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Abstract

This article establishes the connection between quadratic discrimination and model selection criterion in the ARMA

framework. We show that analyzing model selection in ARMA time series models as a quadratic discrimination problem

provides a unifying approach for deriving model selection criteria.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Most of the model selection criteria for linear time series can be written as minkflog jbSkj þ ðk þ 1Þ�
CðT ; k þ 1Þg, where k is the number of estimated parameters for the mean function of the process, bSk is
the maximum likelihood estimation of the covariance matrix of the series x ¼ ðx1; . . . ; xT Þ

0, T is the sample
size and CðT ; k þ 1Þ is a function depending on T and k þ 1. These criteria can be classified into two
groups. The first one includes the consistent criteria that, under the assumption that the data come from a
finite order autoregressive moving average process, have a probability of obtaining the true order of the model
that goes to one when the sample size increases. The Bayesian information criterion, BIC, by Schwarz (1978),
where CðT ; k þ 1Þ ¼ logðTÞ, and the Hannan and Quinn (1979) criterion, HQC, where CðT ; k þ 1Þ ¼
2m log logðTÞ with m41, are consistent criteria. The second group includes the efficient criteria, that select
asymptotically the order which produces the least mean square prediction error. The final prediction error
criterion, FPE, by Akaike (1969), where CðT ; k þ 1Þ ¼ ðT=ðk þ 1ÞÞ logððT þ k þ 1Þ=ðT � ðk þ 1ÞÞÞ, the
Akaike’s information criterion, AIC, by Akaike (1973), where CðT ; k þ 1Þ ¼ 2 and the corrected Akaike’s
information criterion, AICc, by Hurvich and Tsai (1989), where CðT ; k þ 1Þ ¼ 2T

T�ðkþ1Þ�1
, are efficient criteria.

These criteria have been derived from different points of view. The BIC approach uses the posterior
probabilities of the models. The HQC has been derived to be a consistent criterion such that CðT ; k þ 1Þ=T

converges to 0 as fast as possible. The FPE selects the model that minimizes the one step ahead square
e front matter r 2007 Elsevier B.V. All rights reserved.
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prediction error. The AIC is an estimator of the expected Kullback–Leibler distance between the true
and the fitted model. The AICc is a bias correction form of the AIC that appears to work better in small
samples.

In this article we consider model selection as a discrimination problem and show that the AIC, AICc and
BIC criteria can be derived as approximations to a quadratic discriminant rule, showing the connection
between discrimination and model selection in linear Gaussian time series. The main contribution of this
article is to view the model selection problem as a kind of discrimination analysis and present an unified
approach of criteria proposed in the literature from different points of view. The technical details in both
maximum likelihood and Bayesian points of view are included for completeness.

The rest of this paper is organized as follows. Section 2 briefly review the quadratic discriminant rule in
ARMA time series. Sections 3 and 4 show the connection between discrimination and model selection
criterion from a maximum likelihood and Bayesian approaches, respectively.
2. The quadratic discriminant rule for ARMA time series models

The discrimination problem in time series appears as follows. Suppose it is known that a given time series,

x ¼ ðx1; . . . ;xT Þ
0, has been generated by one of the models Mj , j ¼ 1; . . . ; jmax. From the Bayesian point of

view we also know the prior probabilities pðMjÞ. The objective is to select the data generating model given the

time series data. We assume that the models Mj are causal and invertible Gaussian processes given by

xt ¼ mjt þ njt, where mjt are deterministic mean functions and njt are zero mean ARMA models of the form

fjðBÞnjt ¼ yjðBÞajt, where fjðBÞ and yjðBÞ are polynomials in the lag operator B such that Bxt ¼ xt�1, with no

common roots. The series ajt are white noise innovations with variance s2j . The simplest discriminant problem

is to assume that the deterministic functions mjt are different, but the covariance matrices of x under each

ARMA model njt, Sj, are all equal to S, which corresponds to the situation in which all the models

have the same ARMA structure. Calling mj ¼ ðmj1; . . . ;mjT Þ
0, this is equivalent to consider the hypothesis

Mj : x 2 NT ðmj ;SÞ, and we have that pðx jMjÞ ¼ ð2pÞ
�T=2
jSj�1=2 expð� 1

2
ðx� mjÞ

0S�1ðx� mjÞÞ, j ¼ 1; . . . ; jmax.

