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Abstract:
This article presents an unified approach of several procedures in time series.

First, we show that quadratic discrimination provides a unifying approach for
deriving model selection criteria in the ARMA framework. Second, we establish
a connection between model selection criteria and a goodness of fit test. Finally,
we show that the outlier detection problem can be seen as a particular case of
model selection. Therefore, the problems of model selection, discrimination,
goodness of fit tests and outliers can be treated under the same principles.
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1.1 Introduction

Model selection criteria is one of the most popular tools for selecting the model
that better fits the data among a set of candidates . Although these criteria
have been derived from very different points of view, it is usual to split them
into two different groups. The first group is formed by the consistent criteria,
which, under certain conditions and the assumption that the data come from a
model with a finite number of parameters, asymptotically select the true one.
Two consistent criteria are the Bayesian information criterion (BIC), derived
by Schwarz (1978), which approaches the posterior probabilities of the models,
and the Hannan-Quinn criterion (HQC), derived by Hannan and Quinn (1979),
which was designed to be a consistent criterion with the fastest convergence
rate to the true model. The second group is formed by the efficient criteria,
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which, under certain conditions and the assumption that the data come from a
model with an infinite number of parameters, asymptotically select the model
which produces the least mean square prediction error. Three efficient criteria
are the final prediction error criterion (FPE), derived by Akaike (1969), which
selects the model that minimizes the one step ahead square prediction error,
the Akaike information criterion (AIC), derived by Akaike (1973), which is an
estimator of the expected Kullback-Leibler divergence between the true and the
fitted model, and the corrected Akaike information criterion (AICc), derived by
Hurvich and Tsai (1989), which is a bias correction form of the AIC that appears
to work better in small samples.

All these criteria have the general form:

MSC = −2× (log maximized loglikelihood) + r × C(T, r),

where r is the number of estimated parameters of the model, T is the sample
size of the data, and C(T, r) = log(T ), for the BIC, C(T, r) = 2c log log(T ) with
c > 1, for the HQC, C(T, r) = T

r log(T+r
T−r ) for the FPE, C(T, r) = 2 for the

AIC, C(T, r) = 2T
T−r−1 for the AICc.

The discrimination problem appears when it is known that the data may
belong to one of several known populations and the objective is to classify the
data into one of these populations. When the data are Gaussian distributed,
the classic solution to this problem is to classify the data by using either the
standard or the Bayesian quadratic discrimination rule. The first purpose of
this paper is to see that both quadratic discrimination rules for ARMA time
series models provides a way of deriving model selection criteria such as the
AIC, AICc and BIC criteria, establishing a connection between discrimination
and model selection in linear Gaussian time series.

Goodness of fit tests are a useful tool for checking whether the data are
reasonable well fitted by a chosen model. These tests proceed by using a test
statistic, which is compared with some value of the statistic assuming the model
is correct and a given confidence level, which takes into account the potential
loss incurred if the model is rejected. Thus, it is reasonable to think that
model selection criteria and the goodness of fit tests are closely related. The
second purpose of this paper is to analyze the relationships between model
selection criteria and a goodness of fit test statistic for linear Gaussian time
series proposed by Peña and Rodŕıguez (2006).

The real data are often affected by the presence of outliers which may have
serious effects on statistical analysis in many different ways (see, Barnett and
Lewis, 1993). The most usual method to detect the presence of outliers is the
use of test statistics based on the Mahalanobis distances between the data and
some estimate of the center of the data distribution. The third intent of this
paper is to show that the detection of outliers in a linear Gaussian time series
can be seen as a kind of model selection problem and that model selection
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criteria provide some objective rules for outlier detection.
The rest of this paper is organized as follows. Section 2 briefly presents the

class of autoregressive moving average Gaussian time series models. Section 3
shows the connection between the quadratic discriminant rules in linear Gaus-
sian time series and model selection criteria from the maximum likelihood and
Bayesian approaches. Sections 4 shows the connection between the goodness
of fit test proposed by Peña and Rodŕıguez (2006) and model selection criteria.
Finally, section 5 shows that the problem of outlier detection in time series can
be seen as a model selection problem which provides new suitable solutions to
this problem.

