Combining Random and Specific Directions for
Outlier Detection and Robust Estimation in
High-Dimensional Multivariate Data

Daniel PENA and Francisco J. PRIETO

A powerful procedure for outlier detection and robust estimation of shape and loca-
tion with multivariate data in high dimension is proposed. The procedure searches for
outliersin univariate projections on directionsthat are obtained both randomly, asin the
Stahel-Donoho method, and by maximizing and minimizing the kurtosis coefficient of
the projected data, asin the Pefia and Prieto method. We propose modifications of both
methods to improve their computational efficiency and combine them in a procedure
which is affine equivariant, has a high breakdown point, is fast to compute and can be
applied when the dimension is large. Its performance isillustrated with aMonte Carlo
experiment and in area dataset.
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1. INTRODUCTION

Classical techniquesfor dimension reduction and discrimination with multivariate data,
such as principal components, canonical correlation or linear discriminant analysis, depend
on the estimation of the location and shape of the sample data. It is well known that a few
outliersinthedatamay arbitrarily distort the sample mean and the sample covariance matrix,
therefore, the robust estimation of location and shape is a crucial problem in multivariate
statistics. Several robust estimates have been proposed, see Gnanadesikan and Kettenring
(1972), Maronna (1976), Stahel (1981), Donoho (1982), Rousseeuw (1985), Davies(1987),
Rousseeuw and van Zomeren (1990), Tyler (1991, 1994), Hadi (1992), Cook, Hawkins, and
Weisberg (1993), Rocke and Woodruff (1993, 1996), Atkinson (1994), Hawkins (1994),
Maronna and Yohai (1995), Agullo (1996), Rousseeuw and van Driessen (1999), Becker
and Gather (2001), Pefia and Prieto (2001a), Juan and Prieto (2001), Hawkins and Olive
(2002), and Maronna and Zamar (2002) and the references therein. For high-dimensional
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large datasets a useful way to avoid the curse of dimensionality in data mining applica
tions is to search for outliers in univariate projections of the data. Two procedures that
use this approach are the Stahel-Donoho (SD from now on) procedure, that searches for
univariate outliers in projections on random directions, and the method proposed by Pefia
and Prieto (PP from now on), that searches for outliers in projections obtained by maxi-
mizing and minimizing the kurtosis coefficient of the projected data. The first procedure
has good theoretical properties, but fails for concentrated contaminations and requires pro-
hibitive computer times for large dimension problems. The second procedure works very
well for concentrated contaminations and it can be applied in much larger dimension than
the previous one but its theoretical properties are unknown. As both procedures are based
on projections, it seems sensible to explore how to combine them to avoid their particular
limitations. Thisis the objective of thisarticle.

The first contribution of the article is to propose a new method to generate random
directions which is much more effective than the standard SD subsampling scheme. The
second contribution isto present a modification of the PP procedure which is computation-
ally more efficient when the dimension islarge. The third contribution is a new procedure,
which combines these modifications of the SD and the PP methods, which can be appliedin
large dimensions. The proposed procedure combines random and specific directionsand has
thefollowing properties: (1) isaffine equivariant; (2) inheritsthe good theoretical properties
of the SD method; (3) inherits the good properties for finding high leverage concentrated
outliers of the PP procedure; (4) it is fast to compute so that it can be applied to large
datasets.

Therest of thearticleisorganized asfollows. Section 2 briefly reviewsthe SD method for
generating random directions based on random sampling and proposes amore effective way
to generate them by using stratified sampling. This section also reviews some limitations
of the PP procedure for large dimensions and considers a simplification of this procedure
which makes it faster to compute with a very small effect on its performance. Section
3 presents the proposed algorithm, combining random and specific directions. Section 4
illustrates the performance of the proposed method in aMonte Carlo study and comparesit
to the FASTMCD a gorithm by Rousseeuw and Van Driessen (1999), theimplementation of
the Stahel-Donoho algorithm by Maronna and Yohai (1995), the computationally efficient
algorithm recently proposed by Maronna and Zamar (2002), and the algorithm proposed
by Pefia and Prieto (2001a). Section 5 contains examples and Section 6 some concluding
remarks.

2. FINDING INTERESTING DIRECTIONS

Suppose we have asample (x1, . . ., x,) of a p-dimensional vector random variable X.
We are interested in searching for outliers by projecting the data onto a set of directions
dj,j=1...,J. Let zfj) = d}x,- be the projection of point x; onto direction d; and
2D =Y, ..., 2). A univariate “measure of outlyingness’ for each observation based
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on these projectionsis .
1z — median(z))|
ri = max -
1<j<J MAD(z(/))
These measures can be used to both build robust estimates and identify outliers. The Stahel-
Donoho (SD) robust estimate of the mean and covariance matrix (see Stahel 1981 and
Donoho 1982) is defined by

(2.1)

m = LN 22)
21 wi
YL wi(xp —m)(x; —m)
Y1 wi ’
where w; = w(r;) is afunction of the outlyingness measure r;. For example, the Huber
function w(r;) = min(1, ¢/r;) where ¢ isatuning constant can be used, or aredescending
function that deletes points when r; is large enough. This estimator is equivariant and has
a high breakdown point in any dimension (see Stahel 1981, Tyler 1994, and Maronna and
Yohai 1995). Once a robust estimate is obtained, outliers can be identified and deleted
and the standard estimates of the mean and the covariance function can be applied to the
uncontaminated data. Note that the resulting covariance matrix estimates have to be scaled
for consistency. In this way we achieve robustness and high efficiency under normality.

The key step in the method is obtaining the directions d;. The procedure proposed by
Stahel (1981), which isthe standard method used in theimplementation of the algorithm, is
to generate these directions randomly: arandom sample of size p is chosen, a hyperplane
is fitted to this sample and the direction d; orthogonal to this hyperplane is chosen. Note
that if we have aset of outliers and the dataiis standardized, the direction orthogonal to the
fitted hyperplane is, apriori, a good one to search for outliers. Thisisillustrated in Figure
1(a) and (b). In case (a) the proportion of outliers is moderate, (10%), whereas in (b) the
proportion is large (30%). In both cases the outliers are located in the direction of the first
variable. Notethat the most likely direction obtained when fitting astraight lineto arandom
sampl e of two points will be approximately orthogonal to the outlier direction.

