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In this article, we suggest dimensionless descriptive measures of multivariate
variability and dependence which can be used in comparisons of random vectors
of different dimensions. Our work generalizes the measures of scatter and linear
dependence proposed by Peña and Rodríguez (2003). The measure of variability we
introduce is the rth root of the (transformed) entropy and the measure of dependence
is based on the mutual information between the components of an r-dimensional
random vector, capturing general stochastic dependence instead of merely linear
dependence. We further investigate decompositions of the measure of variability into
a measure of scale and a measure of stochastic dependence. The decomposition
resulting from independent components provides a representation of variability
by the scale of independent components and thus generalizes the explanation of
covariance by principal components in classical multivariate analysis. We illustrate
our ideas for examples of non Gaussian random vectors.
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1. Introduction

The measures of variability and linear dependence that are most often used for
multivariate distributions are scalar functions of the covariance and the correlation
matrices, as the trace or the determinant. A limitation of these scalar measures is
that they cannot be used to compare random variables with different dimensions.
For instance, if we have a set of r measurements from a process A and a set
of q measurements from another process B we cannot rely on these measures
to tell which of the two processes are more variable or more highly dependent
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among their variables. Recently, Peña and Rodríguez (2003) tried to overcome this
limitation introducing the Effective Variance and the Effective Linear Dependence
as two descriptive measures for multivariate variables both based on the covariance
matrix, and they illustrated their use in comparisons of random vectors of
different dimensions. These measures are of course not applicable to multivariate
distributions for which the covariance matrix or correlation coefficients do not exist
and they are restricted to describe linear relationships.

More generally, the entropy and the mutual information have been suggested
to capture variability and stochastic dependence of a random vector X. Entropies
as measures of variability have been investigated for some multivariate distributions
like the Gaussian, the Student-t, the Poisson, the logistic, or the Weibull distribution
(Darbellay and Vajda, 2000; Guerrero-Cusumano, 1996a,b, 1998). The mutual
information I�X� = H�X̃�−H�X� measures the difference between the entropy H�X�
of the joint density of the component variables Xi of X and the entropy H�X̃�
of the product of marginal densities of Xi’s corresponding to a random vector
X̃, and it has been proposed as a measure of dependence (Joe, 1989a; Kapur
and Dhande, 1986). In this article we extend the ideas inherent in the Effective
Variance and the Effective Linear Dependence: we identify these measures as special
Gaussian cases of information theoretic measures, Effective Variability and Effective
Dependence, which we propose as more general descriptive measures for continuous
multivariate distributions. Unlike previous proposals they allow for the comparison
of distributions in different dimensions. We introduce these measures as theoretical
measures which in practice need to be estimated.

In recent years, a generalization of Principal Component Analysis (PCA),
Independent Component Analysis (ICA), has been developed (Hyvärinen et al.,
2001; Roberts and Everson, 2001). In its simplest version for a ‘whitened’ random
vector X a transformation S = AX is sought such that I�S� is minimized. Thus
the components given in S are required to be as independent as possible, not
only uncorrelated. We point out that (scaled) independent components describe
the ‘volume’ of the distribution of X� and in this sense ‘explain’ the (Effective)
variability of X like an ellipsoid of concentration ‘explains’ the volume of a
multivariate Gaussian distribution.

Following this outline we first introduce the Effective Variability in Sec. 2
and we describe some of its properties. In Sec. 3 we propose a general measure
of stochastic dependence, the Effective Dependence, which is a transformation of
the mutual information I�X�. In Sec. 4 we study the relation between variability
and dependence. We illustrate our approach with examples of non Gaussian
distributions in different dimensions in Sec. 5, and Sec. 6 concludes with a brief
discussion.

2. Variability of a Random Vector

2.1. Basic Definitions

Let X = �X1� � � � � Xr�
T be an r-dimensional continuous random vector with E�X� =

�X , cov�X� = �X and density p. Let the spectral decomposition of �X be given by
�X = P	XP

T � where 	X is the diagonal matrix of eigenvalues, 
i� of �X , and P
is the orthogonal matrix of standardized eigenvectors. Let ��X� =

∏r
i=1 
i be the

generalized variance of X� With var�Xi� = �2
i define D�2 to be the diagonal matrix
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with entries �2
i � The correlation matrix RX of X is obtained as RX = D−1

� �XD
−1
� ,

where D�2 = D�D�� Consider further the r component variables with marginal
densities pi� and set p̃�x� = ∏r

i=1 pi�xi�� The random vector with density p̃ is denoted
by X̃, and E�X̃� = �X , cov�X̃� = D�2 . The entropy of X is H�X� = −EX ln�p�x�� and
with H denoting entropy in general, H�X̃� = ∑r

i=1 H�Xi�.
An analogous notation with different subscripts will be used for other random

variables.