1.2 ARMA Time Series Models

In what follows, assume that a time series given by x = (x1, ..., xT )′ has been
generated by the autoregressive moving average Gaussian process, ARMA(p, q),
if it follows the equation:

xt − φ1xt−1 − . . .− φpxt−p = at − θ1at−1 − . . .− θqat−q, (1.1)

where at is a sequence of independent Gaussian distributed random variables
with zero mean and variance σ2

p,q. The ARMA(p, q) model, denoted by Mp,q,
has the (p + q + 1) × 1 vector of parameters αp,q =

(
β′p,q, σ

2
p,q

)′ where βp,q =
(φ1, . . . , φp, θ1, . . . , θq)

′, is assumed to be causal, invertible, stationary and such
that the polynomials 1− φ1B − . . . − φpB

p and 1 − θ1B − . . . − θqB
q have no

common roots.
The likelihood function of x under the model Mp,q is given by:

p (x | Mp,q) = (2π)−
T
2 |Σp,q|−

1
2 exp

(
−1

2
x′Σ−1

p,qx

)
,

where Σp,q is the T × T covariance matrix of x under the model Mp,q, which
can be written as Σp,q = σ2

p,qQp,q, where Qp,q is a T × T matrix which only
depends on the parameters βp,q. The vector of innovations can be written as
ap,q = L−1

p,qx, where Qp,q = Lp,qL
′
p,q is the Cholesky decomposition of Qp,q.

The maximum likelihood estimators of the vector of parameters αp,q of the

model Mp,q are denoted by α̂p,q =
(
β̂′p,q, σ̂

2
p,q

)′
and are obtained after maximiz-

ing the log-likelihood of x under the model Mp,q, given by:

log p (x | Mp,q) = −T

2
log 2π − 1

2
log |Σp,q| − 1

2
x′Σ−1

p,qx.

The estimated covariance matrix of x under the model Mp,q is written as Σ̂p,q =
σ̂2

p,qQ̂p,q, where Q̂p,q is the matrix Qp,q with βp,q replaced by β̂p,q. The vector
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of residuals of the fit can be written as âp,q = L̂−1
p,qx, where Q̂p,q = L̂p,qL̂

′
p,q is

the Cholesky decomposition of Q̂p,q.

1.3 Quadratic Discrimination of ARMA Time Series
Models

The discrimination problem in time series can be stated as follows (see, Galeano
and Peña, 2000). Suppose it is known that the time series x = (x1, ..., xT )′ has
been generated by one of the models Mp,q, in which p ∈ {0, ..., pmax} and
q ∈ {0, ..., qmax}, where pmax and qmax are some fixed upper bounds. The
objective of discrimination is to select the true data generating model of the
time series x, which is denoted by Mp0,q0 and has the (p0 + q0 + 1) × 1 vector
of parameters αp0,q0 =

(
β′p0,q0

, σ2
p0,q0

)′. This is equivalent to consider the set of
hypothesis Mp,q : x ∈ NT (0, Σp,q). The standard quadratic classification rule
will select the model which maximizes,

p (x | Mp,q) = (2π)−
T
2 |Σp,q|−

1
2 exp

(
−1

2
x′Σ−1

p,qx

)
, (1.2)

while the standard quadratic Bayesian classification rule will select the model
which maximizes,

p (Mp,q) p (x | Mp,q) = p (Mp,q) (2π)−
T
2 |Σp,q|−

1
2 exp

(
−1

2
x′Σ−1

p,qx

)
, (1.3)

where p (Mp,q) is the prior probability of the model Mp,q.
In practice, the vector of parameters αp,q may be considered as unknown.

Following a maximum likelihood approach, if the unknown parameters, αp,q, are
replaced by its maximum likelihood estimates, α̂p,q, the rule (1.2) will always
choose the model with the largest number of parameters. A first attempt to
avoid this problem is to select the model that maximizes:

Eαp0,q0
[log p(y|α̂p,q)] =

∫
log p(y|α̂p,q)p(y|αp0,q0)dy,

which will be the model that maximizes the expectation with respect to future
observations generated by the true model with parameters αp0,q0 . Note that
this approach takes into account the uncertainty about new observations but
not the uncertainty in the parameter estimates. Galeano and Peña (2007a)
showed that:

Eαp0,q0
[log p(y|α̂p,q)] = −T

2
(log 2π + 1)− 1

2
log

∣∣∣Σ̂p,q

∣∣∣

− T (p + q + 1)
T − (p + q + 1)− 1

+ Op(1),
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which include terms that have the same order, Op(1), that the penalty term
and can not be avoided. Thus, it is necessary to take into account the uncer-
tainty about the parameter estimates, which can be done by taking also the
expectation with respect to the distribution of the estimate, α̂p,q. This leads to
select the model which attains the largest value of:

