
EFFECTS OF OUTLIERS ON THE IDENTIFICATION
AND ESTIMATION OF GARCH MODELS

By M. Angeles Carnero, Daniel Peña and Esther Ruiz

Universidad de Alicante and Universidad Carlos III de Madrid

First Version received July 2005

Abstract. This paper analyses how outliers affect the identification of conditional
heteroscedasticity and the estimation of generalized autoregressive conditionally hetero-
scedastic (GARCH) models. First, we derive the asymptotic biases of the sample
autocorrelations of squared observations generated by stationary processes and show that
the properties of some conditional homoscedasticity tests can be distorted. Second, we
obtain the asymptotic and finite sample biases of the ordinary least squares (OLS)
estimator of ARCH(p) models. The finite sample results are extended to generalized least
squares (GLS), maximum likelihood (ML) and quasi-maximum likelihood (QML)
estimators of ARCH(p) and GARCH(1,1) models. Finally, we show that the estimated
asymptotic standard deviations are biased estimates of the sample standard deviations.

Keywords. Autocorrelations; generalized least squares heteroscedasticity; maximum
likelihood; McLeod-Li test; ordinary least squares.

1. INTRODUCTION

Autoregressive conditional heteroskedastic (ARCH) models were introduced by
Engle (1982) and extended to generalized ARCH (GARCH) by Bollerslev (1986)
to represent the dynamic evolution of conditional variances. However, when these
models are fitted to real time series, the residuals often have excess kurtosis, which
could be explained, among other reasons, by the presence of outliers.

As in linear models, outliers affect the identification and estimation of GARCH
models. It is known that outliers may wrongly suggest conditional
heteroscedasticity. Van Dijk et al. (1999) analyse the properties of the Lagrange
multiplier (LM) test for ARCH models in the presence of isolated additive outliers
and show that, when the conditional mean has an autoregressive component, the
LM test rejects the true null hypothesis of conditional homoscedasticity too often.
Similar conclusions have been obtained by other authors analysing real time series
of macroeconomic and financial variables (see, e.g. Balke and Fomby, 1994;
Franses and Ghijsels, 1999; Aggarwal et al., 1999; Franses et al., 2004). It is also
known that outliers may hide true heteroscedasticity (see Van Dijk et al., 1999;
Mendes, 2000; Li and Kao, 2002).

With respect to estimation, Sakata and White (1998) and Mendes (2000)
analyse the finite sample effects of neglecting a single outlier on the maximum
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likelihood (ML) estimator of the parameters of GARCH(1,1) models. The
conclusion in both papers is that the parameter measuring the ARCH effect is
biased towards zero while the biases of the parameter related to the
persistence of volatility are not clear and depend on the sample size.
Furthermore, they also observe a loss of precision in the estimation of all
the parameters.

This article extends these analyses in several directions. First of all, we derive
the asymptotic biases caused by outliers on the sample autocorrelations of
squared observations generated by stationary processes. We show that additive
outliers in uncorrelated stationary series bias the sample autocorrelations of
squares in the same direction, regardless of whether the generating process is
homoscedastic or heteroscedastic. When outliers appear in patches, the
autocorrelations of squares are different from zero, while when they are
isolated, the autocorrelations are zero. The biases of the sample
autocorrelations are then used to analyse the effects of outliers on the size and
power of some popular homoscedasticity tests. We also carried out extensive
Monte Carlo experiments to study which sizes of the outliers are expected to have
significant effects on the testing results. In particular, we show that, if the sample
size is large enough, relatively small consecutive outliers can lead the tests to
detect spurious conditional heteroscedasticity, while isolated outliers hide genuine
heteroscedasticity only if they are very large. We also analyse a robust test for
conditional heteroscedasticity proposed by Van Dijk et al. (1999) and show that,
in large samples, its size is distorted.

With respect to estimation, we obtain the asymptotic biases of the ordinary
least squares (OLS) estimator of the parameters of ARCH(p) models and analyse
their finite sample behaviour by means of extensive Monte Carlo experiments.
Interestingly, we show that in finite samples, outliers can generate negative
estimates of the ARCH parameters violating the restrictions for the positivity of
the conditional variance. The finite sample results are extended to generalized
least squares (GLS) and ML estimators of ARCH(p) and GARCH(1,1) models.
We show that the GLS estimator is more robust than the OLS and is similar to
ML. We also analyse the finite sample behaviour, in the presence of outliers, of a
quasi-maximum likelihood (QML) estimator based on maximizing the Student t
likelihood when the conditional distribution is truly Gaussian. We show that this
estimator is resistant against outliers even when the sample is moderate and the
outliers are relatively large. The properties of a closed-form estimator of the
parameters of GARCH(1,1) models recently proposed by Kristensen and Linton
(2006) have also been analysed. Given that this estimator is based on the sample
autocorrelations of squared observations, the biases of these autocorrelations
caused by outliers affect the properties of the closed-form estimator. Finally, we
also study the effects of outliers on the estimated asymptotic standard deviations
of the estimators considered and show that they are sometimes biased estimates of
the sample standard deviations. Consequently, the inference on the GARCH
parameters can be seriously affected, even in the presence of outliers of moderate
sizes.
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The article is organized as follows. Section 2 derives the biases caused by
additive outliers on the sample autocorrelations of squared observations.
Section 3 analyses how these biases affect the size and power of conditional
homoscedasticity tests. Section 4 deals with the asymptotic and finite sample
biases of the OLS, GLS, ML and QML estimators of the parameters of ARCH(p)
models contaminated by additive outliers. These results are also extended to the
ML and QML estimators of the parameters of GARCH(1,1) models in Section 5.
Finally, Section 6 concludes the paper.

2. EFFECTS OF OUTLIERS ON THE SAMPLE AUTOCORRELATIONS OF SQUARED OBSERVATIONS

In this section, we derive analytically the effect of large additive outliers on the
sample autocorrelations of squared observations generated by stationary
processes that could be either homoscedastic or heteroscedastic.

Consider that the series of interest, yt, t = 1, . . . ,T, is a stationary series with
finite fourth-order moment that is contaminated from time s onwards by k
consecutive outliers of the same size x. The observed series is given by

zt ¼
yt þ x if t ¼ s; sþ 1; . . . ; sþ k � 1
yt otherwise.

�
ð1Þ

In this article, we focus on additive outliers because our interest is in the
analysis of daily financial returns which are often characterized by being
uncorrelated. In this context, the traditional distinction between additive and
innovative outliers is not relevant. In any case, it is well known that the effects of
innovative outliers on the dynamic properties of the series are less important as
they are transmitted by the same dynamics as in the rest of the series (see, e.g.
Peña, 2001). On the other hand, it is important to distinguish whether an outlier
affects or not future conditional variances. We assume that the additive outliers
defined in (1) are level outliers (LO) in the sense that they affect the level of the
series but not the evolution of the underlying volatility
[see Hotta and Tsay, 1998; Sakata and White, 1998 for the distinction between
LO and volatility outliers (VO) in the context of GARCH models]. VO are
defined in such a way that the underlying conditional variance depends on the
observed series. Once more, we expect that similar to what happens in the context
of linear models, the effects of VO are less important than those of LO.

