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Abstract. Suppose we are interested in forecasting a time series and, in addition to the
time series data, we have data from many time series related to the one we want to
forecast. Since building a dynamic multivariate model for the set of time series can be a
complex task, it is important to measure in advance the increase in precision to be attained
by using multivariate forecasts with respect to univariate ones. This article presents a
simple procedure designed to obtain a consistent estimate of this measure. Its performance
is illustrated with Monte Carlo simulations and examples.
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1. INTRODUCTION

Building a vector autoregressive moving-average (VARMA) model for a large set
of stationary time series is not an easy task, especially when we have common
factors. For instance, it can be shown (Pefia and Box, 1987) that, when the series
are driven by a set of common factors plus noise and the factors follow a vector
autoregressive (VAR) model, the vector of series will also follow an autoregressive
moving-average (ARMA) model but the autoregressive (AR) and moving-average
(MA) matrices of the VARMA representation may not be identified. Some useful
procedures for building multivariate models have been proposed. We could, for
instance, fit a VARMA model, an unrestricted VAR, a reduced-rank model, or
even a conintegration-based error correction model (see, for instance, Tiao and
Tsay, 1989; Reinsel, 1993; Johansen, 1995; Reinsel and Velu, 1998; Pena et al.,
2001). But before this modelling effort, it seems useful to know the advantages
multivariate forecasts are expected to provide with respect to the univariate ones.
In particular, it would be useful to have a measure of the expected decrease in the
mean-squared forecast error of the multivariate model with respect to the
univariate one. It is obvious that, if the series are very weakly related, we cannot
expect a large improvement on the univariate forecast by using the joint dynamics
of the series. On the other hand, when the present value of one of the time series
depends strongly on the past values of the others, we expect clear advantages in
the multivariate forecasts with respect to the univariate ones. This article
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introduces a simple measure of the expected decrease in the mean-squared
forecast error of the multivariate model with respect to the univariate one. The
proposed measure is estimated by using a procedure that does not require the
specification of any multivariate structure; it can be computed by ordinary least
squares (OLS) and provides us with an R>like measure (e.g. Pierce, 1979;
Granger and Newbold, 1986) without assuming any particular parametric model.
This measure is both consistent and asymptotically unbiased, and can be used to
foresee the advantages of building a more elaborated multivariate model. A
MATLAB program to perform these analyses can be downloaded from
halweb.uc3m.es/esp/Personal/personas/ismael/eng/public.html.

This article is organized as follows. Section 2 analyses the relationship between
univariate and multivariate forecast for a given time series, and proposes a simple
measure of the gain in the mean-squared forecast error of the multivariate
forecasts with respect to the univariate ones. Section 3 illustrates the usefulness of
the proposed measure with some Monte Carlo simulations and Section 4 with two
real-data examples.

2. A POPULATION PREDICTABILITY MEASURE FOR MULTIVARIATE VS. UNIVARIATE

FORECASTS
Let {y1.}, {p2:}s---»{pm} be a set of stationary processes with zero mean and
E(y2) < oo that jointly form a m-variate stationary process Y, = (Vi Vo)

with bounded spectral density matrix. We are interested in comparing, under a
quadratic loss function, the performance of the /-step-ahead prediction of yy,,;
obtained from a multivariate model with respect to the one from a univariate
model. We will start by introducing the notation for both the univariate and
multivariate predictors without assuming finite parameter models. We then build
a measure of the relative performance of both predictors that is consistently
estimated using OLS.

2.1. The univariate predictor

We assume that y;, have the following AR(co) representation:
Y= Z Pivie—i + 1, (1)
i1

where 7, is a white-noise sequence with E(n?) = ¢%, and ¢, i =1, 2,..., are
absolutely summable real coefficients such that the polynomial

AR =1-Y ¢ #0, [<1
i=1
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The optimal one-step-ahead prediction with the mean-squared prediction error
(MSPE) criterion is

.

U

Vi =D i
i=1

We are interested in Ah-step-ahead forecasts. Considering that y;,,, also admits
a lead-h AR representation as a function of yy,, yi,_1,..., given by

(o)
Vie+h = E LiV1t+1—i + Urths
i—1

where o; = o,(h), the optimal (with the MSPE criterion) A-step-ahead forecast is
y}LM, = foiylmm )
i=1

and u,,;, = u,,(h) is the lead-h prediction error of this univariate predictor, with
MSPE given by

oty (h) = E(ui.)- 3)

The predictability of the series for different horizons using only its own past can
be measured by the function

Py(h) =1 =5 ayy(h),

where y; = E(y1,)1,44)- This predictability Py(h) measures the decrease in mean-
squared forecast error of predicting y,,,, by using the univariate model with
respect to using the unconditional mean, and it has been used by many authors
(Yaglom, 1963; Box and Tiao, 1977; Granger and Newbold, 1986).

The finite partial sum Zf‘:] o;V1—i+1 provides a suboptimal predictor of yy,,,
from origin ¢ based on the last k; observations. The optimal univariate predictor
based on k; lags is denoted by

ki
U(k *
ylt-(l—lift = Z % Vlt—i+1, (4)
=1

with of = of(ky, h). If ufﬁ‘}f = Vir+h —y}i(f}l‘)t

predictor, then its MSPE is

is the prediction error of this

k)2
ot (ki ) = @), (5)

2.2. The multivariate predictor

Let the m-variate stationary process Y, = (yi;...,Vm) have the following
VAR(oc0) representation
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o0

Y, = Z ILY, i +a; (6)
i=1

with a, = (a1, ...,a,,) being an m-dimensional white noise or innovation
process, that is, E(a,) = 0,E(aa)) = Q, and E(aal) = 0 for s# ¢ The
covariance matrix Q, is assumed to be non-singular. Moreover, I1,, i =1, 2,...
are absolutely summable coefficient matrices satisfying

[o.¢]
M(z) =1, — > L7, [<1,
i=1

where 7, is the identity matrix of dimension m. We also assume that a, have finite
moments of order s > 8. This assumption on the order of the moments is needed
for the proofs of the following theorems. For convenience, the representation in
eqn (6) can also be written as Y, = J,,AZ,_; + a,, with J,, =[[,0...], Z, =
(Y,Y,_1,...), and A4 is a companion matrix with the coefficient matrices I1,, i =1,
2,...,1in the first row, identity matrices /,, in the first subdiagonal, and matrices of
zeroes elsewhere, as follows:

