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Abstract

The purpose of this paper is threefold. First, we obtain the asymptotic properties of the modified model selection criteria proposed
by Hurvich et al. (1990. Improved estimators of Kullback-Leibler information for autoregressive model selection in small samples.
Biometrika 77, 709–719) for autoregressive models. Second, we provide some highlights on the better performance of this modified
criteria. Third, we extend the modification introduced by these authors to model selection criteria commonly used in the class of
self-exciting threshold autoregressive (SETAR) time series models. We show the improvements of the modified criteria in their
finite sample performance. In particular, for small and medium sample size the frequency of selecting the true model improves for
the consistent criteria and the root mean square error (RMSE) of prediction improves for the efficient criteria. These results are
illustrated via simulation with SETAR models in which we assume that the threshold and the parameters are unknown.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Since the seminal work by Akaike (1969), model selection criteria have become a widely used tool for selecting the
order of different time series models. Most of these criteria can be classified into two groups. The first one includes
the efficient criteria, which asymptotically select the model which produces the least mean square prediction error.
The final prediction error criterion (FPE), by Akaike (1969), the Akaike information criterion (AIC), by Akaike (1973)
and the corrected Akaike information criterion (AICc), by Hurvich and Tsai (1989) are efficient criteria. The FPE
selects the model that minimizes the one step ahead square prediction error. The AIC is an estimator of the expected
Kullback–Leibler divergence between the true and the fitted model, while the AICc is a bias correction form of the
AIC that appears to work better in small samples. The second group includes the consistent criteria, which, under the
assumption that the data come from a finite order autoregressive process, asymptotically select the true order of the
process. The Bayesian information criterion (BIC), by Schwarz (1978), and the Hannan–Quinn criterion (HQC), by
Hannan and Quinn (1979), are consistent criteria. The BIC approaches the posterior probabilities of the models, while
the HQC is designed to be a consistent criterion with the fastest convergence rate to the true model.
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All these criteria can be written compactly as members of the family of criteria:

min
p

{T log �̂2
p + (p + 1) × C(T , p + 1)}, (1)

where p is the order of the autoregressive process, �̂2
p is the maximum likelihood estimate of the residual variance of

the process, T is the sample size and C(T , p + 1) = T
p+1 log(

T +p+1
T −(p+1)

) for the FPE, C(T , p + 1) = 2 for the AIC,

C(T , p + 1) = 2T
T −(p+1)−1 for the AICc, C(T , p + 1) = log(T ), for the BIC and C(T , p + 1) = 2m log log(T ) with

m > 1, for the HQC.
Hurvich et al. (1990) further approximated the expected Kullback–Leibler divergence to derive a criterion, AICc∗,

which can be written as follows:

min
p

{
log |�(̂�p)| + 2T (p + 1)

T − (p + 1) − 1

}
, (2)

where |�(̂�p)| is the determinant of the estimated covariance matrix of the series under the autoregressive process with
order p and parameters �p, that will be defined in Section 2. These authors also introduced the AIC∗ and BIC∗ criteria,
by replacing T log �̂2

p by the determinant term in the AIC and BIC criteria, and showed in a Monte Carlo experiment
the good performance on this modification. However, they did not study the asymptotic properties of these modified
criteria. The first contribution of this paper is to show that the asymptotic properties of the original criteria (1) applies
to the modified criteria (2). Thus, we show the efficiency of AIC∗ and AICc∗ and the consistency of BIC∗.

Although Hurvich et al. (1990) showed via simulation the better performance of the modified criteria, no theoretical
reasons have been given explaining this improvements. The second contribution of this paper is to provide three
interpretations on the advantages of using the determinant term by using three different comparisons: (1) the one step
ahead prediction variances; (2) the correlation structure; (3) a measure of the goodness of the fit.

A useful nonlinear extension of linear time series models are the self-exciting threshold autoregressive (SETAR)
models, see Tong (1990). These models can explain interesting features found in real data, such as asymmetric limit
cycles, jump phenomena, chaos and so on. Model selection for SETAR models has been addressed in several papers.
Tong (1990) suggested to use the AIC but no theoretical justification was given. Wong and Li (1998) showed that
the AICc criterion is an asymptotically unbiased estimator of the expected Kullback–Leibler information for SETAR
models and analyzed the small sample properties of AIC, AICc and BIC via simulation experiments. Kapetanios (2001)
extended some of the existing theoretical results for several model selection criteria in linear models to threshold models.
De Gooijer (2001) proposed three cross-validation criteria. Campbell (2004) and Unnikrishnan (2004) developed
Bayesian model selection within a Markov Chain Monte Carlo (MCMC) framework, and, finally, Öhrvik and Schoier
(2005) studied the performance of several bootstrap selection criteria.

As a SETAR model is piecewise autoregressive linear, it seems natural to extend the modification considered by
Hurvich et al. (1990) for autoregressive models to these nonlinear models. The third contribution of this paper is to
present new SETAR model selection criteria based on the determinant term and show via a Monte Carlo study the
better performance for small and medium sample size of these modified criteria.

The rest of this paper is organized as follows. Section 2 briefly reviews model selection criteria for the class of linear
autoregressive models, proves that the correction by the determinant term keeps their asymptotic properties, and provides
some intuition to justify why this correction can improve their performance. Section 3 develops the modification by
the determinant term for SETAR time series model selection criteria. Section 4 shows the better performance of the
modified criteria in a Monte Carlo experiment.

