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SUMMARY

The Bayesian estimation of a dynamic factor model where the factors follow a multivariate autoregressive
model is presented. We derive the posterior distributions for the parameters and the factors and use Monte
Carlo methods to compute them. The model is applied to study the association between air pollution
and mortality in the city of São Paulo, Brazil. Statistical analysis was performed through a Bayesian
analysis of a dynamic factor model. The series considered were minimal temperature, relative humidity, air
pollutant of PM10 and CO, mortality circulatory disease and mortality respiratory disease. We found a strong
association between air pollutant (PM10), Humidity and mortality respiratory disease for the city of São Paulo.
Copyright © 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A main problem in building a model for a vector of time series is that the number of parameters
grows with the square of the dimension of the vector. Therefore models for dimension reduction are
needed to model a large number of time series. A useful tool for dimension reduction in time series are
dynamic factor models (Geweke and Singleton, 1981; Peña and Box, 1987; Stock and Watson, 1988;
Molenaar et al., 1992; Forni et al., 2000; Peña and Poncela, 2004, 2006), among others. Dimension
reduction can be improved by incorporating useful prior information and thus the Bayesian analysis
of dynamic factor models seems a promising line of research. The standard factor model has a very
appropriate structure for MCMC methods, and this has been illustrated by Lee and Shi (2000), who
derived a joint estimation for the factor scores and structural parameters, and by Lopes and West
(2004), who used reversible jump MCMC methods to estimate the number of factors of made model
assessment. From the dynamic point of view (West et al., 1999; Aguilar and West, 2000) are important
references, and recently Lopes and Carvalho (2007) have proposed a spatial dynamic factor models. In
this paper, we extend some of these results by developing a full Bayesian approach in estimating jointly
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the parameter vector θ and the factor scores in the dynamic factor model when the factors follow a
VAR(p) model.

We apply the dynamic factor model to investigate the relationship between time series of
mortality (circulatory and respiratory disease) and time series of air pollutants (PM10, CO). We
consider for the analysis minimal temperature, relative humidity, PM10, CO, mortality respiratory
disease and mortality circulatory disease in the city of São Paulo, Brazil, from 1994 to 1997.
The relationship between air pollutant levels and mortality has been previously studied in the
city of Madrid, Spain, during the period 1986–1992 by Odriozot et al. (1998). They considered
multivariate integrated moving-average (ARIMA) models to adjust season, temperature, relative
humidity and influenza. Pope and Dockery (1992) studied the association between daily changes
in respiratory health and respirable particulate pollution (PM10) in Utah Valley during the winter
of 1990–1991. During the study period, 24-h PM10 concentrations ranged from 7 to 251 �g/m3.
Participants included symptomatic and asymptomatic samples of fifth- and sixth-grade students.
Large associations between the incidence of respiratory symptoms, especially cough and PM10
pollution were also observed for both samples. Immediate and delayed PM10 effects were observed.
Respiratory symptoms were more closely associated with 5-day moving-average PM10 levels than
with concurrent-day levels. These associations were also observed at PM10 levels below the 24-h
standard of 150 �g/m3. This study indicates that both symptomatic and asymptomatic children may
suffer acute health effects of respirable particulate pollution, with symptomatic children suffering the
most.

In this paper, we have two main contributions. First, we develop a full Bayesian approach in estimating
jointly the parameter vector θ and the factor scores in the dynamic factor model when the factors follow a
VAR(p) model. Second, we show how this model can be applied to investigate the relationship between
air pollution and mortality and found a strong relationship between these variables in the city of São
Paulo, in Brazil.

The rest of the paper is organized as follows. In Section 2, we present the dynamic factor model
and in Section 3 we developed its Bayesian analysis. Section 4 analyses the pollution and mortality in
São Paulo, Brazil , considering univariate and multivariate autoregressive model and a dynamic factor
model. Finally, Section 5 presents some conclusions. The derivations for the posteriors distributions
required for the MCMC algorithm are given in the Appendix A.

