
Autoregressive Integrated
Moving Average
(ARIMA) Modeling

Introduction

A time series is the result of observing a magnitude
over time (see Time Series Analysis). For instance,
one can observe the number of defects in a production
process every day, the thickness of a coating layer
every hour, or the monthly demand for a product. An
important class of time series is the stationary one.
A time series is stationary if it is stable over time, so
that the level of the series is constant, the variability
is also constant, and the dependency relationships
between successive values of the time series do not
change over time.

Many real time series are not stationary but can
be transformed to stationarity. Thus a nonstationary
series {yt } that wanders over time without a fixed
mean may have the property that its growth xt :=
yt − yt−1 is a stationary time series. Then we say
that the series {yt } is integrated and that the series
{xt } is the first difference of {yt}.

ARMA (auto-regressive moving average) mod-
els are useful to approximate the dynamics of many
stationary time series, whereas ARIMA (autoregres-
sive integrated moving average) models are useful
for integrated time series. Figure 1 shows three time
series generated by simulation using two ARMA
models (a and b) and one ARIMA model (c). Sim-
ple inspection of these series shows that they have
different dynamics because of their different autocor-
relation structures (see Autocorrelated Data). The
general form of ARMA and ARIMA models will be
considered subsequently.

ARMA Models

A process {yt } is called stationary in the weak form
if E(yt ) and γk := cov(yt , yt+k) for k = 0, 1, . . . are
finite and do not depend on t . The sequence {γk} is
called the autocovariance function and ρk := γk/γ0

is the autocorrelation function (see Autocorrelation
Function). Wold [1] proved that any stationary
process, {yt }, without deterministic components can

be written as

yt = at + ψ1at−1 + ψ2at−2 + · · ·

=
∞∑
i=0

ψiat−i (ψ0 = 1) (1)

where
∑∞

i=0 ψ2
i < ∞ (stationarity condition) and

{at } is a zero-mean white noise process (E(atat+k) =
0 for k �= 0) with variance σ 2 := E(a2

t ). This is called
the general, or the infinite moving average MA(∞),
representation of a stationary process. Model (1) leads
to E(yt ) = 0. If the process {yt } has deterministic
mean {µt }, the general representation applies to
the zero-mean process {yt − µt }. The autocovariance
function is γk = E(ytyt+k) = σ 2 ∑∞

i=0 ψiψi+k , for
k ≥ 0 (see also Appendix 1). Using the lag operator B

such that Byt = yt−1, the MA(∞) representation can
formally be written as yt = ψ(B)at , where ψ(B) =
1 + ψ1B + ψ2B

2 + · · ·. The white noise {at } can
often be assumed to be normally distributed.

If model (1) is invertible, it can be written
in an alternative way that is called the infinite
autoregressive AR(∞) representation of the process
and is given by

yt − π1yt−1 − π2yt−2 − · · · = yt −
∞∑
i=1

πiyt−i = at

(2)

where
∑∞

i=1 π2
i < ∞ (invertibility condition). Model

(2) can formally be written as π(B)yt = at ,
where π(B) = 1 − π1B − π2B

2 − · · ·, so that
π(B)ψ(B) = 1.

These two general representations have an infi-
nite number of parameters. Approximations having
a finite number of parameters are needed to model
any finite time series Y′ = (y1, . . . , yn). The sim-
plest approximation is to assume a finite number q

of terms in equation (1), which leads to the q-order
moving average MA(q) model yt = θq (B) at ,

where θq (B) = 1 − θ1B − · · · − θqB
q (minus signs

are used customarily). For MA(q) models, γ0 =
σ 2(1 + θ2

1 + · · · + θ2
q ) < ∞, so that they are always

stationary; moreover ρk = 0 for k > q. A second way
to approximate the general form is to use a finite
number p of terms in equation (2). This leads to the
p-order autoregressive AR(p) model φp(B)yt = at ,
where φp (B) = 1 − φ1B − · · · − φpBp . An AR(p)
model is stationary if and only if all the roots of
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Figure 1 Time series generated using the AR(1) model yt − 0.8yt−1 = at (a), the MA(1) model yt = at − 0.8at−1 (b),
and the IMA(0, 1, 1) model yt − yt−1 = at − 0.2at−1 (c), for a common simulated white noise series (a1, . . . , a200) with
zero mean and variance σ 2 = 1