A procedure for obtaining specific directions that can reveal the presence of outliers
was proposed by Pefla and Prieto (2001a). They showed that the projection of the data on
the direction of the outliers will lead to (1) a distribution with a large univariate kurtosis
coefficient if the level of contaminationis small and (2) a distribution with small univariate
kurtosis coefficient if the level of contamination is large. For instance, in Figure 1(a) the
projection of the observations in the direction of the outliers (the x axis) will lead to a
distribution with heavy tails and a large kurtosis coefficient (3" (x; — X)*/(ns*) = 7.85).
On the other hand, in case (b), the distribution of the projected data will be bimodal, and
the kurtosis coefficient will be small (3" (x; — X)*/(ns*) = 1.78). Pefiaand Prieto (2001b)
showed that if the data come from a mixture of two distributions (1 — «) f1(X) + af2(X),
with0.5 > « > 0and f;,i = 1, 2,isan elliptical distribution with mean w; and covariance
matrix V;, thedirectionsthat maximize or minimizethe kurtosis coefficient of the projected
data are of the form given by Anderson and Bahadur (1962) for the admissible linear
classification rules. In particular, if the distributions were normal with the same covariance

S,

(2.3)



COMBINING RANDOM AND SPECIFIC DIRECTIONS FOR OUTLIER DIRECTION 231

3 T T T T T T T T
s} y - % E

LI § .

" wz® *
1+ ¥_¥ 'f ® .
of 5o . * 1
& *
Al * * » b
2 | * » E
3 1 1 1 1 1 1 1 L
-1 0.5 o 05 1 15 2 25 3 as
Case (a) Kurtosis of x=7.85
3 T T T T I
2 -
-* n-,: *
L L. T * h
R *
L
°oF » '?'f H » 1
"
ak . - *y 4
L M L

2k 4

*u
3 1 1 L 1 1
-1 05 0 05 1 15 2

Case (b} Kutosls =1.78

Figure 1. Two contaminated samples. In case (a) the proportion of outliers is not large (10%) and the kurtosis
of the projected data in the directions of the outliers is large. In case (b) the proportion of outliers is large (30%)
and the kurtosis of the projected data is very small.

matrix and the proportion of contamination is not large, 0 < o < 0.289, the direction
obtained by maximizing the kurtosis coefficient is the Fisher linear discriminant function,
whereas when the proportion of contamination is large, 0.289 < o < 0.5, the direction
which minimizes the kurtosis coefficient is again the Fisher linear discriminant function.
Thus, the extreme directions of the kurtosis coefficient seem to provide a powerful tool
for searching for groups of masked outliers. Pefia and Prieto (2001a) proposed an iterative
procedurebased ontheprojection onto aset of 2 p orthogonal directionsobtained asextremes
for the kurtosis of the projected data. Note that thefirst set of p directionsisclosely related
to theindependent components of the data (see Hyvarinen, Karhunen, and Oja2001), which
aredefined asaset of p variablesobtained by linear transformations of theoriginal datasuch
that the new variables are as independent as possible. It can be shown that the independent
components can be obtained by maximizing the absolute value or the square of the kurtosis
coefficient and, as this coefficient cannot be smaller than one, these directions will be the
same as those obtained by maximizing the kurtosis coefficient. The performance of these
directions for outlier detection was found to be very good for concentrated contamination
but, as can be expected from the previous results, it was not as good when the proportion
of contamination is close to 0.3 and the contaminating distribution has the same variance
asthe original distribution. This behavior of the agorithm is not surprising becausein that
case the values of the kurtosisfor the projected data are not expected to be either very large
or very small.

Thus, it seemsthat we may have a powerful procedure by combining the specific direc-
tions obtained as extremes of the kurtosis with some random directions. However, as we
areinterested in aprocedure that worksin large datasets and it iswell known (and it will be
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discussed in the next section) that the Stahel-Donoho procedure requires a huge number of
directionsto work asthe sample sizeincreases, and the PP procedurerequires 2p directions,
which can be alarge number in high-dimensional problems, both methods are modified in
this implementation. The random directions are not generated by random sampling but by
using some stratified sampling scheme that is found to be more useful in large dimensions.
The PP directions are chosen by taking only afew out of the 2p directions, as explained in
the next section.

2.1 GENERATING RANDOM DIRECTIONS

Figure 1 shows that directions computed from samples in which the p observations
belong to the same group, either the group of good observations or the group of outliers,
will in general be useful to identify the outliers, whereas those computed from a sample
whichincludes pointsfrom both groupswill be of limited usefulness. Thus, if the proportion
of outliersis o we will obtain a good direction, defined as one computed from points that
belong to the same population, with probability «? + (1 — «)?. For large p and « not
too small this probability will be very small and most of the directions generated by direct
subsampling will not be useful. If we were able to decrease «, this probability would
increase. This suggests increasing the probability of generating good directions by using
a stratified sampling procedure from subsamples which contain a smaller proportion of
outliers than the original sample.

In order to motivate the proposed procedure note that, as illustrated in Figures 1(a)
and (b), when we have a sample contaminated by a group of outliers, the projections onto
the direction defined by a “good” observation and a contaminating observation tend to
order the observations so that on one side the projections correspond mostly to the “good”
observations, while onthe other sidethe outliers predominate. Thissuggeststhat if we select
two observations at random, project the data onto the direction defined by them and then
select the sample from the extremes of the projected data we can increase the probability
of generating good directions, because the proportion of good or bad observations in the
extremes is expected to be greater than in the whole sample. On the other hand, if the
direction is computed from two good or bad observations the outliers will appear together,
if we have concentrated contamination, or in the extremes of the projection, if the outliers
have a larger variability than the good points. Thus it seems that we can increase the
probability of good directions by dividing the projected pointsin K intervals (strata) of
consecutive observations and by taking a random sampling of size p from each of these
intervals.

In order to justify thisintuition let us consider asimple model of concentrated contami-
nation wheren observations have been obtained asarandom samplefromthedistributionin
R? defined by (1— ) F (x) +aG(x). Inwhat followswe derive the probability of obtaining
agood subsampling direction (G ), defined as one that is orthogonal to p “good” or “bad”
observations. The p observations are sel ected through astratified sampling procedurewhere
we start by defining a direction from two randomly selected observations, we then form
K intervals, or strata, each one containing n/ K consecutive observations defined from the
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ordered projections, and finally we take arandom sample of size p from each one of the K
interval s obtained in this manner.

In order to carry out this analysis we need to analyze the distribution of the projections
onto agiven direction, and study the probability of finding agood observationin agivenin-
terval. A second, more complex step requires also studying the distribution of the directions
generated from arandom pair of observationsin R”.