2. DYNAMIC FACTOR MODELS

We consider in this paper a factor model given by the following two equations:

yt = β + Cft + et,

ft =
p∑

i=1

ρift−i + wt (1)

where yt is a q × 1 vector of observed time series, β is the q × 1 mean vector and C is a q × k matrix
of unknown constants, the factor loading matrix. The specific components, et , are independent normal
q-vectors with et ∼ N(0, �), where � is a diagonal matrix, � = diag(ψ1, ψ2, . . . , ψq). The factors ft are
represented by a k × 1 vector which follows a multivariate autoregressive model, where the AR matrices,
ρi are diagonal matrices with ρi = diag(ρi1, . . . , ρik), i = 1, . . . , p and {ρ1j, ρ2j, . . . , ρpj} satisfy the
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584 T. SÁFADI AND D. PEÑA

stationary condition, j = 1, . . . , k and wt are independent normal k-vectors with wt ∼ N(0, Ik), where
Ik is the identity matrix, and et and ws are independent for all t and s.

From this model we have that ft ∼ N(0, U) and U =∑p
i=1 ρ′

iUρi + Ik, for all t and yt ∼ N(β, �),
where Σ satisfies Σ = CUC′ + �.

In practical problems, specially with large values of q, the number of factors k will often be small
relative to q, so that much of the variance structure is explained by the common factors. As is well
known, the k-factor model must be further constrained to define a unique model free from identification
problems. A solution adopted here is to constrain the matrix C so that it is a block lower triangular
matrix, assumed to be of full rank. That is,

C =



1 0 0 . . . 0

c21 1 0 . . . 0

c31 c32 1 . . . 0

: : : . . . :

ck1 ck2 ck3 . . . 1

: : : . . . :
cq1 cq2 cq3 . . . cqk



This form is used (e.g. Geweke and Zhou, 1996; Aguilar and West, 2000; Lee and Shi, 2000), and
provides both identification and useful interpretation of the factor model. From a Bayesian point of view
this is equivalent to assigning fixed values to these parameters with probability one, and in the analysis
they are not estimated.

The number of factor can be selected by analysing the eigenvalues and eigenvectors of the
autocovariance matrices, as shown by Peña and Box (1987). Also, the number of factors can be obtained
by a model selection criteria which approximates the posterior probability of the models such as BIC. If
the number of factors is supposed unknown, it could be treated as a parameter. An alternative that will
be explored elsewhere is to fully account for the uncertainty in the number of common factors by using
for instance reversible jump MCMC, as suggested by Lopes and West (2004). However, our objective
here is to develop the joint estimation of the parameter vector and the factor scores in this model and
this is the objective of the next section.

3. BAYESIAN ESTIMATION OF THE DYNAMIC FACTOR MODEL

As (Lee and Shi, 2000), we developed a procedure based on data augmentation. The essential idea is to
determine posterior distributions for all unknown parameters conditional on the latent factor and then
the conditional distribution of the latent factor given the observable and the other parameters. That is, the
observable data are ‘augmented’ by samples from the conditional distribution for the factor given the data
and the parameters of the model. Specifically, the joint posterior distribution for the unknown parameters
and the unobserved factors can be sampled by using a Markov Chain Monte Carlo procedure on the full
set of conditional distributions. So, the conditional distribution for the factors F = (fp+1, . . . , fn) and
the parameters θ = (β, C, �, ρ) are θ|F, Y and F |θ, Y , where Y = (yp+1, . . . , yn), conditioning on the
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p first observations can be approximated by

L(Y, F |β, C, �, ρ, Y1, . . . , Yp, f1, . . . , fp)

∝
n∏

t=p+1

|�|−1/2exp

{
−1

2
(yt − β − Cft)

′�−1(yt − β − Cft)

}

× exp

{
−1

2
(ft −

p∑
i=1

ρift−i)
′(ft −

p∑
i=1

ρift−i)

}
(2)

We assume independent prior distributions given as P(C)P(ρ)P(β) ∝ constant, γi = ψ−1
i ∼

�(α0, β0), so that the distribution of ψi is an Inverse Gamma, for each components of � =
diag{ψ1, ψ2, . . . , ψq}.

To implement the Gibbs sampler, we need to derive the full conditional posterior distribution of
each parameter given all the others parameters. We present here the full conditional distribution for
θ = (β, C, �, ρ) and F. The derivations for the posteriors are in the Appendix A.