Maximizing the likelihood of the data implies minimizing the Mahalanobis distance between the data and
the vector of marginal means. The same conclusion is obtained from the Bayesian point of view assuming
equal prior probabilities pðMjÞ ¼ 1=jmax and maximizing the posterior probability of choosing the true model.
A more interesting case appears when the ARMA models are different, that is, Mj : x 2 NT ðmj ;SjÞ, for
j ¼ 1; . . . ; jmax. Then, the standard quadratic classification rule selects the model i if,

i ¼ arg max
1pjpjmax

ð2pÞ�T=2
jSjj
�1=2 exp �

1

2
ðx� mjÞ

0S�1j ðx� mjÞ

� �
(1)

and the Bayesian rule selects the model i if,

i ¼ arg max
1pjpjmax

pðMjÞð2pÞ
�T=2
jSjj
�1=2 exp �

1

2
ðx� mjÞ

0S�1j ðx� mjÞ

� �
. (2)

In the next two sections the rules (1) and (2) are approximated in several ways and the AIC, AICc and BIC

criteria are obtained when the data, x ¼ ðx1; . . . ; xT Þ
0, have been generated by the class of ARMA Gaussian

processes given by xt � f1xt�1 � � � � � fpxt�p ¼ at � y1at�1 � � � � � yqat�q, t ¼ . . . ;�1; 0; 1; . . . ; where at is a

sequence of independent Gaussian distributed random variables with zero mean and variance s2p;q and we

assume that p 2 f0; . . . ; pmaxg and q 2 f0; . . . ; qmaxg, where pmax and qmax are some fixed upper bounds. We call

the ARMA(p; q) model Mp;q, where bp;q ¼ ðf1p; . . . ;fpp; 0; . . . ; 0; y1q; . . . ; yqq; 0; . . . ; 0Þ
0 is a ðpmax þ qmaxÞ � 1

vector of parameters for the Mp;q model and we define ap;q ¼ ðb
0
p;q;s

2
p;qÞ
0. We denote the parameters of the

model that have generated the data as a0 ¼ ðb
0
0;s

2
0Þ
0. In this case, let bbp;q and bs2p;q be the maximum likelihood

estimates of the vector of parameters bp;q and the innovations variance, respectively. The covariance matrix of

x assuming the model Mp;q can be written as ST ðap;qÞ ¼ s2p;qQT ðbp;qÞ, where QT ðbp;qÞ is a T � T matrix
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depending on the parameters bp;q. Let QT ðbp;qÞ ¼ Lðbp;qÞL
0ðbp;qÞ be the Cholesky decomposition of QT ðbp;qÞ.

We denote, aðbp;qÞ ¼ Lðbp;qÞ
�1x and Sxðbp;qÞ ¼ aðbp;qÞ

0aðbp;qÞ. We consider the following assumption:

Assumption 1. The models Mp;q are causal, invertible and stationary and with polynomials 1� f1B� � � � �

fpBp and 1� y1B� � � � � yqBq with no common roots.