Eα̂p,q

[
Eαp0,q0

[log p(y|α̂p,q)]
]

=
∫ ∫

log p(y|α̂p,q)p(y|αp0,q0)dydα̂p,q (1.4)

where α̂p,q and y are assumed to be independent. Thus, the rule selects the
model that maximizes the expected value with respect to the two sources of
uncertainty: the distribution of future observations and the distribution of the
estimate. The rule (1.4) can be written as follows (see, Galeano and Peña,
2007):

Eα̂p,q

[
Eαp0,q0

[log p(y|α̂p,q)]
]

= −T

2
(log 2π + 1)− 1

2
log

∣∣∣Σ̂p,q

∣∣∣

− T (p + q + 1)
T − (p + q + 1)− 1

+ o(1),

which is equivalent to the expression of the AICc criterion for ARMA models
derived by Hurvich, Shumway and Tsai (1990). Note also that the rule (1.4)
selects the model which minimizes the expected Kullback-Leibler divergence to
the true one, which is given by:

Eα̂p,q

[
Eαp0,q0

[
log

p(y|αp0,q0)
p(y|α̂p,q)

]]
=

∫ ∫
log

p(y|αp0,q0)
p(y|α̂p,q)

p(y|αp0,q0)dydα̂p,q,

and was approximated by Akaike (1973) to derive the AIC criterion. Thus, both
the AIC and the AICc may be derived by the standard quadratic discriminant
rule.

On the other hand, the Bayesian approach of computing the posterior prob-
abilities of each model takes automatically into account the two sources of un-
certainty previously discussed. In fact, the log-likelihood, log p (x | Mp,q), can
be written as follows by using the Laplace approximation (see, Galeano and
Peña, 2007a):

log p(x|Mp,q) =
1
2

(p + q + 1− T ) log (2π)− 1
2
(p + q + 1) log (T )

−1
2

log
∣∣∣Σ̂p,q

∣∣∣− 1
2
T + log p(α̂p,q|Mp,q) + Op(1),

which, taking the same prior probabilities for all the set of candidate models,
leads to the expression of the BIC criterion of ARMA models. Therefore, the
Bayesian quadratic classification rule (1.3) leads to the BIC criterion proposed
by Schwarz (1978).
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In summary, it has been shown that the quadratic discriminant rules allow
to derive model selection criteria such as the AIC, AICc and BIC, which shows
the connection between discrimination and model selection in linear Gaussian
time series. Thus, the model selection problem can been seen as a kind of
discrimination analysis which allow to present an unified approach of criteria
proposed in the literature from different points of view.

1.4 Goodness of fit for ARMA Time Series Models

The goodness of fit tests in time series work as follows. After selecting a model
to fit the time series x = (x1, ..., xT )′, a goodness of fit test checks whether the
data are reasonable well fitted by the chosen model by using a test statistic
which measures the quality of the fit. Thus, although goodness of fit appears
to be related with model selection criteria in some way, they are not identical
procedures. Some goodness of fit test for linear time series are the proposed by
Ljung and Box (1978), Monti (1994), Velilla (1994) and Peña and Rodŕıguez
(2003). In this section, we analyze the connection between both problems in
the particular case of the goodness of fit test for linear Gaussian time series
proposed by Peña and Rodŕıguez (2006). These authors used the log of the
determinant of the T × T autocorrelation matrix of the estimated residuals
âp,q, which is denoted by R̂p,q, for testing goodness of fit in ARMA time series.
This autocorrelation matrix is defined as follows:

R̂p,q =
âp,qâ

′
p,q

T σ̂2
p,q

.

On the other hand, taking into account that x = L̂p,qâp,q, the sample covariance
matrix of x can be written as:

xx′

T
=

L̂p,qâp,qâ
′
p,qL̂

′
p,q

T
= σ̂2

p,qL̂p,qR̂p,qL̂
′
p,q,

which shows that,
∣∣∣∣
xx′

T

∣∣∣∣ =
∣∣∣σ̂2

p,qL̂p,qR̂p,qL̂
′
p,q

∣∣∣ =
∣∣∣Σ̂p,q

∣∣∣
∣∣∣R̂p,q

∣∣∣ , (1.5)

because
∣∣∣Σ̂p,q

∣∣∣ =
∣∣∣σ̂2

p,qL̂p,qL̂
′
p,q

∣∣∣. Now, taking logs in (1.5), the following expres-
sion holds:

log
∣∣∣∣
xx′

T

∣∣∣∣ = log
∣∣∣Σ̂p,q

∣∣∣ + log
∣∣∣R̂p,q

∣∣∣ .
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Thus, all the considered model selection criteria can be written in terms of
the goodness of fit test of Peña and Rodŕıguez (2006) as follows:

MSC (Mp,q) = log
∣∣∣∣
xx′

T

∣∣∣∣− log
∣∣∣R̂p,q

∣∣∣ + (p + q + 1)C (T, p + q + 1) .