(a) Posterior for β|C, F, �, ρ, Y

β|C, F, �, ρ, Y ∼ N

 1

n − p

 n∑
t=p+1

(yt − Cft),
�

n − p


(b) Posterior for C|Y, F, ρ, �, β

C∗
i |Y, F, ρ, �, β ∼ N



 n∑

t=p+1

ftf
′
t

−1 n∑
t=p+1

ft(yit − βi)


 ,

γ−1
i

 n∑
t=p+1

ftf
′
t

−1



where C∗′
i is the ith row of C, i = 1, . . . , q.

(c) Posterior for �|C, ρ, β, F, Y

We have, for � = diag(γ−1
1 , . . . , γ−1

q )

γi|C, ρ, β, F, Y ∼ �(αi, βi)

where for each i = 1, . . . , q, αi = (n − p + 2α0)/2 and βi = [2β0 +∑n
t=p+1(yit − βi −

C∗′
i ft)′(yit − βi − C∗′

i ft)]/2.
(d) Posterior for ρ|�, β, C, F, Y

Let Bt = [diag(ft−1), diag(ft−2), . . . , diag(ft−p)] a (k × kp) matrix and ρv =
(ρ11, . . . , ρ1p, ρ21, . . . , ρkp)′ a (kp × 1) vector. Note that

∑p
i=1 ρift−i = Btρv, then

ρv|�, β, C, F, Y ∼ N



 n∑

t=p+1

B′
tBt

−1 n∑
t=p+1

B′
tft


 ,

 n∑
t=p+1

B′
tBt

−1
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This distribution is the multivariate normal truncated so that (ρ1i, ρ2i, . . . , ρpi) satisfy the
stationary condition for i = 1, . . . , k. This distribution complete the Gibbs sampler for θ =
(β, C, �, ρ). The full posterior for the factors is given by:

(e) Posterior for F |θ, Y
We have, for F = {ft, t = 1, . . . , n}

ft|β, �, C, Y ∼ N

((
U−1 + C′�−1C

)−1 (
C′�−1(yt − β)

)
,
(
U−1 + C′�−1C

)−1
)

t = 1, . . . , p, and for each t = p + 1, . . . , n,

ft|ft−1, . . . , ft−p, ρ, β, �, C, Y ∼ N

(
H−1

(
C′�−1(yt − β) +

p∑
i=1

ρift−i

)
, H−1

)

where H = (C′�−1C + Ik).

From results given in (a–d), the derivation of the posterior distribution P(θ|F, Y ) is completed.
This distribution will be extended to handle the general situation with fixed known elements in C
as follows: Let δij = 0 if cij is a fixed parameter of C and δij = 1 if cij is an unknown parameter for,
i = 1, . . . q, j = 1, . . . , k and ri = δi1 + δi2 + · · · + δik. Moreover, let D′

i be the row vector that contains
the unknown parameters in Ci and Fi be the ri × n submatrix of F (k × n) such that for j = 1, . . . , k, all
the rows corresponding to δij = 0, j = 1, . . . , k are deleted, and ỹit = yit − βi −∑k

j=1 cijfjt(1 − δij).
Then, the components of the posterior for γi and C′

i will be changed by D′
i, Fi and ỹit . In this

case, there are a total of (qk − k(k + 1)/2 + pk + q) free unknown structural parameters in this
model.

4. POLLUTION AND MORTALITY IN SÃO PAULO, BRAZIL

São Paulo has a state air pollution controlling agency (CETESB) with 11 monitoring stations that
provide daily records of sulfur dioxide (SO2) (24-h mean), carbon monoxide (CO) (greatest 8-h
moving average), inhalable particulate matter (PM) less than 10 �m in diameter, PM10, (24-h mean)
and ozone (O3)(24-h peak) concentrations. The measurements are based on different time intervals
mostly because the health standards required by Brazilian legislation were defined using those time
windows.