2. Model selection criteria for the class of linear autoregressive processes

2.1. Model selection criteria for autoregressive processes

Suppose it is known that a given time series, x = (x1, . . . , xT )′, has been generated by the class of autoregressive
(AR) Gaussian processes, given by

xt − �1xt−1 − · · · − �pxt−p = at , t = . . . , −1, 0, 1, . . . ,
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where at is a sequence of independent Gaussian distributed random variables with zero mean and variance �2
p. We

assume that p ∈ {0, . . . , pmax}, where pmax is an upper bound. The AR(p) model, denoted by Mp, has parameters
�p = (�′

p, �2
p)′, where �p is the pmax × 1 vector of parameters,

�p =
⎛⎜⎝�1p, . . . ,�pp, 0, . . . , 0︸ ︷︷ ︸

1×pmax

⎞⎟⎠
′

.

We assume that the models Mp are causal, invertible and stationary. Then the covariance matrix of x can be written as
�(�p) = �2

pQ(�p), where Q(�p) is a T × T matrix which only depends on �p. Let,

Q(�p) = L(�p)L′(�p)

be the Cholesky decomposition of Q(�p) such that a(�p) = L(�p)−1x. We denote the parameters of the model that
have generated the data as �0 = (�′

0, �
2
0)

′.
In practice, the model parameters are unknown. The maximum likelihood estimates of the vector of parameters �p

and the innovations variance �2
p, denoted by �̂p and �̂2

p, respectively, are obtained after maximizing the likelihood
function, p(x|Mp), given by:

p(x|Mp) = (2�)−T/2|�(�p)|−1/2 exp

(
−1

2
x′�−1(�p)x

)
. (3)

Akaike (1973) proposed to select the model which minimizes the expected Kullback–Leibler divergence between
the fitted and the true model, defined by,

E�̂p

[
E�0

[
2 log

p(y|�0)

p(y |̂�p)

]]
= E�̂p

[E�0 [−2 log p(y |̂�p)]] − E�̂p
[E�0 [−2 log p(y|�0)]] (4)

for an arbitrary realization y = (y1, . . . , yT )′ of the process. As (4) is always positive, minimizing it implies making
p(y |̂�p) as close as possible to p(y|�0), in the expected Kullback–Leibler divergence. As the second term of the
expected Kullback–Leibler divergence is constant for all the models, minimizing (4) is equivalent to minimize,

E�̂p
[E�0 [−2 log p(y |̂�p)]] =

∫ [∫
−2 log p(y |̂�p)p(y|�0) dy

]
p(̂�p|�0) d̂�p, (5)

where y and �̂p are assumed to be independent. Thus, the rule proposed by Akaike selects the autoregressive model
that minimizes (5) with respect to the two sources of uncertainty: the distribution of future observations given the
parameters and the distribution of the estimate. Akaike (1973) approached (5) as follows:

E�̂p
[E�0 [−2 log p(y |̂�p)]] = T (log 2� + 1) + T log �̂2

p + 2(p + 1) + op(1),

which leads to the AIC

AIC(p) = T log �̂2
p + 2(p + 1).

Hurvich and Tsai (1989) obtained an approximation of (5) which reduces the small sample bias of the approximation
by Akaike (1973), and is given by

E�̂p
[E�0 [−2 log p(y |̂�p)]] = T (log 2� + 1) + T log �̂2

p + 2T (p + 1)

T − (p + 1) − 1
+ op(1)

which leads to the AICc

AICc(p) = T log �̂2
p + 2T (p + 1)

T − (p + 1) − 1
.

From the Bayesian point of view, the model selected is the one with maximum posterior probability, p(Mp|x), where
p(Mp|x) ∝ p(x|Mp)p(Mp), and p(x|Mp) = ∫ p(x|�p, Mp)p(�p|Mp) d�p, such that p(Mp) and p(�p|Mp) are the
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prior probabilities of models and parameters, respectively. Schwarz (1978) approximated the posterior probability
p(Mp|x) to derive the BIC, given by

BIC(p) = T log �̂2
p + log(T )(p + 1).

The criteria AIC, AICc and BIC can be written in a compact way as members of the family of criteria,

min
p

{T log �̂2
p + (p + 1) × C(T , p + 1)}, (6)

where C(T , p + 1) is 2, for AIC, 2T
T −(p+1)−1 , for AICc, and log(T ), for BIC.

Hurvich et al. (1990) noted that the expected Kullback–Leibler divergence was better approximated if T log �̂2
p is

replaced by the term log |�(̂�p)| and defined the AIC∗(p), AICc∗(p) and BIC∗(p) criteria, which may be written in
compact form as:

min
p

{log |�(̂�p)| + (p + 1) × C(T , p + 1)}. (7)

These authors showed by simulation the advantages of considering log |�(̂�p)| instead of T log �̂2
p for autoregression

fitting, but did not analyze the asymptotic properties of the modified criteria. First, we show that the AIC∗ and AICc∗
criteria are efficient in the following Theorem, whose proof is in Appendix A.