Given the difficulty of this analysis we will center on the study of a simplified case,
namely that of a mixture of normal distributions where F is obtained from a N (0, I)
distribution and G correspondstoa N (Se1, A1) distribution, where e; denotesthefirst unit
vector. Thisistraditionally a hard case for outlier detection procedures, particularly if « is
large. In our proposed algorithm we conduct an initial scaling and centering step, and obtain
the distribution for y; = S~/2(x; — ¥) indicated in the Appendix (p. 252) for large values
of n, assuming that asymptotic independence between the observations and the projection
direction holds. As additional simplificationswe will assumein what followsthat n — oo
and § — oo; and, without loss of generality, we assume that the data are trandated so
that the mean of the central distribution is the zero vector. Thus, the distribution of the y;
observations corresponds to

(1—a)N(0,02I) + aN(Be1, 62)21),
where

. 1 2 1
T Vel 0 T wl+i-o
and I denotes an identity matrix with the first element equal to zero.

Under these assumptions we search for bounds on the probability of obtaining asample
formed by p observations from the same distribution, G, by following a two-step pro-
cedure: we first compute this probability when we sample from intervals obtained from
a given projection direction, and then we compute this probability when the direction is
obtained from randomly chosen pairs of observations.

(2.4)

o Fixed projection direction

Consider a given projection direction u € R” with || = 1, the distribution of y/u
will begivenby M, (x) = (1—«)F, +aG,,, where F,, correspondstoaN (0, 02(1—
u?)) and G, toa N (Qu1, 0?2?(1 — u?)) distribution.

In what follows we study the case when the p observations are sampled from one
of the two extreme intervals which contains the 1/K of the projected observations.
Theinterval associated with the smallest values will be of theform (—oo, A) and the
value A should verify

1/K = P(x < A) = M, (A) = (1 — ) F,(A) + aG,(A). (2.5)
Denote by ¢ (1) the probability, for given u, that one given observation in this in-
terval comes from the central distribution of “good” observations F. Note that this
probability only depends on u1, that is, g (u) = g (u1), and its valueis given by
(1—a)F,(A)
(1—a)F,(A) +aG,(A)

quy) = (2.6)
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If we consider now the other extreme interval of larger values, (A, co), where A is
given by

1/K = P(x > A) = 1— M,(A), (2.7)
and let g (u1) denote the probability, for given u, that one given observation in this
interval comes from the central distribution of “good” observations F, then

(1—a)(1— F,(A))
(1— )1 — Fy(A) +a(l— G,(A)

quy) =

Let D1 and Dk denotetheeventswherethe observationshavebeentaken fromthefirst
and the last intervals, respectively. Then, the conditional probabilities of selecting p
observationsfromthesamegroup, G s, canbeobtainedas P (G g| D1, u1) = q(u1)? +
(1—g(u1))? and P(Gs|Dg, u1) = q(u1)? +(1—g(u1))?. Thesevalues correspond
to the probabilities that either all the observations are taken from the subset of good
observations or all the observations for each case are taken from the bad subset.

Projection directions obtained from random pairs of observations

The preceding values are functions of «, and in particular of u1. For our proposed
procedure we must analyze the distribution of u for directions defined from pairs
of randomly chosen observations (v, y). Thenu = (3 — y)/1ly — ¥, llull = 1, the
range of possible values for 1 goesfrom —1to 1 and

P(Gys)

1 1
/ P(Gslur)dFuy = 12 / (P(Gs|D1, u1) + P(Gs|Dx. up)) dFu,
-1 1

1
1/2/1(61(X)p+(1—q(X))”+67(X)p+(1—67(X))p)dFul» (2.8)

where F,, denotes the distribution function for u1, D; denotes the event where the
observations have been taken from interval i, we are assuming that we only generate
directions from observations in the two extreme intervals and we condition on the
observations belonging to each of these intervals, with probability 1/2.

Thedistribution function F,,, isdifferent when the two observations used for generat-
ing the direction come from the same distribution, or when they come from different
distributions. In the first case u1 = 0 with probability one, as the variability of the
observations along the first coordinate is zero (see the Appendix, p. 252). Denoting
by F,, the distribution in the second case, we can write (2.8) as

@+ (1—a)?

P(Gs) = f(q(O)PJr(l—q(O))P+é(0)1’+(1—c;(0))1’)

1
tal—a) f (g0 + A= g()? 40

+(1 = G(x)P) d Fyy (x). (29

Note that g (u1) = g(—u1) and aso that u; computed when the first observation
belongs to the central group and the second one to the outliers follows the same



COMBINING RANDOM AND SPECIFIC DIRECTIONS FOR OUTLIER DIRECTION 235

distribution as —u1 whenthefirst observation isan outlier and the second observation
belongs to the central group. As a consequence,

Fia) = 5 (Puy = 215) + Plus = —~x15)), (2.10)

where S denotes the event where the first observation belongs to the central group
and the second one is an outlier.

Asu1 = (J1—31)/(I3—71) andcallingv; = §; —5;, wehavethat |5 — 7| = Y, v?

and under S it holds that v1 = y1 — 1 = 6 with probability 1, as along the first
coordinate the distance between the centers of the subgroupsisé = (a(1 — a)) %2
(see (2.4) and the Appendix) and the variability is zero, implying

0
Y, 62 + Zi>1vi2

Note that for i > 1, 3; follows a N (0, o?) distribution, where 02 = (A%a + 1 —
a)~1 (see (2.4)) while 3; follows a N (0, A%02) distribution, and al variables are
independent (seethe Appendix). Asaresult, v; = 3 — j; followsaN (0, 02(1+12))
distribution, and y";_; v2/(0%(1+A2)) foIIowsaXIZ,_l distribution. From this result
and (2.10),

Fuy (x) = % (P (9 <x /92+Zu3) +P (9 > —x /92+Zv,.2)) ,
i>1 i>1

and as for x < O it holds that P(u1 < x|S) = 0 and for x > 0 it holds that
P(uy > —x|S) = 1, weaobtain

ui =

_ ip (XZ_ <62(1— xz)/xz) if x<O0,
Fa () = { ! (12+ P Exg_l > 02(1-x%/x%)) if 120,

and

~0%f,2 (02 —xP)/x?) [x%dx i x <0,

92]()(2_1 (92(1 — xz)/xZ) /X3 dx it x>0, (211)

dF,,(x) = {
where fy2 ) denotes the density function for a X;%—l random variable. Using the
.
symmetry properties of ¢ and g, (2.11) and (2.9) wefinally have

P(Gs) = (a?+ 1 - @?) (40 + (1~ q(0)")
1
+ 2/0 (@@)" + (1 —q@)”

x3

02(1— x2)\ d
+G0" +A=G0N") fz | (%) y (2.12)
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Table 1. Probability of Generating a Good Direction

o A p K Probability for SD, psp  Probability bound (2.12)  Efficiency ratio
03 1 10 5 0.0283 0.2235 7.91
03 1 20 5 7.98 1074 0.0642 80.42
04 1 20 5 3.66 10~° 0.0221 605.42
03 01 20 5 7.98 1074 0.7901 990.21
04 01 20 5 3.66 105 0.7599 20778.41
03 1 30 5 2251075 0.0140 622.25
04 1 30 5 2.2110°7 1.491073 6753.64
03 01 30 5 2.2510°5 0.7901 35054.42
04 01 30 5 2.2110°7 0.7598 3.43 107