However, not all stations provide measurements of all the pollutants. Because the trend and the
variability of the pollutant concentrations are similar for all stations, that is, when pollution levels
increase in the central area, there is a proportional increase in the suburbs, the values records obtained
were averaged and considered indicative of the citywide status. Particles in the air come form a range of
sources and range widely in size and chemical composition from place to place and time-to-time. Natural
sources include pollen and sea spray; industrial sources include combustion processes, quarrying and
aggregate handling and transport sources include diesel vehicle exhaust emission and dust from tyre
and brake wear. Other sources such as smoking produces by far the greatest concentration of particles
ingested in those who smoke.
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PM10 is defined as PM with a mass median aerodynamic diameter less than 10 �m. In
other words, these are the (smaller) particles that make it through some type of pre-separator
(removes large particle) and are collected on a sampling medium filter. PM10 is therefore PM
which is very small, remains suspended in the air for periods and is easily inhaled into the
deep lung. Among the regulated pollutants, PM10 is the only chemical non-specific agent. All
these characteristics of PM10 (and more) have made identifying health effects associated with
environmental levels of PM10 a significant issue. Increase death (mortality) and disease (morbidity)
have been linked to periods of time of high outdoor PM10 concentrations. It is difficult to estimate
the relative contribution to the particles in the air for any one place, but in 1995, transport was
the biggest source of primary particles, accounting for some 25%, power generation emitting
15%, mining and quarrying emitting 12% and domestic and commercial heating 11%. The effects
are likely to vary depending on what the particles in the air actually are, and because it is
difficult to do studies on large populations, which can distinguish between different mixtures,
the findings tend to be rather generalized. It is now accepted widely that populations living
in areas with higher airborne particle concentrations show a range of differences in health to
otherwise similar people. The effects include higher death rates, respiratory and circulatory effects
and cancer.

Carbon monoxide, CO, is a colourless, odourless gas produced from the incomplete burning of
virtually any combustible product. In European urban areas, CO is produced almost entirely (90%)
from road traffic emissions. It survives in the atmosphere for a period of approximately 1 month but
is eventually oxidized to carbon dioxide (CO2). It may accumulate indoors as a result of tobacco
smoking, poorly ventilated appliances and attached garages. Carbon monoxide enters the blood from
the lungs and combines with haemoglobin, blocking the blood’s ability to carry oxygen to body
cells. Symptoms of carbon monoxide exposure may mimic influenza and include fatigue, headache,
dizziness, nausea and vomiting, mental confusion and rapid heart rate. Depending on the level of
exposure, carbon monoxide can be immediately fatal. This can lead to a significant reduction in the
supply of oxygen to the heart, particularly in people suffering from heart disease. Long-term, low-
level exposures to carbon monoxide by pregnant woman have the potential to injure the developing
foetus.

Air pollution and child mortality in São Paulo, from 1994 to 1996 was studied by Conceição
et al. (2001). Statistical analysis was performed through a generalized additive model considering a
Poisson response distribution and a log link. Explanatory variables were time, temperature, humidity and
pollutant concentrations. Safadi and Morettin (2001) considered the open loop threshold autoregressive
models to study the daily number of deaths caused by heart problems and the minimal temperature in
São Paulo, from 1994 to 1997. They noted that for temperatures between 12.9 and 15.23◦C there was
an increase of 300 deaths.

In this work, we consider weekly data for minimal temperature (Temp), relative humidity (Humid),
PM10, CO, mortality respiratory disease (Resp) and mortality circulatory disease (Card) in the city
of São Paulo during the period from January, 1994 to December, 1997, with a total of 208 points.
Unfortunately, O3 and SO2 were not included in the present analysis because there was so many missing
points.

Figure 1 displays time series graphics of the weekly Temp, Humid, PM10, CO, Resp and Card
and their autocorrelation function, ACF, are in Figure 2. In some of them it is easy to see a
period of 52 weeks (a year), but in others this periodicity is not clear. However, if we build the
periodogram for each series, see Figure 3, the seasonal period of 52 weeks is clearly seen in all
of them.

Copyright © 2007 John Wiley & Sons, Ltd. Environmetrics 2008; 19: 582–601
DOI: 10.1002/env



588 T. SÁFADI AND D. PEÑA

Figure 1. Weekly data for Temp, Humid, PM10, CO, Resp and Card (1994–1997)

As the seasonal component seems to be stable we made seasonal adjustment by fitting a term of
the form µ +∑26

j=1(Aj cos(2πjt/52) + Bj sin(2πjt/52)), t = 1, . . . , 208 and computing the seasonally
adjusted series by

zt = yt −
26∑

j=1

(
Âj cos(2πjt/52) + B̂j sin(2πjt/52)

