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A powerful procedure for outlier detection and robust estimation of shape and loca-
tion with multivariate data in high dimension is proposed. The procedure searches for
outliers in univariate projections on directions that are obtained both randomly, as in the
Stahel-Donoho method, and by maximizing and minimizing the kurtosis coefficient of
the projected data, as in the Peña and Prieto method. We propose modifications of both
methods to improve their computational efficiency and combine them in a procedure
which is affine equivariant, has a high breakdown point, is fast to compute and can be
applied when the dimension is large. Its performance is illustrated with a Monte Carlo
experiment and in a real dataset.
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1. INTRODUCTION

Classical techniques for dimension reduction and discrimination with multivariate data,
such as principal components, canonical correlation or linear discriminant analysis, depend
on the estimation of the location and shape of the sample data. It is well known that a few
outliers in the data may arbitrarily distort the sample mean and the sample covariance matrix,
therefore, the robust estimation of location and shape is a crucial problem in multivariate
statistics. Several robust estimates have been proposed, see Gnanadesikan and Kettenring
(1972), Maronna (1976), Stahel (1981), Donoho (1982), Rousseeuw (1985), Davies (1987),
Rousseeuw and van Zomeren (1990), Tyler (1991, 1994), Hadi (1992), Cook, Hawkins, and
Weisberg (1993), Rocke and Woodruff (1993, 1996), Atkinson (1994), Hawkins (1994),
Maronna and Yohai (1995), Agulló (1996), Rousseeuw and van Driessen (1999), Becker
and Gather (2001), Peña and Prieto (2001a), Juan and Prieto (2001), Hawkins and Olive
(2002), and Maronna and Zamar (2002) and the references therein. For high-dimensional
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large datasets a useful way to avoid the curse of dimensionality in data mining applica-
tions is to search for outliers in univariate projections of the data. Two procedures that
use this approach are the Stahel-Donoho (SD from now on) procedure, that searches for
univariate outliers in projections on random directions, and the method proposed by Peña
and Prieto (PP from now on), that searches for outliers in projections obtained by maxi-
mizing and minimizing the kurtosis coefficient of the projected data. The first procedure
has good theoretical properties, but fails for concentrated contaminations and requires pro-
hibitive computer times for large dimension problems. The second procedure works very
well for concentrated contaminations and it can be applied in much larger dimension than
the previous one but its theoretical properties are unknown. As both procedures are based
on projections, it seems sensible to explore how to combine them to avoid their particular
limitations. This is the objective of this article.

The first contribution of the article is to propose a new method to generate random
directions which is much more effective than the standard SD subsampling scheme. The
second contribution is to present a modification of the PP procedure which is computation-
ally more efficient when the dimension is large. The third contribution is a new procedure,
which combines these modifications of the SD and the PP methods, which can be applied in
large dimensions. The proposed procedure combines random and specific directions and has
the following properties: (1) is affine equivariant; (2) inherits the good theoretical properties
of the SD method; (3) inherits the good properties for finding high leverage concentrated
outliers of the PP procedure; (4) it is fast to compute so that it can be applied to large
datasets.

The rest of the article is organized as follows. Section 2 briefly reviews the SD method for
generating random directions based on random sampling and proposes a more effective way
to generate them by using stratified sampling. This section also reviews some limitations
of the PP procedure for large dimensions and considers a simplification of this procedure
which makes it faster to compute with a very small effect on its performance. Section
3 presents the proposed algorithm, combining random and specific directions. Section 4
illustrates the performance of the proposed method in a Monte Carlo study and compares it
to the FASTMCD algorithm by Rousseeuw and Van Driessen (1999), the implementation of
the Stahel-Donoho algorithm by Maronna and Yohai (1995), the computationally efficient
algorithm recently proposed by Maronna and Zamar (2002), and the algorithm proposed
by Peña and Prieto (2001a). Section 5 contains examples and Section 6 some concluding
remarks.

2. FINDING INTERESTING DIRECTIONS

Suppose we have a sample (x1, . . . , xn) of a p-dimensional vector random variable X.
We are interested in searching for outliers by projecting the data onto a set of directions
dj , j = 1, . . . , J . Let z

(j)
i = d ′

j xi be the projection of point xi onto direction dj and

z(j) = (z
(j)

1 , . . . , z
(j)
n ). A univariate “measure of outlyingness” for each observation based
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on these projections is

ri = max
1≤j≤J

|z(j)i − median(z(j))|
MAD(z(j))

. (2.1)

These measures can be used to both build robust estimates and identify outliers. The Stahel-
Donoho (SD) robust estimate of the mean and covariance matrix (see Stahel 1981 and
Donoho 1982) is defined by

mr =
∑n

1 wixi∑n
1 wi

, (2.2)

Sr =
∑n

1 wi(xi − m)(xi − m)′∑n
1 wi

, (2.3)

where wi = w(ri) is a function of the outlyingness measure ri . For example, the Huber
function w(ri) = min(1, c/ri) where c is a tuning constant can be used, or a redescending
function that deletes points when ri is large enough. This estimator is equivariant and has
a high breakdown point in any dimension (see Stahel 1981, Tyler 1994, and Maronna and
Yohai 1995). Once a robust estimate is obtained, outliers can be identified and deleted
and the standard estimates of the mean and the covariance function can be applied to the
uncontaminated data. Note that the resulting covariance matrix estimates have to be scaled
for consistency. In this way we achieve robustness and high efficiency under normality.

The key step in the method is obtaining the directions dj . The procedure proposed by
Stahel (1981), which is the standard method used in the implementation of the algorithm, is
to generate these directions randomly: a random sample of size p is chosen, a hyperplane
is fitted to this sample and the direction dj orthogonal to this hyperplane is chosen. Note
that if we have a set of outliers and the data is standardized, the direction orthogonal to the
fitted hyperplane is, a priori, a good one to search for outliers. This is illustrated in Figure
1(a) and (b). In case (a) the proportion of outliers is moderate, (10%), whereas in (b) the
proportion is large (30%). In both cases the outliers are located in the direction of the first
variable. Note that the most likely direction obtained when fitting a straight line to a random
sample of two points will be approximately orthogonal to the outlier direction.

A procedure for obtaining specific directions that can reveal the presence of outliers
was proposed by Peña and Prieto (2001a). They showed that the projection of the data on
the direction of the outliers will lead to (1) a distribution with a large univariate kurtosis
coefficient if the level of contamination is small and (2) a distribution with small univariate
kurtosis coefficient if the level of contamination is large. For instance, in Figure 1(a) the
projection of the observations in the direction of the outliers (the x axis) will lead to a
distribution with heavy tails and a large kurtosis coefficient (

∑
(xi − x)4/(ns4) = 7.85).