The autocorrelation of order h, h � 1, of the squared observations of the
contaminated series in eqn (1) is estimated by

rðhÞ ¼

PT
t¼hþ1

z2t z2t�h � T�h
T 2

PT
t¼1

z2t

� �2

PT
t¼1

z4t � T�1
PT
t¼1

z2t

� �2
: ð2Þ
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If the sample size, T, is large relative to the order of the estimated
autocorrelation, h, the numerator of r(h) can be written as follows

X
t2TðhÞ

y2t y2t�h þ
Xh�1
i¼0
ðysþi þ xÞ2y2sþi�h þ

Xk�1
i¼h

ðysþi þ xÞ2ðysþi�h þ xÞ2

þ
Xkþh�1

i¼k

y2sþiðysþi�h þ xÞ2 � T�1
X

t2Tð0Þ
y2t þ

Xk�1
i¼0
ðysþi þ xÞ2

2
4

3
5
2

ð3Þ

where T(s) = fs+1, . . . , s�1,s+k+s, . . . ,Tg. Similarly, the denominator can be
written as

X
t2Tð0Þ

y4t þ
Xk�1
i¼0
ðysþi þ xÞ4 � T�1

X
t2Tð0Þ

y2t þ
Xk�1
i¼0
ðysþi þ xÞ2

2
4

3
5
2

ð4Þ

If the order of the autocorrelation is smaller than the number of consecutive
outliers, i.e. h < k, then the third summation in (3) contains k � h terms which
depend on x4. Therefore, eqn (3) is equal to (k � h � (k2/T))x4 + o(x4).
However, if h � k then the third summation in (3) disappears and the numerator
of r(h) is equal to �(k2/T)x4 + o(x4). On the other hand, equation (4) is equal to
(k � (k2/T))x4 + o(x4). Then

lim
x!1

rðhÞ ¼
1� h

kð1�k
TÞ

if h < k
k

k�T if h � k

(
ð5Þ

Therefore, one single large outlier (k = 1) always biases towards zero r(h) for all
lags, while a set of k large consecutive outliers generates positive r(h) for h < k
and zero for the others. Furthermore, for h < k and large T, the
autocorrelations follow a linear decay for large outliers. For example, two
large consecutive outliers generate an autocorrelation of the squares of order
one approximately equal to 0.5, all the others being close to zero. Thus, if a
heteroscedastic series is contaminated by a large single outlier, the detection of
genuine heteroscedasticity will be difficult. On the other hand, when a
homoscedastic series is contaminated by several large consecutive outliers, the
positive autocorrelations of squares generated by the outliers can be confused
with conditional heteroscedasticity.

It is important to note that the limits in (5) are valid regardless of whether yt is a
homoscedastic or heteroscedastic process. Moreover, note that although we have
assumed that the outliers have the same sign, the limiting result only depends on
x4 and would be the same if the signs are different. In addition, we can allow for
different sizes and write xt instead of x in eqn (1) and the results will be the same
as far as all the xt go equally fast to infinity.

474 M. A. CARNERO, D. PEÑA AND E. RUIZ
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3. EFFECTS OF OUTLIERS ON TESTING FOR CONDITIONAL HETEROSCEDASTICITY

Many popular tests for conditional homoscedasticity, such as those proposed by
Engle (1982), McLeod and Li (1983), Peña and Rodriguez (2002), and Rodriguez
and Ruiz (2005) among others, are based on autocorrelations of squares and if
these autocorrelations are biased, their properties will be affected. In this section,
we analyse the behavior of such tests in the presence of outliers. As an example,
we will focus on the McLeod and Li test which uses the Box–Ljung statistic for
squared observations given by

QðmÞ ¼ T ðT þ 2Þ
Xm

j¼1

r2ðjÞ
ðT � jÞ :

Under the null hypothesis of conditional homoscedasticity, if the eighth-order
moment of yt exists, Q(m) is approximately distributed as a chi-squared
distribution with m degrees of freedom.

On the other hand, Engle (1982) proposed a Lagrange multiplier (LM) test of
homoscedasticity which is asymptotically equivalent to the McLeod and Li test.1

Van Dijk et al. (1999) investigate the properties of the LM test in the presence of
isolated additive outliers. In particular, they show that, in the presence of large
isolated outliers, the size of the LM test when implemented to the residuals of an
AR(1) model is larger than the nominal. On the other hand, in this case, there is
an asymptotic power loss of the LM test when implemented to GARCH white-
noise series (see also, Lee and King, 1993). They propose an alternative robust
version of the LM test (RLM) which has better size and power properties in the
presence of outliers. The RLM(m) statistic is given by TR2 where R2 is the
determination coefficient when regressing w(rt)

2 on a constant and
w(rt�1)

2, . . . ,w(rt�m)
2 where

wðxÞ ¼ xð1� Hðjxj � c1ÞÞsignðxÞ þ Hðjxj � c1Þ
�
1� Hðjxj � c2Þ

�
gðjxjÞ ð6Þ

with c1 and c2 being constants (the authors consider c1 = 2.576, c2 = 3.291),
H(x) = I(x > 0), sign(Æ) is the sign function and g(x) is an order 5 polynomial
that makes the w function twice differentiable. On the other hand,

rt ¼
yt

ryxyðyt�1Þ

with ry being the MAD of yt and

xyðyt�1Þ ¼
wðdðyt�1Þ2Þ

dðyt�1Þ2

where d(Æ) is given by

dðyt�1Þ ¼
jyt�1 � my j

ry
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and my is the median of yt. The RLM(m) statistic is asymptotically chi-squared-
distributed with m degrees of freedom.

We first analyse the properties of the McLeod–Li test when the series yt is
affected by a isolated large outlier. In this case, from eqn (5), the limit of the
estimated autocorrelations of any order is zero, so that the null is never rejected.
Thus, if the series is homoscedastic the size is zero while if the series is
heteroscedastic, the power is also zero.

When the series is affected by k consecutive outliers, from eqn (5) we know that
the limit of the order-one autocorrelation is 1 � (T/k(T � k)). Then,

lim
x!1

Qð1Þ ¼ T ðT þ 2Þ
ðT � 1Þ 1� T

kðT � kÞ

� �2

�!
T!1

1;

and the null will always be rejected. Thus, if the series is truly homoscedastic,
the asymptotic size is, in this case, one. On the other hand, if the series is
heteroscedastic, the power is also one. The same kind of arguments can be
used to show that the asymptotic size and power of the LM, Peña–Rodriguez
and Rodriguez–Ruiz tests are zero when series are contaminated by a
large isolated outlier, while they are one in the presence of large consecutive
outliers.