Theorem 1. Assume that the following assumptions hold: (A1) {xt } is generated by a stationary process xt −�1xt−1 −
�2xt−2 − · · ·= at , t = · · · , −1, 0, 1, · · · where at is a sequence of independent Gaussian distributed random variables
with zero mean and variance �2

a and
∑∞

j=1 |�j | < ∞; (A2) the polynomial �(z) = 1 − �1z − �2z
2 − · · ·, is nonzero

for every complex number z with |z|�1; (A3) the upper bound pmax is a sequence of positive integers which depends
on T such that pmax → ∞ and pmax/

√
T → 0 as T → ∞; (A4) {xt }is not degenerate to a finite order autoregressive

process. Then, the AIC∗ and AICc∗ are efficient criteria.

On the other hand, the consistency property of the BIC∗ criterion is established in the following Theorem, proved in
Appendix A.

Theorem 2. Assume that the following assumptions hold: (B1) {xt } is generated by a stationary process xt −�1xt−1 −
· · ·−�pxt−p =at , t =· · · , −1, 0, 1, . . . where at is a sequence of independent Gaussian distributed random variables
with zero mean and variance �2

a ; (B2) the polynomial �(z) = 1 − �1z − �2z
2 − · · · − �pzp, is nonzero for every

complex number z with |z|�1; (B3) the upper bound pmax is fixed and known a priori. Then, the BIC∗ is a consistent
criteria.

Thus, AIC∗, AICc∗ and BIC∗ are similar to AIC, AICc and BIC for large samples but as we will see in the Monte
Carlo study in Section 4, in small and medium sample settings, the difference between the performance of these criteria
may be substantial.

2.2. Three interpretations on the advantages of using AIC∗, AICc∗ and BIC∗

Next, we provide three interpretations on the advantages of using the determinant term |�(̂�p)| by showing that this
term leads to a better comparison of the models under consideration by (1) the one step ahead prediction variances; (2)
the correlation structure; (3) a goodness of fit test.

2.2.1. Interpretation by one step ahead prediction variances
To show the first interpretation, let x̂t (p) be the one step ahead mean square predictions under the Mp model and let

et (p) = xt − x̂t (p) be the corresponding one step ahead prediction errors. These errors have variances which can be
written as E[et (p)2] = �2

pv2
t (p) (see, Harvey, 1981). For instance, for the AR(1) model, v2

t (1) = 1/(1 − �2), for t = 1,
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and v2
t (p) = 1, for t > 1. Thus, the logarithm of the determinant of the covariance matrix of x can be written as

log |�(̂�p)| = T log

(
T∏

t=1

�̂2
pv̂2

t (p)

)1/T

=
T∑

t=1

log �̂2
pv̂2

t (p),

where v̂2
t (p) are obtained after replacing the estimated parameters in v2

t (p), and log |�(̂�p)| is T times the logarithm
of the geometric mean of the estimated one step ahead prediction variances. Therefore, the difference AIC∗(p + 1) −
AIC∗(p) can be written as

AIC∗(p + 1) − AIC∗(p) =
T∑

t=1

log
�̂2

p+1v̂
2
t (p + 1)

�̂2
pv̂2

t (p)
+ 2.

The first term measures the relative change between the one step ahead prediction variances, while the second term is
a penalization for the inclusion of one additional parameter. Therefore, AIC∗(p + 1) < AIC∗(p) if the geometric mean
of the one step ahead prediction variances under the model Mp+1 is significatively smaller than the corresponding
mean under the model Mp, or in other words, the AIC∗ will select the model which has a better predictive performance
penalized by the number of parameters. As

AIC∗(p) = T log �̂2
p +

T∑
t=1

log v̂2
t (p) + 2(p + 1) = AIC(p) +

T∑
t=1

log v̂2
t (p),

the AIC(p) does not take into account the terms v̂2
t (p), but only the estimated residual variance, �̂2

p. The same
conclusions holds for the AICc∗ and BIC∗ criteria.

2.2.2. Interpretation by the correlation structure
Now we show that the determinant term provides a more sophisticated comparison of the autocorrelation structure of

the models under consideration. As Q(�p)= (�2
x/�

2
p)R(�p), where �2

x is the variance of x and R(�p) is the correlation

matrix of x, we have |Q(�p)| = (�2
x/�

2
p)T|R(�p)|. Durbin (1960) and Ramsey (1974) showed that

�2
x/�

2
p =

p∏
i=1

(1 − �2
ii (�p))−1, |R(�p)| =

p∏
i=1

(1 − �2
ii (�p))T −i ,

respectively, where �ii (�p) are the partial autocorrelations of the process under the model Mp, so that,

|Q(�p)| =
∏p

i=1(1 − �2
ii (�p))T −i∏p

i=1(1 − �2
ii (�p))T

=
p∏

i=1

(1 − �2
ii (�p))−i .

Consequently, the criteria (7) can be written as follows:

min
p

{
T log �̂2

p + (p + 1) × C(T , p + 1) −
p∑

i=1

i log(1 − �2
ii (̂�p))

}
,

while the difference AIC∗(p + 1) − AIC∗(p) is

AIC∗(p + 1) − AIC∗(p) = T log
�̂2

p+1

�̂2
p

+ 2 −
p∑

i=1

i log
(1 − �2

ii (̂�p+1))

(1 − �2
ii (̂�p))

− (p + 1) log(1 − �2
p+1,p+1(̂�p+1)).

The first two terms are the one used by the AIC criterion but now two additional terms appear in the comparison. They
measure the discrepancy between all the partial autocorrelation coefficients under both hypothesis, Mp and Mp+1, with
weights that increase with the lag. Therefore, AIC∗(p + 1) < AIC∗(p) if either: (a) �̂2

p+1 is smaller enough than �̂2
p
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or (b) the weighted sum of the partial autocorrelation coefficients computed under the AR(p) model is greater enough
than the corresponding sum under the Mp+1 model. Note that the last term is acting as a penalization term because it
is always positive. The same interpretation applies to BIC∗ and AICc∗, and the only difference is the penalization term
for including one additional parameter.

