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Comparison of Times Series with Unequal
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In statistical data analysis it is often important to compare, classify, and cluster
different time series. For these purposes various methods have been proposed in the
literature, but they usually assume time series with the same sample size. In this
article, we propose a spectral domain method for handling time series of unequal
length. The method make the spectral estimates comparable by producing statistics
at the same frequency. The procedure is compared with other methods proposed in
the literature by a Monte Carlo simulation study. As an illustrative example, the
proposed spectral method is applied to cluster industrial production series of some
developed countries.

Keywords Autocorrelation function; Cluster analysis; Interpolated periodo-
gram; Reduced periodogram; Spectral analysis; Time series; Zero-padding.

Mathematics Subject Classification 37M10; 62H30.

1. Introduction

The classification and clustering of time series has useful applications in several
fields. In population studies, one may be interested in identifying similarities among
several series of birth and death rates. In finance, one may be interested in classifying
and grouping stocks for portfolio design purposes. In international economics, one
may be interested in comparing and clustering countries by looking at their main
macroeconomic time series indicators.

Methods for comparing time series have been studied by using autocorrelation
and spectral analysis and by model fitting methods. Building upon the earlier work
of Coates and Diggle (1986), Diggle and Fisher (1991), Dargahi-Noubary (1992),
and others, Maharaj (2002), Quinn (2006), and Caiado et al. (2006) proposed
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528 Caiado et al.

frequency-domain methods for time series discrimination and clustering. As the last
of these articles shows, spectral methods can work very well for these purposes.

A problem that often arises in real applications is dealing with time series of
unequal length. For instance, in the business cycle study of some industrialized
countries, Caiado et al. (2006) deal with time series of unequal length by truncating
the series to the length of the shortest one. They do it in order to use spectral
estimates to compute distances across countries. In this article, we propose to
deal with this problem by adjusting the number of used periodogram ordinates.
We construct an interpolated periodogram for the longer series at the frequencies
defined by the shorter series. This method seems to work particularly well for
comparison purposes.

The remainder of the article is organized as follows. In Sec. 2, we present a
well-known procedure that have been proposed in the literature for handling series
of unequal length in the spectral domain; we discuss a natural extension of the
usual periodogram, and propose our interpolation method. In Sec. 3, we present
the results of a Monte Carlo simulation study where our method is compared
to the other procedures. In Sec. 4, we apply the interpolation-periodogram based
discrepancy statistic to analyze industrial time series of developed economies. In
Sec. 5, we summarize the main results obtained in this article.

2. Periodogram-Based Discrepancy Statistics

Periodograms provide useful statistics for studying and comparing time series.
Various authors have used pairwise comparison of periodogram ordinates from
different series at the corresponding frequencies. This can be done directly when
the series have the same number of data points. A problem arises when the data
sets have different lengths and the Fourier frequencies at which the periodogram
ordinates are usually computed are not the same.

Let �xt� t = 1� � � � � nx� and �yt� t = 1� � � � � ny� be two stationary processes with
different sample sizes. Without loss of generality, assume that nx > ny. The
periodogram of series xt is given by

Px��j� =
1
nx

∣∣∣∣
nx∑
t=1

xte
−it�j

∣∣∣∣
2

� (1)

where �j = 2�j/nx, for j = 1� � � � � mx, with mx = 	nx/2
, the largest integer less or
equal to nx/2. The periodogram of series yt, Py��p�, is given by a similar expression
with �p = 2�p/ny, for p = 1� � � � � my, with my = 	ny/2
. When mx �= my, �j and �p

do not coincide. Then, if we want to compare these two time series, a direct distance
between the same periodograms ordinates cannot be computed.

A first solution to this problem common in the pattern recognition and signal
processing literature (e.g., Wang and Blostein, 2004) consists in extending the
shorter series yt, by adding zeros and getting a new series y′t with the same length as
the longer one. One obtains

y′t =
{
yt� t = 1� � � � � ny

0� t = ny + 1� � � � � nx�
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Comparison of Times Series 529

and then computes the periodogram of series y′t, Py′��j�. This approach, called
“zero-padding”, matches the frequencies of both series.

A zero-padding periodogram discrepancy statistic for handling series of unequal
length can then be defined by

dZP�x� y� =
√√√√ 1

mx

mx∑
j=1

	Px��j�− Py′��j�

2� (2)

A second solution to the unequal length problem consists in calculating both
periodograms at a common frequency. Although this is a simple and natural way of
dealing with unequal sample sizes data, it has not been discussed in the time series
classification literature. The procedure can be applied in various ways, but it seems
natural to compute the periodogram of the longer series xt of the shorter series yt
frequencies, that is

PRP
x ��p� =

1
nx

∣∣∣∣
nx∑
t=1

xte
−it�p

∣∣∣∣
2

� (3)

where �p = 2�p/ny, for p = 1� � � � � my < mx. We will call it the “reduced
periodogram”.