Im, In
L, 0 -
A=10 1, .| ()
Then
Vit+h = CllJmAhZz + Vtth, (8)
where ¢; = (1, 0,...,0) is a vector of dimension m x 1 and v,,;, = v, ,(h) is the

lead-% prediction error, which is given by
h—1
Uph = ZCQ Yia, 51, (9)
=0

with Y, = J,,4' and Y, = I,,. From eqn (8), yi,., can be written as
Vieen = B Y+ ByYor + -+ Bl You + Ui
o0 m [o.¢]
= Z Bivt—iv1 + Z Z Bjsje—b+1 + Vet (10)
i1

=2 b=1

with B1; = Bidh), B = Bi(h), B; = (Bp> Bjs--.) and Y = (¥jus ¥js—1,--.)'. For
instance, in the VAR(1) case

Yot = {yltﬂ} _ {(1511 d)IZ} [ylt:| + |:a]t+1]

W1 a1 b | [V axy+1 |’
and for h=1 we have B = ¢11, Po1 = ¢p1o. For h=2 we then have
Bii = 11 + ddia. Poi = d1a(pi1 + ¢22). Note that the term ¢y, which
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produces a feedback relationship between the variables, is present in eqn (10) for
h > 1. Then, as h varies, the parameter vector f; makes use of the appropriate
elements of matrix 4 in eqn (7). This is an interesting feature, since it reveals that
a single-equation model as in eqn (10), built for horizon /, contains all the
necessary information without the need to manage a multivariate predictor. The
optimal multivariate predictor is

m
ym—hh = C/lJmAth = Zﬁ;yjt
J=1

o0
Z Bipyje—b+1s

m
=2 b=1

o0
= Bidi-in +
P

and the MSPE of this predictor is 63, (h) = E(v7,,). Then, the predictability of the
series using the multivariate information is

Pu(h) =1 —p5 a3, (h).

This predictability Py(#) measures the decrease in mean-squared forecast
error of predicting y;,,, using the multivariate model with respect to using
the unconditional mean. The multivariate predictor based on finite partial sums
is

ki
BisYie-—b+15 (11)

ki
M(L *
yltihi, = Zﬁhyn—m +
i=1 1

m
=2 b

where L = L(h) = (ky, k», . . ., k,,,) denotes the vector of orders of the partial sum.
Note that these orders might depend on /4. Then, the corresponding multivariate
prediction error is

L) _ M(L)
Vpn = Vltth = Vigyn)er

The MSPE of this predictor will be denoted by a3,(L,h) = E (vﬁhz)

2.3. Relation between the univariate and the multivariate predictors

The. univariate.forecast )./][;Jrh‘t can be .expressed as y&rh‘t = E(y1[+h|Y1,). Thf:n,
taking expectations conditional to Y, in eqn (10), we can obtain an alternative
expression for the univariate forecast y}[} a)e A8

ylli-o—h\t = ﬁll N+ ﬁ/zE(YZt|Ylt) + ﬁ:nE(Ymt|Ylt)7 (12)

which implies that the univariate forecasts of a given variable are the result of
substituting in the general form in eqn (10) the future values of the remaining
variables by their conditional expectations, given the past values of the forecasted
variable. Define
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Sjt:th_E(lelylt)a j:27"'am7 (13)

as the vector of forecast errors of the other variables when using the past values
of the first variable. The components of ¢, say & pi1 = Vi—ps1 —
EWj—p+11v16 Y1i—1,--.), b =1, 2,..., are obtained from the regression

o0
(b)
Vit—b+1 = E 9j,~ i—it1 + &jt—b+1-
i=1

Then, we can write

m o0
U M .
Ylethle = Vevn)e — Z Z Bj/)é'jlfb“rlﬂ (14)

=2 b=1

which relates the univariate and the multivariate predictor. From eqns (10), (14)
and (13), we also obtain

Ulesh = Visn + Pyer, (15)
where B, = (f5,...,5,) and ¢, = (&,,...,¢,,)". Then,
ot (h) = oy (h) + B,V By, (16)

where V = E(ee€,). Note that, when the parameters are known, the covariance
matrix between the forecast errors ¢; and the multivariate forecast error a;,, is
zero. Equation (16) shows that, when the model is known, multivariate forecasts
cannot be less precise than univariate forecasts. Note, however, that when the
parameters are estimated, this may not be the case. The theoretical increase in
precision with the multivariate predictor depends on the coeflicients f;, j =
2,...,m, and on the independent variability of the other variables that is not
explained by the history of the first component, which is contained in matrix V.
This equation can be interpreted as a dynamic ANOVA decomposition of the
variability. Note that, if we have a zero-mean stationary process, f5, will tend to
zero for large h and o7;(00) = 03,(c0). The predictability of the series using the
multivariate predictor, with respect to the univariate one, will be defined as
o (h)
Pyju(h) =1 ()
This predictability Pygu(h) measures the decrease in mean-squared forecast
error of predicting yy,,;, when using the multivariate model with respect to using
the univariate model. In Section 2.4 we study the estimation of this measure
without the need for building such a multivariate model.

(17)

2.4. Estimation of the prediction variances

Given a set of observations, r = 1,..., T, we can estimate the prediction errors of
both the univariate and the multivariate predictors and use them to estimate the
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892 D. PENA AND I. SANCHEZ

predictability Pyu(h). The univariate residual variance can be estimated in a
direct way by fitting by OLS the univariate AR (k) model for horizon 4, as in eqn
(4), and by using the univariate residuals #;,,, to provide an estimate of a%(h).
Following Bhansali’s (1997, 1999) notation, these predictors estimated for a given
lead time / will be denoted as direct predictors. Conversely, the more usual
approach consisting of estimating a model for # = 1 and then obtaining the lead-/
predictions from the same model, replacing the unknown future values by their
own forecast, will be denoted as ‘plug-in’ predictors. The methodology proposed
in this article is based on the use of direct predictors. In order to estimate the
model, we first make Assumption 1.