On the other hand, in case (b), the distribution of the projected data will be bimodal, and
the kurtosis coefficient will be small (

∑
(xi − x)4/(ns4) = 1.78). Peña and Prieto (2001b)

showed that if the data come from a mixture of two distributions (1 − α)f1(X) + αf2(X),

with 0.5 > α > 0 and fi , i = 1, 2, is an elliptical distribution with mean µi and covariance
matrix Vi, the directions that maximize or minimize the kurtosis coefficient of the projected
data are of the form given by Anderson and Bahadur (1962) for the admissible linear
classification rules. In particular, if the distributions were normal with the same covariance

 
 

 
 

 
 

 
 

 
 

 



Combining Random and Specific Directions for Outlier Direction 231

Figure 1. Two contaminated samples. In case (a) the proportion of outliers is not large (10%) and the kurtosis
of the projected data in the directions of the outliers is large. In case (b) the proportion of outliers is large (30%)
and the kurtosis of the projected data is very small.

matrix and the proportion of contamination is not large, 0 < α < 0.289, the direction
obtained by maximizing the kurtosis coefficient is the Fisher linear discriminant function,
whereas when the proportion of contamination is large, 0.289 < α < 0.5, the direction
which minimizes the kurtosis coefficient is again the Fisher linear discriminant function.
Thus, the extreme directions of the kurtosis coefficient seem to provide a powerful tool
for searching for groups of masked outliers. Peña and Prieto (2001a) proposed an iterative
procedure based on the projection onto a set of 2p orthogonal directions obtained as extremes
for the kurtosis of the projected data. Note that the first set of p directions is closely related
to the independent components of the data (see Hyvarinen, Karhunen, and Oja 2001), which
are defined as a set of p variables obtained by linear transformations of the original data such
that the new variables are as independent as possible. It can be shown that the independent
components can be obtained by maximizing the absolute value or the square of the kurtosis
coefficient and, as this coefficient cannot be smaller than one, these directions will be the
same as those obtained by maximizing the kurtosis coefficient. The performance of these
directions for outlier detection was found to be very good for concentrated contamination
but, as can be expected from the previous results, it was not as good when the proportion
of contamination is close to 0.3 and the contaminating distribution has the same variance
as the original distribution. This behavior of the algorithm is not surprising because in that
case the values of the kurtosis for the projected data are not expected to be either very large
or very small.

Thus, it seems that we may have a powerful procedure by combining the specific direc-
tions obtained as extremes of the kurtosis with some random directions. However, as we
are interested in a procedure that works in large datasets and it is well known (and it will be
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232 D. Peña and F. J. Prieto

discussed in the next section) that the Stahel-Donoho procedure requires a huge number of
directions to work as the sample size increases, and the PP procedure requires 2p directions,
which can be a large number in high-dimensional problems, both methods are modified in
this implementation. The random directions are not generated by random sampling but by
using some stratified sampling scheme that is found to be more useful in large dimensions.
The PP directions are chosen by taking only a few out of the 2p directions, as explained in
the next section.

2.1 Generating Random Directions

Figure 1 shows that directions computed from samples in which the p observations
belong to the same group, either the group of good observations or the group of outliers,
will in general be useful to identify the outliers, whereas those computed from a sample
which includes points from both groups will be of limited usefulness. Thus, if the proportion
of outliers is α we will obtain a good direction, defined as one computed from points that
belong to the same population, with probability αp + (1 − α)p. For large p and α not
too small this probability will be very small and most of the directions generated by direct
subsampling will not be useful. If we were able to decrease α, this probability would
increase. This suggests increasing the probability of generating good directions by using
a stratified sampling procedure from subsamples which contain a smaller proportion of
outliers than the original sample.

In order to motivate the proposed procedure note that, as illustrated in Figures 1(a)
and (b), when we have a sample contaminated by a group of outliers, the projections onto
the direction defined by a “good” observation and a contaminating observation tend to
order the observations so that on one side the projections correspond mostly to the “good”
observations, while on the other side the outliers predominate. This suggests that if we select
two observations at random, project the data onto the direction defined by them and then
select the sample from the extremes of the projected data we can increase the probability
of generating good directions, because the proportion of good or bad observations in the
extremes is expected to be greater than in the whole sample. On the other hand, if the
direction is computed from two good or bad observations the outliers will appear together,
if we have concentrated contamination, or in the extremes of the projection, if the outliers
have a larger variability than the good points. Thus it seems that we can increase the
probability of good directions by dividing the projected points in K intervals (strata) of
consecutive observations and by taking a random sampling of size p from each of these
intervals.

In order to justify this intuition let us consider a simple model of concentrated contami-
nation where n observations have been obtained as a random sample from the distribution in

p defined by (1−α)F (x)+αG(x). In what follows we derive the probability of obtaining
a good subsampling direction (GS), defined as one that is orthogonal to p “good” or “bad”
observations. The p observations are selected through a stratified sampling procedure where
we start by defining a direction from two randomly selected observations, we then form
K intervals, or strata, each one containing n/K consecutive observations defined from the
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ordered projections, and finally we take a random sample of size p from each one of the K

intervals obtained in this manner.
In order to carry out this analysis we need to analyze the distribution of the projections

onto a given direction, and study the probability of finding a good observation in a given in-
terval. A second, more complex step requires also studying the distribution of the directions
generated from a random pair of observations in p.

Given the difficulty of this analysis we will center on the study of a simplified case,
namely that of a mixture of normal distributions where F is obtained from a N(0, I )
distribution and G corresponds to a N(δe1, λ

2I ) distribution, where e1 denotes the first unit
vector. This is traditionally a hard case for outlier detection procedures, particularly if α is
large. In our proposed algorithm we conduct an initial scaling and centering step, and obtain
the distribution for yi = S−1/2(xi − x) indicated in the Appendix (p. 252) for large values
of n, assuming that asymptotic independence between the observations and the projection
direction holds. As additional simplifications we will assume in what follows that n → ∞
and δ → ∞; and, without loss of generality, we assume that the data are translated so
that the mean of the central distribution is the zero vector. Thus, the distribution of the yi

observations corresponds to

(1 − α)N(0, σ 2Ī ) + αN(θe1, σ
2λ2Ī ),

where

θ = 1√
α(1 − α)

, σ 2 = 1

αλ2 + 1 − α
, (2.4)

and Ī denotes an identity matrix with the first element equal to zero.
Under these assumptions we search for bounds on the probability of obtaining a sample

formed by p observations from the same distribution, GS , by following a two-step pro-
cedure: we first compute this probability when we sample from intervals obtained from
a given projection direction, and then we compute this probability when the direction is
obtained from randomly chosen pairs of observations.