Therefore, taking into account that the sample covariance matrix of the time
series x is constant for all the candidate models, any of the model selection
criterion will select the model which have a significatively larger value of the
goodness of fit test statistic proposed by Peña and Rodŕıguez (2006) but penal-
ized by the number of parameters. This shows two interesting facts. First, the
model selected by a model selection criterion is not always the model with the
most significant goodness of fit statistic. Second, the term log

∣∣∣Σ̂p,q

∣∣∣ can also
be seen as a measure of the goodness of fit of the model Mp,q to the series x.

1.5 Outliers In ARMA Time Series Models

Outliers in time series can arise for several reasons. First, outliers may be gross
errors such as measurement, recording and typing mistakes. Second, outliers
may be real data which are somehow suspicious or surprising as they not follow
the same pattern that the rest of observations and may be caused for unknown
events. The presence of outliers in time series can seriously affect the estimation
of the parameters of the model and produce poor forecasts. Since the seminal
paper of Fox (1972), outliers in time series have received considerable attention
and several papers have analyzed their effects and proposed methods for their
detection in univariate linear time series. See for instance, Tsay (1986), Chang,
Tiao and Chen (1988), Chen and Liu (1993), Le, Martin and Raftery (1996),
Luceño (1998), and Sánchez and Peña (2003), among others. Much of these
works have been focused on the framework of statistical hypothesis testing. In
particular, the procedure proposed by Chen and Liu (1993) is widely used and
has been implemented in several time series packages used by practitioners, such
as TRAMO and SCA. This and other procedures rely on the use of likelihood
ratio tests with critical values are obtained via simulation depending on different
sample sizes and models. In this section, we show that the outlier detection
problem can be formulated as a model selection problem, which can be solved by
using model selection criteria. These criteria provide objective rules to decide
whether a set of observations are outliers or not, avoiding the use of simulation
to obtain critical values.

Let x = (x1, . . . , xT )′ be a time series generated by an ARMA(p, q) process
as in (1.1), where, for simplicity, the orders p and q are assumed known. Assume
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that instead of observing x, we observe a time series y = (y1, . . . , yT )′ defined
as follows:

yt =
{

xt t 6= t1, . . . , tm
xt + wt t = t1, . . . , tm

,

where m is the number of outliers in the time series, t1, . . . , tm are their loca-
tions, such that 1 ≤ t1 < · · · < tm ≤ T , and wt1 , . . . , wtm are their sizes. Note
that m can be as large as T , the sample size.

In practice, either the parameters of the ARMA(p, q) model and the number,
locations and sizes of the outliers are unknown, and have to be estimated from
the data. In this section, it is shown that the outlier detection problem can be
stated as a model selection problem, for which model selection criteria can be
applied. For that, three alternative approaches are analyzed.

The first approach is the following. Let Mt1,...,tm be the ARMA(p, q) model
with m outliers with locations at the vector time indices t1, . . . , tm. The problem
of joint estimation of the model parameters, number of outliers, their locations
and their sizes can be now stated as the selection of the true model among the
set of candidate ones, which include the model without outliers, denoted by M ,
the T models with one outlier, denoted by M1, . . . , MT , etc... In general, there
are

(
T
m

)
candidate models with m outliers with all the possible

(
T
m

)
locations of

the m outliers, so that, the total number of candidate models is:
(

T

0

)
+

(
T

1

)
+ · · ·+

(
T

T

)
= 2T .