(kl‘)

e 1S such that,

AssumMpTION 1. The autoregressive order k fitted for obtaining y][i
when T — oo,

(1) ky is chosen as a function of T such that k13/T —0ask, T— o0
(ii) ky is chosen as a function of T such that T'?(3°7%, i lai]) — 0

Condition (i) implies that, although the univariate AR order grows with 7, it is
small compared with the sample size. Condition (ii) implies that the neglected
coefficients in the AR(k;) approximation will have a small effect. Both conditions
(1) and (ii) are technical. They allow OLS estimates to have similar asymptotic
properties as in models with a fixed number of parameters. In practice, it is not
possible to check this assumption. It will, however, be useful to use a model
selection criterion for the choice of k; with a penalty in the number of parameters
related to the sample size. Let YV be the matrix of regressors:

Yk DAV i
YIU _ J’Ik.l+l J/I.kl yTz 7
le-fh J’IT;hfl e NMT—h—k+1
and let Y = Vi ch Vikyohits - - - ,vir]" be the dependent variable of the regres-

sion. Then, the estimated univariate predictor is
Ulk) _ N
j}1t+}i|t = Z&?yll*iﬁ*l? (18>
i—1
where

& =6k h) = (6.8 ] = (RrY) Y,

The univariate A-step-ahead prediction error of our direct predictor is

LA‘ET; :ylt+h_j}gik}ll‘>p t:kla"'aT_h' (19)
The estimator of a7,(h) will be
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2
S (i)

A2 1 +h

hy=————+-— 20
B = =T (20)
where the denominator is the number of terms of the numerator, corrected by the
number of estimated parameters, k;. Consequently, if a mean is estimated, the
denominator would be T'— & — 2k, instead. Then, following Bhansali (1993), it

holds that
61, (h) = a3, (h), (21)

Elau(m)] = ot (h) +o(T7), (22)

where ‘2’ denotes convergence in probability. Result (22) is an interesting one,
since it leads to an easy procedure to obtain an asymptotically unbiased estimator
of a},(h). Note that 63 (h) is the residual variance of a linear regression with
autocorrelated errors. It is well known that, when OLS is applied to a linear
model with non-spherical disturbances, the residual variance is a biased estimator
of the variance of perturbations, with the bias being a complex function of the
true parameters. However, by eqn (22), in a direct predictor the use of a correction
by degrees of freedom allows us to build an asymptotically unbiased estimator of
the variance of perturbations.

The estimation of the variance of the multivariate predictor, a3,(h), can also
be carried out by fitting the multivariate dynamic regression model, as in
eqn (11). We again use a direct predictor. We make a similar assumption as
before:

AssumptioN 2. The autoregressive orders k;, j=2,...,m, fitted for obtaining
yfﬁi?, in eqn (11) are such that, when T — oo,

(i) k; is chosen as a function of T such that KT — 0 as ki, T — oo
(ii) k; is chosen as a function of T such that Tl/z(z,fik/H 1Bil) — 0

The interpretation and usefulness of this assumption is similar to Assumption 1.
Let us define ky = max(ky,...,k,). We can then define the matrix of the
multivariate regressors as

y]kM ylkM—l e ylkM—k|+l e ymkM tee ymkm—km+l
M Vlkwm+1 Ylkm Vlkm—ki o Ymka—1 T Yk —h 2
Yl = . . . . . . . . )

ViT—h  NT—h—1 *° NMT—h—k+1  ° YmT—h  *°° YmT—h—ky+1

(23)

which includes the present and past values of all the other time series, and

let YM = Wiy + 45 Viky,,.po - - V17] be the dependent variable of the regression.

Then
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m ki

lt+h|t Zﬁlzylt i+1 +ZZﬁjby]t b+1; (24)

j=2 b=

where

Ak A%k 1
Br=Fwn =B B = 02 i,
Finally, the multivariate h-step-ahead prediction error of this estimated
predictor is

~(L ~M(L
Ut(+)lz = Vlt+h 7ylt75h?t; t:kM,...,Tfh. (25)

The estimator of a3,(h) is given by
2
Zt kM< H—h) @

here S=S(h) =S k.. 26
T—h—dyt1-5 <€ () ;f (26)

o (h) =

Note that denominator of eqn (26) is the number of terms in the numerator
corrected by the number of estimated parameters, S. If a constant term is included
in the model, the denominator of eqn (26) would be T'— & — kyy — S. Theorem 1
shows that this estimator is consistent and asymptotically unbiased. This theorem
extends the results of Banshali (1993) to multivariate models.

TueoreM 1. Under Assumptions 1 and 2, and where L denotes convergence in
probability,

2.5. Estimation of the predictability Pyyu(h)

The estimation of the predictability of the multivariate predictor with respect to

the univariate predictor can be made by using the following estimator:

. (k)

Pypu(h) =13
| oy k)’

where 63 (h) is defined by eqn (20) and ¢ 2 (h) is defined by eqn (26). Theorem 2

shows some useful properties of PM‘U(h)

(27)

TraeOREM 2.  Under Assumptions 1 and 2, and where 2 denotes convergence in
probability,
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(@) Paqu(h) 2 Py (h)
(i) E[Puju(h)] = Puju(h) +o(T™")

The proof of this theorem is a straightforward application of eqns (21) and (22) and
Theorem 1. The predictability Py y(h) is based on the comparison of the variance
of the A-step-ahead prediction errors of the univariate predictor, o% (h), and of the
multivariate model, ¢3,(h), assuming known parameters. In order to take into
account the effect of parameter estimation on the predictions, the asymptotically
unbiased estimators presented in eqns (20) and (26) are used, in an attempt to
compensate the downward bias of estimating a;(h) and o3, (/) respectively. This
downward bias, however, is not the only effect of parameter estimation. It is well
known that the use of estimated parameters inflates the variance of the out-
of-sample prediction errors, o3 (h) and a3,(h) with respect to the case of known
parameters (Yamamoto, 1976, 1981; Baillie, 1980; Fuller and Hasza, 1981). For
instance, in the univariate AR(p) case, the asymptotic out-of-sample MSPE of the
one-step-ahead prediction error can be approximated as o2,(1)(1 + p/T). It is
therefore makes sense to compare the performance of the univariate and the
multivariate predictors based on this out-of-sample MSPE, instead of only
comparing o;(h) and a3,(h). This comparison is the basis of the final prediction
error (FPE) criterion (Akaike, 1970). The FPE criterion consists of the asymptotic
approximation, up to terms of magnitude O(7 '), of the one-step-ahead MSPE. A
derivation of the /i-step FPE criterion can, however, be made and then a measure of
predictability can be built by comparing the /-step FPE criterion of the univariate
predictor, denoted as FPE (%), and the multivariate one, denoted as FPEy(h).