• Fixed projection direction

Consider a given projection direction u ∈ p with ‖u‖ = 1, the distribution of y′
iu

will be given by Mu(x) ≡ (1−α)Fu +αGu, where Fu corresponds to a N(0, σ 2(1−
u2

1)) and Gu to a N(θu1, σ
2λ2(1 − u2

1)) distribution.

In what follows we study the case when the p observations are sampled from one
of the two extreme intervals which contains the 1/K of the projected observations.
The interval associated with the smallest values will be of the form (−∞, A) and the
value A should verify

1/K = P(x ≤ A) = Mu(A) ≡ (1 − α)Fu(A) + αGu(A). (2.5)

Denote by q(u) the probability, for given u, that one given observation in this in-
terval comes from the central distribution of “good” observations F . Note that this
probability only depends on u1, that is, q(u) ≡ q(u1), and its value is given by

q(u1) = (1 − α)Fu(A)

(1 − α)Fu(A) + αGu(A)
. (2.6)

 
 

 
 

 
 

 
 

 
 

 



234 D. Peña and F. J. Prieto

If we consider now the other extreme interval of larger values, (Ā,∞), where Ā is
given by

1/K = P(x > Ā) = 1 − Mu(Ā), (2.7)

and let q̄(u1) denote the probability, for given u, that one given observation in this
interval comes from the central distribution of “good” observations F, then

q̄(u1) = (1 − α)(1 − Fu(Ā))

(1 − α)(1 − Fu(Ā)) + α(1 − Gu(Ā))
.

LetD1 andDK denote the events where the observations have been taken from the first
and the last intervals, respectively. Then, the conditional probabilities of selecting p

observations from the same group,GS, can be obtained asP(GS |D1, u1) = q(u1)
p+

(1−q(u1))
p and P(GS |DK, u1) = q̄(u1)

p +(1− q̄(u1))
p. These values correspond

to the probabilities that either all the observations are taken from the subset of good
observations or all the observations for each case are taken from the bad subset.

• Projection directions obtained from random pairs of observations

The preceding values are functions of u, and in particular of u1. For our proposed
procedure we must analyze the distribution of u1 for directions defined from pairs
of randomly chosen observations (ŷ, ỹ). Then u = (ŷ − ỹ)/‖ŷ − ỹ‖, ‖u‖ = 1, the
range of possible values for u1 goes from −1 to 1 and

P(GS) =
∫ 1

−1
P(GS |u1)dFu1 = 1/2

∫ 1

−1
(P (GS |D1, u1) + P(GS |DK, u1)) dFu1

= 1/2
∫ 1

−1

(
q(x)p + (1 − q(x))p + q̄(x)p + (1 − q̄(x))p

)
dFu1 , (2.8)

where Fu1 denotes the distribution function for u1, Di denotes the event where the
observations have been taken from interval i, we are assuming that we only generate
directions from observations in the two extreme intervals and we condition on the
observations belonging to each of these intervals, with probability 1/2.

The distribution function Fu1 is different when the two observations used for generat-
ing the direction come from the same distribution, or when they come from different
distributions. In the first case u1 = 0 with probability one, as the variability of the
observations along the first coordinate is zero (see the Appendix, p. 252). Denoting
by F̄u1 the distribution in the second case, we can write (2.8) as

P(GS) = α2 + (1 − α)2

2

(
q(0)p + (1 − q(0))p + q̄(0)p + (1 − q̄(0))p

)
+α(1 − α)

∫ 1

−1

(
q(x)p + (1 − q(x))p + q̄(x)p

+(1 − q̄(x))p
)
dF̄u1(x). (2.9)

Note that q(u1) = q̄(−u1) and also that u1 computed when the first observation
belongs to the central group and the second one to the outliers follows the same
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distribution as −u1 when the first observation is an outlier and the second observation
belongs to the central group. As a consequence,

F̄u1(x) = 1

2
(P (u1 ≤ x|S) + P(u1 ≥ −x|S)) , (2.10)

where S denotes the event where the first observation belongs to the central group
and the second one is an outlier.

As u1 = (ŷ1−ỹ1)/(‖ŷ−ỹ‖) and calling vi ≡ ŷi−ỹi , we have that ‖ŷ−ỹ‖2 = ∑
i v

2
i

and under S it holds that v1 = ŷ1 − ỹ1 = θ with probability 1, as along the first
coordinate the distance between the centers of the subgroups is θ = (α(1 − α))−1/2

(see (2.4) and the Appendix) and the variability is zero, implying

u1 = θ√
θ2 +∑

i>1 v2
i

.

Note that for i > 1, ŷi follows a N(0, σ 2) distribution, where σ 2 = (λ2α + 1 −
α)−1 (see (2.4)) while ỹi follows a N(0, λ2σ 2) distribution, and all variables are
independent (see the Appendix). As a result, vi = ŷi − ỹi follows a N(0, σ 2(1+λ2))

distribution, and
∑

i>1 v2
i /(σ

2(1 +λ2)) follows a χ2
p−1 distribution. From this result

and (2.10),

F̄u1(x) = 1

2


P


θ ≤ x

√
θ2 +

∑
i>1

v2
i


+ P


θ ≥ −x

√
θ2 +

∑
i>1

v2
i




 ,

and as for x ≤ 0 it holds that P(u1 ≤ x|S) = 0 and for x ≥ 0 it holds that
P(u1 ≥ −x|S) = 1, we obtain

F̄u1(x) =



1
2P

(
χ2
p−1 ≤ θ2(1 − x2)/x2

)
if x ≤ 0,

1
2

(
1 + P

(
χ2
p−1 ≥ θ2(1 − x2)/x2

))
if x ≥ 0,

and

dF̄u1(x) =
{ −θ2fχ2

p−1

(
θ2(1 − x2)/x2

)
/x3 dx if x < 0,

θ2fχ2
p−1

(
θ2(1 − x2)/x2

)
/x3 dx if x > 0,

(2.11)

where fχ2
p−1

denotes the density function for a χ2
p−1 random variable. Using the

symmetry properties of q and q̄, (2.11) and (2.9) we finally have

P(GS) =
(
α2 + (1 − α)2

) (
q(0)p + (1 − q(0))p

)

+ 2
∫ 1

0

(
q(x)p + (1 − q(x))p

+q̄(x)p + (1 − q̄(x))p
)
fχ2

p−1

(
θ2(1 − x2)

x2

)
dx

x3
. (2.12)
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Table 1. Probability of Generating a Good Direction

α λ p K Probability for SD, pSD Probability bound (2.12) Efficiency ratio

0.3 1 10 5 0.0283 0.2235 7.91
0.3 1 20 5 7.98 10−4 0.0642 80.42
0.4 1 20 5 3.66 10−5 0.0221 605.42
0.3 0.1 20 5 7.98 10−4 0.7901 990.21
0.4 0.1 20 5 3.66 10−5 0.7599 20778.41
0.3 1 30 5 2.25 10−5 0.0140 622.25
0.4 1 30 5 2.21 10−7 1.49 10−3 6753.64
0.3 0.1 30 5 2.25 10−5 0.7901 35054.42
0.4 0.1 30 5 2.21 10−7 0.7598 3.43 107

The previous analysis has been made under the assumption that we obtain one direc-
tion by selecting with probability 1/2 one of the two extreme intervals and then obtaining
one sample of size p at random from the observations in the selected interval. Thus, the
value in (2.12) is exact only if we sample from these extreme intervals. For the algorithm
described in the following section, we obtain directions from each of the K intervals and
the corresponding probability P(ḠS) satisfies

P(ḠS) = 1

K

K∑
i=1

P(ḠS |Di) = 2

K
P(GS) + 1

K

∑
i �=1,K

P (ḠS |Di) ⇒ P(ḠS) ≥ 2

K
P(GS).