)

Table 1 presents the significant parameters µ, Aj and Bj , j = 1, . . . , 28, for each of the series. The
seasonally adjusted series are showed in Figure 4, and their ACF and PACF plots are given in Figures 5
and 6. In order to decide if these series are stationary a Dickey-Fuller test was applied to these seasonally
adjusted series. The results are given in Table 2, where we see that the hypothesis of a unit root is rejected
by this test for all the series.
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Figure 2. The autocorrelation function for Temp, Humid, PM10, CO, Resp and Card

Univariate autoregressive models were fitted to the seasonally adjusted series, and Table 3 shows the
coefficients for the AR(2) models selected for each series. We also fitted multivariate autoregressive
models and Table 4 presents the BIC values for VAR (vector autoregressive) models of orders p =
1, 2, 3, 4. The minimum value of the BIC criterion corresponds to a VAR(1) model, which is the one
selected, and includes 63 parameters: 21 for the residual covariance matrix, 6 for the mean and 36 for
the AR(1) parameter matrix.

The Bayesian analysis of the dynamic factor model is started considering a 1-factor model, where
the factor follows a AR(2) model and the loading matrix is complete, that is, without constrain.
The priors are as before and for the covariance matrix we suppose α0 = 4 and β0 = 3. For the analysis,
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Figure 3. Periodogram for Temp, Humid, PM10, CO, Resp and Card records

Table 1. Coefficients µ, A and B and standard error in parentheses

Temp Humid PM10 CO Resp Card

µ 15.216 80.874 56.186 4.751 20.843 56.713
(0.105) (0.351) (1.522) (0.091) (0.27) (0.323)

cos(2πt/52) 3.477 1.273 −6.862 −1.265 −5.237 −7.90.5
(0.149) (0.500) (2.166) (0.129) (0.379) (0.457)

sin(2πt/52) 1.668 2.160 −0.551 −0.812 −2.299
(0.149) (0.497) (0.128) (0.377) (0.457)

cos(4πt/52) −0.458 2.218 3.511
(0.149) (0.377) (0.456)

sin(4πt/52) −1.349 4.511
( 0.497) (2.154)

cos(6πt/52) −1.139
(0.377)

cos(8πt/52) −8.060
(2.152)

cos(18πt/52) 5.047
(2.153)

sin(20πt/52) 1.361 −4.64
(0.487) (2.151)

sin(30πt/52) −1.029
(0.498)

Copyright © 2007 John Wiley & Sons, Ltd. Environmetrics 2008; 19: 582–601
DOI: 10.1002/env



BAYESIAN ANALYSIS OF DYNAMIC FACTOR MODELS 591

Figure 4. Seasonally adjusted series (Temp, Humid, PM10, CO, Resp, Card)

we considered two parallel chains and verify the convergence by the Gelman-Rubin criterion (Gelman
and Rubin (1992)) with 15 000 iterations each, skip the first 50% and for the remaining observations,
took one in each 15. The posterior mean of the factor loading matrix C and its normalization form, C∗,
are given in Table 5.

This matrix indicates that the load associated with the pollutant PM10 is much larger than the others
indicating that this first factor is mostly associated to this variable and also, but with less weight to the
variable Resp. The correlation between the factor and the variable PM10 was very high and the plot of
the two series indicates a strong relationship. Thus, we conclude that the first factor is mostly dominated
by the variable PM10 and mortality respiratory disease, variable Resp. To simplify the computations as
this factor is well identified we decide to continue the analysis eliminating the effect of this factor. We
do this by deleting the variable PM10 from the analysis and by eliminating from the series Resp the
effect due to PM10. Thus, we fit the regression Resp = 0.0093 − 0.0525PM10 + Res, and in the rest of
this analysis we consider the five series Temp, Humid, CO, Card and Res, where Res is the residual of
the regression between Resp and PM10.
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Figure 5. Autocorrelation and partial autocorrelation function for the seasonally adjusted series (Temp, Humid, PM10)

For this five series we fitted factor models with k factors following an autoregressive AR(p) model,
for k = 1, 2 and p = 1, 2. Table 6 shows the BIC values for each case and we conclude that a 2-factor
model following a AR(1) model seems appropriate for the data. Table 7 shows the posterior mean for
the factor-loading matrix, C, for this model. The first factor has positive association with Temp and
Humid and negative with the three mortality variables. Thus, it represent an indicator of health clime
conditions and takes into account that mostly low temperature, and also although in less degree low
humidity, are associated to higher mortality, especially for circulatory disease in the city of São Paulo.
The second factor separates the two types of mortality considered and associates high humidity to
smaller mortality for respiratory disease. Note that the effect of the variable CO is small on the two
factors which are associated mostly with the weather and mortality variables.