2.2.3. Interpretation by a goodness of fit test
A last interpretation is given in terms of goodness of fit tests for time series. Peña and Rodriguez (2006) used the log

of the determinant of the autocorrelation matrix of the estimated residuals for testing goodness of fit in time series. As
a(�p) = L(�p)−1x, we can write

1

T
a(�p)a(�p)′ = [L(�p)−1]

[
1

T
xx′
]

[L(�p)−1]′. (8)

Thus, after fitting the model Mp,

1

T
a(̂�p)a(̂�p)′ = �̂2

pR(a(̂�p)), (9)

where R(a(̂�p)) is the sample correlation matrix of the estimated residuals, a(̂�p). Therefore, from (8) and (9), we
have

T log �̂2
p + log |Q(̂�p)| = log |(1/T )xx′| − log |R(a(̂�p))|

so that,

AIC∗(p + 1) − AIC∗(p) = log |R(a(̂�p))| − log |R(a(̂�p+1))| + 2.

Thus, AIC∗(p + 1) < AIC∗(p) if the logarithm of the determinant of the correlation matrix of the estimated
residuals after the model Mp+1 is significative larger than the one for the model Mp. The terms log |R(a(̂�p))|
and log |R(a(̂�p+1))| are the values of the statistic proposed by Peña and Rodriguez (2006) for models Mp and
Mp+1. Therefore, the AIC∗ will select the model with have a significatively larger value of the statistic proposed by
Peña and Rodriguez (2006). Consequently, the term T log �̂2

p + log |Q(̂�p)|, can be seen as a measure of the goodness
of fit of the model Mp to the series x. As before, the same interpretation applies to BIC∗ and AICc∗ after changing the
penalization term.

3. Model selection in SETAR models

One of the most often used nonlinear time series model is the SETAR model. A time series data, x = (x1, . . . , xT )′,
generated by the class of SETAR processes follows the model:

xt = �j0 +
pj∑
i=1

�jixt−i + ajt , if rj−1 �xt−d < rj , j = 1, . . . , k, (10)

where ajt are sequences of independent Gaussian distribution random variables with zero mean and variances �2
j . We

assume that pj ∈ {0, . . . , pmax
j } and d ∈ {0, . . . , dmax} are nonnegative integers, where pmax

j , j =1, . . . , k and dmax, are

some upper bounds, and −∞ = r0 < r1 < · · · < rk−1 < rk = ∞ are the thresholds. The SETAR(p1, . . . , pk, d) model,

denoted by Mp1,...,pk,d , has parameters �p1,...,pk,d = (�′
p1,...,pk,d

, �2
1, . . . , �

2
pk

)′, where �p1,...,pk,d
is the (

∑k
j=1(p

max
j +

1) + k + 2) × 1 vector of parameters,

�p1,...,pk,d
=

⎛⎜⎜⎜⎝�10, �11, . . . ,�1p1
, 0, . . . , 0, �k0, �k1, . . . ,�kpk

, 0, . . . , 0︸ ︷︷ ︸
1×∑k

j=1(p
max
j +1)

, r0, . . . , rk︸ ︷︷ ︸,
1×(k+1)

d

⎞⎟⎟⎟⎠
′

.
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We assume that the models Mp1,...,pk,d are stationary, ergodic with finite second moments and the stationary distribution
of x = (x1, . . . , xT )′ admits a density that is positive everywhere. We denote the parameters of the model that have
generated the data as �0.

Exact maximum likelihood estimates of the parameters of model (10) are not considered because of the complexity
of the likelihood function. Assuming that d is known, the conditional log-likelihood of model (10) is given by

log pc(x|�p1,...,pk,d ) = −T

2
log(2�) − 1

2

k∑
j=1

(
Tj log �2

pj
+ S(�j , rj−1, rj )

�2
pj

)
, (11)

where Tj are the number of observations in each regime for the thresholds r1, . . . , rk−1, �j = (�j0, . . . ,�jpj
)′ and

S(�j , rj−1, rj )=∑rj−1 � xt−d<rj
a2
j t , j =1, . . . , k. The conditional maximum likelihood estimators of the parameters,

denoted by �̂p1,...,pk,d = (̂�
′
p1,...,pk,d

, �̂2
1, . . . , �̂

2
pk

)′, are the values that maximize the conditional likelihood in (11), with
residual variances

�̂2
j = S(�̂j , r̂j−1, r̂j )

Tj

, j = 1, . . . , k.