2.2. Effective Variability

Definition 2.1. It is easy to see that if we compare the generalized variance of X
to the generalized variance of Y = �X1� � � � � Xr� Xr+1�

T � the latter one can be made
arbitrarily larger or smaller than the first one choosing the units of Xr+1� But if
we measure all the variables in the same units the generalized variance cannot
increase when introducing new variables. Avoiding this problem in comparison
across dimensions, Peña and Rodríguez (2003) suggested to describe the average
scatter in any direction by the Effective Variance, the rth root of the determinant
of the covariance matrix, that is

Ve�X� �= ��X�1/r �

We propose to generalize this notion by defining the Effective Variability as the rth
root of a calibrated transformation of the entropy of X,

ve�X� �=
(
exp�2H�X�− 2H�Nr��

)1/r
� (1)

where Nr denotes a standard multivariate r-dimensional Gaussian vector, Nr ∼
N�0� Ir�� Hence

ve�X� =
exp�2H�X�/r�

2
e
� (2)

The calibration is motivated by the relation of entropy to covariance for Gaussian
distributions: for X ∼ N��X��X��H�X� = 0�5 ln��2
e�r ��X�� and hence, ve�X� =
��X�1/r = Ve�X��

It is interesting to note that if X is univariate, r = 1, ve�X� reduces to the
‘entropy power’ introduced by Shannon (1948), which is equal to the variance of
a Gaussian distribution with the same entropy as X. Similarly, in the multivariate
case ve�X� is equal to the rth root of the determinant of the covariance matrix of
a Gaussian vector with the same entropy as X. For independent components Xi of
X� ve�X� thus can be interpreted as an average entropy power of the Xi.

For a random vector X, the entropy H�X� characterizes the volume of a “typical
set”. A typical set A�n�

� for X is defined as a set of sequences of length n of
independent values x�j� of X with empirical entropies close (within �� to the true
entropies (Cover and Thomas, 1991, Ch. 8.6, 9.2). For n sufficiently large it can be
shown that P�A�n�

� � ≥ 1− � and

�1− �� exp�nH�X�− �� ≤ vol
(
A�n�

�

) ≤ exp�nH�X�+ ���
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In terms of an r-dimensional rectangle to describe the range of variability for any
single point (element of the sequence), the volume of that rectangle (not that of the
typical set) is approximately exp�H�X�� with an average side length given by

�exp�H�X���1/r = �2
eve�X��
1/2� (3)

This relation can be used to visualize the Effective Variability and the Effective
Variance graphically as squares or cubes centered at E�X� with side lengths
�exp�H�X���1/r and �2
eVe�X��

1/2, respectively.

Properties. The Effective Variability has the following properties:

(a) If Y = BX� where B is an orthogonal matrix, then ve�Y� = ve�X�.
(b) If Y = BX +m� where B is a non singular diagonal matrix with entries bii and

m is a vector, then ve�Y� = ve�X��
∏r

i=1 b
2
ii�

1/r .
(Both properties immediately follow from the transformation theorem for
entropies. For a one-to-one affine transformation Y = BX +m one has H�Y� =
H�X�+ ln��B�+�� where �B�+ denotes the absolute value of the determinant of B.)

(c) ve�X� ≥ 0� and ve�X� → 0 if H�X� → −�.
(d) Let ZT = �XT � Y T � of dimension r + q� where X and Y are random vectors of

dimensions r and q, respectively. We have the relation

ve�Z� ≥ ve�X� ⇔ ve�Y �X� ≥ ve�X�� (4)

where ve�Y �X� is based on the conditional entropy H�Y �X� = EX�H�Y � x�� and
H�Y � x� is defined using the conditional density p�y � x� of Y given x� Hence,
if the conditional Effective Variability of Y exceeds that of X, the Effective
Variability of Z does so as well. This property allows for the comparison of
random variables in different dimension. If we measure variability using the
Effective Variability we will have that by including new variables the variability
will increase if the variability of these new variables given the previous ones is
larger than the variability of the original variables.

