this matrix is not affine equivariant but can be made so 
by replacing tr(V/m) with det(V/m) in its définition.) It is also the motivating idea behind the clustering 
algorithm that was proposed by Art et al (1982), as well as the idea behind the scatter matrices based on 
downweighting large pairwise differences that were noted in the discussion of Professor Caussinus and 
Professor Ruiz-Gazen and in Lutz Diimbgen's oral presentation explaining the choice of scatter matrices 
that were used in the RAN DU example. 

Nevertheless, if one of the models that are considered in Section 5 holds, the results of our paper imply 
that the choice of the scatter matrices used in deriving the ICS co-ordinates is theoretically irrelevant for 
sufficiently large sample sizes. As noted by Professor Hallin and by Dr Ringrose, the main considerations 
are the theoretical separation of the ICS roots, p\(F),...,pp(F), and the statistical variability of the sample 
scatter matrices Vi and V2. If the theoretical roots are not well separated then some modest statistical 

variability in the scatter matrices may result in the ICS co-ordinates being poorly estimated. The theoret- 
ical ICS co-ordinates, however, do not depend on the choice of the scatter matrices, at least within the 
context of the theorems of Section 5. Studying the statistical variability of the ICS roots and co-ordinates 
is a reasonably straightforward problem, at least asymptotically. However, the more important problem of 
understanding the theoretical separation of the roots based on two given scatter functionals for a specific 
underlying model appears to be very challenging, and any results on this topic are greatly welcomed. 

To illustrate these points further, consider the example that was presented by Dr Hennig. This inter- 

esting example is presented as a clustering problem but it does not fall under the mixture models that 
were considered in Section 5.1. Rather, it provides a nice example of an ICA model. Theorem 5 states 
that essentially any two scatter matrices should uncover the structure. Furthermore, as noted in the dis- 
cussion after theorem 5, the independence property or symmetrization is not needed here since two of the 
three marginals are symmetric. The scatter matrices that were first considered by Hennig, i.e. Sn and /C,,, 
may not be appropriate since neither one is defined at the population model owing to the ^-distribution. 
(Curiously, the r2-component is easily found and the difficulty appears to be in separating the mixture 

component from the uniform component.) Otherwise, any well-defined pair of scatter matrices should 
find the independent components for a sufficiently large sample size, even if they are not specialized to this 

particular problem. 
Figs 1 l(a) and 1 l(b) show the results for Dr Hennig's example when Diimbgen's scatter matrix is chosen 

for V2 in both figures, and with the t2 M-estimate of scatter and its symmetrized version chosen respectively 
as V\. From Fig. 1 1 the symmetrized version appears to give a slightly better recovery of the indepen- 
dent components, with the sample ICS roots being more widely separated in the symmetrized version, 
i.e. (1.26, 0.98, 0.80) for Fig.l l(a) versus (1.53, 0.87, 0.75) for Fig. 1 l(b). This suggests, as commented on 
by Professor Kent, and Professor Caussinus and Professor Ruiz-Gazen, that there may be advantages to 
symmetrization, at least for moderate sample sizes. It also seems that using a common centre for both 
scatter matrices may be advantageous. The ICS plots using a t2 M -estimate of scatter and Tyler's shape 
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Fig. 1 1 . ICS for Hennig's example: (a) l^ , the t2 M-estimate, and V2> Dùmbgen's scatter; (b) l^ , the symme- 
trized t2 /tf-estimate, and l?2, Dùmbgen's scatter 
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matrix (which is the unsymmetrized version of Dumbgen's scatter matrix) centred at the t2 M -estimate of 
location gives a plot similar to Fig. 1 l(b). Using a common centre avoids the additional computations that 
are needed in working with symmetrized data. 

This example also sheds some light on Professor Kent's question regarding the distinction between larger 
and smaller ICS roots. Dumbgen's matrix may be viewed in a loose sense as being more 'robust' than both 
the h M -estimate and its symmetrized version. In Fig. 1 l(a), though, the ^-component is related to the 
largest root whereas in Fig. 1 l(b) it is related to the smallest root. 

Statistical inference and general distributions 
Our paper does not give any results on statistical inference, but rather leaves this topic open for further 
research. As noted by Professor Caussinus and Professor Ruiz-Gazen, there are some interesting open 
inferential problems when we assume a mixture model. Perhaps the most fundamental question, though, 
is first to determine whether ICS roots significantly differ from each other. Otherwise, the ICS method is 
simply exploring noise. 