Note that it is assumed that the set of candidate models includes the true
one. Thus, as the objective is to select the true model, appears to be more
suitable to use the BIC criterion, which is the most widely used consistent
criteria. Therefore, given the model Mt1,...,tm , which assumes m outliers at
locations t1, . . . , tm, the parameters to estimate are the (p + q + 1) × 1 vector
of unknown parameters of the ARMA(p, q) model, αp,q, and the m × 1 vector
of unknown sizes of the outliers, wt1 , . . . , wtm . In summary, the model have
p+ q +m+1 unknown parameters, that are included in the (p + q + m + 1)×1
vector θt1,...,tm =

(
α′p,q, wt1 , . . . , wtm

)′. The maximum likelihood estimators of
the vector of parameters θt1,...,tm of the model Mt1,...,tm are denoted by θ̂t1,...,tm =(
α̂′p,q, ŵt1 , . . . , ŵtm

)′ and are obtained after maximizing the log-likelihood given
by:

log p (y | Mt1,...,tm) = (1.6)

= −T

2
log 2π − 1

2
log |Σt1,...,tm | −

1
2

(y − wt1,...,tm)′Σ−1
t1,...,tm (y − wt1,...,tm) ,

where Σt1,...,tm is the T × T covariance matrix of y under the model Mt1,...,tm

and wt1,...,tm is a T × 1 vector whose components are, the outliers sizes at the
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components t1, . . . , tm, and are 0, elsewhere. The solution provided by the BIC
for this problem is to choose the model which minimizes:

BIC (Mt1,...,tm) = −2 log p
(
y | θ̂t1,...,tm

)
+ (p + q + m + 1)× log T,

where log p
(
y | θ̂t1,...,tm

)
is the maximized log-likelihood of y under the Mt1,...,tm

model. Galeano and Peña (2007b) shows that the BIC above defined tends to
select models with many outliers although the series have no one. The reason of
this behavior appears to be that the number of candidate models is 2T which is
much larger than the sample size T , even for small values of T . This conclusion
also holds if the number of possible outliers in the sample is bounded to be less
than T .

The second approach is the following. Let Mm be the ARMA(p, q) model
with m outliers at unknown locations t1, . . . , tm. In this case, the problem of
joint estimation of the model parameters, number of outliers, their locations
and their sizes can also be now stated as the selection of the true model among
the set of candidates ones, which include the model without outliers, denoted
by M , the model with one outlier, denoted by M1, etc... In general, there is
only one candidate model with m outliers. Thus, the total number of candidate
models is T +1. The model Mm, which assumes m outliers at unknown locations
t1, . . . , tm, have the following parameters to estimate: the (p + q + 1)×1 vector
of parameters of the ARMA(p, q) model, αp,q, the m × 1 vector of sizes of the
outliers, wt1 , . . . , wtm and the m×1 vector of locations of the outliers, t1, . . . , tm.
In summary, the model have p + q + 2m + 1 unknown parameters, that are
included in the (p + q + 2m + 1)×1 vector θm =

(
α′p,q, wt1 , . . . , wtm , t1, . . . , tm

)′.
The maximum likelihood estimators of the vector of parameters θm of the model
Mm are denoted by θ̂m =

(
α̂′p,q, ŵt1 , . . . , ŵtm , t̂1, . . . , t̂m

)′
, and are obtained after

maximizing the log-likelihood of y under the Mm model given by:

log p (y | Mm) = −T

2
log 2π − 1

2
log |Σm| − 1

2
(y − wm)′Σ−1

m (y − wm) ,

where Σm is the T × T covariance matrix of y under the model Mm and wm

is a T × 1 vector whose components are, the outliers sizes at the components
t1, . . . , tm, and are 0, elsewhere. The BIC will choose the model which mini-
mizes:

BIC (Mm) = −2 log p
(
y | θ̂m

)
+ (p + q + 2m + 1)× log T,

where log p
(
y | θ̂m

)
is the maximized log-likelihood of y under the Mm model.

Although the number of candidate models have been substantially reduced,
Galeano and Peña (2007b) showed that the BIC tends to select models with
no outliers even with for series affected by outliers. Thus, the BIC also fails
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to consistently selects the true model with this approach. Note that the BIC
approximation of the posterior probability of each model does not verify the
conditions given by Kass, Tierney and Kadane (1990) in the sense that the
locations are not differentiable parameters. Thus the BIC approximation of
this problem does not have a theoretical justification.

The third possibility is the following. The idea is to take into account the
hierarchical structure of the problem. In other words, first, make inference on
the number of outliers in the sample, m, then, on the locations of the outliers
given m, t1, . . . , tm|m, and finally, on the parameters given m and t1, . . . , tm,
αp,q, wt1 , . . . , wtm |t1, . . . , tm,m. Thus, the focus of interest are the posterior
probabilities, p (m|y), p (t1, . . . , tm|y,m) and p (αp,q, wt1 , . . . , wtm |t1, . . . , tm,m, y).