A reduced periodogram discrepancy statistic can be defined by

dRP�x� y� =
√√√√ 1

my

my∑
p=1

	PRP
x ��p�− Py��p�


2� (4)

The solution we propose is to interpolate the periodogram ordinates of the
series with longer length at the frequencies defined by the series with the shorter
length. Without loss of generality, let r = 	pmx

my

 be the largest integer less or equal

to pmx

my
for p = 1� � � � � my, and my < mx. The periodogram ordinates of xt can be

estimated as

PIP
x ��p� = Px��r�+ �Px��r+1�− Px��r��×

�p�y − �r�x

�r+1�x − �r�x

= Px��r�

(
1− �p�y − �r�x

�r+1�x − �r�x

)
+ Px��r+1�

(
�p�y − �r�x

�r+1�x − �r�x

)
� (5)

This procedure will yield an interpolated periodogram with the same Fourier
frequencies of the shorter periodogram Py��p�.

The interpolated periodogram discrepancy statistic we propose is then given by

dIP�x� y� =
√√√√ 1

my

my∑
p=1

	PIP
x ��p�− Py��p�


2� (6)

In practical terms, if we are only interested in the dependence structure
and not in the process scale, we can normalize the periodograms dividing the
ordinates by the data sample variances: NPIP

x ��p� = PIP
x ��p�/�̂

2
x and NPy��p� =
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530 Caiado et al.

Py��p�/�̂
2
y . Additionally, it is useful for the statistical analysis and testing to

attain homoscedasticity in the periodogram. Since the variance of the periodogram
ordinates is proportional to the spectrum at the corresponding Fourier frequencies,
we may take logarithms of the ordinates. The interpolated log-normalized
periodogram discrepancy statistic can then be defined as

dILNP�x� y� =
√√√√ 1

my

my∑
p=1

	logNPIP��p�− logNPy��p�

2� (7)

For reference, we also consider a well-known nonparametric discrepancy
statistic based on the estimated autocorrelations (Caiado et al., 2006; Galeano and
Peña, 2000). Let �̂x�l and �̂y�l be the sample autocorrelation functions of the longer
series xt and shorter series yt, respectively.

The autocorrelation discrepancy statistic is given by:

dACF �x� y� =
√√√√ Ly∑

l=1

��̂x�l − �̂y�l�
2� (8)

where the number of autocorrelation lags used, Ly, would depend on the number of
data points at hand. Here, Ly will be the largest integer less or equal to ny/10, as
recommended by Caiado et al. (2006).

It is straightforward to show that the statistics (2), (4), (6), (7), and (8) fulfill
some properties of a distance: (i) d�x� y� = 0 if Px��j� = Py′��j�, P

RP
x ��p� = Py��p�,

PIP
x ��p� = Py��p�� NPIP��p� = NPy��p�, or �̂x�l = �̂y�l; (ii) d�x� y� ≥ 0 as all the

quantities are non-negative; and (iii) d�x� y� = d�y� x�, as all transformations are
independent of the ordering. However, nothing guarantees the triangle inequality,
which is the remaining defining property of a distance. For this reason we use the
word “discrepancy” instead of “metric” as a convenient qualifier for the statistics
under consideration.

3. Monte Carlo Simulations

To illustrate the performance of the autocorrelation and periodogram-based
statistics (zero-padding, reduced, and interpolated), we performed a set of Monte
Carlo simulations. For each of the considered processes, we simulated pairs of series
of different sample sizes, �n1� n2� = ��50� 100�� �200� 100�� �500� 250�� �1�000� 500��.
For each case, we performed 1,000 replications. We performed the following
comparisons:

(a) AR(1), 
 = 0�9 versus AR(1), 
 = 0�5;
(b) AR(1), 
 = 0�9 versus ARIMA(0,1,0);
(c) AR(2), 
1 = 0�6, 
2 = −0�3 versus MA(2), �1 = −0�6, �2 = 0�3;
(d) ARFIMA�0� 0�45� 0� versus white noise;
(e) ARFIMA�0� 0�45� 0� versus AR(1), 
 = 0�95;
(f) ARFIMA�0� 0�45� 0� versus IMA�1� 1�, � = 0�4;
(g) ARMA�1� 1�, 
 = 0�95, � = 0�74 versus IMA�1� 1�, � = 0�8;
(h) Deterministic trend, xt = 1+ 0�02t + �t versus stochastic trend, xt = 0�02+

xt−1 + �1− 0�9B��t.
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Comparison of Times Series 531

