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Abstract. Suppose we are interested in forecasting a time series and, in addition to the
time series data, we have data from many time series related to the one we want to
forecast. Since building a dynamic multivariate model for the set of time series can be a
complex task, it is important to measure in advance the increase in precision to be attained
by using multivariate forecasts with respect to univariate ones. This article presents a
simple procedure designed to obtain a consistent estimate of this measure. Its performance
is illustrated with Monte Carlo simulations and examples.
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1. INTRODUCTION

Building a vector autoregressive moving-average (VARMA) model for a large set
of stationary time series is not an easy task, especially when we have common
factors. For instance, it can be shown (Peña and Box, 1987) that, when the series
are driven by a set of common factors plus noise and the factors follow a vector
autoregressive (VAR) model, the vector of series will also follow an autoregressive
moving-average (ARMA) model but the autoregressive (AR) and moving-average
(MA) matrices of the VARMA representation may not be identified. Some useful
procedures for building multivariate models have been proposed. We could, for
instance, fit a VARMA model, an unrestricted VAR, a reduced-rank model, or
even a conintegration-based error correction model (see, for instance, Tiao and
Tsay, 1989; Reinsel, 1993; Johansen, 1995; Reinsel and Velu, 1998; Peña et al.,
2001). But before this modelling effort, it seems useful to know the advantages
multivariate forecasts are expected to provide with respect to the univariate ones.
In particular, it would be useful to have a measure of the expected decrease in the
mean-squared forecast error of the multivariate model with respect to the
univariate one. It is obvious that, if the series are very weakly related, we cannot
expect a large improvement on the univariate forecast by using the joint dynamics
of the series. On the other hand, when the present value of one of the time series
depends strongly on the past values of the others, we expect clear advantages in
the multivariate forecasts with respect to the univariate ones. This article

0143-9782/07/06 886–909 JOURNAL OF TIME SERIES ANALYSIS Vol. 28, No. 6
� 2007 The Authors
Journal compilation � 2007 Blackwell Publishing Ltd., 9600 Garsington Road, Oxford OX4 2DQ, UK
and 350 Main Street, Malden, MA 02148, USA.

doi:10.1111/j.1467-9892.2007.00538.x



introduces a simple measure of the expected decrease in the mean-squared
forecast error of the multivariate model with respect to the univariate one. The
proposed measure is estimated by using a procedure that does not require the
specification of any multivariate structure; it can be computed by ordinary least
squares (OLS) and provides us with an R2-like measure (e.g. Pierce, 1979;
Granger and Newbold, 1986) without assuming any particular parametric model.
This measure is both consistent and asymptotically unbiased, and can be used to
foresee the advantages of building a more elaborated multivariate model. A
MATLAB program to perform these analyses can be downloaded from
halweb.uc3m.es/esp/Personal/personas/ismael/eng/public.html.

This article is organized as follows. Section 2 analyses the relationship between
univariate and multivariate forecast for a given time series, and proposes a simple
measure of the gain in the mean-squared forecast error of the multivariate
forecasts with respect to the univariate ones. Section 3 illustrates the usefulness of
the proposed measure with some Monte Carlo simulations and Section 4 with two
real-data examples.

2. A POPULATION PREDICTABILITY MEASURE FOR MULTIVARIATE VS. UNIVARIATE

FORECASTS

Let fy1tg, fy2tg, . . . , fymtg be a set of stationary processes with zero mean and
Eðy2itÞ < 1 that jointly form a m-variate stationary process Yt ¼ (y1t, . . . , ymt)

0

with bounded spectral density matrix. We are interested in comparing, under a
quadratic loss function, the performance of the h-step-ahead prediction of y1tþh
obtained from a multivariate model with respect to the one from a univariate
model. We will start by introducing the notation for both the univariate and
multivariate predictors without assuming finite parameter models. We then build
a measure of the relative performance of both predictors that is consistently
estimated using OLS.

2.1. The univariate predictor

We assume that y1t have the following AR(1) representation:

y1t ¼
X1
i¼1

/iy1t�i þ gt; ð1Þ

where gt is a white-noise sequence with Eðg2t Þ ¼ r2, and /i, i ¼ 1, 2, . . . , are
absolutely summable real coefficients such that the polynomial

AðzÞ ¼ 1�
X1
i¼1

/iz
i 6¼ 0; jzj � 1:
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The optimal one-step-ahead prediction with the mean-squared prediction error
(MSPE) criterion is

yU1tþ1jt ¼
X1
i¼1

/iy1tþ1�i:

We are interested in h-step-ahead forecasts. Considering that y1tþh also admits
a lead-h AR representation as a function of y1t, y1t�1, . . . , given by

y1tþh ¼
X1
i¼1

aiy1tþ1�i þ utþh;

where ai ¼ ai(h), the optimal (with the MSPE criterion) h-step-ahead forecast is

yU1tþhjt ¼
X1
i¼1

aiy1tþ1�i; ð2Þ

and utþh ¼ utþh(h) is the lead-h prediction error of this univariate predictor, with
MSPE given by

r2
UðhÞ ¼ Eðu2

tþhÞ: ð3Þ

The predictability of the series for different horizons using only its own past can
be measured by the function

PUðhÞ ¼ 1� c�10 r2
UðhÞ;

where ci ¼ E(y1t,y1tþi). This predictability PU(h) measures the decrease in mean-
squared forecast error of predicting y1tþh by using the univariate model with
respect to using the unconditional mean, and it has been used by many authors
(Yaglom, 1963; Box and Tiao, 1977; Granger and Newbold, 1986).

The finite partial sum
Pk1

i¼1 aiy1t�iþ1 provides a suboptimal predictor of y1tþh
from origin t based on the last k1 observations. The optimal univariate predictor
based on k1 lags is denoted by

yUðk1Þ1tþhjt ¼
Xk1
i¼1

a�i y1t�iþ1; ð4Þ

with a�i ¼ a�i ðk1; hÞ. If uðk1Þtþh ¼ y1tþh � yUðk1Þ1tþhjt is the prediction error of this
predictor, then its MSPE is

r2
Uðk1; hÞ ¼ Eðuðk1Þ2tþh Þ: ð5Þ

2.2. The multivariate predictor

Let the m-variate stationary process Yt ¼ (y1t, . . . , ymt)
0 have the following

VAR(1) representation
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Yt ¼
X1
i¼1

PiYt�i þ at ð6Þ

with at ¼ (a1t, . . . , amt)
0 being an m-dimensional white noise or innovation

process, that is, EðatÞ ¼ 0;Eðata
0
tÞ ¼ Xa and Eðata

0
sÞ ¼ 0 for s 6¼ t. The

covariance matrix Xa is assumed to be non-singular. Moreover, Pi, i ¼ 1, 2, . . .
are absolutely summable coefficient matrices satisfying

PðzÞ ¼ Im �
X1
i¼1

Pizi; jzj � 1;

where Im is the identity matrix of dimension m. We also assume that at have finite
moments of order s � 8. This assumption on the order of the moments is needed
for the proofs of the following theorems. For convenience, the representation in
eqn (6) can also be written as Yt ¼ JmAZt�1 þ at, with Jm ¼ [Im0. . .], Zt ¼
(Yt,Yt�1, . . .)0, and A is a companion matrix with the coefficient matrices Pi, i ¼1,
2, . . . , in the first row, identity matrices Im in the first subdiagonal, and matrices of
zeroes elsewhere, as follows:

A ¼

P1 P2 � � �
Im 0 � � �
0 Im . . .