For the lead-/ univariate predictor, Bhansali (1999) has derived the /-step FPE
criterion by generalizing the approach of Akaike (1970). This A-step FPE criterion
is

FPEy(h) = 63, (h) (1 - k—T‘) : (28)
where k; is the number of estimated parameters. The intuition behind the result is
eqn (28) is that for a direct predictor, the /-step-ahead prediction error is in fact a
one-step-ahead prediction error, because the length of the step is already 4. In a
similar fashion (Lewis and Reinsel, 1985; Reinsel, 1993, p. 142), the FPE criterion
for the direct multivariate predictor is

S
FPEu(h) = 634(h) (1 + ?) : (29)

We can now define a measure of predictability, denoted as FM|U(h), based on
the estimation of the reduction of lead-2 MSPE of the multivariate predictor with
respect to the univariate one as follows:

FPEy (h)

Fyu(h) =1 ~EPEy ()

(30)
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The interpretation of FM‘U(h) is complementary to IAJM‘U(h). The estimated
predictability Py (k) only compares the estimated variance of the respective
innovation processes. Its correction by the number of estimated parameters makes
IA’M‘U(h) asymptotically unbiased. However, as the multiAvariate predictor will
usually require more parameters than the univariate one; Pyu(#) would provide
an optimistic view of the relative out-of-sample performance of the multivariate
predictor. FM|U(h) compares such out-of-sample performance and is explicitly
linked to the specific predictor used. Then, since the proposed estimator of 3;(4)
is based on some AR approximation, S will be, in general, larger than what an
experienced analyst can get. As a consequence, FM‘U(h) can give a pessimistic view
of the relative performance of a multivariate predictor. An analyst can think of
ﬁ’M‘U(h) as a potential benchmark, and that an inefficient modelling strategy can
reduce such a benchmark to a value as low as Fmju(h). Then, the joint
interpretation of Py (k) and Fyu(/) can help the analyst to decide better about
the convenience of fitting a multivariate predictor.

2.6. Practical considerations

Suppose that we have a set of m time series of sample size 7, and we want to
estimate the predictability of the first component, given the others for horizons
1,..., H. In practice, this can be done easily by selecting a lag order L, where L is
some fixed lag value, to be discussed later, and fitting the following two equations:
1. The AR(L) of y;, given by eqn (18) and then estimate 63,(h) forh = 1,..., H,
by using eqn (20).
2. The multivariate dynamic regression with dependent variable y;,,, and
independent variables, the vector of past values of this series
Y, = i, Yu—1,-- -, yu—r+1) and the 1 x L(m — 1) vector of past values of
the other series

! ! !
Yoo = (J’2t7y2t—17- sy VLA Vit - - - »J/mt—L-H) = (qu S YmL),

as in eqn (24). This is equivalent to using the matrix in eqn (23) with k; =
L,i=1,2,...,m. Then we use the residual variance of this dynamic
regression to estimate 63;(/) by eqn (26).

So as to apply this method in an automatic way, we need to choose the values of L.
The value of L must be such that E(y, 4| Y1 Yor) = EQrinl Yir, -+ Your)-
We know (see, for instance, Zellner and Palm, 1974) that, if the vector of time
series follows a VAR(p) model, the univariate time series models have maximum
order ARMA(pm, (m — 1)p). Thus, the order of the univariate AR model fitted
must be larger than the order of the multivariate. Suppose by using a model
selection criteria we obtain that the univariate model can be approximated by an
AR(k;) model. Then we can select L = k; as the lag. Moreover, we can perform a
sensitivity analysis and repeat the computation for L = k+gforg =1, 2,... and
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check that the residual variance of the dynamic regression does not change.
Alternatively, different orders k.. . ..k, can be used. A simple procedure to obtain
them is to fit individual regressions of Y, with each of the remaining regressors
Y>s,. .., Y, and choose each lag order by an information criteria such as Bayesian
information criterion (BIC) or Akaike information criterion (AIC).

A practical problem can arise when the number of series is larger than the
sample size. Fitting the proposed dynamic regression requires that 7" > Lm.
Thus, if the sample size is not large and we have many time series and a large
value of L, the dynamic regression cannot be fitted. However, we can still estimate
the residual variance of this regression as follows:

2* Compute the r principal components of the variables Yz;. Let Y,g? be the
1 x r vector of the r largest principal components of the vector of variables
Yrz. Then, we will regress yy,,, on its past values and on the variables ng't’).
This regression can be estimated if 7 > L + r, and this requires r < n — h.
Note that this procedure is equivalent to a singular value decomposition of
the rectangular matrix Yg; followed by a reparameterization of the regres-
sion coefficients. The value of r must be smaller than n — 4. Thus, we can
select r so as to include a large proportion of the explained variability while
keeping this restriction. A simple solution is to take r = min(n — A, gog),
where gog is the number of principal components required to include 99% of
the variability of the vector of time series.

3. SOME MONTE CARLO RESULTS

There are several alternatives to compute Pyyy(h), which basically differ in the
order selection procedure for the autoregressions involved. Since our goal is to
propose a simple method to quickly evaluate the convenience of building a more
sophisticated VARMA model, we will base our empirical experiments on simple
and well-known order selection procedures. In this experiment we have used both
AIC and BIC. The performance of both procedures was similar, with BIC having
a somewhat better performance. Therefore, for brevity we will only report the
results based on the BIC.