Chan (1993) showed the strong consistency of the conditional least squares estimators of the parameters for k = 1.
Wong and Li (1998) approximated the expected Kullback–Leibler divergence for SETAR models as follows:

E�̂p1,...,pk ,d
[E�0 [−2 log pc(y |̂�p1,...,pk,d )]] = T log(2�) +

k∑
i=1

Ti log �̂2
pi

+
k∑

i=1

Ti(Ti + pi + 1)

(Ti − pi − 3)
+ op(1),

which leads to the AICc criterion for SETAR models. These authors compared in a simulation study three model
selection criteria, AIC, AICc and BIC, which for k regimes are given by

min
(p1,...,pk)

⎧⎨⎩
k∑

j=1

[Tj log �̂2
j + (pj + 1) × Cj (Tj , pj + 1)]

⎫⎬⎭ , (12)

where Cj (Tj , pj + 1) is 2 for AIC, 1
pj +1

Tj (Tj +pj +1)

Tj −(pj +1)−2 for AICc, and log Tj for BIC. The procedure proposed by
Wong and Li (1998) works as follows, when k = 2, r1 = r and d are unknown: (a) fix the maximum autoregressive
and delay orders {pmax

1 , pmax
2 , dmax}; (b) assume r ∈ [l, u] ⊂ R, where l is the 0.25 × 100% percentile and u is the

0.75×100% percentile of x; (c) let x(1), . . . , x(T ) be the order statistics of x; (d) let Ir ={[0.25T ], . . . , [0.75T ]}, where
[�T ] is the largest integer less than �T . Set r = x(i), i ∈ Ir ; (e) calculate

min
(p1,p2,d,x(i))

{MSC(p1, p2, d, x(i))},

where MSC(p1, p2, d, x(i)) is one of the model selection criteria in (12). The autoregressive orders (p1, p2), the
delay parameter, d, and the threshold, x(i), selected are the ones that minimize MSC(p1, p2, d, x(i)). Wong and Li
(1998) carried out a Monte Carlo experiment for different models and sample sizes for the criteria in (12), and
conclude that the AICc has the best performance for small sample sizes and BIC for medium and large sample
sizes.

De Gooijer (2001) proposed a procedure for selecting and estimating the parameters of a SETAR model by cross-
validation which works as follows: (a)–(d) are as in the previous procedure; (e) omit one observation of the series,
xt , and with the remaining data set obtain conditional least squares estimates of the parameters of the corresponding
model, which we denote by �̂

t

j , predict the omitted observation and obtain the predictive residual, at (�̂
t

j , r̂j−1, r̂j ); (f)
repeat the previous step for all the observations. The final model is the one that minimizes one of the criteria C1, Cc and
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Cu, written in compact way as follows:

min
(p1,...,pk)

⎧⎨⎩T log

(
1

T

T∑
t=1

a2
t (�̂

t

j , r̂j−1, r̂j )

)
+

k∑
j=1

(pj + 1) × Cj (Tj , pj + 1)

⎫⎬⎭ , (13)

where Cj (Tj , pj + 1) is 0 for C1, 1
pj +1

Tj (Tj +pj +1)

Tj −pj −3 for Cc, and 1
pj +1 [Tj (Tj +pj +1)

Tj −pj −3 + Tj log{ Tj

Tj −pj −2 }] for Cu. The C1

criterion was analyzed in Stoica et al. (1986) for linear models and proved that for a given model, C1=AIC+O(T −1/2).
The Cc and the Cu criteria came from adding the penalty terms of the AICc and AICu criteria to the C1 criterion. The
AICu is a criterion introduced by McQuarrie et al. (1997) for linear models and is neither efficient nor consistent but
it has a good performance in finite samples. For SETAR models the AICu criterion can be written as in (12) with

Cj (Tj , pj + 1) = 1
pj +1 [Tj (Tj +pj +1)

Tj −pj −3 + Tj log{ Tj

Tj −pj −2 }].
As SETAR models are piecewise autoregressive linear, we propose to modify the criteria as in the autoregressive

models case as follows. The criteria BIC, AIC, AICc and AICu are modified by adding the determinant term in each
regime as follows:

min
(p1,...,pk)

⎧⎨⎩
k∑

j=1

[Tj log �̂2
j + (pj + 1) × Cj (Tj , pj + 1) + log |Q(�̂j )|]

⎫⎬⎭ . (14)

In order to compute the determinant term in each regime we first estimate the parameters of the model by condi-
tional likelihood and then obtain the determinant term in each regime. For that we use the expression provided by
Leeuw (1994) who showed that

|Q(�̂j )| = 1

|M ′M − NN ′| , (15)

where M and N are pj × pj matrices with elements given by

Mab =
⎧⎨⎩

0 a < b,

1 a = b,

−�̂j,a−b a > b,

Nab =
{−�̂j,pj +(a−b), a�b,

0, a > b.

In the same way, we modify the cross-validation criteria C1, Cc and Cu proposed by De Gooijer (2001) in (13) by
adding the determinant term in each regime. Therefore, the modified cross-validation criteria C∗

1 , Cc∗ and Cu∗ are
defined as follows:

min
(p1,...,pk)

⎧⎨⎩T log

(
1

T

T∑
t=1

a2
t (�̂

t

j , r̂j−1, r̂j )

)
+

k∑
j=1

[(pj + 1) × Cj (Tj , pj + 1) + log |Q(�̂j )|]
⎫⎬⎭ . (16)

The procedures in Wong and Li (1998) and De Gooijer (2001) are modified by adding the determinant term in the
last step obtained with the conditional least squares estimates of the parameters with the whole series. Then, the final
model selected is the one that minimizes one of the criteria in (16). The determinant term is computed using (15).