..

. ..
.

. . .

2
6664

3
7775: ð7Þ

Then

y1tþh ¼ c01JmAhZt þ vtþh; ð8Þ

where c1 ¼ (1, 0, . . . , 0)0 is a vector of dimension m � 1 and mtþh ¼ mtþh(h) is the
lead-h prediction error, which is given by

vtþh ¼
Xh�1
l¼0

c01!latþh�l; ð9Þ

with !l ¼ JmA
l and !0 ¼ Im. From eqn (8), y1tþh can be written as

y1tþh ¼ b01Y1t þ b02Y2t þ � � � þ b0mYmt þ vtþh

¼
X1
i¼1

b1iy1t�iþ1 þ
Xm

j¼2

X1
b¼1

bjbyjt�bþ1 þ vtþh ð10Þ

with b1i ¼ b1i(h), bjb ¼ bjb(h), bj ¼ (bj1, bj2, . . .)0 and Yjt ¼ (yjt, yjt�1, . . .)0. For
instance, in the VAR(1) case

Ytþ1 ¼
y1tþ1
y2tþ1

� �
¼ /11 /12

/21 /22

� �
y1t

y2t

� �
þ a1tþ1

a2tþ1

� �
;

and for h ¼ 1 we have b11 ¼ /11, b21 ¼ /12. For h ¼ 2 we then have
b11 ¼ /2

11 þ /21/12, b21 ¼ /12(/11 þ /22). Note that the term /21, which
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produces a feedback relationship between the variables, is present in eqn (10) for
h > 1. Then, as h varies, the parameter vector bj makes use of the appropriate
elements of matrix A in eqn (7). This is an interesting feature, since it reveals that
a single-equation model as in eqn (10), built for horizon h, contains all the
necessary information without the need to manage a multivariate predictor. The
optimal multivariate predictor is

yM1tþhjt ¼ c01JmAhZt ¼
Xm

j¼1
b0jYjt

¼
X1
i¼1

b1iy1t�iþ1 þ
Xm

j¼2

X1
b¼1

bjbyjt�bþ1;

and the MSPE of this predictor is r2
MðhÞ ¼ Eðv2tþhÞ. Then, the predictability of the

series using the multivariate information is

PMðhÞ ¼ 1� c�10 r2
MðhÞ:

This predictability PM(h) measures the decrease in mean-squared forecast
error of predicting y1tþh using the multivariate model with respect to using
the unconditional mean. The multivariate predictor based on finite partial sums
is

yMðLÞ1tþhjt ¼
Xk1
i¼1

b�1iy1t�iþ1 þ
Xm

j¼2

Xkj

b¼1
b�jbyjt�bþ1; ð11Þ

where L � L(h) ¼ (k1, k2, . . . , km) denotes the vector of orders of the partial sum.
Note that these orders might depend on h. Then, the corresponding multivariate
prediction error is

vðLÞtþh ¼ y1tþh � yMðLÞ1tþhjt:

The MSPE of this predictor will be denoted by r2
MðL; hÞ ¼ EðvðLÞ2tþh Þ.

2.3. Relation between the univariate and the multivariate predictors

The univariate forecast yU1tþhjt can be expressed as yU1tþhjt ¼ Eðy1tþhjY1tÞ. Then,
taking expectations conditional to Y1t in eqn (10), we can obtain an alternative
expression for the univariate forecast yU1tþhjt as

yU1tþhjt ¼ b01Y1t þ b02EðY2tjY1tÞ þ � � � þ b0mEðYmtjY1tÞ; ð12Þ

which implies that the univariate forecasts of a given variable are the result of
substituting in the general form in eqn (10) the future values of the remaining
variables by their conditional expectations, given the past values of the forecasted
variable. Define
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ejt ¼ Yjt � EðYjtjY1tÞ; j ¼ 2; . . . ;m; ð13Þ

as the vector of forecast errors of the other variables when using the past values
of the first variable. The components of ejt, say ejt�bþ1 ¼ yjt�bþ1 �
E(yjt�bþ1|y1t, y1t�1, . . .), b ¼ 1, 2, . . . , are obtained from the regression

yjt�bþ1 ¼
X1
i¼1

hðbÞji y1t�iþ1 þ ejt�bþ1:

Then, we can write

yU1tþhjt ¼ yM1tþhjt �
Xm

j¼2

X1
b¼1

bjbejt�bþ1; ð14Þ

which relates the univariate and the multivariate predictor. From eqns (10), (14)
and (13), we also obtain

u1tþh ¼ v1tþh þ b0h�t; ð15Þ

where b0h ¼ ðb02; . . . ; b0mÞ and �t ¼ ðe02t; . . . ; e0mtÞ
0. Then,

r2
UðhÞ ¼ r2

MðhÞ þ b0hVbh; ð16Þ

where V ¼ Eð�t�
0
tÞ. Note that, when the parameters are known, the covariance

matrix between the forecast errors ejt and the multivariate forecast error a1tþh is
zero. Equation (16) shows that, when the model is known, multivariate forecasts
cannot be less precise than univariate forecasts. Note, however, that when the
parameters are estimated, this may not be the case. The theoretical increase in
precision with the multivariate predictor depends on the coefficients bj, j ¼
2, . . . ,m, and on the independent variability of the other variables that is not
explained by the history of the first component, which is contained in matrix V.
This equation can be interpreted as a dynamic anova decomposition of the
variability. Note that, if we have a zero-mean stationary process, bh will tend to
zero for large h and r2

Uð1Þ ¼ r2
Mð1Þ. The predictability of the series using the

multivariate predictor, with respect to the univariate one, will be defined as

PMjUðhÞ ¼ 1� r2
MðhÞ

r2
UðhÞ

: ð17Þ

This predictability PMjU(h) measures the decrease in mean-squared forecast
error of predicting y1tþh when using the multivariate model with respect to using
the univariate model. In Section 2.4 we study the estimation of this measure
without the need for building such a multivariate model.

2.4. Estimation of the prediction variances

Given a set of observations, t ¼ 1, . . . ,T, we can estimate the prediction errors of
both the univariate and the multivariate predictors and use them to estimate the
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predictability PMjU(h). The univariate residual variance can be estimated in a
direct way by fitting by OLS the univariate AR(k) model for horizon h, as in eqn
(4), and by using the univariate residuals û1tþh to provide an estimate of r2

UðhÞ.
Following Bhansali’s (1997, 1999) notation, these predictors estimated for a given
lead time h will be denoted as direct predictors. Conversely, the more usual
approach consisting of estimating a model for h ¼ 1 and then obtaining the lead-h
predictions from the same model, replacing the unknown future values by their
own forecast, will be denoted as �plug-in� predictors. The methodology proposed
in this article is based on the use of direct predictors. In order to estimate the
model, we first make Assumption 1.