We considered three different VAR(1) for generating the data. The first model, M1, is

»ne|_ 108 ¢ Yie-1 ay |, ; |1 05

[yzt] N [0-2 0-4} L’Zt—l} * {azt]’ var(a,) = {0.5 2| G
with a, = (a1, a»;)’, and we generated bivariate series from this model with ¢ =
0, 0.25, 0.5 (if ¢ > 0.6 the process is non-stationary). For the second model, M2,

we decreased the dependency of the first series from its own past and also
increased the interdependency of the two series. The model is
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yiel _ (02 ¢ ||y ai |, 1
[yzt] - [0.2 0.6Hy2,_l +[az,}’ var(a,) = L L (32)
with ¢ =0, 0.75, 1.50 (if ¢ > 1.6 the process is non-stationary). The third

stationary model, M3, includes four series with a more complex dynamic
structure:

Vit 0.7 ¢ Vi1 ay
Y| 06 0.1 0.0 0.2 Y2r-1 ay | .
vl =105 04 —08 —03||m| e’ (33)
Var 00 —04 03 07 | |vun as,
1 1 1 1
1 2 1 1
var(a,) = 113 1D (34)
1 1 1 4

with ¢’ = [0 0 0] and ¢' = [0.5 —0.4 0.1]. In the three models, two
sample sizes, T = 100 and 200 were included, and the number of replications was
20,000. In each replication, a sample of 100 + 7 + 5 data was generated by one
of the models. The first 100 data were discarded in order to ensure stationary
initial conditions, and in the following 7 data, and for 2 = 1, 3, 5, the models
estimated using OLS. The last five observations were considered as future
observations to calculate out-of-sample prediction errors. For the uni-variate
model in eqn (4), k; was selected by BIC in the range [1,6]. For the estimation of
the multivariate predictors as in eqn (11), we first estimated the orders k; for each
series j = 2,...,m. These orders were estimated by each series and each horizon
by regressing yisyn ON Vi Vi +1, j=2,...,m at a time. The orders
k; = kj(h) were selected by BIC also in the range [1,6].

In order to assess how well the proposed measure Pyu(h) corresponds to the
out-of-sample relative forecast performance of univariate and multivariate
models, we also computed out-of-sample prediction errors using the last five
observations not used in the estimation of the models. The predictability
measure obtained from these out-of-sample prediction errors will be denoted as
Pypu(h), which can be interpreted as the population value that we are
estimating with Pyjuy (k). To compute Pyyu(h), the estimated multivariate model
was a VAR(k) with k selected by using BIC in the range [0,6], and the
univariate models were ARMA(p, ¢) models again with order selected by using
BIC. Since the vector of time series follows a VAR(1) model, univariate time-
series models will have maximum-order ARMA (m, m — 1). Consequently, in
models M1 and M2, the range of p used in the BIC selection is [0,3] and the
range of ¢ is [0,2]. For model M3, the range of p is [0,5] and the range of ¢ is
[0,4]. By averaging the 20,000 squared prediction errors of each model at each
horizon we obtain the MSIE at each horizon for the multivariate and
univariate models. The predictability measure Pyqu(h) is then computed using
these MSIE.
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TABLE I
MEAN AND VARIANCE OF Pyqu(1) USING MODEL M1 ALONG WiTH 20,000 REPLICATIONS

¢ =00 ¢ =025 ¢ =0.50

PM\U PM\U pM|U

Pumu Mean Var Pyu Mean Var Pumu Mean Var

h
T=150
1 —0.001 0.013 0.0037 0.104 0.102 0.0118 0.304 0.286 0.0173
3 0.006 0.044 0.0094 0.056 0.072 0.0128 0.100 0.118 0.0160
5 0.011 0.054 0.0127 0.035 0.053 0.0130 0.036 0.066 0.0146
T =100
1 —0.006 —0.004 0.0007 0.099 0.102 0.0046 0.313 0.299 0.0071
3 —0.001 0.016 0.0017 0.045 0.059 0.0044 0.119 0.126 0.0061
5 0.002 0.019 0.0023 0.024 0.036 0.0034 0.053 0.069 0.0050
T =200
1 —0.002 0.001 0.0002 0.104 0.105 0.0021 0.314 0.306 0.0032
3 —0.003 0.007 0.0004 0.054 0.056 0.0018 0.138 0.131 0.0026
5

0.000 0.008 0.0005 0.025 0.030 0.0013 0.069 0.072 0.0020

Tables I to 111 summarize the results. It can be seen that conclusions are very
similar for the three models. The tables show that, overall, PM|U(h) is quite
accurate, tending to yield average values thatAare closer to Py as the sample size
increases. Even at T'= 50 the variance of Pyy is reasonably low, allowing to
detect those situations in which the multivariate predictor is profitable. As
expected, the lowest performance is obtained at 7= 50 and & = 5. The variance
of IA’M‘U is also large in the third model and 7" = 50. At samples sizes 7' = 100 and
200, the variance is very low. It is interesting to note in these experiments that the
relative advantage of the multivariate predictor depends on the horizon. For

TABLE II
MEAN AND VARIANCE OF Pyqju(h) USING MODEL M2 ALONG WITH 20,000 REPLICATIONS

¢ =00 ¢ =075 $ =150

PM\U le\U PM\U

Pumpu Mean Var Pympu Mean Var Pumu Mean Var

0.005 0.017 0.0034 0.361 0.358 0.0141 0.714 0.729 0.0047
—0.003 0.022 0.0042 0.074 0.056 0.0068 0.114 0.118 0.0075
0.002 0.022 0.0046 0.038 0.020 0.0066 0.037 0.049 0.0079

1

3

5

1 0.013 0.005 0.0006 0.366 0.361 0.0066 0.732 0.736 0.0019
3 —0.001 0.007 0.0008 0.062 0.063 0.0022 0.135 0.143 0.0025
5 —0.001 0.007 0.0008 0.036 0.022 0.0012 0.060 0.072 0.0018
1

3

5

0.013 0.002 0.0001 0.363 0.363 0.0030 0.735 0.739 0.0009
—0.002 0.003 0.0001 0.073 0.067 0.0010 0.160 0.154 0.0011
0.002 0.003 0.0001 0.028 0.024 0.0005 0.083 0.084 0.0007
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TABLE III
MEAN AND VARIANCE OF Pyqu(f) USING MODEL M3 ALONG WITH 20,000 REPLICATIONS

$=[0 0 0] ¢ =05 —04 0.1]
Pyju Pyu
h Pumju Mean Var Pmju Mean Var
T=150
1 —0.048 0.025 0.0106 0.580 0.533 0.0146
3 —0.026 0.063 0.0187 0.221 0.194 0.0261
5 —0.008 0.075 0.0241 0.115 0.111 0.0336
T =100
1 —0.030 0.008 0.0019 0.560 0.542 0.0052
3 —-0.013 0.020 0.0032 0.198 0.197 0.0073
5 —0.005 0.025 0.0040 0.102 0.100 0.0075
T = 200
1 —0.016 0.002 0.0004 0.554 0.546 0.0024
3 —0.007 0.008 0.0007 0.206 0.196 0.0030
5 —0.003 0.010 0.0008 0.098 0.100 0.0028

instance, in the third experiment (Table III) with ¢’ = [0.5 —0.4 0.1], the
multivariate predictor is very competitive at & = 1. This advantage is clearly
detected by f’M|U. However, if our interestAis to make predictions at & =5, the
multivariate predictor will not help out, as Pyjy also reveals. As a result, Pyju (/)
can provide a simple and accurate measure of what can be expected from a more
elaborate multivariate model.