the polynomial φp(B) are outside the unit circle,
so that the model accepts the MA(∞) representa-
tion yt = φ−1

p (B)at . Thus the AR(1) model (1 −
φB)yt = at can be written as yt = (1 − φB)−1at =
(1 + φB + φ2B2 + · · ·)at if and only if |φ| < 1,
so that γ0 = σ 2(1 − φ2)−1 < ∞; the autocorrelation
function is ρk = φk implying a geometrical decay of
ρk �= 0, which is a feature common to all stationary
AR(p) models.

The AR(p) and MA(q) models can be combined
to form the ARMA(p, q) model φp(B)yt = θq(B)at .
ARMA(p, q) models are stationary if and only if all
the roots of φp(B) are outside the unit circle, and they
are invertible if and only if all the roots of θq(B) are
outside the unit circle. Only invertible models yield
time series forecasts directly (see the section titled
“Forecasting Time Series”).

ARIMA Models

ARMA(p, q) models can be extended to model the
dynamics of integrated time series. A nonstationary

process {yt} whose dth difference {(1 − B)dyt } is
stationary is called an integrated process of order
d > 0. Using the operator ∇ = 1 − B, the general
ARIMA(p, d, q) equation is

φp(B)∇d (yt − µt) = θq(B)at (3)

where φp(B) and θq(B) have no common roots and
are invertible (i.e., all their roots are outside the unit
circle), and {µt } is a deterministic trend. In model (3),
{∇dµt } is the mean of the differenced series {∇dyt }
and is estimable, but the d integrating constants in
{µt } cannot be estimated. Important examples of this
type of models are the random walk, yt = yt−1 + at ,
also called ARIMA(0, 1, 0) or I(1), and the IMA(0,
1, 1) model yt = yt−1 + at − θat−1.

Under model (3), {∇d(yt − µt)} is a zero-mean
stationary process. The mean and variance of yt con-
ditioned on given past values {y0, y−1, . . .} are finite.
Thus for a random walk yt = yt−1 + at and t > 0,
one has E(yt |y0) = y0 whereas var(yt |y0) = σ 2t

increases indefinitely as t increases. Also, for k > 0,
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cov(yt , yt+k) = σ 2t ≥ 0, so that the autocorrela-
tion coefficient ρ(yt , yt+k) = (1 + k/t)−1/2 decreases
with k, which is a property of integrated pro-
cesses. The function V (k) = 1

2E(yk − y0)
2 = γ0(1 −

ρk) is called the variogram. The quotient V (k)/V (1)

is called [2] the standardized variogram (SV) and is
a dimensionless function of k. The SV of ARMA
models is (1 − ρk)/(1 − ρ1) and is always bounded.
Unlike the autocovariance function, the SV of
ARIMA(p, 1, q) models always exists and equals
k + 2

∑k−1
i=1 (k − i)corr(∇yt , ∇yt−i ); for the IMA(0,

1, 1) model, it is 1 + (k − 1)(1 − θ)2/(1 + θ2) and
increases linearly with k.

Applications

ARIMA models are important for generating fore-
casts and providing understanding in all kinds of time
series problems from economics to health care appli-
cations [2–9]. In particular, in quality and reliability,
they are important in process monitoring if obser-
vations are correlated, designing schemes for process
adjustment, monitoring a reliability system over time,
forecasting time series, estimating missing values,
finding outliers and atypical events, understanding
the effects of changes in a system, and so on.