Assumption 1. The autoregressive order k1 fitted for obtaining yUðk1Þ1tþhjt is such that,
when T ! 1,

(i) k1 is chosen as a function of T such that k31=T ! 0 as k1, T ! 1
(ii) k1 is chosen as a function of T such that T 1=2ð

P1
i¼k1þ1 jaijÞ ! 0

Condition (i) implies that, although the univariate AR order grows with T, it is
small compared with the sample size. Condition (ii) implies that the neglected
coefficients in the AR(k1) approximation will have a small effect. Both conditions
(i) and (ii) are technical. They allow OLS estimates to have similar asymptotic
properties as in models with a fixed number of parameters. In practice, it is not
possible to check this assumption. It will, however, be useful to use a model
selection criterion for the choice of k1 with a penalty in the number of parameters
related to the sample size. Let Y U

1 be the matrix of regressors:

Y U
1 ¼

y1k1 y1k1�1 � � � y11
y1k1þ1 y1k1 � � � y12

..

. ..
. . .

. ..
.

y1T�h y1T�h�1 � � � y1T�h�k1þ1

2
6664

3
7775;

and let Y U
h ¼ ½y1k1þh; y1k1þhþ1; . . . ; y1T 	0 be the dependent variable of the regres-

sion. Then, the estimated univariate predictor is

ŷUðk1Þ
1tþhjt ¼

Xk1
i¼1

â�i y1t�iþ1; ð18Þ

where

â� � â�ðk1; hÞ ¼ ½â�1; . . . ; â�k1 	
0 ¼ Y U0

1 Y U
1

� ��1
Y U0
1 Y U

h :

The univariate h-step-ahead prediction error of our direct predictor is

ûðk1Þtþh ¼ y1tþh � ŷUðk1Þ1tþhjt; t ¼ k1; . . . ; T � h: ð19Þ

The estimator of r2
U ðhÞ will be
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r̂2
UðhÞ ¼

PT�h
t¼k1 ûðk1Þtþh

� �2
T � h� 2k1 þ 1

; ð20Þ

where the denominator is the number of terms of the numerator, corrected by the
number of estimated parameters, k1. Consequently, if a mean is estimated, the
denominator would be T � h � 2k1 instead. Then, following Bhansali (1993), it
holds that

r̂2
UðhÞ!

p
r2

U ðhÞ; ð21Þ

E r̂2
UðhÞ

� 	
¼ r2

UðhÞ þ o T�1
� �

; ð22Þ

where �!p � denotes convergence in probability. Result (22) is an interesting one,
since it leads to an easy procedure to obtain an asymptotically unbiased estimator
of r2

UðhÞ. Note that r̂2
UðhÞ is the residual variance of a linear regression with

autocorrelated errors. It is well known that, when OLS is applied to a linear
model with non-spherical disturbances, the residual variance is a biased estimator
of the variance of perturbations, with the bias being a complex function of the
true parameters. However, by eqn (22), in a direct predictor the use of a correction
by degrees of freedom allows us to build an asymptotically unbiased estimator of
the variance of perturbations.

The estimation of the variance of the multivariate predictor, r2
MðhÞ, can also

be carried out by fitting the multivariate dynamic regression model, as in
eqn (11). We again use a direct predictor. We make a similar assumption as
before:

Assumption 2. The autoregressive orders kj, j ¼ 2, . . . ,m, fitted for obtaining
yMðLÞ
1tþhjt in eqn (11) are such that, when T ! 1,

(i) kj is chosen as a function of T such that k3j =T ! 0 as kj,T ! 1
(ii) kj is chosen as a function of T such that T 1=2ð

P1
b¼kjþ1 jbjbjÞ ! 0

The interpretation and usefulness of this assumption is similar to Assumption 1.
Let us define kM ¼ max(k1, . . . , km). We can then define the matrix of the
multivariate regressors as

Y M
1 ¼

y1kM y1kM�1 � � � y1kM�k1þ1 � � � ymkM � � � ymkM�kmþ1
y1kMþ1 y1kM � � � y1kM�k1 � � � ymkM�1 � � � ymkM�kmþ2

..

. ..
. . .

. ..
. . .

. ..
. . .

. ..
.

y1T�h y1T�h�1 � � � y1T�h�k1þ1 � � � ymT�h � � � ymT�h�kmþ1

2
6664

3
7775;
ð23Þ

which includes the present and past values of all the other time series, and
let Y M

h ¼ ½y1kM þ h, y1kMþhþ1, . . . , y1T]
0 be the dependent variable of the regression.

Then
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ŷMðLÞ1tþhjt ¼
Xk1
i¼1

b̂�1iy1t�iþ1 þ
Xm

j¼2

Xkj

b¼1
b̂�jbyjt�bþ1; ð24Þ

where

b̂
� � b̂

�ðL; hÞ ¼ b̂�11; . . . ; b̂�mkm

h i0
¼ Y M0

1 Y M
1

� ��1
Y M0
1 Y M

h :

Finally, the multivariate h-step-ahead prediction error of this estimated
predictor is

v̂ðLÞtþh ¼ y1tþh � ŷMðLÞ1tþhjt; t ¼ kM; . . . ; T � h: ð25Þ

The estimator of r2
MðhÞ is given by

r̂2
MðhÞ ¼

PT�h
t¼kM v̂ðLÞtþh

� �2
T � h� kM þ 1� S

where S � SðhÞ ¼
Xm

j¼1
kj: ð26Þ

Note that denominator of eqn (26) is the number of terms in the numerator
corrected by the number of estimated parameters, S. If a constant term is included
in the model, the denominator of eqn (26) would be T � h � kM � S. Theorem 1
shows that this estimator is consistent and asymptotically unbiased. This theorem
extends the results of Banshali (1993) to multivariate models.

Theorem 1. Under Assumptions 1 and 2, and where �!p � denotes convergence in
probability,

(i) r̂2
MðhÞ!

p
r2

M ðhÞ
(ii) E r̂2

M ðhÞ
� 	

¼ r2
M ðhÞ þ o T�1

� �

2.5. Estimation of the predictability PMjU(h)

The estimation of the predictability of the multivariate predictor with respect to
the univariate predictor can be made by using the following estimator:

P̂MjUðhÞ ¼ 1� r̂2
MðhÞ

r̂2
UðhÞ

; ð27Þ

where r̂2
UðhÞ is defined by eqn (20) and r̂2

MðhÞ is defined by eqn (26). Theorem 2
shows some useful properties of P̂MjUðhÞ.