Some work on using two scatter matrices to test for multivariate normality can be found in Kankainen 
et al. (2007). In Wang (2008), the sample ICS roots are used to develop tests for the hypothesis that the data 
come from an elliptical distribution. The local power function of these tests under mixtures of elliptical 
distributions and under skewed elliptical distributions are also obtained. 

The question that is posed by Professor Hallin regarding the optimal choice of scatter matrices for such 
tests again depends on the problem at hand, i.e. on the alternative model. The problem of testing the 
hypothesis of ellipticity against a general multivariate distribution is far more complex than testing the 
hypothesis of sphericity within the class of elliptical distributions. Even when considering a mean mixture 
of two multivariate normal distributions, we have noted in some preliminary work that one pair of scatter 
matrices may be more powerful than another pair for some mixtures, whereas the reverse may hold for 
other mixtures. 

For distributions other than the models that are discussed in Section 5, the theoretical ICS co-ordinates 
themselves can be heavily dependent on the scatter functionals. In this case, the use of more than two scatter 
functionals, as pondered by Professor Dawid, may be helpful for exploring these more complex non- 
elliptical structures. Generating a new co-ordinate system based on the comparison of more than two scatter 
matrices is more problematic since in general three or more scatter functionals cannot be simultaneously 
diagonalized. (Note that theorem 5 states that all scatter functionals can be simultaneously diagonalized 
for the ICA model that is considered in the theorem.) Perhaps some approximate simultaneous diagonaliza- 
tion as suggested by Professor Filzmoser can be developed. Approximate simultaneous diagonalization 
techniques have been developed in another context in ICA; see for example Cardoso and Souloumiac 
(1996). 

The contribution by Dr Paindaveine presents a clever application which uses the information that is 
contained in more than two scatter matrices, namely a graphical method for accessing how varied different 
ICS co-ordinate systems may be. The insight that is obtained from this can be used to diagnose whether 
one of the models considered in Section 5 is appropriate. The graphs that he presents suggest that a wide 

range of scatter matrices should be considered in practice, since some pairs of scatter matrices may give 
similar ICS results, whereas others may give differing results. 

The hypothesis of the equality of the theoretical ICS roots is equivalent to the hypothesis Vi oc V2. Infor- 
mation coming from several scatter matrices can also be used to develop alternative and perhaps more 

powerful tests for ellipticity by considering the hypothesis V\(xV2...<xVk. Expanding on Dr Paindaveine's 
idea, several scatter matrices can also be used to test whether there is any significant deviation from one 
of the models considered in Section 5. For such a test, rather than testing whether the scatter matrices 
are proportional to each other, we would be interested in testing whether the scatter matrices can be 
simultaneously diagonalized. These are challenging topics for future research. 

High dimensional data and projection pursuit 
Several discussants bring up the topic of high dimensional data, and in particular when the sample size 
n is small relative to the dimension p. For n ^ p+ 1, all affine equivariant sample scatter matrices are 

proportional to each other (see for example Tyler (2009)), and so the ICS method is not applicable in this 
case. When n is not too large relative top, as noted by Professor Pena and Dr Viladomat, ICS is unlikely to 
be successful at finding underlying structures because of the statistical variability of the scatter matrices, 
unless the structures are extreme. 

As p increases as a multiple of «, it is not clear whether ICS roots and co-ordinates will converge to 
anything. In an infinite dimensional space, how do we define an affine equivariant scatter operator other 
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than the covariance operator? In this setting, and in the setting for which n/ p is not very large, we may 
need to relax the requirement of affine equivariance and, as suggested by Professor Kent, introduce some 
type of regularization. 

The question of the differences between ICS and projection pursuit methods derived by using one- 
dimensional projection indexes is a natural one. Professor Kent, for example, questions the difference 
between using k\xri(a'Y) and using a'JCa/a'Y.a. Professor Pena and Dr Viladomat report on some recent 
work comparing these two measures, which we are eager to read. They remark that the theory for ICS does 
not guarantee the identification of clusters when the scatter matrices of the mixture components differ 
(or, more precisely, when they are not proportional), whereas projections with extreme univariate kurtosis 
have been effective in this situation. To the best of our knowledge, the theory for projection pursuit in this 
case only guarantees identifying the components of a normal mixture when the covariance matrices are 
equal, or when the components are well separated. It is possible to show that the latter case will also hold 
for ICS. A special case of this has been considered by Critchley et al. (2007). 