4. Monte Carlo experiments

To evaluate the performance of the proposed criteria for SETAR models, 1000 realizations were generated from the
following two stationary SETAR models:

(M1)

{
xt = −0.8xt−1 + a1t , xt−1 �0,

xt = −0.2xt−1 + a2t , xt−1 > 0,
(M2)

{
xt = 0.5xt−1 + a1t , xt−1 �0,

xt = −0.5xt−1 + a2t , xt−1 > 0,
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Table 1
Frequency of times of correct selection, root mean square errors of the threshold parameter and root mean square prediction errors assuming that d
is known

M T = 30 BIC BIC∗ AIC AIC∗ AICc AICc∗ AICu AICu∗ C1 C∗
1 Cc Cc∗ Cu Cu∗

1 (p1, p2) 306 377 254 331 800 856 903 923 363 474 818 854 895 923
1 RMSE 0.62 0.62 0.60 0.60 0.41 0.40 0.40 0.39 0.55 0.54 0.40 0.40 0.40 0.39
1 RMSPE 1.41 1.37 1.38 1.32 1.13 1.13 1.12 1.12 1.22 1.22 1.14 1.12 1.12 1.11

2 (p1, p2) 306 361 243 310 779 825 876 913 378 450 786 840 890 921
2 RMSE 0.84 0.84 0.82 0.82 0.65 0.66 0.65 0.65 0.73 0.74 0.64 0.65 0.63 0.63
2 RMSPE 1.64 1.63 1.64 1.64 1.16 1.15 1.13 1.12 1.31 1.31 1.14 1.13 1.12 1.12

T = 50

1 (p1, p2) 420 512 198 298 629 686 789 827 286 395 634 688 796 836
1 RMSE 0.58 0.56 0.55 0.54 0.47 0.47 0.47 0.47 0.53 0.52 0.45 0.45 0.45 0.44
1 RMSPE 1.15 1.14 1.19 1.19 1.06 1.06 1.06 1.06 1.15 1.15 1.07 1.07 1.07 1.06

2 (p1, p2) 412 507 216 307 633 704 802 846 313 406 659 724 820 855
2 RMSE 0.74 0.74 0.73 0.74 0.63 0.63 0.63 0.64 0.70 0.70 0.63 0.65 0.64 0.64
2 RMSPE 1.19 1.19 1.24 1.23 1.15 1.15 1.13 1.12 1.22 1.22 1.15 1.14 1.12 1.12

T = 100

1 (p1, p2) 743 796 359 431 537 591 753 789 358 439 522 589 765 799
1 RMSE 0.54 0.52 0.52 0.51 0.50 0.48 0.50 0.47 0.51 0.49 0.49 0.47 0.48 0.46
1 MSPE 1.06 1.06 1.08 1.06 1.07 1.06 1.06 1.06 1.08 1.08 1.07 1.07 1.06 1.06

2 (p1, p2) 771 819 365 446 545 600 773 816 398 461 542 611 773 805
2 RMSE 0.59 0.59 0.58 0.59 0.57 0.58 0.57 0.57 0.58 0.58 0.56 0.57 0.56 0.57
2 RMSPE 1.06 1.05 1.07 1.07 1.07 1.07 1.06 1.05 1.07 1.07 1.07 1.06 1.06 1.06

where ajt ∼ N(0, 1), j = 1, 2. Based on Section 3, we compare the performance of the criteria in (12) with respect to
the criteria in (14) and the criteria in (13) with respect to the criteria in (16). In all cases, 1000 series were generated
from models M1 and M2 with sample sizes T = 31, 51 and 101. We proceed as in Wong and Li (1998) and De Gooijer
(2001) by using a grid to estimate the threshold parameter r. We fit each model to the first T − 1 observations of each
series by conditional likelihood and obtain the determinant term in (15) in each regime. First, we assume that the delay
parameter is known and fix pmax

1 =pmax
2 =5 for T =31, 51 and 101, so that taking into account that the number of possible

values of the threshold parameter is (T − 1)/2, we compare 375, 625 and 1250 models, respectively. In every case, we
consider the following measures of the performance of the model selection criteria: (a) the frequency detection of the
correct order (p1, p2)=(1, 1); (b) the root mean square error (RMSE) of estimation of the threshold parameter and (c) the
root mean square prediction error (RMSPE) for the last observation by using the model chosen by each criteria, the fitted
parameters and the true value. The results are in Table 1. It can be seen that for small sample size, T =30, the improvement
in the number of times in which the correct model is selected can be as large as 30.5% (see C1 and C∗

1 in M1), for T =50
as large as 50.5% (see AIC and AIC∗ in M1) and for T =100 as large as 22.6% (see AIC and AIC∗ in M1). First part of
Table 3 includes the improvement percentage of the number of times in which the correct orders are selected by all the
modified criteria. We note that theAICu, AICu∗, Cu and Cu∗ have larger frequency detection for T =30 but the frequency
detection decreases when the sample size increases. On the other hand, the RMSE of estimation of the threshold
parameter are very close for the original and modified criteria, whereas the RMSPE is usually smaller for the modified
criteria.