Theorem 2. Under Assumptions 1 and 2, and where �!p � denotes convergence in
probability,
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(i) P̂MjUðhÞ!
p

PMjUðhÞ
(ii) E½P̂MjUðhÞ	 ¼ PMjUðhÞ þ oðT�1Þ

The proof of this theorem is a straightforward application of eqns (21) and (22) and
Theorem 1. The predictability PMjU(h) is based on the comparison of the variance
of the h-step-ahead prediction errors of the univariate predictor, r2

UðhÞ, and of the
multivariate model, r2

MðhÞ, assuming known parameters. In order to take into
account the effect of parameter estimation on the predictions, the asymptotically
unbiased estimators presented in eqns (20) and (26) are used, in an attempt to
compensate the downward bias of estimating r2

UðhÞ and r2
MðhÞ respectively. This

downward bias, however, is not the only effect of parameter estimation. It is well
known that the use of estimated parameters inflates the variance of the out-
of-sample prediction errors, r2

UðhÞ and r2
MðhÞ with respect to the case of known

parameters (Yamamoto, 1976, 1981; Baillie, 1980; Fuller and Hasza, 1981). For
instance, in the univariate AR(p) case, the asymptotic out-of-sample MSPE of the
one-step-ahead prediction error can be approximated as r2

Uð1Þð1 þ p=T Þ. It is
therefore makes sense to compare the performance of the univariate and the
multivariate predictors based on this out-of-sample MSPE, instead of only
comparing r2

UðhÞ and r2
MðhÞ. This comparison is the basis of the final prediction

error (FPE) criterion (Akaike, 1970). The FPE criterion consists of the asymptotic
approximation, up to terms of magnitudeO(T�1), of the one-step-aheadMSPE. A
derivation of the h-step FPE criterion can, however, be made and then a measure of
predictability can be built by comparing the h-step FPE criterion of the univariate
predictor, denoted as FPEU(h), and the multivariate one, denoted as FPEM(h).

For the lead-h univariate predictor, Bhansali (1999) has derived the h-step FPE
criterion by generalizing the approach of Akaike (1970). This h-step FPE criterion
is

FPEUðhÞ ¼ r̂2
UðhÞ 1þ k1

T


 �
; ð28Þ

where k1 is the number of estimated parameters. The intuition behind the result is
eqn (28) is that for a direct predictor, the h-step-ahead prediction error is in fact a
one-step-ahead prediction error, because the length of the step is already h. In a
similar fashion (Lewis and Reinsel, 1985; Reinsel, 1993, p. 142), the FPE criterion
for the direct multivariate predictor is

FPEMðhÞ ¼ r̂2
MðhÞ 1þ S

T


 �
: ð29Þ

We can now define a measure of predictability, denoted as F̂MjUðhÞ, based on
the estimation of the reduction of lead-h MSPE of the multivariate predictor with
respect to the univariate one as follows:

F̂MjUðhÞ ¼ 1� FPEMðhÞ
FPEUðhÞ

: ð30Þ

895MULTIVARIATE VS. UNIVARIATE FORECASTS

� 2007 The Authors
Journal compilation � 2007 Blackwell Publishing Ltd.

JOURNAL OF TIME SERIES ANALYSIS Vol. 28, No. 6



The interpretation of F̂MjUðhÞ is complementary to P̂MjUðhÞ. The estimated
predictability P̂MjUðhÞ only compares the estimated variance of the respective
innovation processes. Its correction by the number of estimated parameters makes
P̂MjUðhÞ asymptotically unbiased. However, as the multivariate predictor will
usually require more parameters than the univariate one; P̂MjUðhÞ would provide
an optimistic view of the relative out-of-sample performance of the multivariate
predictor. F̂MjUðhÞ compares such out-of-sample performance and is explicitly
linked to the specific predictor used. Then, since the proposed estimator of r̂2

MðhÞ
is based on some AR approximation, S will be, in general, larger than what an
experienced analyst can get. As a consequence, F̂MjUðhÞ can give a pessimistic view
of the relative performance of a multivariate predictor. An analyst can think of
P̂MjUðhÞ as a potential benchmark, and that an inefficient modelling strategy can
reduce such a benchmark to a value as low as F̂MjUðhÞ. Then, the joint
interpretation of P̂MjUðhÞ and F̂MjUðhÞ can help the analyst to decide better about
the convenience of fitting a multivariate predictor.

2.6. Practical considerations

Suppose that we have a set of m time series of sample size T, and we want to
estimate the predictability of the first component, given the others for horizons
1, . . . ,H. In practice, this can be done easily by selecting a lag order L, where L is
some fixed lag value, to be discussed later, and fitting the following two equations:
1. The AR(L) of y1t given by eqn (18) and then estimate r̂2

UðhÞ for h ¼ 1, . . . ,H,
by using eqn (20).

2. The multivariate dynamic regression with dependent variable y1tþh and
independent variables, the vector of past values of this series
Y 01L ¼ ðy1t; y1t�1; . . . ; y1t�Lþ1Þ and the 1 � L(m � 1) vector of past values of
the other series

Y 0RL ¼ ðy2t; y2t�1; . . . ; y2t�Lþ1; . . . ; ymt; . . . ; ymt�Lþ1Þ ¼ ðY 02L; . . . ; Y 0mLÞ;

as in eqn (24). This is equivalent to using the matrix in eqn (23) with ki ¼
L, i ¼ 1, 2, . . . ,m. Then we use the residual variance of this dynamic
regression to estimate r̂2

MðhÞ by eqn (26).

So as to apply thismethod in an automaticway, we need to choose the values ofL.
The value of L must be such that E(ytþh|Y1t, . . . ,Ymt) ¼ E(ytþh|Y1L, . . . ,YmL).
We know (see, for instance, Zellner and Palm, 1974) that, if the vector of time
series follows a VAR(p) model, the univariate time series models have maximum
order ARMA(pm, (m � 1)p). Thus, the order of the univariate AR model fitted
must be larger than the order of the multivariate. Suppose by using a model
selection criteria we obtain that the univariate model can be approximated by an
AR(k1) model. Then we can select L ¼ k1 as the lag. Moreover, we can perform a
sensitivity analysis and repeat the computation for L ¼ k±g for g ¼ 1, 2, . . . and
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� 2007 The Authors
Journal compilation � 2007 Blackwell Publishing Ltd.
JOURNAL OF TIME SERIES ANALYSIS Vol. 28, No. 6



check that the residual variance of the dynamic regression does not change.
Alternatively, different orders k2,. . .,km can be used. A simple procedure to obtain
them is to fit individual regressions of Y1t with each of the remaining regressors
Y2t,. . .,Ymt and choose each lag order by an information criteria such as Bayesian
information criterion (BIC) or Akaike information criterion (AIC).

A practical problem can arise when the number of series is larger than the
sample size. Fitting the proposed dynamic regression requires that T > Lm.
Thus, if the sample size is not large and we have many time series and a large
value of L, the dynamic regression cannot be fitted. However, we can still estimate
the residual variance of this regression as follows:

2* Compute the r principal components of the variables YRL. Let Y ðrÞRL be the
1 � r vector of the r largest principal components of the vector of variables
YRL. Then, we will regress y1tþh on its past values and on the variables Y ðrÞRt .
This regression can be estimated if T > L þ r, and this requires r < n � h.
Note that this procedure is equivalent to a singular value decomposition of
the rectangular matrix YRL followed by a reparameterization of the regres-
sion coefficients. The value of r must be smaller than n � h. Thus, we can
select r so as to include a large proportion of the explained variability while
keeping this restriction. A simple solution is to take r ¼ min(n � h, g99),
where g99 is the number of principal components required to include 99% of
the variability of the vector of time series.