Forecasting Time Series

ARIMA models can be used to forecast time series.
Forecasting with ARIMA models is very simple when
q = 0. Using the notation φp(B)∇d = 1 − ϕ1B −
· · · − ϕp+dB

p+d and assuming, for simplicity, that
µt = 0 in equation (3), the minimum mean squared
error (MMSE) forecast of yt given (yt−1, . . . , yt−p−d)

is ŷt = ϕ1yt−1 + · · · + ϕp+dyt−p−d . The forecast
error is at . When q > 0, however, the forecasts
depend on previously observed forecast errors. Thus
for given observations (yt−1, . . . , yt−p−d), and com-
puted forecast errors (at−1, . . . , at−q), the MMSE
forecast of yt is

ŷt = ϕ1yt−1 + · · · + ϕp+dyt−p−d

− θ1at−1 − · · · − θqat−q (4)

and the forecast error is at . The quick recursion (4) is
numerically stable when used iteratively if and only
if θq(B) is invertible.

For a finite series Y′ = (y1, . . . , yn), equation (4)
is exact only asymptotically and has to be initialized.
Suppose a series Y having zero mean and covariance
matrix � := cov(Y) has to be forecast. This problem
can be formulated as successively finding uncorre-
lated (orthogonal) forecast errors E′ = (e1, . . . , en)

with zero mean and covariance matrix D := cov(E) =
diag(D11, . . . , Dnn). This can be solved by applying
Gram–Schmidt orthogonalization to Y. Then Ŷ =
Y − E. Starting with e1 = y1 (so that D11 = 	11 and
ŷ1 = 0) and using et = yt − ŷt = yt − ∑t−1

j=1 λtj ej ,

one gets cov(yt , ei) = cov
(
et + ∑t−1

j=1 λtj ej , ei

)
=

λtivar(ei) and cov(yt , et ) = var(et ) = Dtt . Then
λti = cov(yt , ei)/cov(yi, ei). The required covari-
ances are found using the recursion

cov(yt , ei) = cov


yt , yi −

i−1∑
j=1

λij ej




= 	ti −
i−1∑
j=1

λij cov(yt , ej ) (5)

for t = 1, . . . , n and i = 1, . . . , t . Hence Y = L	E,
where L	 is the lower triangular matrix with elements
λtj for t = 1, . . . , n and j = 1, . . . , t (note that λtt =
1), and � = L	DL′

	.
If the series Y is generated by the ARMA(p,

q) model φp(B)(yt − µt) = θq(B)at , � has ele-
ments 	ij = γ|i−j |. Then, it is advantageous to
apply the recursion (5) to the working series
W′ = (w1, . . . , wn) defined by wt = yt − µt for
t = 1, . . . , p and wt = φp(B)(yt − µt) for t = p +
1, . . . , n, because � is replaced by the band matrix
� := cov(W) (see Appendix 2). Then W = L�E;
E = W − Ŵ = Y − Ŷ; and � = L�DL′

�, where L�

is a lower triangular band matrix with the same
lower bandwidth as �. The forecast errors {et} con-
verge to the noise {at } and λt,t−j converges to
−θj as t increases, so that one can switch from
equation (5) to equation (4) as soon as equation (4)
becomes sufficiently accurate. Note also that W =
�(Y − µ), where � is the lower triangular band
matrix with bandwidth p having ones in the diago-
nal; elements �i,i−k = −φk for i = p + 1, . . . , n and
k = 1, . . . , p; and zeros elsewhere. Then � = ���′
and L� = �L	.

This method can also be applied to ARIMA
models provided that limiting formulas are used.
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For example, for ARMA(p, q) models with constant
mean µ, the MMSE forecast of y2 given y1 is
ŷ2 = µ + ρ1(y1 − µ) and the variance of the forecast
error is D22 = γ0(1 − ρ2

1 ). Hence, for ARIMA(p,
1, q) models, ŷ2 = y1 with forecast error variance
limρ1→1 D22 = var(∇yt ).