The previous analysis has been made under the assumption that we obtain one direc-
tion by selecting with probability 1/2 one of the two extreme intervals and then obtaining
one sample of size p at random from the observations in the selected interval. Thus, the
valuein (2.12) is exact only if we sample from these extreme intervals. For the algorithm
described in the following section, we obtain directions from each of the K intervals and
the corresponding probability P(Gs) satisfies

K
P(Gs) = = > P(Gs|D) = 2 P(Gs) + = Y P(Gs|Di) = P(Gs) > 2 P(Gs).
K i=1 K K i#1,K -~ K

To illustrate the behavior of the method, the Table 1 includes the values obtained from
(2.12) for some particular cases, computed using numerical quadrature methods, as well
as the corresponding values when taking one direction at random by the standard Stahel-
Donoho algorithm, which will lead to agood direction with probability psp = (1 — «)? +
aP. These values correspond to situations that are difficult both for Stahel-Donoho and
the kurtosis algorithm, and show a marked improvement, particularly as the dimension
increases, in the proposed stratified sampling scheme.

2.2 GENERATING SPECIFIC DIRECTIONS

The algorithm proposed by PP generates 2p orthogonal directions obtained by max-
imizing and minimizing the kurtosis coefficient of the projections. Suppose that we have
just one group of similar outliers. This group will usually appear in the direction of either
thelargest or smallest projected kurtosis, and the rest of the directions will not useful. If we
have several groups of similar outliers, it seems better to find a group, remove it from the
sample, and start the search again instead of going through the process of computing the
2p directions.

There are two possible solutions to speed up the process. The first one is to compute
only two directions, those with largest and smallest kurtosis coefficients. The second is
to compute n1 < p directions by maximizing, where n1 is determined by monitoring the
value obtained for the kurtosis of the projections. When this value is close to 3, we stop
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the process. In the same way we can compute ny < p values by minimizing the kurtosis
with the same objective of having directions which are useful. We have also explored the
aternative of stopping the computation of the d direction when outliers are not found in
thed — 1st previous direction. After many Monte Carlo simulations we have found that the
best and simplest solution isto compute a small number of directions, aswe will discussin
the next sections.

3. DESCRIPTION OF THE ALGORITHM

The details of the computation of the directions and the analysis of the projections are
presented in the following. Note that the procedure is affine equivariant. The algorithm
requires four parameters. the numbers of maximization and minimization directions n1,
the number of random directions, L, the number of intervals for each random direction, K
and the correction factor 8, to identify outliers. These parameters will be discussed after
presenting the algorithm. First, we assumethat the original dataare scaled and centered, that
is, letting x be the mean and S the covariance matrix of the original data, the observations
are transformed by using

yi=SY°(xi—%), i=1,...,n. (3.1)

e Stagel: Specific directions. Compute n1 orthogonal directions and projections max-
imizing the kurtosis coefficient (1 < n1 < p) and ny directions minimizing this
coefficient.

1. Set yl.(l) = y; and theiteration index j = 1.

2. Thedirection that maximizes the coefficient of kurtosisis obtained as the solu-
tion of the problem

L (o)
d; = agmaxy ;Z(dyi )
i=1

sit. dd=1

(3.2)

3. The sample points are projected onto a lower dimension subspace, orthogonal
to the direction d;. Define

Ujv] .
I_U/d' va;-dj #0
vjzdj—El, sz Jjo
I otherwise,

where e denotes the first unit vector. The resulting matrix Q; is orthogonal,
and we compute the new values

) 7" ()
ul = y(;“‘l) :Q]yl ’ l=1"“’n’

1
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where zl(j ) is the first component of ugj ) which satisfies zEj ) = d} yl.(j) (the
G+D

univariate projection values), and y; corresponds to the remaining p — j

components of ul(j ),

Weset j = j+ 1, andif j < n1 we go back to step 1(b). Otherwise, we let

Zl(p) _ yi(p)_
4. The same process is applied to the computation of the directions d; (and pro-
jections z?’)), for j =n1+1,...,2n1 minimizing the kurtosis coefficient.

5. The normalized univariate distances rl.j , related to (2.1), are computed as
i 11z — median(z"))|
r; —

/=5~ Apeo (3.3)

foreachdirectionj =1, ..., n1+n2, where 8, isapredefined referenceval ue.

e Stage II: Random directions, obtained from a stratified sampling procedure as fol-
lows:

1. Initeration /, two observations are chosen randomly from the sample and the
direction d; defined by these two observations is computed. The observations
are then projected onto this direction, to obtain the values Ef = c?l’ yi. Then the
sample is partitioned into K intervals of size n/K, where K is a prespecified
number, based on the ordered values of the projections ?f so that interval k,
1 <k < K, containsthose observations i satisfying

<i <z

al )
(L (k—Dn/K | +1D) (Lkn/K )"

2. From each interval k, 1 < k < K, a subsample of p observations is chosen
without replacement. The direction orthogonal to these observations, dy;, is
computed, as well as the corresponding projections zX = dj,y; for all obser-
vations i. These projections are used to obtain the corresponding normalized
univariate distances rij ,

j 11" — medianE)]

i = By MAD (k) ’ (34)

where j = 2p + [(k — Dn/K | + 1, and B, the prespecified reference value.
3. Thisprocedure is repeated a number of times L, until [ = L.

e Stagelll: Checking.

1. For each observation i its corresponding normalized outlyingness measurer; is
obtained from the univariate distances rij defined in (3.3) and (3.4), as
ri = max rij .
1<j=<2p+|Ln/K]
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Those observations having values r; > 1 are labeled as outliers and removed from
the sample, if their number is smaller thann — |(n + p + 1)/2]. Otherwise, only
thosen — [ (n + p + 1)/2] observations having the largest values of r; are labeled as
outliers.

2. A Mahalanobis distance is computed for all observations labeled as outliers
in the preceding steps, using the data (mean and covariance matrix) from the
remaining observations. Let U denote the set of all observations not labeled as
outliers. The agorithm computes

- 1
m = — Xi,
v 2"

1

S = |U|_1i€ZU(xi—n~1>(x,~—m),
vi o= (—m)St—m), VigU.

3. Those observationsi ¢ U such that v; < X§71,0.99 are not considered to be
outliers, and are included in U. The process is repeated until no more such
observations are found (or U becomes the set of all observations).