Copyright © 2007 John Wiley & Sons, Ltd. Environmetrics 2008; 19: 582–601
DOI: 10.1002/env



BAYESIAN ANALYSIS OF DYNAMIC FACTOR MODELS 593

Figure 6. Autocorrelation and partial autocorrelation function for the seasonally adjusted series (CO, Resp, Card)

Table 2. Dickey–Fuller test for the seasonally adjusted series

Series ADF Critical value

Temp −5.959 −3.464 (1%)
Humid −6.161 −2.876 (5%)
PM10 −4.548
CO −4.548
Resp −3.256
Card −5.310
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Table 3. AR(2) coefficients for the seasonally adjusted series, standard error in parentheses

Series AR(1) AR(2)

Temp 0.137 0.211
(0.068) (0.068)

Humid 0.025 0.152
(0.069) (0.069)

PM10 0.3919 0.1168
(0.087) (0.090)

CO 0.255 0.145
(0.069) (0.069)

Resp 0.505 0.249
(0.068) (0.067)

Card 0.270 0.191
(0.069) (0.069)

Table 4. BIC values for VAR(p) model

p 1 2 3 4

BIC 15.079 15.673 16.260 16.963

Table 5. Posterior mean for the parameters of the factor loading matrix

C C∗

Temperature 0.0788 0.0022
Humid 0.8090 0.0228
PM10 −5.3579 −0.1510
CO −0.2352 −0.0066
Resp −2.4173 −0.0681
Card −0.4575 −0.0129

Table 6. BIC values for the k-factor model following a AR(p) model

k 1 1 2 2
p 1 2 1 2
BIC 9.024 9.013 7.127 7.343

Table 7. Posterior mean of the factor loading matrix, C, for a 2-factor model

C

Temperature 1 0
Humid 0.3065 1
CO −0.1965 −0.1473
Card −3.3776 0.8670
Res −1.3887 −2.0888
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Table 8. Posterior mean of the covariance matrix, �, autoregressive parameters, standard deviation and Gelman
and Rubin factor, R

Parameter Mean Std. R

ψ11 1.8423 0.3798 1.018
ψ22 23.8141 2.4089 1.004
ψ33 1.5107 0.1608 1.002
ψ44 6.2570 5.1457 1.014
ψ55 2.2884 2.1953 1.052
ρ1 0.3995 0.0709 1.018
ρ2 0.5650 0.0796 1.002

Table 8 gives the posterior mean for the covariance matrix, �, autoregressive coefficients, ρij , standard
deviation and Gelman and Rubin factor. We note a bigger variance for Humidity and a correlation
significant of a week for the factors. Figures 7 and 8 show the posterior histogram for the autoregressive
parameters, ρ, and for the matrix �.

Figure 7. Marginal posteriors of the autoregressive parameters- ρ
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Figure 8. Marginal posteriors of the Gamma matrix

We conclude that the dynamic factor model has been able to fit the time series of weather variables,
air pollutants and mortality (respiratory and circulatory) with much less parameters than the VAR(1)
model and provide a more clear interpretation of the relationships among the variables.

5. CONCLUSIONS

We have developed a full Bayesian analysis for the dynamic factor model when the factors follow,
a AR(p) model. Although in this paper, we have considered that all the factors follow the same
AR(p) model the extension to different orders is straightforward. The Gibbs Sampler algorithm was
implemented to estimate the parameters. The methodology was applied to analysed the time series of
Weather, Pollution and Mortality in the City of São Paulo, Brasil and has allowed to provide a simpler
and more parsimonious representation of the data.
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APPENDIX A: DERIVATION OF THE POSTERIORS