We do not generally recommend using /C and £ as the scatter matrices in ICS. For this choice, the 
results of ICS can be too heavily focused on just a few spurious outliers, and statistical variability of the 
method can be high for longer-tailed distributions, including mixture models. This pair of scatter matrices 
is nevertheless of interest, not only for their role in one of the earliest ICA algorithms, FOBI, but also 
since they can be analytically tractable and hence can help to lead to a better theoretical understanding of 
the method. For example, in the mixture of two multivariate normal distributions that was discussed after 
theorem 3, it is shown that when the mixing proportion satisfies a{\ - a) = \ then a'Ka/a'T^a is constant 
and therefore no direction is distinguishable from any other. If we examine the formula for kurtosis for a 
mixture of two univariate normal distributions (see Preston ( 1 953)), we draw the same conclusion regarding 
kurt(a'y), i.e. it is constant. There is also a relationship between the two measures under the ICA model, 
namely 

ajJCaj/a'jEaj = kurt{a'jY) 

when a'jY is one of the independent components; see Nordhausen et al. (2008). 

Content and style 
As observed by Dr Ringrose, the examples that are given in the paper are intended to illustrate clearly 
the theory given in the paper. Consequently, the structures that are found in some of the examples can 
also be found by using a simple principal components analysis (PCA). It is a fair question though to ask 
what ICS can do that cannot be done with PCA. This question can also be asked of discriminant analysis, 
with some of us having had the experience of consulting with researchers in applied fields who do obtain 
answers from PCA even though the problem is one of discriminant analysis. It is well known to researchers 
in multivariate analysis that one can easily construct examples where PCA will fail to uncover the group 
differences, particularly when the means vary in the direction of the smallest principal component direction 
relative to the within-group covariance matrix. Such cases, when group identification is unknown, will result 
in a similar difference between ICS and PCA. 

Other examples can be found in the vast ICA literature, where one of the main motivations for its 
development is that PCA often fails to find important structures in a multivariate data set. If one applied 
PCA to our example 2, one would not find the underlying structure regardless of the scatter matrix that is 
used for the PCA. In practice, it is possible for the ICS roots to be significantly different, yet no obvious 
structure, groups or outliers may be visible in the plots of the ICS co-ordinates. The theory assures us 

though that the underlying distribution is more complicated than an elliptical distribution, and so a 

deeper understanding of the data is needed, as opposed to a simple location-scatter summary, and a 
closer examination of the ICS co-ordinates may be enlightening. Such examples, though, do not make 

good initial illustrations. 
Whether or not a moratorium should be placed on Fisher's iris data is a matter of debate. They can 

be useful for illustration while taking up minimal space in a paper or minimal time in a presentation 
since one does not need to explain the data set in detail. Also, if a method does not perform well on the 
iris data, then the theory may be suspect. Other fields have their pet data sets for illustrating methods 
and theory (the iris data are a pet rather than a toy), such as the famous Lena image in computer vision. 

We appreciate Professor Stone's co-ordinate-free formulation to the ICS variâtes. The co-ordinate-free 
approach to multivariate statistics certainly offers a theoretically elegant and concise view of the topic. 
Professor Kent's comments also hint at the co-ordinate-free approach in his mention of dual metrics. The 
statement that two scatter matrices can always be simultaneously diagonalized can be stated more elegantly 
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in a co-ordinate-free manner by simply noting that for any two inner products on a finite dimensional vec- 
tor space there is a basis (the ICS basis) which is orthogonal (but not necessarily orthonormal) relative 
to both inner products. Alternatively, rather than present the usual technical gruel of relating the spectral 
value decomposition of the symmetric matrix V, 

2 
ViV^12 to the eigenvalues and eigenvectors of Vf1 V-i 

we could note that ICS simply corresponds to the usual spectral value decomposition of the symmetric 
operator Vf1 V2, where symmetry is with respect to the inner product (x,y) = jtTVf ly. Some of us have 
mentioned these more abstract concepts in presentations and at times receive the query why confuse the 
audience with the abstraction? So, a common consideration in presenting results is the intended audience, 
which for this paper is those who are interested in general multivariate methodology. The interpretation 
of ICS as a PCA on standardized data may be particularly appealing to practitioners. 