MMSE forecasts ŷt |t−k of yt at origin t − k for
any lead time k > 1 are found replacing equation (4)
by ŷt |t−k = ∑k−1

i=1 ϕiŷt−i|t−k + ∑p+d

i=k ϕiyt−i − ∑q

i=k

θiat−i ; the forecast error is et |t−k = yt − ŷt |t−k and
var(et |t−k) = σ 2 ∑k−1

i=0 ψ2
i . Equation (5) can also be

adapted to forecast yt at origin t − k by taking Y′ =
(y1, . . . , yt−k, yt ). Thus ŷt |t−k = ∑t−k

j=1 λtj ej and
var(et |t−k) = ∑t

j=t−k+1 λ2
tjDjj . For ARMA(p, q)

models with constant µ, ŷk+1|1 = µ + ρk(y1 − µ)

and var(ek+1|1) = γ0(1 − ρ2
k ). For ARIMA(p, 1, q)

models, ŷk+1|1 = y1 and var(ek+1|1) = kvar(∇yt ) +
2

∑k−1
i=1 (k − i)cov(∇yt , ∇yt−i ).

Figure 2 shows the last 11 observations in the time
series of Figure 1 together with the MMSE forecasts
ŷt+k|t of yt+k at origin t = 200 for lead times k =
1, . . . , 5 and corresponding probability limits for each
individual yt+k at ±2 standard deviations.

Process Control: Process Monitoring and Process
Adjustment

Quality control is often implemented by the com-
plementary use of process monitoring and process
adjustment [2, 5]. Process monitoring is a part of
statistical process control (SPC) and assumes that
the process has already been brought to a state of
stationary control by using techniques such as the
standardization of materials, machines, and methods.
The purpose of monitoring is to guarantee that the
process stays in its stationary state. Hence stationary
time series models are used. Process adjustment is
primarily used when current efforts to bring the pro-
cess to a state of stationary control have failed. The
purpose is to determine when and by how much the
process should be adjusted to attain stationarity. This
can be implemented by sequentially forecasting the
deviation from the target and compensating for this
deviation by adjusting an input variable when and as
required (see Feedback Control). Nonstationary and
stationary time series models are used to describe the
dynamics of the unadjusted and adjusted processes,
respectively.

Process monitoring and process adjustment require
that data should be taken routinely at equally spaced

periods of time separated by the so-called unit
sampling interval. The determination of the optimal
length of this sampling interval is important. It may
also be appropriate to change the length of the
sampling interval depending on the recent behavior
of the process. Hence it is useful that the models
used for process control are invariant to changes in
the length of the sampling interval (only the model
parameters may change).

In process monitoring, stationary ARMA models
that are invariant to the length of the sampling
interval are used. The basic type of these models
is the white noise yt = µ + at , where the observed
process {yt } has mean µ, which should be equal
to the target value, and the white noise series {at }
is a disturbance. Alternative invariant models are
the ARMA(1, 1) yt − µ = φ(yt−1 − µ) + at − θat−1

with 0 < φ < 1, and the AR(1) with θ = 0.
In process adjustment, nonstationary ARIMA

models that are invariant to the length of the sam-
pling interval are used. The basic type of these models
is the random walk yt = yt−1 + at , used by Taguchi
et al. [10] to model drifting observed processes. Box
and Luceño [2] consider that the random walk is often
too nonstationary for process adjustment applications
and use the IMA(0, 1, 1) model instead. Luceño et al.
[11] and [5] use the IMA(0, 1, 1) with trend yt = β +
yt−1 + at − θat−1, which is also invariant and has
parameters θ and β to deal with different degrees of
nonstationarity and the trend of unadjusted processes.

Fitting ARIMA Models

The approach suggested by Box and Jenkins [3, 12]
is often used to fit ARIMA models to finite time
series. It has three steps: model identification, model
estimation, and model diagnostic.