3. SOME MONTE CARLO RESULTS

There are several alternatives to compute P̂MjUðhÞ, which basically differ in the
order selection procedure for the autoregressions involved. Since our goal is to
propose a simple method to quickly evaluate the convenience of building a more
sophisticated VARMA model, we will base our empirical experiments on simple
and well-known order selection procedures. In this experiment we have used both
AIC and BIC. The performance of both procedures was similar, with BIC having
a somewhat better performance. Therefore, for brevity we will only report the
results based on the BIC.

We considered three different VAR(1) for generating the data. The first model, M1, is

y1t

y2t

� �
¼ 0:8 /

0:2 0:4

� �
y1t�1
y2t�1

� �
þ a1t

a2t

� �
; varðatÞ ¼

1 0:5
0:5 2

� �
; ð31Þ

with at ¼ (a1t, a2t)
0, and we generated bivariate series from this model with / ¼

0, 0.25, 0.5 (if / � 0.6 the process is non-stationary). For the second model, M2,
we decreased the dependency of the first series from its own past and also
increased the interdependency of the two series. The model is
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y1t

y2t

� �
¼ 0:2 /

0:2 0:6

� �
y1t�1
y2t�1

� �
þ a1t

a2t

� �
; varðatÞ ¼

1 1
1 2

� �
; ð32Þ

with / ¼ 0, 0.75, 1.50 (if / � 1.6 the process is non-stationary). The third
stationary model, M3, includes four series with a more complex dynamic
structure:

y1t

y2t

y3t

y4t

2
664

3
775 ¼

0:7 /0

0:6 0:1 0:0 0:2
0:5 0:4 �0:8 �0:3
0:0 �0:4 0:3 0:7

2
664

3
775

y1t�1
y2t�1
y3t�1
y4t�1

2
664

3
775þ

a1t

a2t

a3t

a4t

2
664

3
775; ð33Þ

varðatÞ ¼

1 1 1 1
1 2 1 1
1 1 3 1
1 1 1 4

2
664

3
775; ð34Þ

with /0 ¼ ½ 0 0 0 	 and /0 ¼ ½ 0:5 �0:4 0:1 	. In the three models, two
sample sizes, T ¼ 100 and 200 were included, and the number of replications was
20,000. In each replication, a sample of 100 þ T þ 5 data was generated by one
of the models. The first 100 data were discarded in order to ensure stationary
initial conditions, and in the following T data, and for h ¼ 1, 3, 5, the models
estimated using OLS. The last five observations were considered as future
observations to calculate out-of-sample prediction errors. For the uni-variate
model in eqn (4), k1 was selected by BIC in the range [1,6]. For the estimation of
the multivariate predictors as in eqn (11), we first estimated the orders kj for each
series j ¼ 2, . . . ,m. These orders were estimated by each series and each horizon
by regressing y1tþh on yjt, . . . , yjt�kjþ1, j ¼ 2, . . . ,m at a time. The orders
kj � kj(h) were selected by BIC also in the range [1,6].

In order to assess how well the proposed measure P̂MjUðhÞ corresponds to the
out-of-sample relative forecast performance of univariate and multivariate
models, we also computed out-of-sample prediction errors using the last five
observations not used in the estimation of the models. The predictability
measure obtained from these out-of-sample prediction errors will be denoted as
PMjU(h), which can be interpreted as the population value that we are
estimating with P̂MjUðhÞ. To compute PMjU(h), the estimated multivariate model
was a VAR(k) with k selected by using BIC in the range [0,6], and the
univariate models were ARMA(p, q) models again with order selected by using
BIC. Since the vector of time series follows a VAR(1) model, univariate time-
series models will have maximum-order ARMA (m, m � 1). Consequently, in
models M1 and M2, the range of p used in the BIC selection is [0,3] and the
range of q is [0,2]. For model M3, the range of p is [0,5] and the range of q is
[0,4]. By averaging the 20,000 squared prediction errors of each model at each
horizon we obtain the MSIE at each horizon for the multivariate and
univariate models. The predictability measure PMjU(h) is then computed using
these MSIE.
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Tables I to III summarize the results. It can be seen that conclusions are very
similar for the three models. The tables show that, overall, P̂MjUðhÞ is quite
accurate, tending to yield average values that are closer to PMjU as the sample size
increases. Even at T ¼ 50 the variance of P̂MjU is reasonably low, allowing to
detect those situations in which the multivariate predictor is profitable. As
expected, the lowest performance is obtained at T ¼ 50 and h ¼ 5. The variance
of P̂MjU is also large in the third model and T ¼ 50. At samples sizes T ¼ 100 and
200, the variance is very low. It is interesting to note in these experiments that the
relative advantage of the multivariate predictor depends on the horizon. For

TABLE I

Mean and Variance of PMjU(h) Using Model M1 along with 20,000 Replications

h

/ ¼ 0.0 / ¼ 0.25 / ¼ 0.50

PMjU

P̂MjU

PMjU

P̂MjU

PMjU

P̂MjU

Mean Var Mean Var Mean Var

T ¼ 50
1 �0.001 0.013 0.0037 0.104 0.102 0.0118 0.304 0.286 0.0173
3 0.006 0.044 0.0094 0.056 0.072 0.0128 0.100 0.118 0.0160
5 0.011 0.054 0.0127 0.035 0.053 0.0130 0.036 0.066 0.0146

T ¼ 100
1 �0.006 �0.004 0.0007 0.099 0.102 0.0046 0.313 0.299 0.0071
3 �0.001 0.016 0.0017 0.045 0.059 0.0044 0.119 0.126 0.0061
5 0.002 0.019 0.0023 0.024 0.036 0.0034 0.053 0.069 0.0050

T ¼ 200
1 �0.002 0.001 0.0002 0.104 0.105 0.0021 0.314 0.306 0.0032
3 �0.003 0.007 0.0004 0.054 0.056 0.0018 0.138 0.131 0.0026
5 0.000 0.008 0.0005 0.025 0.030 0.0013 0.069 0.072 0.0020

TABLE II

Mean and Variance of PMjU(h) Using Model M2 along with 20,000 Replications

h

/ ¼ 0.0 / ¼ 0.75 / ¼ 1.50

PMjU

P̂MjU

PMjU

P̂MjU

PMjU

P̂MjU

Mean Var Mean Var Mean Var

T ¼ 50
1 0.005 0.017 0.0034 0.361 0.358 0.0141 0.714 0.729 0.0047
3 �0.003 0.022 0.0042 0.074 0.056 0.0068 0.114 0.118 0.0075
5 0.002 0.022 0.0046 0.038 0.020 0.0066 0.037 0.049 0.0079