Now, we assume that the delay is unknown and apply the same design as before with pmax
1 = pmax

2 = 5, dmax = 4
and T = 31, 51 and 101 . Now we compare 1500, 2500 and 5000 models, respectively. In every case, we consider the
same three measures of the performance of the model selection criteria, the frequency detection of the correct order
(p1, p2), RMSE and RMSPE but we also include the frequency detection of selecting the correct delay parameter (d)
and the frequency detection of the correct orders and delay parameter, (p1, p2, d). The results are given in Table 2.
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Table 2
Frequency of times of correct selection, root mean square errors of the threshold parameter and root mean square prediction errors assuming that d

is unknown

M T = 30 BIC BIC∗ AIC AIC∗ AICc AICc∗ AICu AICu∗ C1 C∗
1 Cc Cc∗ Cu Cu∗

1 (p1, p2) 205 303 163 248 739 808 862 897 292 403 765 824 863 913
1 (d) 540 559 553 571 582 616 589 617 540 540 573 578 573 575
1 (p1, p2, d) 135 187 117 165 463 517 527 566 187 240 469 499 517 536
1 RMSE 0.65 0.64 0.63 0.62 0.43 0.42 0.42 0.41 0.55 0.55 0.41 0.41 0.41 0.41
1 RMSPE 1.62 1.61 1.64 1.62 1.18 1.17 1.17 1.17 1.29 1.28 1.19 1.19 1.18 1.18

2 (p1, p2) 184 249 147 221 733 802 846 879 292 390 754 809 860 885
2 (d) 569 555 562 568 601 590 608 598 611 599 649 632 653 633
2 (p1, p2, d) 119 146 98 141 461 485 527 538 203 254 512 526 577 570
2 RMSE 0.90 0.90 0.88 0.88 0.68 0.69 0.67 0.67 0.78 0.78 0.67 0.68 0.66 0.67
2 RMSPE 1.90 1.86 1.90 1.86 1.27 1.25 1.24 1.22 1.52 1.51 1.28 1.27 1.25 1.24

T = 50

1 (p1, p2) 223 340 85 168 529 624 744 800 187 292 554 645 746 812
1 (d) 335 337 337 320 364 365 369 371 384 380 394 403 406 419
1 (p1, p2, d) 99 130 40 63 225 250 296 318 107 149 252 288 326 360
1 RMSE 0.63 0.61 0.61 0.60 0.48 0.47 0.47 0.47 0.53 0.53 0.46 0.46 0.45 0.45
1 RMSPE 1.25 1.22 1.30 1.26 1.17 1.16 1.14 1.14 1.24 1.23 1.18 1.18 1.16 1.15

2 (p1, p2) 247 325 105 183 570 655 773 824 217 293 594 668 784 834
2 (d) 419 421 400 423 483 474 500 483 480 478 528 521 544 529
2 (p1, p2, d) 146 182 66 115 325 347 419 427 143 178 359 380 455 460
2 RMSE 0.84 0.84 0.82 0.82 0.68 0.68 0.68 0.68 0.72 0.72 0.66 0.66 0.65 0.66
2 RMSPE 1.44 1.44 1.39 1.35 1.20 1.20 1.17 1.16 1.31 1.29 1.20 1.19 1.18 1.18

T = 100

1 (p1, p2) 652 747 221 330 388 480 667 773 235 316 401 481 662 773
1 (d) 491 542 489 527 504 542 522 527 552 567 567 572 582 582
1 (p1, p2, d) 351 421 135 192 210 286 376 436 195 251 301 351 436 481
1 RMSE 0.53 0.52 0.52 0.50 0.49 0.46 0.49 0.47 0.49 0.49 0.48 0.47 0.49 0.46
1 MSPE 1.04 1.03 1.05 1.05 1.06 1.06 1.04 1.02 1.06 1.06 1.04 1.02 1.04 1.03

2 (p1, p2) 808 888 371 466 547 632 838 863 421 532 602 662 798 863
2 (d) 732 727 667 667 677 692 717 712 747 773 773 788 788 793
2 (p1, p2, d) 632 662 291 371 431 486 632 637 376 456 517 562 657 697
2 RMSE 0.58 0.59 0.60 0.59 0.56 0.57 0.56 0.56 0.56 0.56 0.54 0.57 0.55 0.56
2 RMSPE 1.04 1.03 1.05 1.05 1.04 1.04 1.04 1.03 1.06 1.06 1.07 1.05 1.05 1.05

It can be seen that for small sample size, T = 30, the improvement in the number of times in which the correct orders
(p1, p2, d)=(1, 1, 1) are selected can be as large as 43.8% (see AIC and AIC∗ in M2), for T =50 as large as 74.2% (see
AIC and AIC∗ in M2) and for T =100 as large as 42.2% (seeAIC and AIC∗ in M1). See the second part of Table 3 to find
the improvement percentage of the number of times in which the correct orders and delay parameter are selected by the
modified criteria. As in the case in which d is assumed known, the AICu, AICu∗, Cu and Cu∗ have the larger frequency
detection for the true autoregression orders and delay parameters for T = 30, but the frequency detection decreases
when the sample size increases. We note that sometimes the modified criteria have a shorter frequency detection of
the delay parameter, but this is not a drawback for them because the aim is to detect both the true autoregressive
orders and the delay parameter, and not only the delay parameter. Regarding the RMSE and the RMSPE, the results
are similar to the case in which d is assumed to be known. In terms of computational effort, the time needed to select
the model by all the criteria considered in this paper for a series with T = 31, 51 and 101, when both the threshold
and the delay parameter are unknown are 21.8, 81.9 and 547 s, respectively, using a program written in Matlab with a
Pentium M.
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Table 3
Improvement percentage of the number of times in which the correct orders are selected by the modified criteria (up, assuming d is known, down,
assuming d is unknown)

M T = 30 BIC∗ AIC∗ AICc∗ AICu∗ C∗
1 Cc∗ Cu∗

d Known
1 (p1, p2) 23.20 30.31 7.00 2.21 30.57 4.40 3.12
2 (p1, p2) 17.97 27.57 5.90 4.22 19.04 6.87 3.48