To analyse the finite sample effects of moderate outliers on these tests, we
simulated 1000 Gaussian white-noise series of sizes T = 500, 1000 and 5000 that
have been contaminated, at time s = T/2, first by one single outlier and then, by
two consecutive outliers of the same size x. For each simulated series, we test the
null hypothesis of conditional homoscedasticity using the Q(20) and the RLM(20)
tests. The top panel on the left of Figure 1 plots the empirical sizes of both tests as
a function of the outlier size when it is isolated and the nominal size is 5%. This
plot shows that, for T = 500 or 1000, the size of Q(20) is zero for outliers larger
than 8 standard deviations while the size of RLM(20) is around the nominal, 5%,
regardless of the outlier size. However, when T = 5000, the size of Q(20) tends to
zero, only if the outlier is larger than approximately 12 standard deviations while
the size of RLM(20) is around 9%, i.e. nearly double the nominal, independently
of the outlier size. The robust test is oversized in large samples. Lee and King
(1993) find similar size distortions in the robust test proposed by Wooldridge
(1990).

The right panel on top of Figure 1 plots the empirical sizes of both tests when
the Gaussian series are contaminated by two consecutive outliers. In this case, the
behaviour of the robust test is similar to the one observed when there is just one
outlier. However, for relatively small outlier sizes, like for example, 5 marginal
standard deviations, the size of the non-robust tests is almost 1 for any of the
three sample sizes considered. Therefore, rather small consecutive outliers in
homoscedastic series make the McLeod–Li test detect conditional
heteroscedasticity even for relatively large samples.

To analyse the power of both tests in the presence of additive LO, we generated
series by the GARCH (1,1) model given by yt = etrt; r2

t ¼ a0 þ a1y2t�1 þ br2
t�1;
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where et is a Gaussian white noise with mean zero and variance one and the
parameters a0, a1 and b have been chosen to resemble the values usually estimated
with real time series of financial returns. In particular, we chose a0 = 0.1, a1 = 0.1
and b = 0.8 which satisfy the restrictions to guarantee the positiveness,
stationary and existence of the fourth-order moment of yt (see, e.g. Bollerslev
et al., 1994).

The power of the tests for isolated outliers is shown in the left bottom panel of
Figure 1 as a function of the size of the outlier. This figure shows that if the outlier
size is smaller than approximately 5 standard deviations, the power of the
portmanteau test is larger than the power of the robust test when the sample size
is T = 500 or 1000, respectively. For these sample sizes, the power of the
Q(20) test decreases rapidly with the size of the outlier. If this size is larger
than approximately 10 standard deviations, the power is negligible. However, if
T = 5000, a very large outlier is needed for the RLM(20) test to have more
power than the Q(20) test. In our experiments, the power of the Q(20) test is
affected only if the outlier is larger than 13 standard deviations. We have also
contaminated the GARCH series with two consecutive outliers. The empirical
powers have been plotted in the right bottom panel of Figure 1. For all sample
sizes and outlier sizes chosen, the power of the robust test is clearly lower than
that of the non-robust test considered. A similar result is obtained by Lee and
King (1993) comparing the power of the robust test proposed by Wooldridge
(1990) with the LM test.
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Figure 1. Effects caused by outliers on the size and power of conditional homoscedasticity tests.
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Summarizing, when standard tests are used in testing for conditional
homoscedasticity, relatively small consecutive outliers are able to generate
spurious heteroscedasticity, while large isolated outliers are required to hide
genuine heteroscedasticity. On the other hand, the available robust LM test
could suffer from important size distortions especially in case of large sample
sizes.

4. EFFECTS OF OUTLIERS ON THE ESTIMATION OF ARCH MODELS

The ARCH(p) model often requires a large number of lags, p, to adequately
represent the dynamic evolution of the conditional variances. However, this
model is attractive because it is possible to obtain a closed-form expression for
the OLS estimator of its parameters. In the following Section 4.1, we quantify
the effects of level outliers on the OLS estimator of ARCH(p) models. In
Section 4.2, we also analyse the effects of outliers on the GLS estimator.
Finally, the results are extended in the next subsections to ML and QML
estimators.

4.1. OLS estimator

The ARCH(p) model is given by

yt ¼ etrt where r2
t ¼ a0 þ

Xp

i¼1
aiy2t�i;

et is a Gaussian white noise and the parameters ai should be restricted so that r2
t is

positive and yt is stationary with finite fourth-order moment. The ARCH(p)
model is an AR(p) for squared observations given by

y2t ¼ a0 þ
Xp

i¼1
aiy2t�i þ mt

where the noise, mt ¼ r2
t ðe2t � 1Þ, is a zero-mean uncorrelated sequence. However,

it is conditionally heteroscedastic and, consequently, is non-independent and non-
Gaussian.

The OLS estimator of the parameters of the ARCH(p) model is given by

âOLS ¼ ðX 0X Þ�1ðX 0Ypþ1Þ
where a ¼ ða0 a1 . . . apÞ0; Ypþ1 ¼ ðy2pþ1 y2pþ2 . . . y2T Þ

0 and X ¼ ð1 Yp � � �Y1Þ

where 1 is a column vector of ones. Weiss (1986) shows that if the fourth-order
moment of yt exists, âOLS is consistent (see Engle, 1982, for sufficient conditions
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for the existence of higher moments of yt when et is Gaussian). Furthermore, if the
eighth-order moment is finite, the asymptotic distribution of âOLS is given byffiffiffiffi

T
p
ðâOLS � aÞ!d Nð0;R�1XX RXXX R�1XX Þ

where

P lim
X 0X

T
¼ RXX and P lim

X 0VV 0X
T

¼ RXXX with V ¼ ðm2pþ1m2pþ2 . . . m2T Þ
0

and P lim(x) = c meaning that x converges in probability to c.
A consistent estimator of the asymptotic covariance matrix of âOLS is given by

ðX 0X Þ�1SðX 0X Þ�1 ð7Þ

where

S ¼

PT
t¼pþ1

m̂2t
PT

t¼pþ1
m̂2t y2t�1 � � �

PT
t¼pþ1

m̂2t y2t�p

PT
t¼pþ1

m̂2t y4t�1 � � �
PT

t¼pþ1
m̂2t y2t�1y

2
t�p

. .
. ..

.

PT
t¼pþ1

m̂2t y4t�p

0
BBBBBBBBBB@

1
CCCCCCCCCCA

and m̂t are the residuals from the OLS regression. Next, we analyse how a single
outlier affects the asymptotic properties of âOLS. We then consider the effects of
patches of outliers.