To illustrate the behavior of the method, the Table 1 includes the values obtained from
(2.12) for some particular cases, computed using numerical quadrature methods, as well
as the corresponding values when taking one direction at random by the standard Stahel-
Donoho algorithm, which will lead to a good direction with probability pSD = (1 − α)p +
αp. These values correspond to situations that are difficult both for Stahel-Donoho and
the kurtosis algorithm, and show a marked improvement, particularly as the dimension
increases, in the proposed stratified sampling scheme.

2.2 Generating Specific Directions

The algorithm proposed by PP generates 2p orthogonal directions obtained by max-
imizing and minimizing the kurtosis coefficient of the projections. Suppose that we have
just one group of similar outliers. This group will usually appear in the direction of either
the largest or smallest projected kurtosis, and the rest of the directions will not useful. If we
have several groups of similar outliers, it seems better to find a group, remove it from the
sample, and start the search again instead of going through the process of computing the
2p directions.

There are two possible solutions to speed up the process. The first one is to compute
only two directions, those with largest and smallest kurtosis coefficients. The second is
to compute n1 < p directions by maximizing, where n1 is determined by monitoring the
value obtained for the kurtosis of the projections. When this value is close to 3, we stop

 
 

 
 

 
 

 
 

 
 

 



Combining Random and Specific Directions for Outlier Direction 237

the process. In the same way we can compute n2 < p values by minimizing the kurtosis
with the same objective of having directions which are useful. We have also explored the
alternative of stopping the computation of the d direction when outliers are not found in
the d − 1st previous direction. After many Monte Carlo simulations we have found that the
best and simplest solution is to compute a small number of directions, as we will discuss in
the next sections.

3. DESCRIPTION OF THE ALGORITHM

The details of the computation of the directions and the analysis of the projections are
presented in the following. Note that the procedure is affine equivariant. The algorithm
requires four parameters: the numbers of maximization and minimization directions n1,

the number of random directions, L, the number of intervals for each random direction, K
and the correction factor βp to identify outliers. These parameters will be discussed after
presenting the algorithm. First, we assume that the original data are scaled and centered, that
is, letting x̄ be the mean and S the covariance matrix of the original data, the observations
are transformed by using

yi = S−1/2(xi − x̄), i = 1, . . . , n. (3.1)

• Stage I: Specific directions. Compute n1 orthogonal directions and projections max-
imizing the kurtosis coefficient (1 ≤ n1 ≤ p) and n1 directions minimizing this
coefficient.

1. Set y(1)
i = yi and the iteration index j = 1.

2. The direction that maximizes the coefficient of kurtosis is obtained as the solu-
tion of the problem

dj = arg maxd

1

n

n∑
i=1

(
d ′y(j)

i

)4

s.t. d ′d = 1.

(3.2)

3. The sample points are projected onto a lower dimension subspace, orthogonal
to the direction dj . Define

vj = dj − e1, Qj =




I − vjv
′
j

v′
j dj

if v′
j dj �= 0

I otherwise,

where e1 denotes the first unit vector. The resulting matrix Qj is orthogonal,
and we compute the new values

u
(j)
i ≡

(
z
(j)
i

y
(j+1)
i

)
= Qjy

(j)
i , i = 1, . . . , n,
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where z
(j)
i is the first component of u

(j)
i , which satisfies z

(j)
i = d ′

j y
(j)
i (the

univariate projection values), and y
(j+1)
i corresponds to the remaining p − j

components of u(j)
i .

We set j = j + 1, and if j < n1 we go back to step 1(b). Otherwise, we let
z
(p)
i = y

(p)
i .

4. The same process is applied to the computation of the directions dj (and pro-
jections z

(j)
i ), for j = n1 + 1, . . . , 2n1 minimizing the kurtosis coefficient.

5. The normalized univariate distances r
j
i , related to (2.1), are computed as

r
j
i = 1

βp

|z(j)i − median(z(j))|
MAD(z(j))

, (3.3)

for each direction j = 1, . . . , n1 +n2, where βp is a predefined reference value.

• Stage II: Random directions, obtained from a stratified sampling procedure as fol-
lows:

1. In iteration l, two observations are chosen randomly from the sample and the
direction d̂l defined by these two observations is computed. The observations
are then projected onto this direction, to obtain the values ẑli = d̂ ′

l yi . Then the
sample is partitioned into K intervals of size n/K , where K is a prespecified
number, based on the ordered values of the projections ẑli , so that interval k,
1 ≤ k ≤ K , contains those observations i satisfying

ẑl(�(k−1)n/K�+1) ≤ ẑli ≤ ẑl(�kn/K�).

2. From each interval k, 1 ≤ k ≤ K , a subsample of p observations is chosen
without replacement. The direction orthogonal to these observations, d̃kl , is
computed, as well as the corresponding projections z̃kli = d̃ ′

klyi for all obser-
vations i. These projections are used to obtain the corresponding normalized
univariate distances r

j
i ,

r
j
i = 1

βp

|z̃kli − median(z̃kl)|
MAD(z̃kl)

, (3.4)

where j = 2p + �(k − 1)n/K� + l, and βp the prespecified reference value.

3. This procedure is repeated a number of times L, until l = L.

• Stage III: Checking.

1. For each observation i its corresponding normalized outlyingness measure ri is
obtained from the univariate distances r

j
i defined in (3.3) and (3.4), as

ri = max
1≤j≤2p+�Ln/K� r

j
i .
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Those observations having values ri > 1 are labeled as outliers and removed from
the sample, if their number is smaller than n − �(n + p + 1)/2�. Otherwise, only
those n− �(n+p + 1)/2� observations having the largest values of ri are labeled as
outliers.