Model Identification

Suppose that a series Y′ = (y1, . . . , yn) has been
observed. The first step is to decide whether it is
a stationary or an integrated time series. This deci-
sion is often made by visual inspection of plots
of the time series and its autocorrelation func-
tion, as well as similar plots for the first and
second difference of the series. It is also pos-
sible to use unit root tests of the type intro-
duced in [13]. The following estimators are applied
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Figure 2 Observations in the time series of Figure 1 for t = 190, . . . , 200 (×) along with their MMSE forecasts for
t = 201, . . . , 205 (Ž) with ±2 standard deviation limits (+)

to the series itself and its first differences: y =
n−1 ∑n

t=1 yt for the mean, γ̂0 = n−1 ∑n
t=1(yt − y)2

for the variance,

γ̂k = 1

n

n−k∑
t=1

(yt − y)(yt+k − y) (k ≥ 0) (6)

for the autocovariances, and rk = γ̂k/γ̂0 for the auto-
correlations. If the sample autocorrelation function
of the original or differenced series has only its
first q coefficients significantly different from zero,
one can tentatively assume an MA(q) model for
that series. Otherwise, one should entertain AR,
ARMA, or ARIMA models. Figure 3 shows the sam-
ple autocorrelation functions of the three time series
in Figure 1. The sequence {rk} decreases approxi-
mately geometrically for the AR(1) series; only r1

is clearly significantly different from zero for the
MA(1) series; whereas the sequence {rk} decreases
very slowly for the IMA(0, 1, 1) series, indicating
the need to differentiate this time series.

Many statistical tools have been derived to identify
the orders p, d, and q of a model: the partial auto-
correlation function [3], the extended autocorrelation
function [14], the inverse autocorrelation function
[15, 16], and so on. However, because the estimation
of ARMA models is nowadays fast and reliable, we
recommend that all possible models compatible with
the observed autocorrelations be estimated and that
a model selection criterion be used to choose from
among them (see the sections titled “Model Estima-
tion by Maximum Likelihood”, “Joint Estimation of
Missing Values and Model Parameters”, and “Model
Diagnostic”).

Model Estimation by Maximum Likelihood

Let Y′ = (y1, . . . , yn) be a series generated by a
stationary ARMA(p, q) model φp(B)(yt − µt) =
θq(B)at , so that µ′ := E(Y′) = (µ1, . . . , µn) and
� := cov(Y). Let W := �(Y − µ) be the work-
ing series of the section titled “Forecasting Time
Series”, so that � := cov(W) = ���′, W = L�E,



6 ARIMA Modeling

0 5 10 15 20 25 30
−0.5

0

0.5

1

0 5 10 15 20 25 30
−0.5

0

0.5

1

0 5 10 15 20 25 30
0

0.5

1

(a)

(b)

(c)

Figure 3 Sample autocorrelation functions for each of the three time series in Figure 1

� = L�DL′
�, |�| = |�| = |D|, �, �, and L� are

band matrices, and D is diagonal. For normal
{at }, the likelihood function of the parameters φ′ =
(φ1, . . . , φp), θ ′ = (θ1, . . . , θq), µ, and σ 2 given
Y is

L(φ, θ, µ, σ 2|Y) = (2π)−n/2|�|−1/2

× exp{−(Y − µ)′�−1(Y − µ)/2}
= (2π)−n/2|�|−1/2

× exp(−W′�−1W/2)

= (2π)−n/2|D|−1/2 exp(−E′D−1E/2)

(7)

where |D| = ∏n
i=1 Dii and E′D−1E = ∑n

i=1 e2
i /Dii .

Maximum-likelihood estimates (MLEs) can be found
by minimizing − ln[L{φ, θ, µ(β), σ 2|Y}], where µ is
parameterized as µ(β) (see Maximum Likelihood).