4.1.1. Isolated outliers
Consider a series generated by an ARCH(p) model which is contaminated at time
s by a single level outlier of size x, as in eqn (1) with k = 1. Then, âOLS will be
computed using the contaminated observations z2t instead of y2t by

â0OLS

âOLS
1

..

.

âOLS
p

0
BBB@

1
CCCA¼

T � p
PT�1
t¼p

z2t � � �
PT�1
t¼p

z2t�pþ1

PT�1
t¼p

z2t
PT�1
t¼p

z4t � � �
PT�1
t¼p

z2t z2t�pþ1

..

. ..
. . .

. ..
.

PT�1
t¼p

z2t�pþ1
PT�1
t¼p

z2t z2t�pþ1 � � �
PT�1
t¼p

z4t�pþ1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

�1 PT
t¼pþ1

z2t

PT
t¼pþ1

z2t z2t�1

..

.

PT
t¼pþ1

z2t z2t�p

0
BBBBBBBBBB@

1
CCCCCCCCCCA
ð8Þ

Taking into account that z2s ¼ x2 þ oðx2Þ, z4s ¼ x4 þ oðx4Þ and zr
t ¼ oðxÞ for

t 6¼ s and 8r � 0, the matrix X0X can be written as

T � p ðx2 þ oðx2ÞÞ10
ðx2 þ oðx2ÞÞ1 ðx2 þ oðx2ÞÞF

� �
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and (X0X)�1 can be written as

1

ðT � 2pÞx4p
x4p þ oðx4pÞ ð�x4p�2 þ oðx4p�2ÞÞ10

ð�x4p�2 þ oðx4p�2ÞÞ1 V

� �

where F is a p � p symmetric matrix with fii = x2 for i = 1, . . . , p and all other
elements are equal to one. V is a p � p symmetric matrix with all its elements
equal to o(x4p�2). Finally, all elements in X0Yp+1 are equal to x2 + o(x2). Thus,

lim
x!1

âOLS ¼ lim
x!1

1

ðT � 2pÞx4p
x4pþ2 þ oðx4pþ2Þ
ð�x4p þ oðx4pÞÞ1

� �
¼ 1
� 1

T�2p 1

� �
: ð9Þ

The limit in (9) shows that, if the sample size is large enough and the outlier size
goes to infinity, all the estimated ARCH parameters tend to zero. Consequently,
the dynamic dependence in the conditional variance disappears. Notice that the
persistence of the volatility in an ARCH(p) model, measured by

Pp
i¼1 ai, also

decreases as the size of the outlier increases and obviously, the estimated
unconditional variance, given by â0=ð1�

Pp
i¼1 âiÞ, tends to infinity. Finally, it is

also important to notice that if the sample size is not very large, it is possible to
obtain estimates that do not satisfy the usual non-negativity restrictions (see, e.g.
the simulation results in Mendes, 2000).

4.1.2. Patches of outliers
When the original series, yt, is contaminated by k consecutive outliers, the effects
on the OLS estimator depend on the relationship between the number of outliers
and the order of the ARCH model. Let us consider k � p, i.e. that there are at
least as many outliers as the number of lags in the ARCH model. In this case, it is
necessary to consider the cases separately where p = 1 and p > 1. This is because
in the first case, the parameter a1 receives the whole effect of the outliers while in
the latter, this effect is shared by all the parameters.

We first consider the effect of k consecutive outliers of size x on the OLS
estimates of the parameters of an ARCH(1) model. In this case,

XT�1
t¼1

z2t ¼ kx2 þ oðx2Þ and
XT�1
t¼1

z4t ¼ kx4 þ oðx4Þ

and the following result is obtained

lim
x!1

âOLS ¼ lim
x!1

1

ððT � 1Þk � k2Þx4

kx4 þ oðx4Þ �kx2 þ oðx2Þ
�kx2 þ oðx2Þ T � 1

� �

� kx2 þ oðx2Þ
ðk � 1Þx4 þ oðx4Þ

� �
:

Hence,

lim
x!1

âOLS
i ¼

1 for i ¼ 0
ðT�1Þðk�1Þ�k2

ðT�1Þk�k2 for i ¼ 1

�
ð10Þ
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Notice that if k = 1, we obtain the same result as in eqn (9). If the number of
consecutive outliers is large, the estimated ARCH parameter, â1, tends to one
when x tends to infinity. Therefore, the presence of long patches of large
outliers can lead us, to infer that the conditional variance has a unit root and,
consequently, that yt is not stationary. Notice that patches of large outliers can
overestimate or underestimate the ARCH parameter depending on its original
value. For example, if the sample size is moderate and there are two large
consecutive outliers, â1 tends to 0.5. Therefore, if a1 < 0.5, the OLS estimator
will have a positive bias while if a1 > 0.5, the bias will be negative. However,
notice that in cases of empirical interest in the context of financial time series,
the ARCH parameter is usually rather small, never over 0.3, and then with
patches of consecutive outliers, the OLS estimator will overestimate the ARCH
parameter. In particular, if the series is truly homoscedastic, i.e. a1 = 0, then the
estimated ARCH parameter will be close to 0.5 and can lead us to conclude that
the series is conditionally heteroscedastic. Finally, it is also important to point
out that the limit in eqn (10) increases very quickly with the number of
consecutive outliers. For example, if k = 3, â1 tends to 0.66 while if k = 4 the
limit is 0.75.

Next, we consider the effect of k � p consecutive outliers in an ARCH(p) model
with p > 1. Consider again the OLS estimator of the parameters of the ARCH(p)
model. If the series is contaminated by k consecutive outliers, then

XT�1
t¼p

z2t ;
XT�1
t¼p

z2t�1; . . . ;
XT�1
t¼p

z2t�pþ1 are equal to kx2 þ oðx2Þ;

XT�1
t¼p

z4t ;
XT�1
t¼p

z4t�1; . . . ;
XT�1
t¼p

z4t�pþ1are equal to kx4 þ oðx4Þ

and

XT�1
t¼p

z2t z2tþ1 ¼ ðk � 1Þx4 þ oðx4Þ; . . . ;
XT�1
t¼p

z2t z2t�pþ1 ¼ ðk � p þ 1Þx4 þ oðx4Þ:

Therefore, the X0X matrix can be written as

T � p ðkx2 þ oðx2ÞÞ10
ðkx2 þ oðx2ÞÞ1 ðx4 þ oðx4ÞÞM

� �

where M is a p � p symmetric matrix with mij = k + i � j for i = 1, . . . , p, j =
i, . . . , p. Consequently, the OLS estimator is given by

2p�1ðk�ðp�1Þ=2Þ
2p�2ð�2k2þð2k�pþ1ÞðT�pÞÞ � 1

x4
k

�2k2þð2k�pþ1ÞðT�pÞ ‘
0

� 1
x4

k
�2k2þð2k�pþ1ÞðT�pÞ ‘ ðx4 þ oðx4ÞÞD

 !
kx2 þ oðx2Þ
ðx4 þ oðx4ÞÞB

� �

where D is a p � p symmetric matrix with
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d11 ¼ dpp ¼
1