The conditional posterior distribution for θ = (β, C, �, ρ) and F is given by

P(θ, F |Z) α L(Y, F |β, C, �, ρ, Y1, . . . , Yp, f1, . . . , fp)P(θ, F )

where, the likelihood L(Y, F |β, C, �, ρ, Y1, . . . , Yp, f1, . . . , fp) is given by Equation (2) and the prior
distributions given as: P(C)P(ρ)P(β) ∝ constant, γi = ψ−1

i ∼ �(α0, β0), so that the distribution of ψi

is an Inverse Gamma, for each components of � = diag{ψ1, ψ2, . . . , ψq}. This derivation is done in
two steps. First, we derive the complete posterior conditional for each parameter from θ = (β, C, �, ρ)
given all the others and F , then the conditional posterior distribution for F given θ = (β, C, �, ρ) is
derived.

(I) Posterior for θ = (β, C, �, ρ).
(a) Posterior for mean vector β|�, C, ρ, F, Y

P(β|�, C, ρ, F, Y ) ∝
n∏

t=p+1

P(yt|ft, ρ, C, �, β)P(β)
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598 T. SÁFADI AND D. PEÑA

∝ |�|−(n−p)/2 exp

−1

2

n∑
t=p+1

(yt − β − Cft)
′�−1(yt − β − Cft)


∝ exp

−1

2

−β′�−1
n∑

t=p+1

(yt − Cft) −
n∑

t=p+1

(yt − Cft)
′�−1β + β′

(
(n − p)�−1

)
β


∝ exp

−1

2

β −
(

(n − p)�−1
)−1

�−1
n∑

t=p+1

(yt − Cft)

′

×
(

(n − p)�−1
)β −

(
(n − p)�−1

)−1

�−1
n∑

t=p+1

(yt − Cft)


That is, the β posterior distribution is a Multivariate Normal given by:

β|C, F, ρ, �, Y ∼ N

 1

n − p

 n∑
t=p+1

(yt − Cft),
�

n − p


(b) Posterior for the factor loading matrix C|Y, F, ρ, �, β

If C∗′
i is the ith row of C, we have

P(C|Y, F, ρ, �, β) ∝
n∏

t=p+1

|�|−1/2 exp

{
−1

2
(yt − β − Cft)

′�−1(yt − β − Cft)

}

∝ |�|−(n−p)/2 exp

−1

2

n∑
t=p+1

(yt − β − Cft)
′�−1(yt − β − Cft)


∝

q∏
i=1

γ
(n−p)/2
i exp

−1

2
γi

 n∑
t=p+1

(
yit − βi − C∗′

i ft

)′ (
yit − βi − C∗′

i ft

)
∝

q∏
i=1

γ
(n−p)/2
i exp

−1

2
γi

−
n∑

t=p+1

(yit − βi)f
′
t C

∗
i − C∗′

i

n∑
t=p+1

ft(yit − βi)
′ + C∗′

i

n∑
t=p+1

ftf
′
t C

∗
i


∝

q∏
i=1

γ
n−p/2
i exp

−1

2
γi

C∗
i −
 n∑

t=p+1

ftf
′
t

−1(
n∑

t=1

ft(yit − βi)

)
′

×
 n∑

t=p+1

ftf
′
t


C∗

i −
 n∑

t=p+1

ftf
′
t

−1 n∑
t=p+1

ft (yit − βi)
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Then, for each i = 1, . . . , q,

C∗
i |Y, F, ρ, �, β ∼ N



 n∑

t=p+1

ftf
′
t

−1 n∑
t=p+1

ft(yit − βi)

 ,

γ−1
i

 n∑
t=p+1

ftf
′
t

−1



(c) Posterior for the covariance matrix �|C, ρ, β, Y, F

P(�|C, ρ, β, Y, F ) ∝
n∏

t=p+1

P(yt|ft, C, �, β)P(�)

∝ |�|−(n−p)/2 exp

−1

2

n∑
t=p+1

(yt − β − Cft)
′�−1 (yt − β − Cft)

P(�)

∝
q∏

i=1

γ
n−p

2
i exp

−1

2
γi

n∑
t=p+1

[(
yit − βi − C∗′

i ft

)′ (
yit − βi − C∗′

i ft

)}
γ

α0−1
i exp{−β0γi}

∝
q∏

i=1

γ
n−p+2α0

2 −1
i exp

−1

2
γi

2β0 +
n∑

t=p+1

[
(yit − βi − C∗′

i ft)
′(yit − βi − C∗′

i ft)
]

So, we have for each i = 1, . . . , q, that γi is given by:

γi|C, ρ, β, F, Y ∼ �

(
(n − p + 2α0)

2
,

[
2β0 +∑n

t=p+1(yit − βi − C∗′
i ft)′(yit − βi − C∗′

i ft)
]

2

)
.