For AR(p) models, � equals the identity matrix
excepting its first p rows and columns (and
�−1 has bandwidth p); hence the MLE of φ′
is close to its minimum sum of squared error
estimate. For an AR(1) model, |�|−1 = σ−2n(1 −

φ2) and W′�−1Wσ 2 = C0(1 + φ2) − 2φC1 −φ2

{(y1 − µ1)
2 + (yn − µn)

2)}, where Ck = ∑n−k
t=1 (yt −

µt)(yt+k − µt+k); hence disregarding the effects of
|�|, y1, and yn, the estimate φ̂ = C1/C0 results. For
MA(q) models, � is the identity matrix, � = �

has bandwidth q, but the log-likelihood function
may be far from quadratic. The MLEs for the
parameters of the three time series in Figure 1 are
(φ̂ = 0.765, σ̂ 2 = 0.927), (θ̂ = 0.838, σ̂ 2 = 0.925),
and (θ̂ = 0.197, σ̂ 2 = 0.934), respectively.

Joint Estimation of Missing Values and Model
Parameters

Suppose that series Y′ = (y1, . . . , yn) has m missing
values (see Missing Data and Imputation) y′

u =
(yu1 , . . . , yum

), at positions 1 < u1 < · · · <

um < n, having means µ′
u = (µu1 , . . . , µum

). Let
M′ be the m × n matrix with elements M ′

i,ui
= 1,

i = 1, . . . , m, and zeros elsewhere; and B′ be the
(n − m) × n matrix found eliminating the rows of
M′ from the n × n identity matrix. The MMSE
estimator ŷu of the missing values is the con-
ditional mean of yu given the observations B′Y,
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that is,

ŷu = µu + (M′�B)(B′�B)−1B′(Y − µ)

= µu − (M′�−1M)−1(M′�−1B)B′(Y − µ) (8)

The two formulas in equation (8) are equivalent,
but the latter (using �−1) is usually much faster
than the former (using �) as m � n − m [17–19].
Moreover, cov(yu) = M′�M, cov(yu − ŷu) = (M′
�−1M)−1, and cov( ŷu) = M′�M − (M′�−1M)−1.
For AR(p) models with µ = 0, equation (8) yields
ŷu = −∑p

k=1 αk(yu−k + yu+k)/α0, if m = 1 and p <

u ≤ n − p, where αk = ∑p−k

j=0 φjφj+k and φ0 = −1.
The sequence {αk/α0} is called the inverse auto-
correlation function of the AR(p) model. Moreover,
equation (8) accounts for end effects if u ≤ p or
u > n − p.

Defining Ŷ = Y + M( ŷu − yu) and using �−1 =
�′�−1� = �′L′−1

� D−1L−1
� �, one can efficiently

obtain [17–20] MLEs of φ, θ , µ, and σ 2 maximizing

L(φ, θ, µ, σ 2|B′Y)

= (2π)−(n−m)/2(|�||M′�−1M|)−1/2

× exp{−(Ŷ − µ)′�−1(Ŷ − µ)/2} (9)

This procedure can also be applied to inte-
grated series replacing (M′�−1M)−1(M′�−1B) by
(M′

d�
−1
d Md)

−1 (M′
d�

−1
d Bd) in equation (8), where

�d := cov(Yd), and Y′
d , M′

d , and B′
d are obtained

differencing d times the rows of Y′, M′, and B′.
Thus, for an ARIMA (p, 1, q), if y3 is miss-
ing, Y1 has two unknown values (y3 − y2 and
y4 − y3) that require only one row of length n − 1
in M′

1, namely, (0, 1, −1, 0, . . . , 0), the first dif-
ference of (0, 0, 1, 0, 0, . . . .0). Moreover, B1B′Y =
(y2 − y1, −y2, y4, y5 − y4, . . .)′. Thus, for a random
walk, ŷ3 = (y2 + y4)/2.