2x4

�2k2 þ ð2k � p þ 2ÞðT � pÞ
�2k2 þ ð2k � p þ 1ÞðT � pÞ ;

dii ¼
1

x4
for i ¼ 2; . . . ; p � 1;

diiþ1 ¼ �
1

2x4
for i ¼ 2; . . . ; p � 1;

d1p ¼
1

2x4

T � p
�2k2 þ ð2k � p þ 1ÞðT � pÞ and dij ¼ 0 otherwise;

‘ = (1 0 0 � � � 0 1)0 and B is a p � 1 column vector such that bi = k � i for i =
1, . . . , p. Then,

lim
x!1

âOLS
i ¼

1 for i ¼ 0
�2k2 þ ð2k � pÞðT � pÞ
�2k2 þ ð2k � p þ 1ÞðT � pÞ for i ¼ 1

0 for i ¼ 2; . . . ; p � 1
�ðT � pÞ

�2k2 þ ð2k � p þ 1ÞðT � pÞ for i ¼ p

8>>>>><
>>>>>:

ð11Þ

The estimated parameters, âi, tend to zero, except â1 and âp. If the number of
consecutive outliers is large relative to the order of the model, then â1 tends to a
quantity close to one and âp tends to zero. Consequently, the estimated persistence,
given by

Pp
i¼1 âi, tends to (�2k2 + (2k � p � 1)(T � p))/(�2k2 + (2k �

p + 1)(T � p)) which is close to one. Notice that if p = 1, the limit of the
persistence coincides with the limit of â1 given in eqn (10). Consider, for example,
an ARCH(2) series contaminated by two large consecutive outliers. In this case, if
the sample size is moderately large, â1 tends approximately to 0.66 and â2 to�0.34
and, consequently, the persistence tends to 0.32. However, if the number of
consecutive outliers is 5, â1 tends to 0.89 and â2 to �0.11 and the persistence tends
to 0.78. On the other hand, if there are five consecutive outliers in an ARCH(4)
series, â1 tends to 0.86, â4 to �0.15 and the persistence to 0.71. Again, in the
presence of patches of outliers, the estimates may easily violate the non-negativity
restrictions. Finally, the effect of k < p consecutive outliers in an ARCH(p) model
depends on the relationship between k and p (see Carnero, 2003, for particular
cases).

4.2. Generalized least squares estimator

The OLS estimator is not efficient because the noise in the regression equation, mt,
is conditionally heteroscedastic. Bose and Mukherjee (2003) propose to estimate
the parameters of ARCH(p) models using the GLS estimator which is
computationally simple while having asymptotic efficiency equivalent to the ML
estimator. The GLS estimator is obtained estimating by OLS the parameters a in
PY = PXa + PV, where P0P = X�1 and X ¼ diagðr4

pþ1; . . . ; r4
T Þ. In practice

given that the matrix X is unknown, it can be substituted by
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X̂ ¼ diagðr̂4
pþ1; . . . ; r̂4

T Þ; where r̂2
t ¼ âOLS

0 þ âOLS
1 y2t�1 þ � � � þ âOLS

p y2t�p:

Therefore, the GLS estimator is given by

âGLS ¼ ðX 0X̂�1X Þ�1ðX 0X̂�1Y Þ;

and if the sixth-order moment of yt is finite, the asymptotic distribution of âGLS is
given by ffiffiffiffi

T
p

âGLS � a
� �

!d Nð0;R�1X Þ ð12Þ

where P lim(X0X�1X/T) = RX.
Next, we compare the robustness of GLS and OLS estimators. Consider, for

example, the case of the ARCH(1) model. When there is an isolated outlier both
estimators are expected to be very similar because, as we have seen before, âOLS

1 is
biased towards zero and, consequently, the weights r̂�4t for the GLS estimator will
be almost constant. On the other hand, if there are consecutive outliers, âOLS

1 is
overestimated, the weights r̂�4t down-weight the outliers and, therefore, the GLS
estimator is expected to be more robust. To illustrate this result, we generate 1000
series of sizes T = 500, 1000 and 5000 by an ARCH(1) model with parameters
a0 = 0.8 and a1 = 0.2. All the series have been contaminated with a single LO of
size x = 0,5,10 and 15 marginal standard deviations. Figure 2 plots kernel
estimates of the density of the OLS and GLS estimators of a0 (rows 1 and 2) and a1
(rows 5 and 6) all obtained through Monte Carlo replicates. Comparing the kernel
densities of the estimators of a0, we can observe that, as expected given the sample
sizes considered in this article, both estimators are unbiased when there are no
outliers. In this case, it is also possible to observe that the dispersion of the GLS
estimator is smaller than the OLS estimator, especially for the largest sample size.
On the other hand, in the presence of isolated outliers, both estimators have similar
sample distributions with positive biases in small or moderate samples. However,
when T = 5000, the bias of the GLS estimator is almost negligible even if x = 15,
while the OLS estimator has large biases for rather small outliers. The performance
of both estimators of a1 is similar when there are no outliers. They are unbiased
and GLS is more precise than OLS. However, in the presence of moderate isolated
outliers, we can observe a large negative bias of the OLS estimator even if the
sample size is large. On the other hand, when T = 5000, the GLS estimator of a1 is
unbiased in the presence of outliers as large as 15 standard deviations.

We also analyse how an isolated outlier affects the estimated variances of the
OLS and GLS estimators. Figure 3 plots the logarithm of the ratio of the sample
variance of âOLS

0 and âOLS
1 in the Monte Carlo experiments, and the estimated

asymptotic variance computed as in eqn (7) and averaged through all Monte
Carlo replicates. The corresponding quantities have also been computed for âOLS

0

and âOLS
1 . As we can see in the graph (columns 1 and 2), the asymptotic variances

of the OLS estimator overestimate the sample variances while the asymptotic
variances of the GLS estimator underestimate them.
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To analyse the effect of consecutive outliers, each simulated series has also
been contaminated by two consecutive outliers of the same sizes as above.
Figure 4 plots kernel estimates of the densities of the OLS and GLS estimators
of a0 and a1. It is important to note that although in the limit âOLS

0

increases with x, a0 can be underestimated for small outliers. For example,
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Figure 2. Kernel estimation of the density of OLS, GLS, ML and QML estimators of a0 (rows 1 to 4)
and a1 (rows 5 to 8) in an ARCH(1) model with a single outlier of size x.
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consider T = 500 or 1000, then if the outlier size is 5 marginal standard
deviations, the mean of the estimates âOLS