2. A Mahalanobis distance is computed for all observations labeled as outliers
in the preceding steps, using the data (mean and covariance matrix) from the
remaining observations. Let U denote the set of all observations not labeled as
outliers. The algorithm computes

m̃ = 1

|U |
∑
i∈U

xi,

S̃ = 1

|U | − 1

∑
i∈U

(xi − m̃)(xi − m̃)′,

vi = (xi − m̃)′S̃−1(xi − m̃), ∀i �∈ U.

3. Those observations i �∈ U such that vi < χ2
p−1,0.99 are not considered to be

outliers, and are included in U . The process is repeated until no more such
observations are found (or U becomes the set of all observations).

As indicated before, this algorithm includes several parameters. The values assigned to
them in the implementation have been chosen to ensure adequate theoretical and efficiency
properties. Next we describe these choices and their motivation.

1. The number of maximization and minimization directions n1 was selected as equal
to 1 in one of the experiments and equal to p in a second experiment. In the first case we
call the algorithm RASP(1) and in the second RASP(p). These two alternatives will be
compared in the next section in a Monte Carlo study.

2. The use of parameter βp in (3.3) of Stage I, jointly with the test on ri to label the
outliers, implies that βp is acting as a cutoff value to detect outliers from projections of
the observations onto the directions that minimize or maximize the kurtosis coefficient. Its
value is chosen to ensure a reasonable level of Type I errors, and depends on the sample
space dimension p. In particular, a set of simulation experiments were carried out to ensure
that, in the absence of outliers, the percentage of correct observations mislabeled as outliers
is approximately equal to 5%. Table 2 shows the values used for several sample space
dimensions. The values for other dimensions could be obtained by interpolating log βp

linearly in logp.

Table 2. Cutoff Values for Univariate Projections

Sample space dimension p 5 10 20
Cutoff value βp 3.46 3.86 4.67
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3. The number of intervals considered in each iteration of Stage II, K , was fixed so that
each interval had a size of 2p. In practice K = 3 or 5 seems to work well in the applications.

4. The number of iterations L for Stage II was selected so that the total number of
subsampling directions was equal to 10p. A larger number of directions provided only a
limited increase in the performance of the algorithm.

The main computational effort in the application of the preceding algorithm is associated
with the determination of local solutions for (3.2) and this computation has been carried
out as described by Peña and Prieto (2001a).

The procedure is affine equivariant and shares some of the good theoretical properties
of the Stahel-Donoho estimate obtained using a subsampling approximation. This estimate
has a high breakdown point in finite samples and it has been found to exhibit high efficiency
for both Normal and Cauchy distributions (see Maronna and Yohai 1995). The second part
of Stage II in the proposed procedure is a modification of the Stahel-Donoho subsampling
scheme with modified sample weights. For a sample including outliers arbitrarily removed
from the uncontaminated observations, to identify (some of) the outliers it is enough to gen-
erate directions from hyperplanes defined by subsets of p uncontaminated observations, as
in the Stahel-Donoho subsampling scheme. These directions are obtained with positive
probability by the proposed scheme, implying that if the number of subsamples were suffi-
ciently large, any outliers at infinity would be detected. In the next section we will see that
our proposal is also a powerful procedure for outlier detection at moderate distances from
the uncontaminated sample.

4. SIMULATION RESULTS

We have conducted a number of computational experiments to compare the performance
of the proposed algorithm, RASP(1), in the identification of the outliers, with the results from
other codes: (1) An efficient algorithm for the implementation of the Minimum Covariance
Determinant (MCD) procedure, the FASTMCD algorithm proposed by Rousseeuw and Van
Driessen (1999), which is based on the splitting of the problem into smaller subproblems.
(2) An implementation of the Stahel-Donoho algorithm, as described by Maronna and Yohai
(1995). The choice of parameters was the same as in this reference, except for the number of
subsamples, chosen equal to 200p for p = 5, 10 and 20. These numbers of subsamples yield
running times comparable with (in fact, larger than) those of the proposed algorithms. (3) A
computationally efficient method recently proposed by Maronna and Zamar (2002), based
on the analysis of the principal components of an adjusted covariance matrix computed from
information on pairwise covariances. Two iterations of the algorithm have been carried out,
as suggested by the authors. (4) An algorithm based on the directions computed from the
minimization and maximization of the kurtosis coefficient, as described in Peña and Prieto
(2001,a). (5) A stratified sampling procedure, SRand, corresponding to the second part
of the RASP algorithm described in Section 3, using the same numbers of directions and
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Table 3. Success Rates for the Detection of Outliers Forming One Cluster When One of the Algorithms
Scored Fewer than 95 Successes

p α δ n
√
λ FASTMCD SD MZ kurtosis SRand RASP(1) RASP(p)

5 0.3 10 100 0.1 0 100 0 100 100 100 100
5 0.4 10 100 0.1 0 97 0 100 98 100 100
5 0.4 10 100 1 100 100 0 100 95 99 100
5 0.4 100 100 0.1 0 100 0 100 100 100 100

10 0.2 10 100 0.1 0 100 48 100 100 100 100
10 0.3 10 100 0.1 0 100 0 98 100 100 100
10 0.3 100 100 0.1 0 100 2 96 100 100 100
10 0.4 10 100 0.1 0 0 0 98 65 99 99
10 0.4 10 100 1 90 33 0 97 63 99 97
10 0.4 100 100 0.1 0 100 0 100 100 100 100
10 0.4 100 100 1 70 100 0 98 99 100 100
20 0.2 10 200 0.1 0 100 9 97 100 100 100
20 0.2 10 200 1 100 100 100 0 100 99 100
20 0.2 100 200 0.1 0 100 100 91 100 100 100
20 0.3 10 200 0.1 0 33 0 89 100 100 100
20 0.3 10 200 1 0 39 1 1 49 49 47
20 0.3 100 200 0.1 0 88 0 82 100 100 100
20 0.3 100 200 1 30 87 100 1 84 78 77
20 0.4 10 200 0.1 0 0 0 100 52 100 100
20 0.4 10 200 1 0 0 0 60 5 45 53
20 0.4 100 200 0.1 0 4 0 100 100 100 100
20 0.4 100 200 1 0 6 0 73 25 55 66

parameter values indicated in that Section. (6) An implementation of the proposed RASP(1)
algorithm described in Section 3. (7) An implementation of RASP(p), that is, a modification
of the proposed algorithm using now the full 2p directions maximizing and minimizing the
kurtosis coefficient.

For a given contamination level α, we have generated a set of n(1 − α) observations
from a N(0, I ) distribution in dimension p. We have added nα additional observations from
a N(δe, λI) distribution, where e denotes the vector (1 . . . 1)′. This model is analogous
to the one used by Rousseeuw and van Driessen (1999). In the method by Maronna and
Zamar (2002) (MZ from now on) we have introduced a linear transformation to ensure
that the resulting datasets have mean zero and covariance matrix equal to the identity,
as the corresponding procedure is not affine equivariant. This experiment was conducted
for different values of the sample size n (n = 100, 200), the sample space dimension p

(p = 5, 10, 20), the contamination level α (α = 0.1, 0.2, 0.3, 0.4), the distance of the
outliers δ (δ = 10, 100), and the standard deviation of these outliers

√
λ (

√
λ = 0.1, 1, 5).