3. A maximum likelihood approach

From (1), the discriminant rule assigns the data x ¼ ðx1; . . . ;xT Þ
0, to the model Mp;q with parameters ap;q

that maximizes pðx jMp;qÞ ¼ pðx j ap;qÞ. In practice, the parameters are unknown and it is well known that if

we substitute the unknown parameters, ap;q, by its maximum likelihood estimates, bap;q, maximizing the

likelihood will always choose the model with the largest number of parameters. To avoid this problem, we
need to obtain a suitable approximation of the quadratic rule. A first attempt to do that is to approximate
log pðx j ap;qÞ by

Ea0 ½log pðyjbap;qÞ� ¼

Z
log pðyjbap;qÞpðyja0Þdy, (3)

and select the model that maximizes (3), that is, the model that maximizes the expectation with respect to
future observations generated by the true model, which has parameters a0. Note that this rule selects the model
which minimizes the Kullback–Leibler divergence to the true one. As,

Ea0 log
pðyja0Þ

pðyjbap;qÞ

� �
¼

Z
log

pðyja0Þ
pðyjbap;qÞ

pðyja0ÞdyX0

and the integral is always positive, minimizing it implies making pðyjbap;qÞ as close as possible to pðyja0Þ, in the
Kullback–Leibler divergence. This rule computes the log-likelihood of each model using the estimates bap;q

based on the sample and then compute the expectation with respect to future observations. The model chosen
is the one which leads to a larger expected value of this maximized log-likelihood. Note that this approach
takes into account the uncertainty about new observations but not the uncertainty in the parameter estimates.
The following lemma shows that this simple approach fails to provide a suitable rule for selecting an ARMA
model among the set of candidates.

Lemma 1. Under Assumption 1,
1.
 if the parameters are evaluated at bbp;q and ðT=ðT � ðpþ qÞÞÞbs2p;q:
Ea0 ½log pðyjbap;qÞ� ¼ �

T

2
ðlog 2pþ 1Þ �

1

2
log jST ð

bbp;qÞj � ðpþ qþ 1Þ þOpð1Þ, (4)
2.
 if the parameters are evaluated at bbp;q and bs2p;q:
Ea0 ½log pðyjbap;qÞ� ¼ �

T

2
ðlog 2pþ 1Þ �

1

2
log jST ð

bbp;qÞj �
Tðpþ qþ 1Þ

T � ðpþ qþ 1Þ � 1
þOpð1Þ. (5)

Proof. From (1), we have that

Ea0 ½log pðyjbap;qÞ� ¼ �
T

2
log 2p�

1

2
log jST ð

bbp;qÞj �
1

2
Ea0

Syð
bbp;qÞbs2p;q

" #
,

where Syð
bbp;qÞ ¼ y0Q�1T ð

bbp;qÞy. Assuming that Mp;q is the model that actually generates x ¼ ðx1; . . . ;xT Þ
0,

Brockwell and Davis (1991) showed that

Ea0

Syð
bbp;qÞbs2p;q

" #
¼

TðT þ pþ qÞ

ðT � p� q� 2Þ
þOpð1Þ, (6)
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that gives (5). On the other hand, as log jST ð
bbp;qÞj ¼ T log bs2p;q þ log jQT ð

bbp;qÞj and T logð1� ðpþ qÞ=TÞ ¼

�ðpþ qÞ þ oð1Þ, we have that

T log 2pþ T log
T

T � ðpþ qÞ
bs2p;q þ log jQT ð

bbp;qÞj ¼ T log 2p� T log 1�
ðpþ qÞ

T

� �
þ T log bs2p;q

þ log jQT ð
bbp;qÞj

¼ T log 2pþ T log bs2p;q þ ðpþ qÞ þ log jQT ð
bbp;qÞj

þ opð1Þ.

From (6),

Ea0

Syð
bbp;qÞ

T

T � ðpþ qÞ
bs2p;q

2664
3775 ¼ ðT þ pþ qÞ þ

2ðT þ pþ qÞ

ðT � p� q� 2Þ
þOpð1Þ ¼ T þ pþ qþ 2þOpð1Þ,

which proves (4). &

This lemma shows that (4) and (5) include terms that are Opð1Þ which are of the same order as the penalty
terms. Following Brockwell and Davis (1991), the Opð1Þ remainder term reduces to a component oð1Þ and a
component which has expectation zero. Thus, we see that we cannot avoid taking into account the uncertainty
about the parameter estimates. We can solve this problem by taking also the expectation with respect to the
distribution of the estimate, bap;q. Then, we select the model which leads to a larger value of:

Ebap;q
½Ea0 ½log pðyjbap;qÞ�� ¼

Z Z
log pðyjbap;qÞpðyja0Þ f ðbap;qja0Þdydbap;q,

where f ðbap;qjap0;q0 Þ is the distribution of the estimate and bap;q and y are assumed to be independent. Thus, the
rule selects the model that maximizes the expected value with respect to the two sources of uncertainty:
the distribution of future observations and the distribution of the estimate. Note that this is equivalent to the
criterion proposed by Akaike (1969, 1973) from different arguments, and therefore, after taking expectations
in the expression (4), we get the criterion:

AICðp; qÞ ¼ log jST ð
bbp;qÞj þ 2ðpþ qþ 1Þ (7)

while (5) leads to the criterion:

AICcðp; qÞ ¼ log jST ð
bbp;qÞj þ

2Tðpþ qþ 1Þ

T � ðpþ qþ 1Þ � 1
, (8)

which are the expression of both criteria, as given in Hurvich et al. (1990).

4. A Bayesian approach

We analyze the rule in (2) taking into account that this approach requires prior probabilities of the models,
pðMp;qÞ and the parameters, pðap;qjMp;qÞ. The Bayesian point of view of maximizing the posterior probability
has been extensively considered, see Schwarz (1978), Chow (1981), Haughton (1988) or Raftery et al. (1996).
Note that when computing this posterior probability we automatically take into account the two sources of
uncertainty discussed in the previous section.

Lemma 2. Under Assumption 1,

log pðxjMp;qÞ ¼
1
2
ðpþ qþ 1� TÞ logð2pÞ � 1

2
ðpþ qþ 1Þ logðTÞ � 1

2
log jST ð

bbp;qÞj

� 1
2

T þ log pðbap;qjMp;qÞ þOpð1Þ. ð9Þ
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Proof. Let, hðap;qÞ ¼ �ðT=2Þ logð2pÞ � 1
2
log jST ðap;qÞj �

1
2

x0ST ðap;qÞ
�1xþ log pðap;qjMp;qÞ. Then, applying the

Laplace’s method, see Tierney and Kadane (1986), we obtain

pðxjMp;qÞ ’ ð2pÞ
ðpþqþ1�TÞ=2

jHðbap;qÞj
1=2jST ðbap;qÞj

�1=2 expð�1
2

x0ST ðbap;qÞ
�1xÞpðbap;qjMp;qÞ,

where Hðbap;qÞ is minus the inverse Hessian of h evaluated at bap;q. The inverse of the observed information
matrix is asymptotically equal to T times a constant matrix (see, for instance, Raftery et al., 1996), so that,
log jHðbap;qÞj ¼ �ðpþ qþ 1Þ logT þOpð1Þ, and

log pðxjMp;qÞ ¼
1
2
ðpþ qþ 1� TÞ logð2pÞ � 1

2
ðpþ qþ 1Þ logT � 1

2
ðlog jST ðbap;qÞj þ TÞ

þ log pðbap;qjMp;qÞ þOpð1Þ,

which proves the stated result. &

Taking the same prior probabilities for all the parameters and ignoring constant terms, (9) leads to the
criterion

BICðp; qÞ ¼ log jST ð
bbp;qÞj þ logðTÞðpþ qþ 1Þ. (10)

The criteria (7), (8) and (10) can be written as

min
ðp;qÞ
flog jST ð

bbp;qÞj þ ðpþ qþ 1Þ � CðT ; pþ qþ 1Þg, (11)

where the term jST ð
bbp;qÞj is easily obtained from the maximized log-likelihood, log pðxjbap;qÞ, due that

log jSðbap;qÞj ¼ �2 log pðxjbap;qÞ � Tðlogð2pÞ þ 1Þ.
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