Model Diagnostic

This stage is designed to check if the residuals of
the estimated models behave approximately as white
noise series and to select the best models among
those verifying this condition. If a model is cor-
rect, the autocorrelation coefficients r̂k of its residuals
( â1, . . . , ân) should asymptotically be normal vari-
ables with zero mean and variance 1/n. Ljung and
Box [21] propose the test statistic Q(h) = n(n + 2)

∑h
k=1 r̂ 2

k/(n − k), which, for large n, follows a χ2

distribution with h − ν degrees of freedom, where
ν is the number of parameters {φ, θ, µ} estimated in
equation (7).

Peña and Rodriguez [22] propose a test statis-
tic that can be up to 50% more powerful than the
one proposed by Ljung and Box. The new statistic
is Dh = −n(h + 1)−1 ln |R̂h|, where Rh is an h × h

matrix of residual autocorrelations with elements
r̂|i−j |. The asymptotic distribution of Dh is gamma
with mean h/2 − ν and variance h(2h + 1)/(3h +
3) − 2ν.

The selection among the fitted models whose
residuals behave approximately as white noise series
can be based on model selection criteria. Akaike
[23, 24] proposes the selection of the model that
leads to the smallest out-of-sample forecast error and
shows that this is equivalent to minimizing AIC =
n ln σ̂ 2

MV + 2ν, where σ̂ 2
MV is the MLE of the residual

variance. Using a Bayesian approach, Schwarz [25]
proposes a criterion that selects the model with
highest posterior probability by minimizing BIC =
n ln σ̂ 2

MV + ν ln n. See [26] for a comparison of the
performance of these criteria for model selection.

Atypical Values

Time series data are often subject to outliers or dis-
cordant observations (see Outliers). Their study has
been approached from two points of view. The first is
the diagnostic approach, in which outliers are identi-
fied by using the residuals of the estimated model and
their effect is tested afterward. A model incorporat-
ing the identified outliers is proposed, and the outlier
effects and model parameters are estimated jointly.
The second is the robust approach, in which the esti-
mation method is modified so that the estimators are
insensitive to the presence of outliers. Outliers can
be easily identified and tested using these robust esti-
mators. Both methodologies complement each other,
and ideas from one approach can be used to improve
the other.

Fox [27] defines additive outliers (AOs) and inno-
vative outliers (IOs) in time series and proposes the
use of maximum-likelihood ratio tests for detecting
them. An AO corresponds to an external error or
exogenous change of the observed value of the time
series at a particular time point T ; that is, instead
of observing the series {yt }, a new series {zt } is
observed which differs from {yt } by the magnitude
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ωA of the AO only at the time T of occurrence
of the outlier. The model for the observed series
is zt = ωAI

(T )
t + �(B)at , where I

(T )
t = 0 for t �=

T , I
(T )
T = 1, and �(B) = ∇−dφ−1

p (B)θq(B) is the
ARIMA model for the outlier-free time series.

An AO can be interpreted as a measurement error
at time T , 1 ≤ T ≤ n, or as an impulse effect due
to exogenous causes. Thus if the original series is
the output from a system, an AO may correspond
to an unexpected event that happens at T , such
as a strike, an accident, or a breakdown, which
modifies the output of the system at T , without further
effects on the future values of the series. AOs can
have a very serious effect on the properties of the
observed series [9]. In SPC, AOs are monitored using
Shewhart or CUmulative SCORE (CUSCORE) charts
(see Control Charts, Overview).

The second type of outliers introduced in [27],
IO, can be generated by some internal change or
endogenous effect on the time series which appears
as an outlier on the process noise. The model for an
IO is built by adding an impulse effect to the noise of
the original process, that is, zt = �(B)(ωI I

(T )
t + at ),

where ωI is the outlier size. IOs are expected to
produce small effects on the sample autocorrelation
function and the parameter estimates.

A third important type of outlier in time series
is a level shift, that is, a modification of the local
mean or level of the process starting at time T and
continuing afterward. The model for the observed
series is zt = ωLS

(T )
t + �(B)at , where S

(T )
t = 0 for

t < T , S
(T )
t = 1 for t ≥ T (a step function), and ωL

is the magnitude of the shift. In SPC, level shifts
are monitored using CUmulative SUM (CUSUM),
exponentially weighted moving average (EWMA),
or CUSCORE charts (see Exponentially Weighted
Moving Average (EWMA) Control Chart; Cumu-
lative Sum (CUSUM) Chart).