In case (a), we compare low-order models of similar type and similar
autocorrelation functions. In case (b), we compare a nonstationary process with
a near nonstationary AR process. In case (c), we compare selected second-order
ARMA processes in order to deal with peak spectra. In case (d), we compare
stationary processes with very different characteristics of persistence. In case (e),
we compare a near-nonstationary long-memory process with a short-memory one.
In case (f), we compare a long-memory process with a nonstationary one. In
case (g), we compare a near-nonstationary process with a nonstationary one. The
models chosen are those discussed in Wichern (1973). In case (h), we compare
a trend-stationary process and difference-stationary one. The models chosen are
based on a suggestion of Enders (1995, p. 252), but incorporate a near unit root
in the MA component of the stochastic formulation in order to made them more
difficult to distinguish. The rational for these choices was to generate processes with
similar sample characteristics. Case (d) is an apparent exception to this rule. In this
case, we were simply interested in knowing whether our methods could succeed in
distinguishing long memory from no memory models.

The fractional noise was simulated using the finite Fourier method of Davies
and Harte (1987). The other processes were generated with the well-tested recursive
method available in Matlab. In all cases, the series were generated with a zero
mean and unit variance white noise. In case (h), the series were first detrended
by fitting a simple linear regression before computing the periodograms and the
autocorrelation functions. As it is well known, long cyclical periods will not be
eliminated by detrending.

For each case, the four generated series were grouped into two clusters by
the complete linkage method. This method (also known as the farthest-neighbor
method) defines the distance between two clusters by considering all possible pairs
of objects (series), one from each cluster. The distance between two clusters is the
maximum possible distance calculated for all these pairs of objects. It proceeds
recursively. It starts with as many clusters as the number of series. At each step,
it groups the existing clusters into fewer clusters by aggregating the two most similar
ones. The procedure continues until it groups all objects. In our case, it stops with
two clusters. For details, see, for instance, Johnson and Wichern (2007).

Table 1 provides the percentages of comparison successes in cases (a)–(h). Each
comparison is defined as a success when the two time series of different length but
generated by the same process are classified in the same group. The first rows of
each cell show the results for the autocorrelations approach. The second rows of
each cell show the results for the zero-padding periodogram approach. The third
rows of each cell show the results for the reduced periodogram approach. The fourth
rows of each cell show the results for the interpolated log normalized periodogram
approach. For instance, the value 67.8 in the upper-left cell means that 67.8% of
the times the two AR(1), 
 = 0�9� n1 = 50, and n2 = 100 processes were grouped
into one cluster and the two AR(1), 
 = 0�5� n1 = 50, and n2 = 100 processes were
grouped into another cluster using the autocorrelations method.

The interpolated-periodogram discrepancy statistic shows a remarkable good
performance on the comparisons among stationary processes with ARMA and
ARFIMA formulations, and shows a performance that increases significantly with
the sample size on the comparison between ARMA and ARIMA processes and
between ARIMA and ARFIMA processes.

The zero padding method works well for classifying longer series of similar
length. However, it is not able to separate well near-non stationary processes
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with large samples from non stationary processes with short samples, and, more
importantly, it does not perform well on the comparison between longer stationary
and shorter near-nonstationary ARMA processes. In fact, when sample sizes are
very unbalanced, the shorter series periodogram is distorted by the zero-padding
method. Zero padding is equivalent to add new ordinate values that are linear
combinations of the periodogram ordinates of the original series. Naturally, the
resulting statistics and tests suffer from this problem.

The reduced periodogram and the ACF methods are always dominated by the
other methods. In particular, the reduced periodogram method displays a very poor
performance for distinguishing similar processes with small samples and the ACF
method is not able to distinguish near-non stationary processes with large samples
from non stationary processes with short samples.

In order to better assess the methods, we have performed additional simulations
for other andmore dissimilar models. Results were much alike the ones here presented
and pointed to the same hierarchy of discrepancy statistics. We have also explored
other hierarchical and non hierarchical clustering procedures. Results were again
similar and provided the same recommendations for the discrepancy statistics choice.

4. Application

As an illustration of the possibilities of these techniques, we compared the industrial
time series of a set of developed countries. We used monthly data of seasonally
adjusted industrial production indices for a large set of European and other
industrialized economies. Available data are summarized on Table 2 (source data:
Camacho et al., 2006). For such large data set, it is unavoidable that sample periods
do not coincide. In order to use all available data, it is necessary to apply techniques
such as the ones we have described.