4. SOME EXAMPLES

In this section we illustrate the use of the proposed measure fDM‘U(h) with two
examples. In both examples we compute the predictability by running the two
regressions in eqns (18) and (24) with a maximum lag equal to 6 and selecting the
order by the BIC criterion. We also made the order selection by using the AIC
criterion, but as the results were very similar, only the results obtained with BIC
are reported here. Note that in both examples the time series are non-stationary
but have been transformed to stationarity.

4.1. Example 1: gas furnace data

Box and Jenkins (1976, p. 381) built a transfer function model for the
proportion of output CO, (y,) as a function of the non-stochastic feed rate of
methane (x;) in a gas furnace. The data correspond to 296 readings at 9-second
interval. The predictability measure considered in the previous section applied to
these data are shown in Table IV. The analyses have been made with the first
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TABLE IV

UNI-VARIATE AND MULTI-VARIATE PREDICTABILITY OF THE PROPORTION OF OUTPUT WITH THE
GASFURNACE DATA

h pu(h) PM(/’I) PM|U (h) FM\U(h)
1 0.791 0.889 0.468 0.456
3 0.234 0.834 0.783 0.779
5 0.100 0.736 0.707 0.705

differences of both y, and x,. The column f’U(h) shows that the univariate
predictability of y, decreases fast with the horizon. However, the column Py (h)
indicates that this loss of predictability for higher horizons does not appear in
the multivariate predictor. The column PM‘U(h) indicates that the transfer
function model is expected to lead to a reduction of MSPE, with respect to the
univariate model, of 47.7% for h = 1 and as large as 78.3% for # = 3. In this
example as the number of parameters is not large we only have an explanatory
variable. For this reason, the values of I:“M‘U(h) are only slightly smaller than
those of Pyu(h). As a result, we conclude that the feed rate of methane is an
excellent control variable for the output CO,, even in the long term.

4.2. Example 2: gross domestic product in europe

In this second example we are interested in forecasting the quarterly rate of
growth of the seasonally adjusted gross domestic product in Spain. In addition
to this time series we also have the times series of this variable for eight other
European countries: Belgium, Denmark, France, Italy, the Netherlands,
Finland, UK and Norway. The series of V log x,, where x, is the season-
ally adjusted product at market prices from Eurostat, are shown in Figure 1 in
the period January 1980 to March 2002, with a total of 90 observations. The
first series corresponds to Spain and then we show the other European countries
in the same order presented before so that the second one is Belgium and the
last one Norway. Table V shows the results of forecasting the series of Spain.
According to f’M|U(h), there is not much advantage in using the information on
the other European countries at 4 = 1, since the expected reduction in MSPE is
about 4%. This reduction is very small and, as suggested by FM‘U( 1), can vanish
because of the estimation variability. The conclusion at 2 =1 is that a
multivariate predictor might have some advantage with a larger data set and
careful modelling. With smaller data sets, an univariate predictor is preferred.
We can be more optimistic at & = 3. According to I5M|U(3), the estimated
reduction in MSPE is about 20%. We also need careful modelling otherwise, as
indicated by ﬁM‘U(3), we can lose an important portion of that advantage. As
the horizon grows, the relative advantage of the multivariate predictor is
reduced to an expected gain of 14.5%. Again, as suggested by I:“M|U(5), the small
sample size can make that an excess of sampling variability significantly reduces
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FIGURE 1. Rate of growth, V log x,, of seasonally adjusted domestic product in the nine European
countries. The first time series correspond to Spain and the last one to Norway.

TABLE V

UNIVARIATE AND MULTIVARIATE PREDICTABILITY OF RATE OF GROWTH OF GROSS DOMESTIC
PRODUCT IN SPAIN

h Py(h) Py (h) Py (h) Fuju ()
1 0.240 0.273 0.044 <0

3 0.211 0.368 0.199 0.111
5 0.169 0.289 0.145 0.017

such advantage. Then, because of the small sample size, a multivariate pre-
dictor can be advantageous only to forecast in the medium term. Rate
of growth, V log x,, of seasonally adjusted domestic product in the nine
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TABLE VI
VALUE OF Pyqu(/) FOR THE NINE COUNTRIES

h  Spain Belgium Denmark France Italy  The Netherlands Finland UK Norway

1 0.044 0.020 0.159 0.309 0.308 0.276 0.183 0.223  0.088
3 0.199  0.000 0.105 —0.034 0.034 0.319 0.064 0.460 —0.016
5 0.145  0.159 0.040 0.258 0.208 —0.086 0.160 0.299  0.236

European countries. The first time series corresponds to Spain and the last one
to Norway.

It is interesting to note that the relative advantage of the multivariate predictor
could be very different in each country. For instance, the countries with the largest
value of I5M|U(1) are Italy (31%) and France (30%), whereas the smallest gain in
the multivariate model with regard to the univariate one corresponds to Belgium
(2%). Overall, the country that would have greater benefit from a multivariate
model at all horizons is the UK. Table VI summarizes the value of PM|U(h) for all
the countries.