0 is 0.75, below the true value of 0.8.
However, if the size of the outlier is 15, the mean is 0.98. Consequently, for the
outlier sizes typically encountered in empirical applications, the constant can be
underestimated in the presence of patches of outliers. Remember that in the
presence of a single outlier, the OLS estimates of a0 tend monotonically to
infinity. Therefore, although the effect in the limit is the same, in practice,
isolated outliers overestimate the constant while consecutive outliers
underestimate it. However, if the sample size is large enough, the bias of âGLS

0

is almost negligible for all the outlier sizes considered in this article. When the
sample size is small or moderate, large consecutive outliers increase the
dispersion of the âGLS

0 estimator in such a way that the inference is useless.
Looking at the results for âOLS

1 , we observe that in concordance with the limit in
eqn (10), they tend to 0.5 when k = 2. Furthermore, for all the sample sizes
considered, the limit is reached for relatively small outliers. Once more, the bias of
the GLS estimator of a1 is almost negligible for T = 5000. However, if the sample
size is moderate and the outliers are large, the dispersion of âGLS

1 is so large that
inference is not reliable.
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Figure 3. Logarithm of the ratio of variances of OLS, GLS, ML and QML estimators of a0 (row 1)
and a1 (row 2) in an ARCH(1) model with a single outlier.
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Finally, the logarithm of the ratio of the sample variance and the estimated
asymptotic variance of the OLS and GLS estimators is plotted in Figure 5,
where it is shown (see column 1) that, for the OLS estimator of a0 and a1, this
ratio tends to zero with the size of the outlier. Therefore, the asymptotic
variance of the OLS estimator, estimated using eqn (7), overestimates the true
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Figure 4. Kernel estimation of the density of OLS, GLS, ML and QML estimators of a0 (rows 1 to 4)
and a1 (rows 5 to 8) in an ARCH(1) model with two consecutive outliers.
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variance, which tends to zero with the size of the outlier. Notice that in this
case, the biases are larger than in the presence of a single outlier. moreover, the
estimated asymptotic variances of the GLS estimator, strongly underestimate
the sample variances for consecutive outliers larger than 5 standard deviations
(see column 2).

4.3. Maximum likelihood estimator

Engle (1982) proposed to estimate the parameters of the ARCH(p) model by ML.
The distribution of yt conditional on Yt�1 = fyt�1,yt�2, . . . , y1g is Nð0; r2

t Þ and
the log-likelihood function is given by

L ¼ � T � p
2

logð2pÞ � 1

2

XT

t¼pþ1
log r2

t þ
y2t
r2

t

� �
: ð13Þ

If the second-order moment of yt is finite, then,
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Figure 5. Logarithm of the ratio of variances of OLS, GLS, ML and QML estimators of a0 (row 1)
and a1 (row 2) in an ARCH(1) model with two consecutive outliers.
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ffiffiffiffi
T
p
ðâML � aÞ!d Nð0; ½IðaÞ��1Þ where IðaÞ ¼ E½� @2L

@a@a0
�

is the information matrix (see, e.g. Ling and McAleer, 2003).
Given that there are no closed-form expressions of the ML estimators of the

parameters a0, a1, . . . , ap, the analysis of the effects of outliers on the ML
estimator has been carried out by simulation [see, e.g. Muller and Yohai, 2002,
who show that the mean squared error of the ML estimator of the parameters of
ARCH(1) models is dramatically influenced by isolated outliers]. On the other
hand, Mendes (2000) shows that the influence functional of the ML estimator of
the parameters of an ARCH(1) model is the product of a constant vector by a
quadratic function of the outlier size. Consider the simplest ARCH(1) model. In
this case, the log-likelihood function is given by

L ¼ � T � 2

2
logð2pÞ � 1

2

XT

t¼2
logða0 þ a1y2t�1Þ þ

y2t
ða0 þ a1y2t�1Þ

� �

which leads to the following ML equations to obtain the estimated parameters

XT

t¼2

y2t
r̂4

t
¼
XT

t¼2

1

r̂2
tXT

t¼2

y2t�1y2t
r̂4

t
¼
XT

t¼2

y2t�1
r̂2

t

Multiplying and dividing the right-hand side by r̂2
t ¼ â0 þ â1y2t�1 we obtain

â0
XT

t¼2

1

r̂4
t
þ â1

XT

t¼2

y2t�1
r̂4

t
¼
XT

t¼2

y2t
r̂4

t

and

â0
XT

t¼2

y2t�1
r̂4

t
þ â1

XT

t¼2

y4t�1
r̂4

t
¼
XT

t¼2

y2t�1y
2
t

r̂4
t

These two equations represent theML estimator as the result of solving a system
of equations which is the same system solved by the GLS estimator considered in
subsection 4.2. Therefore, as ML and GLS are asymptotically equivalent, the
effects of outliers on both estimators should be similar for large samples. Figure 2
plots the kernel estimates of the densities of the ML estimators of a0 and a1 when
the ARCH(1) series are contaminated by a single outlier of size x. This figure
illustrates that when x = 0 the GLS and ML estimators are asymptotically
equivalent. However, the finite sample distribution of both estimators can be
rather different in the presence of large outliers and moderate sample sizes. Note
that, for sample sizes of T = 500 and 1000 and outliers of sizes 10 and 15 standard
deviations, the kernel estimated density of both âML

0 and âML
1 are bimodal and non-

symmetric. The bimodality of the ML estimator in the presence of outliers has also
been pointed out by Doornik and Ooms (2003). Hence, tests based on normality
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will be inadequate. Looking for example at the seventh row of Figure 2, we can see
that in the presence of an outlier of size 15 standard deviations in a sample of size
T = 500, âML

1 could take any value between 0 and 1, although values close to zero
seem to be more probable, like what we had for âOLS

1 and âGLS
1 . Finally, if the

sample size is 5000, the sample distributions of the GLS and ML are similar.
Therefore, it is important to point out that the results in Figure 2 suggest that, in
moderate samples, the GLS estimator has certain advantages over the ML
estimator in the presence of large isolated outliers. In particular, both estimators
have similar negative biases but the dispersion of the GLS is smaller.

Figure 3 (column 3) plots the logarithm of the ratio of the sample variance and
the estimated asymptotic variance averaged over all Monte Carlo replicates for
âML
0 and âML

1 respectively. We can see that this ratio is larger than the ratio of the
GLS estimator. Therefore, the asymptotic variance of the ML estimator
underestimates, in the presence of large isolated outliers, the sample variance
more than the GLS estimator.

The Monte Carlo densities when the series are contaminated by two
consecutive outliers appear in Figure 4 (rows 3 and 7). As we can see in the
plots, the effects caused by two consecutive outliers on the ML estimators are very
similar to the effects caused by a single outlier. Finally, the effects of consecutive
outliers on the estimated variances of the ML estimator are weaker than for the
GLS estimator (see Figure 5).