In our application, we started by computing the interpolated log normalized
periodograms for each of the k = 30 production series. The corresponding graphs

Table 2
Industrial production indices series (countries and data avaibility)

Country Code Sample n Country Code Sample n

Austria OE 62:01-02:12 492 Canada CN 62:01-03:01 493
Belgium BG 62:01-03:01 493 Norway NW 62:01-03:01 493
Germany BD 62:01-03:01 493 Japan JP 62:01-03:01 493
Greece GR 62:01-03:01 493 USA US 62:01-03:01 493
Finland FN 62:01-03:01 493 Cyprus CY 90:01-03:01 142
France FR 62:01-03:01 493 Czech Republic CZ 90:01-03:01 142
Italy IT 62:01-03:01 493 Estonia ET 95:01-03:01 97
Ireland IR 75:07-03:01 331 Hungary HN 90:01-03:01 142
Luxembourg LX 62:01-03:01 493 Latvia LA 90:01-03:01 142
Netherlands NL 62:01-03:01 493 Lithuania LI 96:01-03:01 85
Portugal PT 62:01-03:01 493 Poland PO 90:01-03:01 142
Spain ES 65:01-03:01 457 Slovak Republic SK 93:01-03:01 121
Denmark DK 74:01-03:01 349 Slovenia SL 90:01-03:01 142
Sweden SD 62:01-03:01 493 Romania RO 90:01-03:01 142
United Kingdom UK 62:01-03:01 493 Turkey TK 90:01-03:01 142
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536 Caiado et al.

Figure 1. Log normalized interpolated periodograms of 30 European and some developed
countries.

are shown in Fig. 1. We then computed all the corresponding k�k− 1�/2 pairwise
distances, by using the ILNP discrepancy statistic given in (7). In order to be able to
interpret resulting data, we used two well-known techniques: the multidimensional
scaling and the hierarchical clustering tree, or dendrogram (see Secs. 12.6 and 12.3,
respectively, of Johnson and Wichern, 2007, for example).

Firstly, we used the multidimensional scaling technique, also often referred
to as principal coordinates analysis, which creates a configuration of k points in
a lower-dimensional map (usually two or three). Let D be the observed k× k
dissimilarity matrix, applying the multidimensional scaling to the matrix D gives a
k× s configuration matrix T , where the rows of T are the coordinates values of k
points in s-dimensional representation of the observed dissimilarities for some s < k.
The determination of the dimensionality of the spatial configuration is given by the
v eigenvectors of T × T ′ corresponding to the largest v eigenvalues.

Table 3 shows the eigenvalues resulting from distances between countries and
the eigenvectors associated with the first two eigenvalues. The first eigenvalue is
equal to 93.76% of the sum of all the eigenvalues. The sum of the first two
eigenvalues is equal to 94.66% of the sum of all the eigenvalues. Figure 2 shows a
scaling map of the derived first two coordinate values. The first dimension seems
to be almost directly related to the countries’ development. The second dimension
is not easy to interpret. However, looking at the 2-dimensional plot and comparing
the relative positions with the periodograms plots, we can make sense of some of
the results. Looking at the opposite positions of Cyprus and Ireland, for instance,
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Comparison of Times Series 537

Table 3
Eigenvalues and first two eigenvectors for interpolated LNP distances between

30 European and some developed countries

Eigenvectors Eigenvectors

Eigenvalues Country 1 2 Country 1 2

2925�1 4.6 Austria −8�45 −0�40 Canada −7�20 0�02
28�3 3.2 Belgium −2�90 0�78 Norway −11�39 1�53
21�0 2.3 Germany −4�09 0�21 Japan −11�43 0�44
19�5 2.1 Greece −10�77 −1�86 USA −7�19 0�20
18�2 1.8 Finland −9�18 −0�12 Cyprus 21�10 1�70
13�6 1.7 France −4�87 0�91 Czech Republic 17�22 −0�55
12�7 1.4 Italy −6�70 0�11 Estonia 10�50 0�31
11�0 1.2 Ireland −7�80 −3�25 Hungary 2�34 −0�05
9�8 1.0 Luxembourg −3�48 0�21 Latvia 3�63 −1�40
9�2 0.9 Netherlands −6�58 0�15 Lithuania 16�91 −0�45
7�3 0.7 Portugal −10�51 1�41 Poland 3�28 −0�18
7�0 0.3 Spain −6�62 −0�11 Slovak Republic 11�86 −0�49
6�1 0.2 Denmark −1�18 0�23 Slovenia 16�77 −0�43
5�0 0.1 Sweden −5�13 −0�17 Romania 12�36 −0�33
4�6 0.0 United Kingdom −2�69 1�36 Turkey 12�19 0�19