For each set of values 100 samples were generated. Table 3 gives the number of samples
in which all the outliers have been correctly identified, for each set of parameter values
and the different algorithms indicated above: FASTMCD, SD, MZ, “kurtosis,” “SRand,”
“RASP(1),” and “RASP(p).” In SRand, RASP(1) and RASP(p) the value for the number of
strata used, K , was chosen so that all strata contained 2p observations. To limit the size of
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Table 4. Overall Success Rates for the Detection of Outliers Forming One Cluster

FASTMCD SD MZ kurtosis SRand RASP(1) RASP(p)

74.9 90.1 70.2 88.0 94.9 97.5 98.0

the table, we have shown only those cases where at least one of the algorithms scored fewer
than 95 successes.

As a summary of this experiment, we also present in Table 4 the percentage of successes
for the whole simulation experiment and all the procedures, obtained as the average of
the success rates over all the cases included in the experiment. The modification of the
Stahel-Donoho procedure proposed in this article behaves uniformly better than the original
procedure, particularly for larger dimensions and higher contamination levels, that is, the
most difficult cases. The proposed combined method of random and specific projections
(“RASP”) seems to perform equivalently or better than the other alternatives in nearly all
cases. In particular, it is clearly better than FASTMCD for concentrated contaminations, and
it improves on the Stahel-Donoho implementation for large contaminations and increasing
space dimensions. Furthermore, the proposed procedure improves on both the original
kurtosis procedure and the stratified modification for the Stahel-Donoho resampling scheme.

Table 5 also provides the average percentages of nonoutliers detected as outliers by the
different procedures in the preceding simulation experiment. Note that the values for the
proposed procedures RASP(1) and RASP(p) are particularly low.

To provide some indication of the computational effort required to implement the dif-
ferent procedures, Table 6 shows the average running times for the algorithms to carry out
the computations for sets of 100 replications and the same combinations of values for α, δ,
and λ used in the experiment described in this section and n = 100, 200, 300. The times
have been measured on an AMD 3000+ computer with 512 MB of internal memory. All
codes were written in Matlab except for FASTMCD, a FORTRAN code. Note that although
the best outlier detection results were obtained for RASP(p), those for RASP(1) are also
significantly better than the rest and are attained with much lower running times. In fact,
for large dimensional problems (p = 20) the running times for RASP(1) are the second
lowest (after SRand). Moreover, for large n and small dimension p the best running times
are those of MZ, but these times increase rapidly with p.

Table 7 shows the average Type I errors for the whole problem sets. The values for the
proposed methods are very close to the target 5.0% value.

Table 5. Average Percentages of Nonoutliers Detected as Outliers

FASTMCD SD MZ kurtosis SRand RASP(1) RASP(p)

7.8 3.9 8.3 2.7 1.8 0.8 0.7
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Table 6. Average Running Times (in seconds) for Problem Set

Sample size n Dimension p FASTMCD SD MZ Kurtosis SRand RASP(1) RASP(p)

100 5 27.3 11.4 2.6 6.7 0.9 2.5 5.6
100 10 79.4 39.4 6.6 14.7 1.6 3.4 13.6
100 20 299.8 394.0 24.4 33.8 3.9 6.9 37.0
200 5 45.4 16.3 2.9 12.5 1.6 4.5 9.7
200 10 142.3 49.6 8.4 25.5 2.5 6.1 24.0
200 20 515.9 427.7 29.3 79.7 6.4 11.9 79.4
300 5 64.1 20.7 3.2 18.5 2.4 7.0 14.2
300 10 205.9 58.6 9.3 38.0 3.4 8.9 34.5
300 20 731.1 452.0 33.6 114.6 8.7 17.4 117.8

Finally, we have also compared these methods for the robust estimation of the covari-
ance matrix. We have generated 100 samples from the mixture model n(1 − α)N(0, I ) +
nαN(δe, λI) explained before and we have computed in each sample the robust estimates
considered in the previous simulation experiment. In order to compare the results with a non
robust estimator we have also computed the sample covariance matrix (column Cov). The
median of the condition number of the estimated covariance matrix in these 100 samples is
reported in Table 8. The parameter values are the same than in Table 3. The performance of
RASP(p) is the best of all the algorithms in the experiment, while RASP(1) is the second
best, but still significantly better than the other alternatives. From these results we may
conclude that if a robust estimate for the covariance matrix is needed and computational
efficiency is not too relevant, RASP(p) may present some advantages compared to RASP(1).

The estimates for the covariance matrix have to be scaled for consistency. Table 9
provides scaling factors for different values of p and n obtained from a simulation study
for the proposed procedure, RASP(1).

In conclusion, RASP(1) seems to offer a good compromise among reduced running
times, good outlier identification and robust covariance matrix estimation properties.

5. EXAMPLES

In this section we illustrate the performance of the proposed algorithm for outlier de-
tection with two types of examples. First, we verify that it finds the outliers that other
procedures have also found in well known examples of multivariate data. Second, we apply

Table 7. Average Type I Errors for Problem Set

FASTMCD SD MZ Kurtosis SRand RASP(1) RASP(p)

18.0 1.1 6.4 5.1 5.3 5.1 5.4
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Table 9. Scaling Factors for Consistent Covariance Estimators, RASP(1)

p/n 100 200 300

5 1.075 1.042 1.031
10 1.064 1.031 1.031
20 1.111 1.042 1.020

the procedure to financial data which is known to be far from normal and illustrate how the
cutoff value for finding outliers can be modified when we have heavy tail distributions.

The proposed code, RASP(1), was applied to a collection of seven standard small
datasets used by previous authors to detect outliers in multivariate data. The first six were
studied by Rousseeuw and Van Driessen (1999), among others, and the last was analyzed
by Maronna and Yohai (1995), among others. Table 10 gives the corresponding results,
indicating the dataset, its dimension and number of observations, the number of outliers
and their labels.

The results for the number of identified outliers are similar to the ones reported in the
literature and those obtained using the Kurtosis algorithm, except for the “Salinity” dataset,
where the proposed algorithm finds a slightly smaller number of outliers, and “Coleman,”
where it finds a slightly larger number.

We have also explored the identification of outliers in data from a heavy-tail distribution.
The data matrix has 1,272 rows and 18 columns of daily return stock data from the Madrid
stock market. The variable measured is the daily return of a stock, computed as 4 logPt

where Pt is the price of the stock. The columns in this matrix are the 18 stocks which were
always included in the five year period 2000–2004 in the index ibex35, which combines
the stocks with the largest trading volume of the Madrid stock exchange. The rows are the
value of these 18 stocks in the 1,272 trading days in the five year sample period.