4.4. Quasi-Maximum Likelihood estimator

As mentioned in the Introduction, the presence of outliers could be the reason of
the excess kurtosis found in the standardized observations after an ARCH-type
model has been fitted to explain the dynamic evolution of second order moments.
However, many authors have claimed that this excess kurtosis can be explained by
a heavy-tailed conditional distribution; see, for example, Bollerslev (1987), Baillie
and Bollerslev (1989), Hsieh (1989), Nelson (1991) and Fiorentini et al. (2003)
among many others. Furthermore, Sakata and White (1998) show that QML
estimators based on heavy-tailed distributions are robust in the presence of
outliers. Consequently, in this subsection, we study the finite sample behavior of
the QML estimator based on maximizing the Student-likelihood when the data is
generated by conditionally Gaussian ARCH(1) models contaminated by isolated
and consecutive outliers. If no outliers are present, Newey and Steigerwald (1997)
show that when the assumed and true densities are symmetric, the QML estimator
is consistent and efficient.2 The log-likelihood function is given by

LS ¼
XT

t¼2
log C

gþ 1

2g

� �� �
� log C

1

2g

� �� �
� 1

2
log

1� 2g
g

� �
þ log p

��

þ logða0 þ a1y2t�1Þ þ
gþ 1

g
log 1þ g

1� 2g
yt
2

ao þ a1y2t�1

� �		
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where C(Æ) is the gamma function and g = 1/m, where m are the degrees of freedom
of the Student t distribution. The parameter g can be considered as a measure of
tail thickness which always remains in the finite range 0 � g < 0.5 if the
conditional distribution is restricted to have finite variance, i.e. m > 2 (see
Fiorentini et al., 2003).

Rows 4 and 8 of Figure 2 plot the Monte Carlo densities of the QML estimator
of a0 and a1 respectively, when the series are generated by the same ARCH(1)
model considered before and contaminated by isolated outliers of size x = 0, 5,
10 and 15 marginal standard deviations. This figure shows that when x = 0, the
behaviour of the QML estimator is very similar to ML. However, as postulated by
Sakata and White (1998), maximizing the Student t likelihood protects against
outliers even when they are rather large. It can be observed that the QML
estimator is almost unaffected by the presence of outliers. Notice that even in
small sample sizes the biases of âQML�t

0 and âQML�t
1 are almost negligible. The

average over the Monte Carlo replicates of the degrees of freedom estimates is
83.64 when x = 0 and T = 1000 while it is 9.73 when x = 15. We obtain similar
results for the other sample sizes. With respect to the estimated asymptotic
standard deviations, the last column of Figure 3 shows that they are not affected
by single outliers even if their sizes are large or the sample sizes are small. The
same conclusions can be obtained from Figures 4 and 5 which plot the
corresponding kernel densities of the QML estimators of a0 and a1 and the log-
ratios of their variances obtained when the series are contaminated by two
consecutive outliers.

5. EFFECTS OF OUTLIERS ON THE ESTIMATION OF GARCH MODELS

In this section we analyse the effects of outliers on three estimators of the
parameters of GARCH(1,1) models. First, we analyse the finite sample properties
of the ML and QML estimators described above for ARCH models. Second, we
consider the closed-form estimator proposed by Kristensen and Linton (2006)
which is based on the Yule–Walker equations corresponding to the ARMA
representation of squared observations.

The robustness properties of the QML3 estimator of the parameters of
GARCH models have been analysed by Sakata and White (1998) and Mendes
(2000). The former authors show that when the conditional mean is known, QML
estimators based on thin-tailed distributions as the normal are not robust to
outliers and have a breakdown point equal to zero. On the other hand, QML
estimators obtained by maximizing a log-likelihood function with a fat-tailed
distribution are resistant to outliers as long as there are no scale leverage points.
Later, Mendes (2000) proves that the QML estimator obtained by maximizing the
Gaussian log-likelihood has zero breakdown point and unbounded influence
curves. In this article also, some Monte Carlo evidence is presented on the finite
sample performance of the QML estimator in the presence of outliers concluding
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that the bias and standard errors of the QML estimates increase with the
percentage of contamination and that for very large outliers, they ignore the
dynamics in the second moments and act as an inflated scale estimate of
independent observations. In this section, we generalize and extend this
simulation evidence by carrying out detailed Monte Carlo experiments to
analyse the biases caused by isolated and consecutive LO on the QML estimator
of the parameters of GARCH(1,1) models.

Figure 6 contains the kernel estimates of the density of â0, â1, b̂ and â1 þ b̂ for
ML and QML estimates based on 1000 replicates, for a GARCH(1,1) model with
parameters a0 = 0.1, a1 = 0.1 and b = 0.8, contaminated with a single outlier of
sizes x = 0, 5, 10 and 15 standard deviations. This figure shows that, unless the
sample size is very large, like T = 5000, ML estimators as expected are not
robust to the presence of outliers. The same conclusion is obtained by Mendes
(2000) and Sakata and White (1998). The QML estimator has an interesting
behaviour. It is robust for a1, as in the case of ARCH models, but not for a0, b
and a1 + b. Note that the Student t-tails are robust for isolated outliers in ARCH
models but for GARCH models one isolated outlier at time t affects the
estimation of the conditional variance at time t + 1, and this variance will be
used in the estimation of the conditional variance at time t + 2. Thus, an isolated
outlier behaves as a patch of outliers for the estimation of the conditional
variance. This explains the different behaviour of the QML estimator for ARCH
and GARCH models.

In our Monte Carlo experiments we have also observed that although the
generating model has finite fourth-order moment, the presence of outliers leads to
a large proportion of ML estimates which do not satisfy the corresponding
condition. For example, when T = 500 and x = 15, 36% of the ML estimates of
a1 and b do not satisfy it. In our simulations, we often observed replicates for
which the estimated ML asymptotic covariance matrix is nearly singular. This
could be due to the estimates âML

1 and b̂ML taking values close to zero and one
respectively, and the determinant of the information matrix being very close to
zero. Sakata and White (1998) also observe in real data that, as a consequence of
extreme outliers, the usual plug-in asymptotic covariance matrix could be nearly
singular. Consequently, we do not report the results on the ratio of the sample
variance and the estimated asymptotic variance although we have observed that,
when the latter variances are defined, their behaviour is similar to the one
observed for the ML estimator in Figures 3 and 5. Therefore, when using the
estimated asymptotic ML covariance matrix we may have a false security on the
inference on the GARCH parameters. The usual hypothesis testing methods will
be highly unreliable.