Asindicated before, this algorithm includes several parameters. The values assigned to
them in the implementation have been chosen to ensure adeguate theoretical and efficiency
properties. Next we describe these choices and their motivation.

1. The number of maximization and minimization directions n1 was selected as equal
to 1 in one of the experiments and equal to p in a second experiment. In the first case we
call the algorithm RASP(1) and in the second RASP(p). These two alternatives will be
compared in the next section in a Monte Carlo study.

2. The use of parameter 8, in (3.3) of Stage I, jointly with the test on r; to label the
outliers, implies that 8, is acting as a cutoff value to detect outliers from projections of
the observations onto the directions that minimize or maximize the kurtosis coefficient. Its
value is chosen to ensure a reasonable level of Type | errors, and depends on the sample
spacedimension p. In particular, aset of simulation experimentswere carried out to ensure
that, in the absence of outliers, the percentage of correct observations mislabeled asoutliers
is approximately equal to 5%. Table 2 shows the values used for several sample space
dimensions. The values for other dimensions could be obtained by interpolating log 8,
linearly inlog p.

Table 2. Cutoff Values for Univariate Projections

Sample space dimensionp 5 10 20
Cutoff value Bp 3.46 3.86 4.67
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3. Thenumber of intervals considered in each iteration of Stagell, K, wasfixed so that
eachinterval had asizeof 2p. Inpractice K = 3 or 5seemstowork well inthe applications.

4. The number of iterations L for Stage |l was selected so that the total number of
subsampling directions was equal to 10p. A larger number of directions provided only a
limited increase in the performance of the algorithm.

Themain computational effort inthe application of the preceding algorithmisassociated
with the determination of local solutions for (3.2) and this computation has been carried
out as described by Pefia and Prieto (2001a).

The procedure is affine equivariant and shares some of the good theoretical properties
of the Stahel-Donoho estimate obtained using a subsampling approximation. This estimate
has a high breakdown point in finite samples and it has been found to exhibit high efficiency
for both Normal and Cauchy distributions (see Maronnaand Yohai 1995). The second part
of Stage Il in the proposed procedure is a modification of the Stahel-Donoho subsampling
scheme with modified sample weights. For asampleincluding outliers arbitrarily removed
from the uncontaminated observations, to identify (some of) the outliersit is enough to gen-
erate directions from hyperplanes defined by subsets of p uncontaminated observations, as
in the Stahel-Donoho subsampling scheme. These directions are obtained with positive
probability by the proposed scheme, implying that if the number of subsamples were suffi-
ciently large, any outliers at infinity would be detected. In the next section we will see that
our proposal is aso a powerful procedure for outlier detection at moderate distances from
the uncontaminated sample.

4. SSMULATION RESULTS

We have conducted anumber of computational experimentsto comparethe performance
of the proposed algorithm, RASP(1), intheidentification of theoutliers, withtheresultsfrom
other codes: (1) An efficient algorithm for the implementation of the Minimum Covariance
Determinant (MCD) procedure, the FASTM CD algorithm proposed by Rousseeuw and Van
Driessen (1999), which is based on the splitting of the problem into smaller subproblems.
(2) Animplementation of the Stahel-Donoho algorithm, asdescribed by Maronnaand Yohai
(1995). The choice of parameterswasthe same asin thisreference, except for the number of
subsamples, chosen equal to 200p for p = 5, 10 and 20. These numbers of subsamplesyield
running times comparable with (in fact, larger than) those of the proposed algorithms. (3) A
computationally efficient method recently proposed by Maronna and Zamar (2002), based
ontheanalysisof the principal components of an adjusted covariance matrix computed from
information on pairwise covariances. Two iterations of the algorithm have been carried out,
as suggested by the authors. (4) An agorithm based on the directions computed from the
minimization and maximization of the kurtosis coefficient, as described in Pefia and Prieto
(2001,a). (5) A dtratified sampling procedure, SRand, corresponding to the second part
of the RASP agorithm described in Section 3, using the same numbers of directions and
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Table 3. Success Rates for the Detection of Outliers Forming One Cluster When One of the Algorithms
Scored Fewer than 95 Successes

p « ) n A FASTMCD SD MZ kurtosis SRand RASP(1) RASP(p)
5 03 10 100 0.1 0 100 0 100 100 100 100
5 04 10 100 0.1 0 97 0 100 98 100 100
5 04 10 100 1 100 100 0 100 95 99 100
5 0.4 100 100 0.1 0 100 0 100 100 100 100
10 0.2 10 100 0.1 0 100 48 100 100 100 100
10 0.3 10 100 0.1 0 100 0 98 100 100 100
10 0.3 100 100 0.1 0 100 2 96 100 100 100
10 04 10 100 0.1 0 0 0 98 65 99 99
10 04 10 100 1 90 33 0 97 63 99 97
10 04 100 100 0.1 0 100 0 100 100 100 100
10 04 100 100 1 70 100 0 98 99 100 100
20 0.2 10 200 0.1 0 100 9 97 100 100 100
20 02 10 200 1 100 100 100 0 100 99 100
20 0.2 100 200 0.1 0 100 100 91 100 100 100
20 0.3 10 200 0.1 0 33 0 89 100 100 100
20 0.3 10 200 1 0 39 1 1 49 49 47
20 0.3 100 200 0.1 0 88 0 82 100 100 100
20 0.3 100 200 1 30 87 100 1 84 78 77
20 04 10 200 0.1 0 0 0 100 52 100 100
20 04 10 200 1 0 0 0 60 5 45 53
20 0.4 100 200 0.1 0 4 0 100 100 100 100
20 0.4 100 200 1 0 6 0 73 25 55 66

parameter valuesindicated in that Section. (6) Animplementation of the proposed RASP(1)
algorithm described in Section 3. (7) Animplementation of RASP(p), that is, amodification
of the proposed algorithm using now thefull 2p directions maximizing and minimizing the
kurtosis coefficient.