3. Measures of Dependence

The determinant of the correlation matrix has been suggested as a global measure
of linear dependence. This measure is the ratio of the generalized variances of X
and X̃� where the components of X̃ have the same variances as those of X but are
uncorrelated. This measure captures only linear dependence among the variables Xi

and uncorrelatedness implies independence if the variables are jointly Gaussian. We
show that a transformation of mutual information, which is a simple modification
of the one introduced by Joe (1989a), yields a measure describing general stochastic
dependence and can be used in comparing the strength of dependence of random
variables in different dimensions.

3.1. Basic Definitions

The mutual information for X is given by

I�X� �= H�X̃�−H�X�� (5)
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I�X� measures the discrepancy between the joint density capturing dependence and
the product of marginal densities representing independence, and hence it is a
natural measure of dependence between the components (Joe, 1989a; Kapur and
Dhande, 1986).

In order to have a measure in the range �0� 1� the standardizing transformation

RI�X� = �1− exp�−2I�X���1/2 (6)

was introduced (Joe, 1989a; Guerrero-Cusumano, 1998). It is motivated by a
bivariate Gaussian distribution with coefficient of correlation �, where I�X� =
−�1/2� ln��RX�� yields RI�X� = ��

3.2. Effective Dependence

The transformation (6) is not useful for the comparison of random vectors of
different dimensions: for instance, if X = �X1� � � � � Xr�

T and Y = �X1� � � � � Xr� Xr+1�
T

we always have �RY � ≤ �RX� and thus RI�Y� ≥ RI�X�. To overcome this problem we
propose a transformation of I�X� different from RI�X� in (6).

Definition 3.1. Let

de�X� = 1− exp�−2I�X�/r� (7)

be the Effective Dependence among the components Xi of X�

For multivariate normal variables de�X� = 1− �RX�1/r � which is the measure of
Effective Linear Dependence proposed by Peña and Rodríguez (2003). In particular,
if X is bivariate Gaussian, de�X� = 1−√

1− �2.

Interpretations. Applying the chain rule for I�X�, the Effective Dependence can be
interpreted as average measure of dependence between components Xi and X1� � � � � Xi−1�

de�X� = 1− exp
[
− 2

r∑
i=1

I�Xi �X1� � � � � Xi−1�/r

]
� (8)

where I�Xi �X1� � � � � Xi− 1�=H�Xi�−H�Xi �X1� � � � � Xi− 1� and H�Xi �X1� � � � � Xi− 1� =
−EX1�����Xi

�ln�p�xi � x1� � � � � xi−1���� Equation (8) is valid for all orderings of Xi and
hence also for the average over all permutations. The interpretation of the Effective
Linear Dependence as average proportion of explained variability among the
component variables is thus generalized to arbitrary continuous distributions. For
Gaussian distributions, similar relations are elaborated by Darbellay (1998). Theil
and Chung (1988) explore the idea of averaging over permutations for multiple
correlation coefficients.

Considering ZT = �XT � Y T �, the Effective Dependence is an average of the
internal dependence and the cross-dependence. We have

de�Z� = 1− (
exp�−2I�Z��

)1/�r+q�

= 1− (
exp�−2I�Y�� exp�−2I�X�� exp�−2I�X� Y��

)1/�r+q�
(9)

where I�X� Y� denotes the mutual information between X and Y .
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Properties. The Effective Dependence is a standardization of the Effective
Variability.

de�X� = 1− (
exp�2H�X�/r − 2H�X̃�/r�

)
= 1− ve�X�/ve�X̃�� (10)

and the properties discussed for the Effective Variability may be extended to the
Effective Dependence.

4. Link Between Variability and Dependence: Scale

We re-consider (5) now arranged as

H�X� = H�X̃�− I�X�� (11)

and we may interpret the terms in this equation as a decomposition of variability
into scale and dependence in turn. As H�X� is invariant under orthogonal
transformations, for Y = BX� say,

H�X� = H�Y� = H�Ỹ �− I�Y� (12)

as well, and “variability” can be decomposed into “scale” and “dependence” in
different proportions. An extreme case is obtained if the components of Y are
independent, H�Y� = ∑r

i=1 H�Yi� and I�Y� = 0� If X is multivariate Gaussian, using
the spectral decomposition �X = P	XP

T underlying Principal Component Analysis
(PCA), we obtain

1
2
ln���X�� =

1
2
ln��D�2 ��+

1
2
ln��RX��

= 1
2
ln��	X��� (13)