Several procedures for outlier detection have been
proposed [28–33] after the seminal work of Chang
et al. [34]; see [9] for a revision of some of these
procedures.

Model Strengths and Weaknesses

Some strengths of ARIMA models are (a) they
provide a very flexible family of models, which is
closed to model addition; (b) the properties of the
model are well understood and simple to use; (c)

their short-term forecasts are difficult to beat with
more complex models; and (d) they can be easily
generalized (e.g., they can generate time irreversible
series using nonnormal noise).

Some weaknesses of ARIMA models are (a) they
provide little help for long term forecasting; (b) expo-
nential smoothing is easier to use and can often
provide convenient approximations to reality and
forecasts nearly as good as those of full fitted ARIMA
approximations; and (c) the framework of ARIMA
models may be inconvenient to handle (e.g., most
models are not invariant to changes in the sam-
pling interval, which is important for process control;
or to temporal aggregation, which is important in
economy).

Related Topics

ARIMA models can be generalized to incorporate
long memory (ARIMA with fractional differenc-
ing or auto-regressive fractionally integrated moving
average (ARFIMA) models [35, 36]); conditional
heteroscedasticity (generalized auto-regressive con-
ditional heteroscedasticity (GARCH) models [37]);
nonlinearity (e.g., threshold AR models [38, 39]);
and information from related simultaneous series
(vector ARMA, ARIMA and cointegrated models
[8, 40–44]).

The analysis of time series presented here is
called time-domain analysis. Time series can also
be analyzed using the frequency-domain approach
in which Fourier transforms of the series and its
autocovariance function are used. Bayesian models
can also be used.

An important alternative to ARIMA models are
the so-called state space or structural dynamic models
[45–48]. In these models, the time series {yt } is rep-
resented as a linear function yt = h′

tαt + at of some
unknown state parameters αt , which are assumed to
follow the equation αt = Atαt−1 + ut , with appropri-
ate noise series {at } and {ut}. The estimation and
forecasting of these models are based on the Kalman
filter algorithm [45, 46, 49].

Appendix 1: Evaluation of Some Useful
Covariances

The autocovariance function γk := cov(yt , yt+k)

may be computed efficiently using the formula
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∑p

i=0 φiγ|i−j | = ∑q

i=0 θiγay(j − i), where φ0 = θ0 =
−1 and γay(−k) := cov(at , yt+k) = ψkσ

2 for k ≥ 0.
For j = 0, . . . , p, the formula provides a linear
system having solution γ0, . . . , γp; for j > p, it can
be used recursively. The covariances γay(−k) are
null for k < 0 and satisfy the recursion γay(−k) =
−θkσ

2 + ∑p

i=1 φiγay(−k + i) for k ≥ 0.

Appendix 2: Covariance Matrix
of Working Series W

The covariance matrix � of the working series
W′ = (w1, . . . , wn) defined in the section titled
“Forecasting Time Series” and used in the section
titled “Model Estimation by Maximum Likelihood”
is a band matrix having bandwidth max(p − 1, q)

in their p first rows and q thereafter, because
wt = yt for t = 1, . . . , p and wt = θq(B)at for
t = p + 1, . . . , n. Their elements are �ij = γ|i−j |
for i, j = 1, . . . , p; �ij = �ji = −∑q

k=1 θkγay(j −
i − k) for i = 1, . . . , p and j = p + 1, . . . , n,
where γay is given in Appendix 1; and �ij =
σ 2 ∑q

k=|j−i| θkθk−|j−i| for i, j = p + 1, . . . , n, where
θ0 = −1.
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ALBERTO LUCEÑO AND DANIEL PEÑA