For a given contamination level «, we have generated a set of n(1 — «) observations
fromaN(O, I') distributionin dimension p. We have added no additional observationsfrom
aN(de, A1) distribution, where e denotes the vector (1 ... 1)’. This model is analogous
to the one used by Rousseeuw and van Driessen (1999). In the method by Maronna and
Zamar (2002) (MZ from now on) we have introduced a linear transformation to ensure
that the resulting datasets have mean zero and covariance matrix equal to the identity,
as the corresponding procedure is not affine equivariant. This experiment was conducted
for different values of the sample size n (» = 100, 200), the sample space dimension p
(p = 5,10, 20), the contamination level & (¢ = 0.1, 0.2, 0.3, 0.4), the distance of the
outliers § (8 = 10, 100), and the standard deviation of these outliers vA (v/A = 0.1, 1, 5).
For each set of values 100 samples were generated. Table 3 gives the number of samples
in which all the outliers have been correctly identified, for each set of parameter values
and the different algorithms indicated above: FASTMCD, SD, MZ, “kurtosis,” “SRand,”
“RASP(1),” and “RASP(p).” In SRand, RASP(1) and RASP(p) the value for the number of
strataused, K, was chosen so that all strata contained 2p observations. To limit the size of



242 D. PENA AND E. J. PRIETO

Table 4. Overall Success Rates for the Detection of Outliers Forming One Cluster

FASTMCD  SD MZ  kurtosis SRand RASP(1) RASP(p)

74.9 90.1 70.2 88.0 94.9 97.5 98.0

the table, we have shown only those caseswhere at |east one of the algorithms scored fewer
than 95 successes.

Asasummary of thisexperiment, we al so present in Table 4 the percentage of successes
for the whole simulation experiment and all the procedures, obtained as the average of
the success rates over al the cases included in the experiment. The modification of the
Stahel-Donoho procedure proposed in thisarticle behaves uniformly better than the original
procedure, particularly for larger dimensions and higher contamination levels, that is, the
most difficult cases. The proposed combined method of random and specific projections
(“RASP") seems to perform equivalently or better than the other aternativesin nearly all
cases. Inparticular, itisclearly better than FASTM CD for concentrated contaminations, and
it improves on the Stahel-Donoho implementation for large contaminations and increasing
space dimensions. Furthermore, the proposed procedure improves on both the original
kurtosisprocedure and the stratified modification for the Stahel-Donoho resampling scheme.

Table 5 aso provides the average percentages of nonoutliers detected as outliers by the
different procedures in the preceding simulation experiment. Note that the values for the
proposed procedures RASP(1) and RASP(p) are particularly low.

To provide some indication of the computational effort required to implement the dif-
ferent procedures, Table 6 shows the average running times for the algorithms to carry out
the computations for sets of 100 replications and the same combinations of valuesfor «, 3,
and X used in the experiment described in this section and n = 100, 200, 300. The times
have been measured on an AMD 3000+ computer with 512 MB of interna memory. All
codeswerewritten in Matlab except for FASTMCD, aFORTRAN code. Note that although
the best outlier detection results were obtained for RASP(p), those for RASP(1) are also
significantly better than the rest and are attained with much lower running times. In fact,
for large dimensional problems (p = 20) the running times for RASP(1) are the second
lowest (after SRand). Moreover, for large n and small dimension p the best running times
are those of MZ, but these times increase rapidly with p.

Table 7 shows the average Type | errors for the whole problem sets. The values for the
proposed methods are very close to the target 5.0% value.

Table 5. Average Percentages of Nonoutliers Detected as Outliers

FASTMCD SD MZ kurtosis SRand RASP(1) RASP(p)

7.8 39 83 2.7 1.8 0.8 0.7
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Table 6. Average Running Times (in seconds) for Problem Set

Sample sizen Dimensionp FASTMCD SD MZ Kurtosis SRand RASP(1) RASP(p)

100 5 27.3 114 26 6.7 0.9 2.5 5.6
100 10 79.4 394 6.6 14.7 1.6 3.4 13.6
100 20 299.8 394.0 244 33.8 3.9 6.9 37.0
200 5 454 163 29 12.5 1.6 4.5 9.7
200 10 142.3 496 8.4 255 2.5 6.1 24.0
200 20 515.9 427.7 29.3 79.7 6.4 11.9 79.4
300 5 64.1 20.7 3.2 18.5 2.4 7.0 14.2
300 10 205.9 58.6 9.3 38.0 3.4 8.9 34.5
300 20 731.1 452.0 33.6 114.6 8.7 17.4 117.8

Finally, we have also compared these methods for the robust estimation of the covari-
ance matrix. We have generated 100 samples from the mixture model n(1 — «)N(O, I) +
naN(Se, AI) explained before and we have computed in each sample the robust estimates
considered in the previous simulation experiment. In order to comparethe resultswith anon
robust estimator we have also computed the sample covariance matrix (column Cov). The
median of the condition number of the estimated covariance matrix in these 100 samplesis
reported in Table 8. The parameter values are the same than in Table 3. The performance of
RASP(p) isthe best of all the algorithms in the experiment, while RASP(1) is the second
best, but still significantly better than the other aternatives. From these results we may
conclude that if arobust estimate for the covariance matrix is needed and computational
efficiency isnot too rel evant, RASP( p) may present some advantages compared to RASP(1).

The estimates for the covariance matrix have to be scaled for consistency. Table 9
provides scaling factors for different values of p and n obtained from a simulation study
for the proposed procedure, RASP(1).

In conclusion, RASP(1) seems to offer a good compromise among reduced running
times, good outlier identification and robust covariance matrix estimation properties.

5. EXAMPLES

In this section we illustrate the performance of the proposed algorithm for outlier de-
tection with two types of examples. First, we verify that it finds the outliers that other
procedures have also found in well known examples of multivariate data. Second, we apply

Table 7. Average Type | Errors for Problem Set

FASTMCD SD Mz Kurtosis SRand RASP(1) RASP(p)

18.0 11 64 51 53 51 5.4
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Table 9. Scaling Factors for Consistent Covariance Estimators, RASP(1)

p/n 100 200 300

5 1.075 1.042 1.031
10 1.064 1.031 1.031
20 1111 1.042 1.020

the procedure to financial datawhich isknown to be far from normal and illustrate how the
cutoff value for finding outliers can be modified when we have heavy tail distributions.

The proposed code, RASP(1), was applied to a collection of seven standard small
datasets used by previous authors to detect outliers in multivariate data. The first six were
studied by Rousseeuw and Van Driessen (1999), among others, and the last was analyzed
by Maronna and Yohai (1995), among others. Table 10 gives the corresponding results,
indicating the dataset, its dimension and number of observations, the number of outliers
and their labels.

The results for the number of identified outliers are similar to the ones reported in the
literature and those obtained using the Kurtosis algorithm, except for the “ Salinity” dataset,
where the proposed a gorithm finds a slightly smaller number of outliers, and “ Coleman,”
whereit finds a slightly larger number.

We have also explored theidentification of outliersin datafrom aheavy-tail distribution.
The datamatrix has 1,272 rows and 18 columns of daily return stock data from the Madrid
stock market. The variable measured is the daily return of a stock, computed as A log P;
where P; isthe price of the stock. The columnsin this matrix are the 18 stocks which were
always included in the five year period 2000-2004 in the index ibex35, which combines
the stocks with the largest trading volume of the Madrid stock exchange. The rows are the
value of these 18 stocks in the 1,272 trading days in the five year sample period.