Figure 2. Multidimensional scaling for interpolated LNP distances between 30 European
and some developed countries.
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538 Caiado et al.

we realize that this distance comes from very different spectral peaks at different
frequencies—the interpolated LNP of Ireland series reaches the minimum value
at frequencies �29 = 2��29�/85 = 2�14367 and �38 = 2��38�/85 = 2�80895, whereas
the interpolated LNP of Cyprus series is dominated by large peaks at the same
frequencies. It can also be seen that the old European Union (EU) countries (except
Ireland) and the U.S., Canada, Japan, and Norway are close to each other and far
from the new EU countries and from the then candidate countries (Estonia, Turkey,
Slovak Republic, Romania, Lithuania, Slovenia, Czech Republic, and Latvia). More
developed Poland and Hungary are in an intermediate position.

Secondly, we consider the method of clustering the series by a hierarchical
clustering tree, or dendrogram. This graphical tool shows how the clusters are
combined at each stage of the procedure. We begin with each time series being
considered as a separate cluster (k clusters). In the second stage, the closest two
groups are linked to form k− 1 clusters. This process continues until the last stage
in which all the time series are in the same cluster.

Figure 3 shows the dendrogram for the industrial production indices series by
complete linkage method, from which the clusters of countries can be identified.
It can be seen at the tree that the interpolated log normalized periodogram-based
method can group the series into three very reasonable clusters: Cluster 1 =
�CN�US�NL� IT� ES� FR� SD�BG�BD�LX�UK�DK�OE� FN�GR� IR� PT� JP�NW�;
Cluster 2 = �CY�CZ� SL� LI�; and Cluster 3 = �ET� SK�RO� TK�HN� PO�LA�.
Cluster 1 includes all the old EU countries and the U.S., Canada, Japan, and
Norway. Cluster 2 grouped four new EU countries (Cyprus, Czech Republic,
Slovenia, and Lithuania). Cluster 3 includes the other new EU countries (Estonia,

Figure 3. Complete linkage dendrogram for interpolated LNP distances between
30 European and some developed countries.
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Comparison of Times Series 539

Slovak Republic, Hungary, Poland, and Latvia) and the then candidate countries
(Romania and Turkey).

These results seem to be very reasonable. Not surprisingly, they group together
the more developed countries. They essentially confirm the conclusions of Camacho
et al. (2006), adding some interesting information.

These authors also used hierarchical clustering and multidimensional scaling
techniques to identify cyclical linkages among countries. From cluster analysis,
they found four clusters. The first includes most of the old EU countries, the
new EU countries Poland, Slovenia, and Hungary, and the industrialized country
Japan; the second includes the industrialized countries U.S., Canada, United
Kingdom, and Finland; the third includes the other new EU countries (Latvia,
Estonia, Czech Republic, Lithuania, and Slovak Republic), the candidate countries
(Romania and Turkey), and the industrialized country Norway; and the fourth
includes the old European Union countries Portugal, Greece, and Cyprus. From
the multidimensional scaling map, they found that most old EU member countries
are close to each other and far from the new EU member countries (except Cyprus
and Slovenia); and that the very industrialized countries U.S., Canada, and United
Kingdom, and new EU member countries Hungary and Finland are close to each
other in a distinct location.

By using older information, our analysis is able to distinguish better the old
from the new EU countries. It is also able to show U.S., Canada, and Japan close
to the EU industrialized countries. Camacho et al. (2006) have only used data from
1992 onwards, while we could use data from 1962 onwards. We thus confirmed some
of previous results, but our method allows complementing them with more extensive
data.

5. Concluding Remarks

In this article, we presented and discussed two spectral-discrepancy statistics for
comparison, classification, and clustering analysis of time series with unequal length.
We proposed a novel third statistic based on the interpolated periodogram for
the same purposes. We then evaluated this latter statistic against the others. For
reference, we also used an autocorrelation-based discrepancy statistic.

A simulation study indicated that the proposed method, the interpolated
log normalized periodogram approach, performs very well for a wide type of
comparisons: (i) different stationary processes with similar sample properties;
(ii) non stationary versus near nonstationary processes; and (iii) short-memory
versus long-memory processes; and (iv) deterministic trend versus stochastic trend
processes. Moreover, in the comparison of time series of very different sample
sizes, the proposed method is preferred to the autocorrelation, the zero-padding
periodogram, and the reduced periodogram-based methods. One application to
industrial production series also demonstrates the merits of the method.
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