For non Gaussian variables, PCA has been generalized to Independent
Component Analysis (ICA) (Hyvärinen et al., 2001; Roberts and Everson, 2001),
where (in the simplest approach) a linear transformation is sought such that the
resulting components, S� are minimally dependent. Typically, X is “pre-whitened”,
that is, S is determined as S=AW� whereW =	

−1/2
X PT �X−E�X��=	

−1/2
X �T −E�T��,

T comprises the principal components of X� and A is orthogonal. Then the entropy of
a multivariate variable is equal to the entropy of its principal components but these
are not Gaussian and not independent. The components of S = AW are minimally
dependent but not necessarily independent and thus do not in general coincide with
S̃� the vector corresponding to the product of marginal densities. With

H�X� = H�T� = ln
(�	1/2

X �)+H�W� = ln
(�	X�1/2

)+H�S�

we also have

H�X� = H
(
	

1/2
X S

) = H
(
	

1/2
X S̃

)− I�S�� (14)
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and the variability of X�H�X�� is essentially explained in terms of scale �H�	
1/2
X S̃��

analogously to PCA in the case of a Gaussian vector X�
Using the transformation yielding ve�X� we can re-write (11) as

ve�X� = ve�X̃��1− de�X��� (15)

where the Effective Dependence acts as a shrinkage factor on scale. Note that (15)
is equivalent to (10).

5. Examples

5.1. Example 1: t-Distribution

Guerrero-Cusumano (1996b, 1998) analyzed standardized returns in local currencies
to illustrate the use of entropy as measure of variability and of mutual information
as measure of dependence. Daily or weekly returns, called “securities” in portfolio
theory, can reasonably assumed to be t-distributed. The risk of a portfolio
(a linear combination of securities) depends on the variability of the securities.
Weakly depending securities are preferred because they offer a potential for risk
minimization. For four international indices, the American S & P 500 index (S&P),
the Japanese Nikkei Average, the British Financial Times index (FT), and the
German DAX index (DAX), six pairs of indices were compared in terms of entropy
(Guerrero-Cusumano, 1998) and four trivariate combinations were compared in
terms of mutual information (Guerrero-Cusumano, 1996b), each comparison being
based on a different data set. We extend the analysis to illustrate comparisons of
combinations of securities across dimensions.

Consider a three-dimensional standardized t-distribution of X = �X1� X2� X3�
T

where X1 = S&P�X2 = DAX, and X3 = FT� with estimated parameters X ∼
St�0� D� 7�92��D = ��dij��� dii = 0�747� d12 = 0�343� d13 = 0�243, and d23 = 0�386�
The correlation coefficient between pairs, �, the Effective Variability and the
Effective Dependence attain values listed in the table below. (Our values differ from
the corresponding values for mutual information given in Guerrero-Cusumano,
1996b. The difference reflects the difference between the table for a constant c��� r�
in Guerrero-Cusumano, 1996b, which we used and the table for another constant
cI�a� r� in Guerrero-Cusumano, 1996a which we believe not to be correct.)

Measure\variables i ∈ �1� 2� 3� �1� 3� �1� 2� �2� 3� �1� 2� 3�

� 0�325 0�459 0�517
de 0�061 0�118 0�150 0�180
ve 0�966 0�908 0�853 0�820 0�791

�

The order of pairs of variables according to the strength of dependence is the
same by � and de although this latter measure shows larger differences in the
dependence among pairs: an increase of 245.9% from (1,3) to (2,3) whereas this
increase in correlation is only 159%. Note that the subset �X2� X3� = �DAX� FT�
has the measure of Effective Dependence closest to that of X. Hence, a portfolio
composed of DAX and FT might perform similarly to that including also S&P.
As the variables are standardized all of them singly have the same value for ve.
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Hence the scale term is constant and variability increases as dependence decreases.
Therefore, there is no optimal pair of securities exhibiting minimum variability and
dependence simultaneously.