We have checked first the autocorrelation structure of these time series by computing
the correlogram of the 18 series. Only two of them, stocks IBE and SCG, show a small,
though significant, first order autocorrelation coefficient, with values —0.1326 and 0.1275,

Table 10. Results Obtained by the Proposed Algorithm on Small Datasets

Dataset Dim. #Obs. # Outliers Outliers

Heart 2 12 5 2,6,8,10,12

Phosphor 2 18 6 1,4,6,7,10,16

Stackloss 3 21 4 1,2,3,21

Salinity 3 28 4 5,16,23,24

HBK 3 75 14 1,2,3,4,5,6,7,8,9,10,11,12,13,14

Coleman 5 20 7 1,2,6,9,10,11,18

Wood 5 20 6 4,6,7,8,9,19

Bushfire 5 38 15 7,8,9,10,11,12,30,31,32,33,34,35,36,37,38
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Figure 2. The 18 series of daily stock returns in the period 2000-2004.

respectively, and the rest of the autocorrel ation coefficients were very small. In order to get
rid of this autocorrelation we fitted an AR(1) model to these two time series and used the
residuals from thisfit in the analysis. However, asthe results were aimost identical to those
obtained by using the original return series, for ssimplicity we present here the results for
the original data.

The plot of these 18 daily returns time series is shown in Figure 2. As the values of
the 18 time series are similar in most cases, the plot seems to correspond to a single time
series. However, this plot is useful to show the most important outliersin any of the 18 time
series. The figure shows that in 10 days we have returns which are extremely low in one or
severa of the stocks. We checked that these extreme values corresponded to well known
changes, such as stock splits, and these changes produce a proportional drop in price and
the corresponding large negative return for the next trading day.

Additionally the kurtosis coefficients of these return series, which are shown in Table
11 together with the label of the stock, indicate that the distribution of these stock returnsis
far from normal. The large values of these kurtosis coefficients for some of the stocks are
in agreement with the large outliers, which can be seenin Figure 2.

Table 11. Kurtosis Coefficients of the Original Daily Return Data

ACS ACX ALT AMS ANA BBVA BKT ELE FCC

666.74  729.86 30.18 19.02 12.08 9.92 457.83 6.08 8.37
FER IBE IDR NHH POP REP SGC TEF TPI
57.36 10.78 189.68 20.82 430.68 8.68 7.29 2254 259.89
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Table 12. Skewness and Kurtosis Coefficients of Daily Returns in Group A of Good Data

ACS ACX ALT AMS ANA BBVA BKT ELE FCC

—0.168 —0.003 0.046 0.103 0.006 —-0.023 0.184 —0.208 0.093
3.525 3.154*  3.592 3.895 3.517 3.675 3.899 3.524 3.566

FER IBE IDR NHH POP REP SGC TEF TPI
0.327 —-0.036 0.018 -0.132 0.177 -0.056 0.076 —0.026 0.079
3.775 3.295* 3.596 3.826 3.566 4168 3.806 3.217* 3.671

If we search for outliers in the individual time series, x;;, wherei = 1,..., 18 and
t=1,...,1272, and identify as outliers values larger than
b i~ median(x;,)|
t T MAD(xi)

> 29

we find a proportion of outliers of 11%. The numbers of outliers in each time series are
similar, with the smallest proportion of outliers in series IBE (9.2%) and the maximum
in series BKT (13.05%). Often the outliers appear at the same time in several of the time
series.

The application of the proposed procedure leads to a much larger group of outliers,
indicating that the joint analysisis more powerful than theindividual analysis of the series.
In fact the procedure implies a split of the sample into two groups. The first group, the
largest one, contains 645 good observations; we will refer to them as the A group. The
second group includes 624 observations which were considered outliers (48.83% of the
data), and will be called the B group. Table 12 shows the skewness and kurtosis coefficient
in group A and the result of the Bera-Jarque test of univariate normality. Thishypothesisis
rejected at the 0.05 level in 15 out of the 18 stocks. Only in the three casesindicated by an
* univariate normality cannot be rejected. All the other stocks have univariate distributions
with kurtosis values between 3.5 and 4.2. If we assume that the daily returnsfollow Student
t distributions and estimate the degrees of freedom from the kurtosis coefficient we obtain
¢ distributions with between 10 and 16 degrees of freedom.

On the one hand, group B has a set of 10 extreme points, all of which can be seen
in Figure 2, which are clearly outliers due to well known events. When we delete these
10 points from group B we obtain group B* which contains data that follow univariate
distributions with greater variance that those in group A. Table 13 shows the skewness and
kurtosis of group B*. It can be seen that the kurtosis of al the univariate distributions are
larger than those in group A, and they seem to agree with a Student ¢ distribution with
small degrees of freedom. Also, the skewness is larger in this group and some of these
distributions are not symmetric. We have used the symbol * to indicate that in this stock
the hypothesis of a symmetric distribution is rejected. The variability in group B* is larger
thanin group A, and Table 14 shows that the standard deviations are twice as large as those
ingroup A.
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Table 13. Skewness and Kurtosis Coefficients of Daily Returns in Group B* of Outliers With the 10
Largest Values Deleted

ACS ACX ALT AMS ANA BBVA BKT ELE FCC

0.343 -0.209 —-0.350 -0.230 0.040 0.303 0.561* —-0.088 0.415*
5774 5.619 4.494 4.876 4.668 3.914 9.258 4.043 4.344
FER IBE IDR NHH POP REP SGC TEF TPI

0.115 0.602* 0.319 -0.118 0.243 0.373* 0.231 0.344 0.346
3.507 7.772 4.215 12492 4.004 5.165 3.404 3.340 5.603

Figure 3 presents a plot of the observations for all the stocks in both groups, A (top)
and B*(bottom), and they seem to correspond to two regimes with different variability.

In order to explore this possibility we studied the proportion of outliers, defined as
observations which belong to group B*, in subgroups of eight consecutive observations.
That is, we split the 1,272 observationsinto 159 subgroups of eight consecutive data points
and computed the proportion of outliersin each subgroup. Figure 4 shows this proportion
with respect to the order of the subgroup, which indicates time. It can be seen that at
the beginning of the sample period the proportion of outliers is very large in most of the
subgroups: 100% in the first 17 subgroups and usually larger than 50% in the first 100
subgroups, whereasin the last part of the sample the proportion of outliersis very small.

Thissuggestsageneral decrease of variability of the stocksin thelast part of the sample,
which canbeobservedin Figure 2 (p. 246). Thus, thetwo groups of datafound are consi stent
with two periods of different variability in the return of the stocks.