We have checked first the autocorrelation structure of these time series by computing
the correlogram of the 18 series. Only two of them, stocks IBE and SCG, show a small,
though significant, first order autocorrelation coefficient, with values −0.1326 and 0.1275,

Table 10. Results Obtained by the Proposed Algorithm on Small Datasets

Dataset Dim. # Obs. # Outliers Outliers

Heart 2 12 5 2,6,8,10,12
Phosphor 2 18 6 1,4,6,7,10,16
Stackloss 3 21 4 1,2,3,21
Salinity 3 28 4 5,16,23,24
HBK 3 75 14 1,2,3,4,5,6,7,8,9,10,11,12,13,14
Coleman 5 20 7 1,2,6,9,10,11,18
Wood 5 20 6 4,6,7,8,9,19
Bushfire 5 38 15 7,8,9,10,11,12,30,31,32,33,34,35,36,37,38
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Figure 2. The 18 series of daily stock returns in the period 2000–2004.

respectively, and the rest of the autocorrelation coefficients were very small. In order to get
rid of this autocorrelation we fitted an AR(1) model to these two time series and used the
residuals from this fit in the analysis. However, as the results were almost identical to those
obtained by using the original return series, for simplicity we present here the results for
the original data.

The plot of these 18 daily returns time series is shown in Figure 2. As the values of
the 18 time series are similar in most cases, the plot seems to correspond to a single time
series. However, this plot is useful to show the most important outliers in any of the 18 time
series. The figure shows that in 10 days we have returns which are extremely low in one or
several of the stocks. We checked that these extreme values corresponded to well known
changes, such as stock splits, and these changes produce a proportional drop in price and
the corresponding large negative return for the next trading day.

Additionally the kurtosis coefficients of these return series, which are shown in Table
11 together with the label of the stock, indicate that the distribution of these stock returns is
far from normal. The large values of these kurtosis coefficients for some of the stocks are
in agreement with the large outliers, which can be seen in Figure 2.

Table 11. Kurtosis Coefficients of the Original Daily Return Data

ACS ACX ALT AMS ANA BBVA BKT ELE FCC

666.74 729.86 30.18 19.02 12.08 9.92 457.83 6.08 8.37
FER IBE IDR NHH POP REP SGC TEF TPI
57.36 10.78 189.68 20.82 430.68 8.68 7.29 22.54 259.89
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Table 12. Skewness and Kurtosis Coefficients of Daily Returns in Group A of Good Data

ACS ACX ALT AMS ANA BBVA BKT ELE FCC

−0.168 −0.003 0.046 0.103 0.006 −0.023 0.184 −0.208 0.093
3.525 3.154* 3.592 3.895 3.517 3.675 3.899 3.524 3.566

FER IBE IDR NHH POP REP SGC TEF TPI
0.327 −0.036 0.018 −0.132 0.177 −0.056 0.076 −0.026 0.079
3.775 3.295* 3.596 3.826 3.566 4.168 3.806 3.217* 3.671

If we search for outliers in the individual time series, xit , where i = 1, . . . , 18 and
t = 1, . . . , 1272, and identify as outliers values larger than

rit = |xit − median(xit )|
MAD(xit )

> 2.9

we find a proportion of outliers of 11%. The numbers of outliers in each time series are
similar, with the smallest proportion of outliers in series IBE (9.2%) and the maximum
in series BKT (13.05%). Often the outliers appear at the same time in several of the time
series.

The application of the proposed procedure leads to a much larger group of outliers,
indicating that the joint analysis is more powerful than the individual analysis of the series.
In fact the procedure implies a split of the sample into two groups. The first group, the
largest one, contains 645 good observations; we will refer to them as the A group. The
second group includes 624 observations which were considered outliers (48.83% of the
data), and will be called the B group. Table 12 shows the skewness and kurtosis coefficient
in group A and the result of the Bera-Jarque test of univariate normality. This hypothesis is
rejected at the 0.05 level in 15 out of the 18 stocks. Only in the three cases indicated by an
∗ univariate normality cannot be rejected. All the other stocks have univariate distributions
with kurtosis values between 3.5 and 4.2. If we assume that the daily returns follow Student
t distributions and estimate the degrees of freedom from the kurtosis coefficient we obtain
t distributions with between 10 and 16 degrees of freedom.

On the one hand, group B has a set of 10 extreme points, all of which can be seen
in Figure 2, which are clearly outliers due to well known events. When we delete these
10 points from group B we obtain group B∗ which contains data that follow univariate
distributions with greater variance that those in group A. Table 13 shows the skewness and
kurtosis of group B∗. It can be seen that the kurtosis of all the univariate distributions are
larger than those in group A, and they seem to agree with a Student t distribution with
small degrees of freedom. Also, the skewness is larger in this group and some of these
distributions are not symmetric. We have used the symbol ∗ to indicate that in this stock
the hypothesis of a symmetric distribution is rejected. The variability in group B∗ is larger
than in group A, and Table 14 shows that the standard deviations are twice as large as those
in group A.
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Table 13. Skewness and Kurtosis Coefficients of Daily Returns in Group B* of Outliers With the 10
Largest Values Deleted

ACS ACX ALT AMS ANA BBVA BKT ELE FCC

0.343 −0.209 −0.350 −0.230 0.040 0.303 0.561* −0.088 0.415*
5.774 5.619 4.494 4.876 4.668 3.914 9.258 4.043 4.344

FER IBE IDR NHH POP REP SGC TEF TPI

0.115 0.602* 0.319 −0.118 0.243 0.373* 0.231 0.344 0.346
3.507 7.772 4.215 12.492 4.004 5.165 3.404 3.340 5.603

Figure 3 presents a plot of the observations for all the stocks in both groups, A (top)
and B∗(bottom), and they seem to correspond to two regimes with different variability.

In order to explore this possibility we studied the proportion of outliers, defined as
observations which belong to group B∗, in subgroups of eight consecutive observations.
That is, we split the 1,272 observations into 159 subgroups of eight consecutive data points
and computed the proportion of outliers in each subgroup. Figure 4 shows this proportion
with respect to the order of the subgroup, which indicates time. It can be seen that at
the beginning of the sample period the proportion of outliers is very large in most of the
subgroups: 100% in the first 17 subgroups and usually larger than 50% in the first 100
subgroups, whereas in the last part of the sample the proportion of outliers is very small.

This suggests a general decrease of variability of the stocks in the last part of the sample,
which can be observed in Figure 2 (p. 246). Thus, the two groups of data found are consistent
with two periods of different variability in the return of the stocks.