First, it can be shown that the marginal distribution of the number of
outliers given the sample is given by:

p (m|y) =

∑
t1,...,tm

π (t1, . . . , tm, m) p (y|Mt1,...,tm)

T∑
i=0

∑
t1,...,ti

π (t1, . . . , ti, i) p (y|Mt1,...,ti)
,

where π (t1, . . . , tm,m) is the prior distribution of the parameters t1, . . . , tm,m
and p (y|Mt1,...,tm) is the distribution of the time series y given the model
Mt1,...,tm , as defined in the first approach. On the other hand, the posterior
probability of model Mt1,...,tm given the data is given by:

p (Mt1,...,tm |y) =
π (t1, . . . , tm,m) p (y|Mt1,...,tm)

T∑
i=0

∑
t1,...,ti

π (t1, . . . , ti, i) p (y|Mt1,...,ti)
,

which implies that:

p (y|Mt1,...,tm) =

T∑
i=0

∑
t1,...,ti

π (t1, . . . , ti, i) p (y|Mt1,...,ti)

π (t1, . . . , tm,m)
p (Mt1,...,tm |y) .

This shows that the posterior probability of the number of outliers, p (m|y),
can be written as follows:

p (m|y) =
∑

t1,...,tm

p (Mt1,...,tm |y) ,

and it is not necessary to specify the prior probabilities π (t1, . . . , tm,m).
Second, the BIC of the model Mt1,...,tm is an approximation of minus two

times the posterior probability given the time series y. In other words,

−2 log p (Mt1,...,tm |y) ' BIC (Mt1,...,tm) =

= −2 log p
(
y | θ̂t1,...,tm

)
+ (p + q + m + 1)× log T,
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so that,

p (Mt1,...,tm |y) ' exp
(
−BIC (Mt1,...,tm)

2

)
. (1.7)

Therefore, using the BIC approximation (1.7), p (m|y) can be approximated
as follows:

p (m|y) '
∑

t1,...,tm

exp
(
−BIC (Mt1,...,tm)

2

)
=

= exp
(
−(p + q + m + 1)

2
log T

) ∑
t1,...,tm

p
(
y | θ̂t1,...,tm

)
,

where θ̂t1,...,tm are the maximum likelihood estimates of the vector of parameters
of the model Mt1,...,tm , θt1,...,tm =

(
α′p,q, wt1 , . . . , wtm

)′ obtained after maximiz-
ing log p (y | Mt1,...,tm) given in (1.6).

Finally, the BIC for the number of outliers m can be defined as the approx-
imation of −2 log p (m|y) as follows:

BIC (m) = −2 log

(
exp

(
−(p + q + m + 1)

2
log T

) ∑
t1,...,tm

p
(
y | θ̂t1,...,tm

))
=

= −2 log

( ∑
t1,...,tm

p
(
y | θ̂t1,...,tm

))
+ (p + q + m + 1) log T.

In summary, the number of outliers is selected as the number which provides
the minimum value of BIC (m). After that, inference on the vector of unknown
locations, t1, . . . , tm, is done by using the distribution p (Mt1,...,tm |y,m), which
can be written as follows:

p (Mt1,...,tm |y,m) =
p (y|Mt1,...,tm)∑

t1,...,tm

p (y|Mt1,...,tm)
=

p (Mt1,...,tm |y)∑
t1,...,tm

p (Mt1,...,tm |y)
'

'
exp

(
−BIC(Mt1,...,tm)

2

)

∑
t1,...,tm

exp
(
−BIC(Mt1,...,tm)

2

) =
p

(
y | θ̂t1,...,tm

)

∑
t1,...,tm

p
(
y | θ̂t1,...,tm

) .

Thus, the estimates of the unknown locations, t1, . . . , tm, are the ones that
attains the largest value of p

(
y | θ̂t1,...,tm

)
. Finally, estimation of the vector of

parameters once that m and t1, . . . , tm have been selected is carried out with
the maximum likelihood estimates θ̂t1,...,tm =

(
α̂′p,q, ŵt1 , . . . , ŵtm

)′.
Galeano and Peña (2007b) presented a detailed treatment on the advantages

of using this approach. Also, in order to avoid the computation of the maximum
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likelihood estimates of all the models, these authors proposed an algorithm that
only requires to compute the maximum likelihood estimates of the models with
largest posterior probabilities.
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