A co-ordinate-free approach can be beneficial in any attempt to generalize ICS to infinite dimensional 
Hilbert spaces. Here the concept of a mutual orthogonal basis relative to two different inner products still 
holds, as well as the spectral value decomposition (or the Karhunen-Loève decomposition) for symmetric 
operators. The covariance operator can also be defined within a co-ordinate-free format; see for example 

Fig. 12. ICS for Stahel-Mâchler's example: l/-| , the tA /W-estimate, and l/2, the sample covariance 
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Eaton ( 1 983). It is not clear, however, how other scatter functional, whether in finite or infinite dimensional 
space, can be formulated in a co-ordinate-free manner. 

Robustness 
Several of the discussants noted the role of robustness in ICS. Dr Croux gives a very perceptive discussion 
on the key points of our paper and in particular notes how ICS is a natural outgrowth of contemplating 
problems in robust statistics. Researchers within the robustness community are familiar with working with 
competing functional (and estimates) measuring (estimating), under general assumptions, presumably the 
same population parameter. Robust statistics is often focused on automatically accommodating outliers 
so that they do not influence the interpretation of the majority of the data. It is then natural to ask in the 
multivariate setting whether a location-scatter summary is reasonable even for the majority of the data, 
e.g. a 30-30-40 mixture. 

The type of outliers that usually cause 'breakdown' for many statistics are not simply spurious outliers 
but rather outliers that have a pattern of their own, with the most extreme case being point mass contami- 
nation. One can argue that such data structures are confounded with mixture models, and as an alternative 
one could try to identify such a pattern while accommodating spurious outliers. Statistics, other than high 
breakdown point statistics, tend to blur the majority structure with any outlier structure. However, as 
shown in the modified wood gravity data example, when two such scatter statistics are used together in 
ICA, the separate patterns may be more apparent. 

A similar phenomenon occurs for the example that was given by Stahel and Mâchler, which was origi- 
nally used in Hampel et al. (1986) to illustrate the concept of breakdown at the edge. In this example, the 
majority of the data lie close to some subspace. As correctly noted in their contribution scatter statistics 
which do not have breakdown points near \ fail to pick up the near singularity of the majority of the data. 
This does not imply though that ICS based on two lower breakdown point statistics will also fail to detect 
this pattern. Although this example does not correspond to one of the mixture models or ICA models that 
were considered in Section 5, it turns out that the ICS co-ordinates do not depend theoretically on the two 
scatter matrices used. 

To see this, we first note that because of the invariance of ICS it is sufficient to consider the distribution 
of Go. The distribution of Go is invariant under transformations of the form QX, i.e., if A' has distribution 
Go, then so does QX when Q is block diagonal with blocks qu =±1 and Q2i being a 3 x 3 orthogonal 
matrix. Consequently, any affine equivariant scatter matrix V at Go must be block diagonal with elements 
v\ i and V22 = U22/3, where /3 is the 3 x 3 identify matrix. Consequently, Vf1 V2 has the same block diagonal 
form, and so either the first or last ICS co-ordinate will correspond to the first variate in Go and the other 
three co-ordinates will correspond to some rotation of the last three co-ordinates in Go (except for the 
idiosyncratic case when V\ and V2 are theoretically proportional to each other). Again the question of 
choice depends on the separation of the theoretical roots along with the statistical variability of the roots. 
For sufficiently large sample size, the pattern should be detected for any two choices of scatter and neither 
one needs to have a high breakdown point. Fig. 12 illustrates this for a sample of size n = 100 from Go 
using the sample covariance matrix and the Cauchy M -estimate. 

Other remarks 
We have not been able to respond to all of the comments in the contributions in detail. Dr Ringrose and 
Professor Filzmoser bring up the topic of biplots for the ICS co-ordinates, and so we wish to note briefly 
that such biplots have been considered by Caussinus et al. (2003) in the context of generalized PCA. Pro- 
fessor Kent raises the question of possible extensions for third moments. Here, we note some recent work 
on this topic by Nordhausen et al. (2009a). 

Again we thank all the discussants for their contributions, and we hope that our responses are somewhat 
enlightening. Overall, though, there is still much work to do and new methodologies are needed to under- 
stand better the nature of multivariate data, especially when we move away from the comfort of elliptical 
distributions. 
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