Figure 7 plots kernel estimates of the density of the parameters for the same
GARCH(1,1) model but now contaminated with two consecutive outliers. This
figure shows that âML

0 and âML
1 overestimate the true parameters, and b̂ML is

underestimating the true b. Note that if the outliers are large and the sample size
is moderate, the sample densities of âML

1 and b̂ML are such that standard inference
is not reliable. Furthermore, this figure shows that large consecutive outliers can
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have dramatic effects on the estimated persistence. For example, when x = 15
and T = 500 or 1000, the estimated density of âML

1 þ b̂ML has two modes, one
around zero and the other close to one. The estimates of the persistence are only
reliable for very large sample sizes. The biases caused by consecutive outliers on
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Figure 6. Kernel estimation of the density of ML and QML estimators of a0 (rows 1 and 5), a1 (rows 2
and 6), b (rows 3 and 7) and a1 + b (rows 4 and 8) in a GARCH(1,1) model with a single outlier.
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the estimated asymptotic covariance matrix of the ML estimators are similar to
those caused by a single outlier. Regarding the QML estimator, as before, it is
robust for a1 but not for a0, b and a1 + b.

Finally, it is interesting to analyse the effects of outliers on the closed-form
estimator for GARCH(1,1) models proposed by Kristensen and Linton (2006).
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Assuming yt = etrt where r2
t ¼ a0 þ a1y2t�1 þ br2

t�1 we also have the
ARMA(1,1) representation for the squared observations given by y2t ¼
a0 þ /y2t�1 þ mt � bvt�1, where / = a1 + b and the noise, mt ¼ r2

t ðe2t � 1Þ, is a
zero-mean heteroscedastic uncorrelated sequence. Calling r(h) as before the
autocorrelation of the squared observations and using the relationship between
these autocorrelations and the ARMA parameters, Kristensen and Linton (2006)
propose the estimates

/̂ ¼
Xk

j¼2

wjrðjÞ
rðj� 1Þ

where wj is a weighting function and

b̂ ¼ ðb�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4
p

Þ
2

with b ¼ ð/̂
2 þ 1� 2 /̂rð1ÞÞ
ð/̂� rð1ÞÞ

and â1 ¼ /̂� b̂:

In their simulation study, the weights are chosen as wj = 1/3 for j = 1,2,3 and
wj = 0 for j > 3. Although, as shown by these authors, this estimate seems to
work well without outliers, the effect of contamination in this estimate can be
very large. We have seen that a single large outlier will make all the coefficients
r(j) small and thus the estimate /̂, computed as a ratio of small numbers, will
have a large variance and it may be unreliable. Note that the estimate /̂
obtained does not need to be small. For patches of outliers, the coefficients r(j)
will be large and of similar size and the estimate /̂ will be close to one and will
not suffer for the large variability. However, the equation for b will not be
reliable anymore, because of the large bias of the autocorrelation coefficients
and b is often found to be smaller than 2. As this parameter is constrained to be
b > 2 the censoring leads to b = 2 + e and then the estimate of b̂ will be close
to one and â1 will be forced to be close to zero. This result has been checked by
Monte Carlo.

6. CONCLUSIONS

Our results can be important in several directions. First of all, a lot of care should
be taken when assuming conditional heteroscedasticity from a correlogram of
squares with a large first-order autocorrelation followed by small coefficients for
higher lags. We have seen that this pattern could be caused by two large
consecutive outliers, regardless of whether the data-generating process is
homoscedastic or heteroscedastic. Therefore, if the uncontaminated process is
homoscedastic, after cleaning the outliers we will expect that the order-one
autocorrelation will not be significant anymore. On the other hand, if the
uncontaminated series is heteroscedastic, after correcting for outliers we expect
that the first-order autocorrelation coefficient will decrease, while all the other
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coefficients will increase and become significant. Second, before rejecting the
presence of conditional heteroscedasticity we should check that the series does not
have large isolated outliers, as they bias all the autocorrelations towards zero.

Third, outliers may have a strong effect on the size and power of popular tests
of conditional homoscedasticity based on autocorrelations of squares. On the one
hand, a very large isolated outlier leads to tests which never reject the null
hypothesis of homoscedasticity, regardless of whether the uncontaminated series
is homoscedastic or heteroscedastic. On the other hand, two or more large
consecutive outliers lead to tests which always reject the null hypothesis of
homoscedasticity, even if the uncontaminated series is truly homoscedastic. Note
that in the empirical analysis of financial returns it is more likely to find
consecutive outliers because the series of returns is obtained as differences of the
logarithmic prices. If the prices have a permanent shock, then the returns will
show an isolated outlier but if the prices have a transitory movement during just
one period of time, the returns will show two consecutive outliers. Therefore, care
should be taken when the null of homoscedasticity is rejected especially if only the
first-order autocorrelation is significantly different from zero.

Fourth, in moderately large samples, the QML estimator of ARCH models
based on the Student likelihood, is more robust than the OLS, GLS and ML
estimators in the presence of additive outliers. This QML estimator is robust
against outliers without losing the good properties of ML for uncontaminated
series. The OLS estimator has larger biases and the inference based on the
estimated standard deviations is not reliable because they overestimate the true
dispersion of the estimator. Furthermore, the negative estimates of the ARCH
parameters that are sometimes obtained in empirical applications could be due to
outliers. The sample distribution of the ML estimator of the ARCH parameters
can be bimodal in the presence of outliers, implying important problems for
inference.

Fifth, for GARCH (1,1) models the ML estimator of the parameters has very
large dispersion even in moderately large samples as T = 1000, and the same
happens for the GLS estimator. The QML estimator based on the Student
likelihood is more robust than GLS and ML, but fails to be robust in general,
especially for the estimation of the b parameter.

Thus, when fitting GARCH-type models to conditionally heteroscedastic series
it is always advisable to check if the series is affected by outliers. There are several
procedures proposed in the literature to test for outliers in the presence of
GARCH effects and the comparison of these procedures will be the subject of
further research.
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NOTES

1. Although the LM and Q(m) tests are asymptotically equivalent, they test
different null hypotheses. The null hypothesis of the LM test is that the
parameters of an ARCH(p) model associated with lagged squared observations
are equal to zero while the McLeod–Li test is model-free in the sense that the
null hypothesis is that the first m autocorrelations are jointly equal to zero.

2. When this symmetry condition is not satisfied, Newey and Steigerwald (1997)
show that, unless the conditional mean is identical to zero, the QML estimator
is consistent if an additional location parameter is added to the model. Given
that outliers can generate asymmetries, we also consider the introduction of
this additional parameter. The modified ARCH(p) model is given by yt =
(d + et)rt where

r2
t ¼ a0 þ

Xp

i¼1
aiy2t�i:

The results are the same as those obtained when d = 0 and, consequently, they
are not reported.

3. Note that in this article, the QML estimator refers to the estimator that
maximizes the Student likelihood when the conditional distribution is not
Student. However, the QML estimator is obtained when maximizing a
likelihood that is not the same as the conditional distribution of the series. In
fact, the most popular use of the QML estimator is when maximizing the
Gaussian likelihood when the errors are not Gaussian.
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