T ¼ 100
1 0.013 0.005 0.0006 0.366 0.361 0.0066 0.732 0.736 0.0019
3 �0.001 0.007 0.0008 0.062 0.063 0.0022 0.135 0.143 0.0025
5 �0.001 0.007 0.0008 0.036 0.022 0.0012 0.060 0.072 0.0018

T ¼ 200
1 0.013 0.002 0.0001 0.363 0.363 0.0030 0.735 0.739 0.0009
3 �0.002 0.003 0.0001 0.073 0.067 0.0010 0.160 0.154 0.0011
5 0.002 0.003 0.0001 0.028 0.024 0.0005 0.083 0.084 0.0007
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instance, in the third experiment (Table III) with /0 ¼ ½ 0:5 �0:4 0:1 	, the
multivariate predictor is very competitive at h ¼ 1. This advantage is clearly
detected by P̂MjU. However, if our interest is to make predictions at h ¼ 5, the
multivariate predictor will not help out, as P̂MjU also reveals. As a result, P̂MjUðhÞ
can provide a simple and accurate measure of what can be expected from a more
elaborate multivariate model.

4. SOME EXAMPLES

In this section we illustrate the use of the proposed measure P̂MjUðhÞ with two
examples. In both examples we compute the predictability by running the two
regressions in eqns (18) and (24) with a maximum lag equal to 6 and selecting the
order by the BIC criterion. We also made the order selection by using the AIC
criterion, but as the results were very similar, only the results obtained with BIC
are reported here. Note that in both examples the time series are non-stationary
but have been transformed to stationarity.

4.1. Example 1: gas furnace data

Box and Jenkins (1976, p. 381) built a transfer function model for the
proportion of output CO2 (yt) as a function of the non-stochastic feed rate of
methane (xt) in a gas furnace. The data correspond to 296 readings at 9-second
interval. The predictability measure considered in the previous section applied to
these data are shown in Table IV. The analyses have been made with the first

TABLE III

Mean and Variance of PMjU(h) Using Model M3 along with 20,000 Replications

h

/0 ¼ [0 0 0] /0 ¼ [0.5 �0.4 0.1]

PMjU

P̂MjU

PMjU

P̂MjU

Mean Var Mean Var

T ¼ 50
1 �0.048 0.025 0.0106 0.580 0.533 0.0146
3 �0.026 0.063 0.0187 0.221 0.194 0.0261
5 �0.008 0.075 0.0241 0.115 0.111 0.0336

T ¼ 100
1 �0.030 0.008 0.0019 0.560 0.542 0.0052
3 �0.013 0.020 0.0032 0.198 0.197 0.0073
5 �0.005 0.025 0.0040 0.102 0.100 0.0075

T ¼ 200
1 �0.016 0.002 0.0004 0.554 0.546 0.0024
3 �0.007 0.008 0.0007 0.206 0.196 0.0030
5 �0.003 0.010 0.0008 0.098 0.100 0.0028
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differences of both yt and xt. The column P̂UðhÞ shows that the univariate
predictability of yt decreases fast with the horizon. However, the column P̂MðhÞ
indicates that this loss of predictability for higher horizons does not appear in
the multivariate predictor. The column P̂MjUðhÞ indicates that the transfer
function model is expected to lead to a reduction of MSPE, with respect to the
univariate model, of 47.7% for h ¼ 1 and as large as 78.3% for h ¼ 3. In this
example as the number of parameters is not large we only have an explanatory
variable. For this reason, the values of F̂MjUðhÞ are only slightly smaller than
those of P̂MjUðhÞ. As a result, we conclude that the feed rate of methane is an
excellent control variable for the output CO2, even in the long term.

4.2. Example 2: gross domestic product in europe

In this second example we are interested in forecasting the quarterly rate of
growth of the seasonally adjusted gross domestic product in Spain. In addition
to this time series we also have the times series of this variable for eight other
European countries: Belgium, Denmark, France, Italy, the Netherlands,
Finland, UK and Norway. The series of r log xt, where xt is the season-
ally adjusted product at market prices from Eurostat, are shown in Figure 1 in
the period January 1980 to March 2002, with a total of 90 observations. The
first series corresponds to Spain and then we show the other European countries
in the same order presented before so that the second one is Belgium and the
last one Norway. Table V shows the results of forecasting the series of Spain.
According to P̂MjUðhÞ, there is not much advantage in using the information on
the other European countries at h ¼ 1, since the expected reduction in MSPE is
about 4%. This reduction is very small and, as suggested by F̂MjUð1Þ, can vanish
because of the estimation variability. The conclusion at h ¼ 1 is that a
multivariate predictor might have some advantage with a larger data set and
careful modelling. With smaller data sets, an univariate predictor is preferred.
We can be more optimistic at h ¼ 3. According to P̂MjUð3Þ, the estimated
reduction in MSPE is about 20%. We also need careful modelling otherwise, as
indicated by F̂MjUð3Þ, we can lose an important portion of that advantage. As
the horizon grows, the relative advantage of the multivariate predictor is
reduced to an expected gain of 14.5%. Again, as suggested by F̂MjUð5Þ, the small
sample size can make that an excess of sampling variability significantly reduces

TABLE IV

Uni-variate and Multi-variate Predictability of the Proportion of Output with the

Gasfurnace Data

h P̂UðhÞ P̂MðhÞ P̂MjUðhÞ F̂MjUðhÞ

1 0.791 0.889 0.468 0.456
3 0.234 0.834 0.783 0.779
5 0.100 0.736 0.707 0.705
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such advantage. Then, because of the small sample size, a multivariate pre-
dictor can be advantageous only to forecast in the medium term. Rate
of growth, r log xt, of seasonally adjusted domestic product in the nine
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Figure 1. Rate of growth, , log xt, of seasonally adjusted domestic product in the nine European
countries. The first time series correspond to Spain and the last one to Norway.

TABLE V

Univariate and Multivariate Predictability of Rate of Growth of Gross Domestic

Product in Spain

h P̂UðhÞ P̂MðhÞ P̂MjUðhÞ F̂MjUðhÞ

1 0.240 0.273 0.044 �0
3 0.211 0.368 0.199 0.111
5 0.169 0.289 0.145 0.017
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European countries. The first time series corresponds to Spain and the last one
to Norway.

It is interesting to note that the relative advantage of the multivariate predictor
could be very different in each country. For instance, the countries with the largest
value of P̂MjUð1Þ are Italy (31%) and France (30%), whereas the smallest gain in
the multivariate model with regard to the univariate one corresponds to Belgium
(2%). Overall, the country that would have greater benefit from a multivariate
model at all horizons is the UK. Table VI summarizes the value of P̂MjUðhÞ for all
the countries.