APPENDIX

Proor oF TheoREM 1 (1). From eqn (25) we have
A(L) _ ML) _ M(L) M(L) ~M(L)
Upon = Yievh = Vigyple = Yierh = Yigop)s + (ylt+h\t _ylt+h|1>' (35)

From eqns (10) and (11) we obtain

Mit+h — ylH_;,‘, Z Zﬁjbyjt b+1 F Upph — Z Z ,ijyjt b+1 (36)

J=1 b= =1 b=

ki

M&

<ﬁjb ]b)yjl b+l (37)

= Upth +
1 b=1

~.
Il

+3 ) Buviesir- (38)

J=1 b=k;+1

If process y;, is stationary, y;, = O,(1). Then by Assumption 2(ii), we have

S Buviset = op(T72). (39)

b=kjs1
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From Baxter’s inequality (Baxter, 1963; Cheng and Pourahmadi, 1993) we have

<c Z |ﬁ/b|

i=k;+1

jb T ﬂ;b

with ¢ a bounded constant, and in the sequel not always the same constant. Then, applying
stationarity and Assumption 2(ii), we have
k/

</ng jb>yjt b+1 = O < _1/2>~
b=1
On the other hand, we have

m
M(L
ylt+h|t y1t+h|t § :
j=1 b=1

K

( /b>y]t b+1y

and by Assumption 2(i) and using the stationarity of the processes, we have
(ﬁ;‘b - ﬁ;b) = Op(Til/z)
and hence

M(L) ML) _ 1/2
Vitwnle = Vienle = Op(km T~ / );

with ky = max(k;). Then,

B, = v + O(T7172). U

Proor oF TheoreMm 1 (ii). Let us denote by
oD =y, — YMB’
to the residuals of model (24) estimated by OLS, and v'¥) = ¥, — YMB*. Then,
E[63,(h)] = EGW'o* ) Ty' = E@W'M o) Ty,
where
M =1 - yMAMYM) 'YW and T =T —h—ku+1-S5.
Then,

E[ ()] = Ty E(o @) = 13 E [ yM My~ Mot (40)

For an arbitrary vector x and an r x r matrix 4, let ||x|| = (x ’x)”2 be the Euclidean

norm of x, and ||A|} = supy<i1(x’'4 'Ax)'"? be the matrix norm of A. From eqns (35) and
(36) we can write v,,;, = v,y + w;, Where

m

ZZ( jb /b>y/t b1+ Z BinYjt—b+1- (41)
k,

Jj=1 b=1 Jj=1 b=k;+1
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Let us denote v=(0, +h v, +h+1,...,vp" and w=(wg,,...,wr_)’. Then

VYD =yt 4 dyw! 4w Therefore since v is independent of w, E(V(L) vy =
E('v) + E(w'w), where

ek
(Zv > (T — h— kn + Doy (h).
t=T—h

From eqn (41) we obtain

kj

m m ki %
E(Wtz) = Z Z( ﬁ ) /t b+1Yit— d+l)
j=1 i=1 b=1 d:l
m o0 o0
”'Z Z B Z BiaE (Vji—b+1Yi—at1)
S R
m m Kk 0
+2 <ﬁjb > > BaE @i si1i-ar)-
Jj=1 i=1 b=1 d=k;+1

By the stationarity of the process and applying Baxter’s inequality and Assumption 2, we
have

bﬁ;@’b ) ( _]/2)+,§m:1b§::+1ﬂ (T—1/2>

DR WCETALCD

i=1 b=1

E(w;

Ms

T
T

+
N8}
M=

~.
I

7

T+ 30T ) +2) Y o(r ) o1 ),

j=1 j=1 i=1

3

I
™
Ms

~.
]
I

and then E(w'w) = o(1). As a result, we obtain
T E(o'00)) = T (T + Sy () + o(Ty). (2)
We can write

E [U(L)/YIM(YIM/YlM)fl YlM/v(L):| — trace{E [(YIM/YIM)*I Y]M/U(L)U(L)/YIM] }

Let us denote I', = E(YM'YM) and T, = Ty (YM'¥YM) Then,

trace{E [(Yf\’“Yll"[fl YIM’U(L)U(L)'YIM} } (43)
= trace{TIQI'F;IE[YV’U(L)U(L)/YIM] } (44)
+ trace{ TIQIIEK - l"y’l) YIM/U(L)U(M/YIM} } (45)
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In order to solve eqn (43) we will first analyse the term
trace{ Ty, T, E [ MootV yM] .

Using similar arguments as in the preceding text, we have

E(rMoo M) = E(rMo vM) + 28 ow vM) + E(Mwn M), (46)

Applying Holders’ inequality, we obtain
sl ) < () )"

and since v and w are independent, E(||YMow/ YM|) = 0. Analogously, by Assumption 2
and the stationarity of the series,

E(|rw ) < E(IR) e (i)
= 0(5"%)o(1) = 0<T1\14/3).
Then
trace{ Ty, T, E[ Yoo M} = trace{ 13y, LE(YMw' vM) }
+o(1y'").

Using eqn (9), we have
h—1 0
Utyh = Z Niin—r1s
=0

(0

where 115th, = ¢ Yia,4—;. If we denote g;; to the (7, /) element of the matrix Y, we have

'7t+h 1= Zgu Ajrrh—1,
and by the properties of a,, we have

E[nff,ff,] =YY =3 [=0,1,.. h—1;
|:;7t+/7]z+/ - ClYZQ T mC1 = L Kim; ]: 11"'>h

=
[th ] =0 Lm =01, h— 1
ten) =

Then
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Ty—1 s~h—1

ZiT:o 1 2111:2 Ykm+iMiy+h+i—1
— _

Zi:O ZI:O Yl —1+iMkyg+h+i—1

M Tu—1~—h-1_
= pIry lzizol Ve~ +iliyg+hvi-1 | (47)
T — —
Z N Zz:o Vokm+iMlig+h+i—1

Tu—1~h-1_
L 2220 2210 Ymkw—ko+iMkyg i1
Multiplying the vector in eqn (47) by its transpose, we obtain a symmetric S x S matrix
whose elements can easily be analysed using standard, but tedious, algebra. It can then be

seen that E(YMoo'YM) = E({py}) i,j=1,.... k is an S x S matrix with the following
elements:

h—1
E({py}) = Twyi, (Z K?)
1=0
h—1 h—r—1
+ZZ(TMF)V’/+V<Z XKIAIJrr) i7j:l7"'7S7
r=1 1=0

where y;; is the element of covariance matrix I', occupying the position (i, j). Then after
some manipulation, it can be concluded that E(YMuw/YM) = T,B, () \where

B;,TM) = [{b;;}] is an S x S Toeplitz symmetric matrix with
h—1
[{b”}]_TM<ZK?>, 1217,S
h=j
[{b”}]—2TM—1 ( K]1+/> =1,....8;, j=i+1,...;i+h—1
=0

[{bl]}]:(), l:1,...,S; j:l—I—h,,S

Therefore,
trace{TI\QIF;IE(YIM’UU’YIM) } = trace [TI;[' r! FyBEITM)]
= Sai/f (h)7
and hence
e —1/3
trace{ Tery g {YIM/U(L)D(U,YIM} } = Sa3,(h) + 0( / ) (48)