T = 50

1 (p1, p2) 21.90 50.50 9.06 4.81 38.11 8.51 5.02
2 (p1, p2) 23.05 42.12 11.21 5.48 29.71 9.86 4.26

T = 100

1 (p1, p2) 7.13 20.05 10.05 4.78 22.62 12.83 4.44
2 (p1, p2) 6.22 22.19 10.09 5.56 15.82 12.73 4.13

d Unknown
T = 30

1 (p1, p2, d) 38.51 41.02 11.66 7.40 28.34 6.39 3.67
2 (p1, p2, d) 22.68 43.87 5.20 2.08 25.12 2.73 −1.21

T = 50

1 (p1, p2, d) 31.31 27.50 11.11 7.43 39.25 14.28 10.42
2 (p1, p2, d) 24.65 74.24 6.76 1.90 24.47 5.84 1.09

T = 100

1 (p1, p2, d) 19.94 42.22 36.19 15.95 28.71 16.61 10.32
2 (p1, p2, d) 4.74 27.49 12.76 0.79 21.27 8.70 6.08
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Appendix A.

Proof of Theorem 1. Shibata (1980) considers order selection criteria of the form:

So
T (p) = (T − pmax + 	T (p) + 2p)̂�2

p.

The order chosen for the selection criteria So
T (p) is efficient if 	T (p) verifies the conditions imposed in Theorem 4.2

of Shibata (1980)

1. p lim
T →∞

(
max

1�p�pmax

|	T (p)|
T − pmax

)
= 0,

2. p lim
T →∞

(
max

1�p�pmax

|	T (p) − 	T (p∗
T )|

(T − pmax)LT (p)

)
= 0,

where p lim denotes limit in probability, LT (p), is the following function:

LT (p) = p�2
a

T − pmax
+

∞∑
i=p+1

∞∑
j=p+1

�i�j�ij ,
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where �ij = Cov(xt , xt−|i−j |) and p∗
T is a sequence of positive integers with 1�p∗

T �pmax which attain the mini-
mum of LT (p) for each T (see Shibata, 1980, p. 154). The AIC can be written in terms of So

T (p) taking 	T (p) =
	AIC
T (p) = T exp(

2p
T

) − (T − pmax) − 2p. Shibata (1980) has shown that this term verifies the two conditions,

and this gives the asymptotic efficiency of AIC. We can write AIC∗ in terms of So
T (p) taking 	T (p) = 	AIC∗

T (p) =
T exp(

2p
T

)(log |Q(̂�p)|)1/T − (T − pmax) − 2p. Therefore,

	AIC∗
T (p) = 	AIC

T (p) − T exp

(
2p

T

)
(1 − (log |Q(̂�p)|)1/T ).

We show that 	AIC∗
T (p) verifies both conditions. First we write,

|	AIC∗
T (p)|

T − pmax
=
∣∣∣∣∣∣
exp

(
2p
T

)
(log |Q(̂�p)|)1/T

1 − pmax
T

−
2p
T

1 − pmax
T

− 1

∣∣∣∣∣∣ . (17)

Hannan (1973) shows that (log |Q(
)|)1/T → 1, for every 
 belonging to the parametric space, and consequently,
(log |Q(̂�p)|)1/T → 1 and the limit when T → ∞ of the maximum of the values (17) in the set 1�p�pmax is 0. This
proves the first condition.

For the second condition, we write the following decomposition:

|	AIC∗
T (p) − 	AIC∗

T (p∗
T )|

(T − pmax)LT (p)

�
|	AIC

T (p) − 	AIC
T (p∗

T )|
(T − pmax)LT (p)

+
∣∣∣T exp

(
2p∗

T

T

)
(1 − (log |Q(̂�p∗

T
)|)1/T ) − T exp

(
2p
T

)
(1 − (log |Q(̂�p)|)1/T )

∣∣∣
(T − pmax)LT (p)

.

Shibata (1980) showed that the first term tends to 0 implying that AIC is efficient. For the second expression, for any
p such that 1�p�pmax including p∗

T , it can be shown that,

lim
T →∞ T exp

(
2p

T

)
(1 − (log |Q(̂�p)|)1/T ) = − log

(
−

p∑
i=1

i log(1 − �2
ii (�p))

)
< ∞.

As this limit is bounded for every p and (T −pmax)LT (p) → ∞ when T → ∞, for every 1�p�pmax, the second
expression also tends to 0. Then, 	AIC∗

T (p) verifies the second condition. Therefore, AIC∗ is efficient. As AICc∗ is
asymptotically equivalent to AIC∗, AICc∗ is also efficient. �

Proof of Theorem 2. The BIC∗ can be written as follows by using one step ahead prediction variances:

BIC∗(p) = T log �̂2
p +

T∑
t=1

log v2
t (p) + (p + 1) log T

= T log �̂2
p + (p + 1)

(
1

p + 1

T∑
t=1

log v2
t (p) + log T

)
.

Now, note that the last term in the previous expression verifies:

1

p + 1

T∑
t=1

log v2
t (p) + log T → ∞,

1

T

(
1

p + 1

T∑
t=1

log v2
t (p) + log T

)
→ 0.

This shows that the criterion BIC∗ is under the conditions of Theorem 3 in Hannan (1980, p. 1073), implying that
BIC∗ is consistent. �
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