5.2. Example 2: Lognormal Distribution

Consider a stochastic volatility model

Zt = �tUt� Ut ∼
iid

N�0� 1��

where �t and Ut are independent processes and the conditional variances of Zt are
the volatilities �2

t � We assume the simplest case where Yt = ln��2
t � follows an AR(1)-

structure with mean m and autoregression coefficient �,

Yt −m = ��Yt−1 −m�+ �t� �t ∼
iid

N�0� �2��

Stochastic volatility models are used in financial statistics to model time series of
returns as an alternative to Garch models. For example, application to a data set
of 1,512 daily S&P100 index returns, which was analyzed in the economic literature
several times (see Berg et al., 2004 as a recent reference), resulted in parameter
estimates m̂ = −9�97� �̂ = 0�98� and �̂ = 0�167 (based on a Bayesian analysis of a
hierarchical model). The volatilities �2

t describe the financial risk at the market and
are therefore of special interest. Under the (alternative non Bayesian) assumption of
joint Normality of the vectors Y�t� = �Yt� � � � � Yt+r �

T commonly applied in maximum
likelihood estimation, the volatilities form a log-normal stochastic process. We use
the measure of scale ve��̃

2
�t�� to describe the average daily financial risk based on r

returns. Thus, we refer to the entropy power of the volatilities instead of the variance
focusing on highly probable volatilities rather than rare (but potentially disastrous
extreme) variances of returns. Obviously the choice of the measure depends on one’s
attitude towards risk aversion.

Assuming Y�t� ∼ N�m1r � �
�r�
Y � with entries ��r�

Y �i� j� = �2��i−j�/�1− �2�, we get for
the log-volatilities Yt

Ve�Y�t�� =
�2

�1− �2�1/r
= �2

�1− �2�

�1− �2�

�1− �2�1/r
= Ve

(
Ỹ�t�

)(
1−De

(
Y�t�

))
� (16)

For the volatility process �2
t with log-normal vectors �2

�t� = ��2
t � � � � � �

2
t+r �

T we have
H��2

�t�� = H�Y�t��+ rm yielding

ve�̃�
2
�t�� = Ve

(
Ỹ�t�

)
exp�2m��

As Ve�Ỹ�t�� = �2/�1− �2� is constant (in r), ve��̃
2
�t�� is also constant depending on

the parameters only. Thus weekly or monthly averages of entropy power of daily
volatilities �2

t attain the same value. Using the parameter values given above
we obtain v̂e��̃

2
�t�� = 0�7 exp�2 ∗ 19�94�� In contrast, the estimated average variance

V̂e��̃
2
�t�� = 2�042 exp�2 ∗ 19�94� is three times higher.
Furthermore, we point out that unlike the Effective Linear Dependence the

Effective Dependence de���t�� = De�Y�t�� fully captures the structure of dependence
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of the log-normal process of volatilities induced by (linear) autoregression.
In particular, with � < 1 as in the numerical example the log-volatilities form a
stationary time series, where �1− �2�1/r ↑ 1 for r → �� Hence, De�Y�t�� is increasing
with r� for r → � approaching �2, an average level of dependence among
components� Thus while on a bivariate level cov�Yi� Yr� < cov�Yi� Yj� for i� j < r�
the overall measure of linear dependence De�Y�t�� captures the accumulation of
dependence inherent in the autoregressive structure.

The example also indicates how dimensionless measures might be used to
describe and investigate time series by comparisons of sub-intervals over time.

6. Discussion

Entropy and variance are well known to be different concepts to describe the
variability of a probability distribution. Although formally the Effective Variability
generalizes the Effective Variance (as a special Gaussian case of Effective Variability),
the entropy measuring the volume of a typical set captures the concentration of
probability mass, whereas the variance reflects the actual spread or range of attainable
values. Being aware of the difference we do not claim that the Effective Variability is
always superior to the Effective Variance. We rather point to the interaction between
variability and dependence as formalized in (10) and (15). The Effective Dependence
which certainly is more useful than the Effective Linear Dependence is inevitably
linked to Effective Variability. For this reason, Independent Components used to
explain variablity described in terms of entropy are focused on the prediction of likely
observations which may explain their successful applications. Our examples illustrate
the potential as well as the limitation of Effective Variability and clearly demonstrate
the advantage of the Effective Dependence over the Effective Linear Dependence.

We illustrated our ideas with multivariate continuous distributions for which
H�X� and I�X� are known in closed form. In order to use the quantities we propose
as descriptive measures given a data set, estimates of H�X� and I�X� are needed.
In our examples we obtained such estimates plugging in parameter estimates. More
generally, estimating entropy without any distributional assumption is a topic of its
own, and particularly in the context of ICA a vast literature has become available.
Here we only point to Vasicek (1976), Joe (1989b), Beirlant et al. (1997), Darbellay
(1999), Darbellay and Vajda (1999) and the books on ICA mentioned before.
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