We should now solve the second term at the right-hand side of eqn (43). Let us denote as
&;to an element of the S x S matrix I ;1 and ¢, to an element of the S x S matrix. Then,

(151 - 5t i) — o{s sup £[(8 - &) }

By Holders’ inequality,

© 2007 The Authors
Journal compilation © 2007 Blackwell Publishing Ltd.
JOURNAL OF TIME SERIES ANALYSIS Vol. 28, No. 6



908 D. PENA AND I. SANCHEZ

EH (Eij - fij) Prs } < E( & - finz) I/zE(H€0rsH2)l/2~
Since
S vt I Lt (e bl e T T
we have
e L N (L R (S S TR

Since ‘ r, ! ‘ is uniformly bounded above by a positive constant, and from Lewis and
Reinsel (1985, p. 397), we have \|F;1\|2 = 0(S) and then [|&]*=0(),
4
E( ) = O(1). Moreover, by the asymptotic properties of OLS we have
~ 4 _2
E(H(%; =) > = 0(Ty’)

(Lewis and Reinsel, 1985a, 1988; Bhansali, 1981). Then, applying these results to eqn (49),
we obtain

P
Sij

E(H&ti/ — iy 2) = O(Ty").
Moreover, from eqn (48), we have E(||¢,||*) = O(1). Then,
E[H (%ij - fz‘j) (™

Therefore, also applying Assumption 2,

trace{ThjllEKfy_l - r;l) YIM’u(%WYlM] } - o(srgf/z) = o(Ty"). (50)

} = o(1y'?).

As a result, from eqns (43), (48) and (50), we have
E {UWYIM(YIM’YIM)*‘ YIM’u“)] = So3,(h) + o(mm) +o(Ty") (51)
Finally, from eqns (40), (42) and (51)
E[a3y(h)] = Ty (Tu + S)ayg (h) + Tyy' Sy () + o(Tyy') = oy (k) + o(Tyy').

and the theorem is proved. O

ACKNOWLEDGEMENTS

The authors are thankful to a referee for valuable comments. This research was
supported by MCYT grant no. SEJ2004-03303, Spain.

NOTE

Corresponding author: Ismael Sanchez, Avd de la Universidad 30, 28911,
Leganés, Madrid, Spain. E-mail: ismael.sanchez@uc3m.es

© 2007 The Authors
Journal compilation © 2007 Blackwell Publishing Ltd.
JOURNAL OF TIME SERIES ANALYSIS Vol. 28, No. 6



MULTIVARIATE VS. UNIVARIATE FORECASTS 909

REFERENCES

AKAIKE, H. (1970) Statistical predictor identification. Annals of the Institute of Statistical Mathematics
21, 243-7.

BaILLIE, R. T. (1980) Predictions from ARMAX models. Journal of Econometrics 12, 365-74.

BAXTER, G. (1963) A norm inequality for a “Finite Section” Wiener-Hopf equation. //linois Journal of
Mathematics 22, 203-17.

BHANsALL R. J. (1981) Effects of not knowing the order of an autoregressive process on the mean
squared error of prediction-1. Journal of the American Statistical Association 76, 588-97.

BuANsALL R. J. (1993) Estimation of the prediction error variance and R* measure by autoregressive
model fitting. Journal of Time Series Analysis 14, 125-46.

BHaNsALL R. J. (1997) Direct autoregressive predictors for multistep prediction: order selection and
performance relative to the plug in predictor. Statistica Sinica 7, 425-49.

BHANsALL R. J. (1999) Autoregressive model selection for multistep prediction. Journal of Statistical
Planning and Inference 78, 295-305.

Box, G. and JENKINS, G. (1976) Time Series Analysis: Forecasting and Control. San Francisco: Holden
Burg.

Box, G. and T1ao0, G. (1977) A canonical analysis of multiple time series. Biometrika 64, 355-65.

CHENG, R. and PourAHMADI, M. (1993) Baxter’s inequality and convergence of finite predictors of
multivariate stochastic processess. Probability Theory and Related Fields 95, 115-24.

FuLLer, W. A. and Hasza, D. P. (1981) Properties of predictors in misspecified autoregressive time
series models. Journal of the American Statistical Association 76, 155-61.

GRANGER, C. W. J. and NEwsoLD, P. (1986) Forecasting Economic Time Series. Orlando, FL:
Academic Press.

JOHANSEN, S. (1995) Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford:
Oxford University Press.

Lewis, R. and REINSEL, G. C. (1985a) Prediction of multivariate time series by autoregressive model
fitting. Journal of Multivariate Analysis 16, 393-411.

Lewis, R. and REINSEL, G. C. (1985b) Prediction error of multivariate time series with mis-specified
models. Journal of Time Series Analysis 9, 43-57.

PENA, D. and Box, G. (1987) Identifying a simplifying structure in time series. Journal of the American
Statistical Association 82, 836—43.

PERA, D. Tiao, G. C. and TsAy, R. S. (2001) A4 course in Time Series Analysis. New York: John Wiley.

PIERCE, D. A. (1979) R* measures for time series. Journal of the American Statistical Association T4,
901-10.

REINSEL, G. C. (1993) Elements of Multivariate Time Series Analysis. New York: Springer Verlag.

REINSEL, G. C. and VELU, R. P. (1998) Multivariate Reduced-Rank Regression. New York: Springer
Verlag.

Tiao, G. C. and Tsay, R. S. (1989) Model specification in multivariate time series. Journal of the Royal
Statistical Society, Series B 51, 157-213.

YAaGLoMm, A. M. (1963) Stationary Gaussian processes satisfying the strong mixing condition and best
predictable functions. Proc. Int. Res. Sem. of the Statistical Laboratory, University of California,
Berkeley, CA, 241-52.

Yamamoro, T. (1976) Asymptotic mean squared prediction error for an autoregressive model with
estimated coefficients. Applied Statistics 2, 123-7.

Yamamoro, T. (1981) Predictions of multivariate autoregressive-moving average models. Biometrika
68, 485-92.

ZELLNER, A. and PaLm, F. (1974) Time series analysis and simultaneous equation econometric Models.
Journal of Econometrics 2, 17-54.

© 2007 The Authors
Journal compilation © 2007 Blackwell Publishing Ltd.
JOURNAL OF TIME SERIES ANALYSIS Vol. 28, No. 6