In order to understand better the distribution of the data in group A, we made a Q-
Q plot of the percentiles of the Mahalanobis distances in this group with respect to the
percentiles of a Chi-square with 17 degrees of freedom, the expected distribution of these
Mahal anobi s distances under the hypothesis of multivariate normal data. Thisplot, see Fig-
ure 5, shows that the distribution of the Mahalanobis distance deviates strongly from the
distribution expected under normality. We then generated a sample of the same dimension
as the data from a multivariate Student ¢ distribution with 13 degrees of freedom and the
same covariance matrix. Figure 5 also shows the Q-Q plot of the Mahalanobis distances

Table 14. Ratio Between the Standard Deviations in Groups B* and A for the Stock Returns

ACS ACX ALT AMS ANA  BBVA  BKT ELE FCC

1.951 2.067 1884 2084 1821 1837 2375 2150 2.067

FER IBE IDR NHH POP REP SGC TEF TPI
1751 2109 2189 1.834 1.849 2.056 2.084 2142 2182
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Figure 3.  Observations in each of the two groups: A (top) and B* (bottom).
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Figure 4. Proportion of observations from group B* in subgroups of eight consecutive observations versus order
of the subgroup.
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Figure 5. Quantile-Quantile plot of the observed Mahalanobis distance in the first group of data and of the
Mahalanobis distance computed from a sample of Multivariate ¢ variables with 13 degrees of freedom with
respect to a chi-square.

computed in this simulated sample with respect to the chi-square distribution. We conclude
that datain group A are not multivariate normal and that they are more consistent with a
multivariate ¢ distribution with 13 degrees of freedom, but truncated at about 30, asthe plot
of thedataisvery similar to the plot of the multivariate r in theinterval (0, 30). Notethat the
.99 percentile of a chi-square with 17 degrees of freedom is 33.4, which is the value used
as cutoff for outlier detection. Thus the large number of outliers found for the procedure
in this dataset can be due to the fact that the data follow approximately a multivariate ¢,
instead of a multivariate normal.

From this plot we conclude that a sensible cutoff for outliers from the multivariate ¢
distributionisabout 60. Thuswe apply the detection procedureto thewhol e dataset with this
cutoff value and now only 72 outliers are found, which correspond to 5.6% of the sample.
Table 15 showsthe proportion of outliersin each period. Note that the proportion of outliers
decreases over time, which is consistent with the decrease in variability previously found.
Figure 7 showsthe Q-Q plot of the Mahalanobis distancesin the bulk of the datawithout the
72 outliersagainst thedistancesin asampl e of the same sizeand parametersgenerated froma
multivariater distribution with 13 degrees of freedom; it can be seen that the approximation
is reasonable. Finally, Figure 6 shows a plot of the two groups of data finally detected:
the main group that seems to follow a multivariate ¢, and the 72 observations detected as
outliers. It can be seen that this later group can be split into the 10 large outliers due to
well-known reasons and a set of data which seem to come from a distribution with larger
variability than the first group.
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Figure 6. Group of homogeneous data which seem to follow a multivariate ¢ distribution (top) and outliers with
respect to this group (bottom).

6. CONCLUSIONS

The analysis presented in the previous sections shows that the combination of ran-
dom and specific direction leads to a powerful procedure for robust estimation and outlier
detection. The random directions are generated by a stratified sampling scheme, which
works better than the random sampling of the Stahel-Donoho procedure, especially with
high-dimensional data. However, the random directions cannot completely cope with the
deficiencies for concentrated contamination. On the other hand, the specific directions ob-
tained by the kurtosis coefficient seem to be very powerful for detecting concentrated
contamination. We have shown that if we just compute the two directions corresponding to
the extremes of the kurtosis coefficient we have a powerful procedure. The combination of

Table 15. Location of the Qutliers With Respect to the Observations Coming from the Multivariate t
Distribution

Year Sample size  Outliers %

2000 250 42 16.8
2001 272 16 5.9
2002 250 11 4.4
2003 250 1 0.4

2004 251 2 0.8
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Figure 7. Empirical two-sample QQ plot of the Mahalanobis distance in the sample against those from a sample
generated by a multivariate ¢ distribution with 13 degrees of freedom.

both methodsin the RA SP algorithm seemsto be auseful alternativefor theroutineanalysis
of multivariate data in high dimensions. It can be applied to reasonably large datasets in
many variables and, as it is based on projections, it is not severely affected by the curse
of dimensionality. Although we believe this procedure can be applied to large p problems
a limitation of our method is that we assume n > p in order to compute the covariance
matrix of the observations. Thus, the present version cannot be applied when we have more
variables than observations, as in microarray and image analysis. As the SD and the PP
directions can be computed just aswell when p > n, we believe that the procedure can be
extended to thissituation, although its propertiesand rel ative advantages over other methods
when p > n will be the subject of further research.

We have emphasized in thisarticle the outlier detection capabilities of the procedure, but
the same good properties are found in the robust estimation of the covariance matrix, which
has the high breakdown point property of the Stahel-Donoho estimate in finite samples.
Many standard multivariate procedures are based on the analysis of the covariance matrix
of the data and thus using the robust covariance matrix obtained by this procedure provides
a simple way to obtain robust principal components, robust canonical analysis or robust
discrimination.

7. APPENDIX

In this Appendix we obtain the distribution of the standardized data y; = S~/2(x; — )
whenx ~ (1—a)N (0, I) +aN(8eq, A2I) and give the limiting distribution when n — oo
and § — oo. Assuming that the distribution of x is (1 — @) N (0, I) + aN (8e1, A2I), then
E(x) = ader and the covariance matrix is Vy = al + beie} witha = (1 — «) + ai?



COMBINING RANDOM AND SPECIFIC DIRECTIONS FOR OUTLIER DIRECTION 253

and b = (1 — a)ad2 Then V1 = a=X(1 — b/(a + b)ere}) and V; /2 = a=Y/2(1 —
cerey), where c = 1 — (a/(a + bHY2 and y = Vx_l/z(x — adeq) has a distribution
(1 —a)N(—ad(a+b)Y2e1, VoY + aN((1 — a)8(a + b)~Y%e1, A2V1). Now making
8§ — oo we havethat y ~ (1 — a)N(—abe1,0%T) + aN((1 — a)ber, A202T) where
0 = (@l —a) 2 02 = (@r?+ 1 — )L, and I denotes an identity matrix with the
first element equal to zero. If we transform the databy z = y + afe, so that the mean of
the central distribution is the zero vector, the distribution of the transformed data will be
(1 —a)N(0, 02T) + aN(Be1, \25%T).
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