(d) Posterior for the elements of ρ|β, �, C, F, Y

Let Bt = [diag(ft−1), diag(ft−2), . . . , diag(ft−p)] a (k × kp) matrix where

diag(ft−i) =


f1t−i 0 0 . . . 0

0 f2t−i 0 . . . 0

: : : . . . :

0 0 0 . . . fkt−i


and ρv = (ρ11, . . . , ρ1p, ρ21, . . . , ρkp)′ a (kp × 1) vector. Note that

∑p
i=1 ρift−i = Bρv.

P(ρ|β, �, C, F, Y ) ∝
n∏

t=p+1

P(ft|ρ, f1)P(ρ)

∝ exp

−1

2

n∑
t=p+1

(
ft −

p∑
i=1

ρift−i

)′(
ft −

p∑
i=1

ρift−i

)
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Then,

P(ρv|β, �, C, F, Y ) ∝ exp

−1

2

n∑
t=p+1

[
f ′

t Btρv − ρ′
vB

′
tft + ρ′

vB
′
tBtρv

]
∝ exp

−1

2

ρv −
 n∑

t=p+1

B′
tBt

−1 n∑
t=p+1

B′
tft




′ n∑
t=p+1

B′B



×

ρv −
 n∑

t=p+1

B′
tBt

−1 n∑
t=p+1

B′
tft





That is,

ρv|�, C, F, Y ∼ N



 n∑

t=p+1

B′
tBt

−1 n∑
t=p+1

B′
tft


 ,

 n∑
t=p+1

B′
tBt

−1


(II) Given θ = (β, C, �, ρ), we derive the F |θ, Y
(e) Posterior for the factors F = {ft, t = p + 1, . . . , n}|θ, Y

We have, for ft, t = 1, . . . , p

ft|β, �, C, Y ∼ N(U−1 + C′�−1C)−1(C′�−1(yt − β)), (U−1 + C′�−1C)−1)

and for each t = p + 1, . . . , n,

P(F |C, β, ρ, �, Y ) ∝
n∏

t=p+1

P(yt|ft, β, �, C, ρ)
n∏

t=p+1

P(ft|ρ, ft−1, . . . , ft−p)

∝ |�|−(n−p)/2 exp

−1

2

n∑
t=p+1

(yt − β − Cft)
′�−1(yt − β − Cft)


× exp

−1

2

n∑
t=p+1

(
ft −

p∑
i=1

ρift−i

)′(
ft −

p∑
i=1

ρift−i

)
∝ exp

−1

2

n∑
t=p+1

[
− (yt − β)′�−1Cft − f ′

t C
′�−1(yt − β) + f ′

t C
′�−1Cft

+ f ′
t ft − f ′

t

p∑
i=1

ρift−i −
p∑

i=1

f ′
t−iρ

′
ift

]}
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∝ exp


n∑

t=p+1

[
f ′

t (C′�−1C + Ik)ft − f ′
t

(
C′�−1(yt − β) +

p∑
i=1

ρift−i

)

−
(

(yt − β)′�−1C +
p∑

i=1

f ′
t−iρ

′
i

)
ft

]
∝

n∏
t=p+1

exp

{
−1

2

[(
ft −

(
C′�−1C + Ik

)−1
(
C′�−1(yt − β)+

p∑
i=1

ρift−i

))]′
(C′�−1C+Ik)

×
[(

ft − (C′�−1C + Ik)−1

(
C′�−1(yt − β) +

p∑
i=1

ρift−i

))]}

Then, for each t = p + 1, . . . , n, we have

ft|ft−1, . . . , ft−p, ρ, β, �, C, Y ∝ N

(
H−1

(
C′�−1(yt − β) +

p∑
i=1

ρift−i

)
, H−1

)

where H = (C′�−1C + Ik).
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