In order to understand better the distribution of the data in group A, we made a Q-
Q plot of the percentiles of the Mahalanobis distances in this group with respect to the
percentiles of a Chi-square with 17 degrees of freedom, the expected distribution of these
Mahalanobis distances under the hypothesis of multivariate normal data. This plot, see Fig-
ure 5, shows that the distribution of the Mahalanobis distance deviates strongly from the
distribution expected under normality. We then generated a sample of the same dimension
as the data from a multivariate Student t distribution with 13 degrees of freedom and the
same covariance matrix. Figure 5 also shows the Q-Q plot of the Mahalanobis distances

Table 14. Ratio Between the Standard Deviations in Groups B∗ and A for the Stock Returns

ACS ACX ALT AMS ANA BBVA BKT ELE FCC

1.951 2.067 1.884 2.084 1.821 1.837 2.375 2.150 2.067

FER IBE IDR NHH POP REP SGC TEF TPI

1.751 2.109 2.189 1.834 1.849 2.056 2.084 2.142 2.182
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Figure 3. Observations in each of the two groups: A (top) and B* (bottom).

Figure 4. Proportion of observations from group B∗ in subgroups of eight consecutive observations versus order
of the subgroup.
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Figure 5. Quantile-Quantile plot of the observed Mahalanobis distance in the first group of data and of the
Mahalanobis distance computed from a sample of Multivariate t variables with 13 degrees of freedom with
respect to a chi-square.

computed in this simulated sample with respect to the chi-square distribution. We conclude
that data in group A are not multivariate normal and that they are more consistent with a
multivariate t distribution with 13 degrees of freedom, but truncated at about 30, as the plot
of the data is very similar to the plot of the multivariate t in the interval (0, 30). Note that the
.99 percentile of a chi-square with 17 degrees of freedom is 33.4, which is the value used
as cutoff for outlier detection. Thus the large number of outliers found for the procedure
in this dataset can be due to the fact that the data follow approximately a multivariate t ,
instead of a multivariate normal.

From this plot we conclude that a sensible cutoff for outliers from the multivariate t

distribution is about 60. Thus we apply the detection procedure to the whole dataset with this
cutoff value and now only 72 outliers are found, which correspond to 5.6% of the sample.
Table 15 shows the proportion of outliers in each period. Note that the proportion of outliers
decreases over time, which is consistent with the decrease in variability previously found.
Figure 7 shows the Q-Q plot of the Mahalanobis distances in the bulk of the data without the
72 outliers against the distances in a sample of the same size and parameters generated from a
multivariate t distribution with 13 degrees of freedom; it can be seen that the approximation
is reasonable. Finally, Figure 6 shows a plot of the two groups of data finally detected:
the main group that seems to follow a multivariate t , and the 72 observations detected as
outliers. It can be seen that this later group can be split into the 10 large outliers due to
well-known reasons and a set of data which seem to come from a distribution with larger
variability than the first group.
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Figure 6. Group of homogeneous data which seem to follow a multivariate t distribution (top) and outliers with
respect to this group (bottom).

6. CONCLUSIONS

The analysis presented in the previous sections shows that the combination of ran-
dom and specific direction leads to a powerful procedure for robust estimation and outlier
detection. The random directions are generated by a stratified sampling scheme, which
works better than the random sampling of the Stahel-Donoho procedure, especially with
high-dimensional data. However, the random directions cannot completely cope with the
deficiencies for concentrated contamination. On the other hand, the specific directions ob-
tained by the kurtosis coefficient seem to be very powerful for detecting concentrated
contamination. We have shown that if we just compute the two directions corresponding to
the extremes of the kurtosis coefficient we have a powerful procedure. The combination of

Table 15. Location of the Outliers With Respect to the Observations Coming from the Multivariate t
Distribution

Year Sample size Outliers %

2000 250 42 16.8
2001 272 16 5.9
2002 250 11 4.4
2003 250 1 0.4
2004 251 2 0.8
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Figure 7. Empirical two-sample QQ plot of the Mahalanobis distance in the sample against those from a sample
generated by a multivariate t distribution with 13 degrees of freedom.

both methods in the RASP algorithm seems to be a useful alternative for the routine analysis
of multivariate data in high dimensions. It can be applied to reasonably large datasets in
many variables and, as it is based on projections, it is not severely affected by the curse
of dimensionality. Although we believe this procedure can be applied to large p problems
a limitation of our method is that we assume n > p in order to compute the covariance
matrix of the observations. Thus, the present version cannot be applied when we have more
variables than observations, as in microarray and image analysis. As the SD and the PP
directions can be computed just as well when p > n, we believe that the procedure can be
extended to this situation, although its properties and relative advantages over other methods
when p > n will be the subject of further research.

We have emphasized in this article the outlier detection capabilities of the procedure, but
the same good properties are found in the robust estimation of the covariance matrix, which
has the high breakdown point property of the Stahel-Donoho estimate in finite samples.
Many standard multivariate procedures are based on the analysis of the covariance matrix
of the data and thus using the robust covariance matrix obtained by this procedure provides
a simple way to obtain robust principal components, robust canonical analysis or robust
discrimination.

7. APPENDIX

In this Appendix we obtain the distribution of the standardized data yi = S−1/2(xi −x)

when x ∼ (1 −α)N(0, I )+αN(δe1, λ
2I ) and give the limiting distribution when n → ∞

and δ → ∞. Assuming that the distribution of x is (1 − α)N(0, I ) + αN(δe1, λ
2I ), then

E(x) = αδe1 and the covariance matrix is Vx = aI + be1e
′
1 with a = (1 − α) + αλ2
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and b = (1 − α)αδ2. Then V −1
x = a−1(I − b/(a + b)e1e

′
1) and V

−1/2
x = a−1/2(I −

ce1e
′
1), where c = 1 − (a/(a + b))1/2 and y = V

−1/2
x (x − αδe1) has a distribution

(1 − α)N(−αδ(a + b)−1/2e1, V
−1
x ) + αN((1 − α)δ(a + b)−1/2e1, λ

2V −1
x ). Now making

δ → ∞ we have that y ∼ (1 − α)N(−αθe1, σ
2I ) + αN((1 − α)θe1, λ

2σ 2I ) where
θ = (α(1 − α))−1/2, σ 2 = (αλ2 + 1 − α)−1, and Ī denotes an identity matrix with the
first element equal to zero. If we transform the data by z = y + αθe1, so that the mean of
the central distribution is the zero vector, the distribution of the transformed data will be
(1 − α)N(0, σ 2I ) + αN(θe1, λ

2σ 2I ).

ACKNOWLEDGMENTS

We are grateful to the referees for helpful comments. This research has been sponsored by MEC grants SEJ2004-
03303 and MTM2004-02334.

[Received June 2005. Revised May 2006.]

REFERENCES
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