APPENDIX

Proof of Theorem 1 (i). From eqn (25) we have

v̂ðLÞtþh ¼ y1tþh � ŷMðLÞ1tþhjt ¼ y1tþh � yMðLÞ1tþhjt þ yMðLÞ1tþhjt � ŷMðLÞ1tþhjt

� �
: ð35Þ

From eqns (10) and (11) we obtain

y1tþh � yMðLÞ1tþhjt ¼
Xm

j¼1

X1
b¼1

bjbyjt�bþ1 þ vtþh �
Xm

j¼1

Xkj

b¼1
b�jbyjt�bþ1 ð36Þ

¼ vtþh þ
Xm

j¼1

Xkj

b¼1
bjb � b�jb

� �
yjt�bþ1 ð37Þ

þ
Xm

j¼1

X1
b¼kjþ1

bjbyjt�bþ1: ð38Þ

If process yjt is stationary, yjt ¼ Op(1). Then by Assumption 2(ii), we have

X1
b¼kjþ1

bjbyjt�bþ1 ¼ opðT�1=2Þ: ð39Þ

TABLE VI

Value of PMjU(h) for the Nine Countries

h Spain Belgium Denmark France Italy The Netherlands Finland UK Norway

1 0.044 0.020 0.159 0.309 0.308 0.276 0.183 0.223 0.088
3 0.199 0.000 0.105 �0.034 0.034 0.319 0.064 0.460 �0.016
5 0.145 0.159 0.040 0.258 0.208 �0.086 0.160 0.299 0.236
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From Baxter’s inequality (Baxter, 1963; Cheng and Pourahmadi, 1993) we have

Xkj

b¼1
bjb � b�jb

��� ��� � c
X1

i¼kjþ1
bjb

�� ��;
with c a bounded constant, and in the sequel not always the same constant. Then, applying
stationarity and Assumption 2(ii), we have

Xkj

b¼1
bjb � b�jb

� �
yjt�bþ1 ¼ op T�1=2

� �
:

On the other hand, we have

yMðLÞ1tþhjt � ŷMðLÞ1tþhjt ¼
Xm

j¼1

Xkj

b¼1
b�jb � b̂�jb

� �
yjt�bþ1;

and by Assumption 2(i) and using the stationarity of the processes, we have

ðb�jb � b̂�jbÞ ¼ OpðT�1=2Þ

and hence

yMðLÞ1tþhjt � ŷMðLÞ1tþhjt ¼ OpðkMT�1=2Þ;

with kM ¼ max(kj). Then,

v̂ðLÞtþh ¼ vtþh þ OpðT�1=2Þ: u

Proof of Theorem 1 (ii). Let us denote by

v̂ðLÞ ¼ Yh � Y M
1 b̂

�

to the residuals of model (24) estimated by OLS, and vðLÞ ¼ Yh � Y M
1 b�: Then,

E r̂2
MðhÞ

� 	
¼ Eðv̂ðLÞ0v̂ðLÞÞT�1M ¼ EðvðLÞ0M�vðLÞÞT�1M ;

where

M� ¼ I � Y M
1 ðY M0

1 Y M
1 Þ
�1Y M0

1 and TM ¼ T � h� kM þ 1� S:

Then,

E r̂2
MðhÞ

� 	
¼ T�1M E vðLÞ0vðLÞ

� �
� T�1M E vðLÞ0Y M

1 ðY M0
1 Y M

1 Þ
�1Y M0

1 vðLÞ
h i

: ð40Þ

For an arbitrary vector x and an r � r matrix A, let ||x|| ¼ (x 0x)1/2 be the Euclidean
norm of x, and jjAjj ¼ sup||x||�1(x

0A 0Ax)1/2 be the matrix norm of A. From eqns (35) and

(36) we can write vðLÞtþh ¼ vtþh þ wt, where

wt ¼
Xm

j¼1

Xkj

b¼1
bjb � b�jb

� �
yjt�bþ1 þ

Xm

j¼1

X1
b¼kjþ1

bjbyjt�bþ1: ð41Þ
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Let us denote m ¼ (mkM þ h, mkM þ h þ 1, . . . , mT) 0 and w ¼ (wkM
, . . . ,wT�h)

0. Then
m(L)m(L)

0 ¼ vv 0 þ 2mw 0 þ ww0. Therefore, since m is independent of w, E(m(L)
0
m(L)) ¼

E(m 0m) þ E(w 0w), where

E v0vð Þ ¼ E
XkMk

t¼T�h

v2tþh

 !
¼ T � h� kM þ 1ð Þr2

MðhÞ:

From eqn (41) we obtain

Eðw2
t Þ ¼

Xm

j¼1

Xm

i¼1

Xkj

b¼1
bjb � b�jb

� �Xkj

d¼1
bid � b�id
� �

E yjt�bþ1yit�dþ1
� �

þ
Xm

j¼1

X1
b¼kjþ1

bjb

X1
d¼kjþ1

bid E yjt�bþ1yit�dþ1
� �

þ 2
Xm

j¼1

Xm

i¼1

Xkj

b¼1
bjb � b�jb

� � X1
d¼kjþ1

bid E yjt�bþ1yit�dþ1
� �

:

By the stationarity of the process and applying Baxter’s inequality and Assumption 2, we

have

Eðw2
t Þ ¼

Xm

j¼1

Xm

i¼1

Xkj

b¼1
bjb � b�jb

� �
o T�1=2
� �

þ
Xm

j¼1

X1
b¼kjþ1

bjbo T�1=2
� �

þ 2
Xm

j¼1

Xm

i¼1

Xkj

b¼1
bjb � b�jb

� �
o T�1=2
� �

¼
Xm

j¼1

Xm

i¼1
o T�1
� �

þ
Xm

j¼1
o T�1
� �

þ 2
Xm

j¼1

Xm

i¼1
o T�1
� �

¼ oðT�1Þ;

and then E(w0w) ¼ o(1). As a result, we obtain

T�1M E vðLÞ0vðLÞ
� �

¼ T�1M TM þ Sð Þr2
MðhÞ þ oðT�1M Þ: ð42Þ

We can write

E vðLÞ0Y M
1 ðY M0

1 Y M
1 Þ
�1Y M0

1 vðLÞ
h i

¼ trace E Y M0
1 Y M

1

� ��1
Y M0
1 vðLÞvðLÞ0Y M

1

h in o
:

Let us denote Cy ¼ E Y M0
1 Y M

1

� �
and Ĉy ¼ T�1M Y M0

1 Y M
1

� �
Then,

trace E Y M0
1 Y M

1

� ��1
Y M0
1 vðLÞvðLÞ0Y M

1

h in o
ð43Þ

¼ trace T�1M C�1y E Y M 0
1 vðLÞvðLÞ0Y M

1

h in o
ð44Þ

þ trace T�1M E Ĉ�1y � C�1y

� �
Y M0
1 vðLÞvðLÞ0Y M

1

h in o
: ð45Þ
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In order to solve eqn (43) we will first analyse the term

trace T�1M C�1y E Y M0
1 vðLÞvðLÞ0Y M

1

h in o
:

Using similar arguments as in the preceding text, we have

E Y M0
1 vðLÞvðLÞ0Y M

1

� �
¼ E Y M0

1 vv0Y M
1

� �
þ 2E Y M0

1 vw0Y M
1

� �
þ E Y M0

1 ww0Y M
1

� �
: ð46Þ

Applying Hölders� inequality, we obtain

E Y M0
1 vw0Y M

1



 

� �
� E Y M

1 Y M0
1



 

2� �1=2
E vw0k k2
� �1=2

;

and since m and w are independent, EðkY M0
1 vw0Y M

1 kÞ ¼ 0. Analogously, by Assumption 2

and the stationarity of the series,

E Y M0
1 ww0Y M

1



 

� �
� E Y M

1 Y M0
1



 

2� �1=2
E ww0k k2
� �1=2

¼ OðS1=2Þo 1ð Þ ¼ o T 1=3
M

� �
:

Then

trace T�1M C�1y E Y M0
1 vðLÞvðLÞ0Y M

1

h in o
¼ trace T�1M C�1y E Y M0

1 vv0Y M
1

� �n o
þ o T�1=3M

� �
:

Using eqn (9), we have

vtþh ¼
Xh�1
l¼0

gðlÞtþh�l;

where gðlÞtþh�l ¼ c01!latþh�l. If we denote gðlÞi; j to the (i, j) element of the matrix !l we have

gðlÞtþh�l ¼
Xm

j¼1
gðlÞ1j ajtþh�l;

and by the properties of at, we have

E gðlÞ2tþh�l

h i
¼ c01!lXa!

0
lc1 � vj2

l ; l ¼ 0; 1; . . . ; h� 1;

E gðlÞtþjg
ðmÞ
tþj

h i
¼ c01!lXa!

0
mc1 � vjl;m; j ¼ 1; . . . ; h

E gðmÞtþh�mgðlÞtþh�l

h i
¼ 0; l;m ¼ 0; 1; . . . ; h� 1;

E v2tþh

� �
¼
Xh�1
l¼0

vj2
l � r2

MðhÞ; l ¼ 0; 1; . . . ; h� 1:

Then
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Y M0
1 v ¼

PTM�1
i¼0

Ph�1
l¼0 y1kMþigkMþhþi�lPTM�1

i¼0
Ph�1

l¼0 y1kM�1þigkMþhþi�l

..

.PTM�1
i¼0

Ph�1
l¼0 y1kM�k1þigkMþhþi�lPTM�1

i¼0
Ph�1

l¼0 y2kMþigkMþhþi�l

..

.PTM�1
i¼0

Ph�1
l¼0 ymkM�kmþigkMþhþi�l

2
666666666664

3
777777777775
: ð47Þ

Multiplying the vector in eqn (47) by its transpose, we obtain a symmetric S � S matrix
whose elements can easily be analysed using standard, but tedious, algebra. It can then be

seen that E Y M0
1 vv0Y M

1

� �
¼ EðfpijgÞ i, j ¼ 1, . . . , k is an S � S matrix with the following

elements:

EðfpijgÞ ¼ TMci;i

Xh�1
l¼0

j2
l

 !

þ 2
Xh�1
r¼1

TM � rð Þci;jþr

Xh�r�1

l¼0
v jl;lþr

 !
i; j ¼ 1; . . . ; S;

where ci,i is the element of covariance matrix Cy occupying the position (i, j). Then, after
some manipulation, it can be concluded that E Y M0

1 vv0Y M
1

� �
¼ CyBðTMÞ

h , where
BðTMÞ

h ¼ ½fbijg	 is an S � S Toeplitz symmetric matrix with

½fbiig	 ¼ TM

Xh�1
l¼0

j2
l

 !
; i ¼ 1; . . . ; S

½fbijg	 ¼ 2 TM � 1ð Þ
Xh�j

l¼0
jl;lþj

 !
; i ¼ 1; . . . ; S; j ¼ iþ 1; . . . ; iþ h� 1

½fbijg	 ¼ 0; i ¼ 1; . . . ; S; j ¼ iþ h; . . . ; S:

Therefore,

trace T�1M C�1y E Y M0
1 vv0Y M

1

� �n o
¼ trace T�1M C�1y CyBðTMÞh

h i
¼ Sr2

MðhÞ;

and hence

trace T�1M C�1y E Y M0
1 vðLÞvðLÞ0Y M

1

h in o
¼ Sr2

MðhÞ þ o T�1=3M

� �
: ð48Þ

We should now solve the second term at the right-hand side of eqn (43). Let us denote as

nij to an element of the S � S matrix C�1y and urs to an element of the S � S matrix. Then,

E Ĉ�1y � C�1y

� �
Y M0
1 vðLÞvðLÞ0Y M

1

h i
¼ O S sup

i;j;r;s
E n̂ij � nij

� �
urs

h i( )
:

By Holders� inequality,
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E n̂ij � nij

� �
urs




 


h i
� E n̂ij � nij




 


2
 �1=2

E ursk k2
� �1=2

:

Since

Ĉ�1y � C�1y




 


2¼ Ĉ�1y Ĉy � Cy
� �

C�1y




 


2� Ĉ�1y




 


2 Ĉy � Cy
� �

 

2 C�1y




 


2;
we have

E Ĉ�1y � C�1y




 


2
 �
� C�1y




 


2 E Ĉ�1y




 


4
 �� �1=2
E Ĉy � Cy

� �

 

4� �h i1=2
: ð49Þ

Since C�1y




 


 is uniformly bounded above by a positive constant, and from Lewis and

Reinsel (1985, p. 397), we have kC�1y k
2 ¼ OðSÞ and then jjnijjj2 ¼ O(1),

E n̂ij




 


4
 �
¼ Oð1Þ. Moreover, by the asymptotic properties of OLS we have

E ĉi;j � ci;j

� �

 

4� �
¼ O T�2M

� �
(Lewis and Reinsel, 1985a, 1988; Bhansali, 1981). Then, applying these results to eqn (49),

we obtain

E n̂ij � nij




 


2
 �
¼ OðT�1M Þ:

Moreover, from eqn (48), we have E(jjursjj2) ¼ O(1). Then,

E n̂ij � nij

� �
urs




 


h i
¼ OðT�1=2M Þ:

Therefore, also applying Assumption 2,

trace T�1M E Ĉ�1y � C�1y

� �
Y M0
1 vðLÞvðLÞ0Y M

1

h in o
¼ O ST�3=2M

� �
¼ o T�1M

� �
: ð50Þ

As a result, from eqns (43), (48) and (50), we have

E vðLÞ0Y M
1 ðY M0

1 Y M
1 Þ
�1Y M0

1 vðLÞ
h i

¼ Sr2
MðhÞ þ o T�1=3M

� �
þ o T�1M

� �
ð51Þ

Finally, from eqns (40), (42) and (51)

E r̂2
MðhÞ

� 	
¼ T�1M TM þ Sð Þr2

MðhÞ þ T�1M Sr2
MðhÞ þ oðT�1M Þ ¼ r2

MðhÞ þ oðT�1M Þ;

and the theorem is proved. u
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