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Detecting defects with image data
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Abstract

Quality control using continuous monitoring from images is emerging as an active research area. These applications require
adaptive statistical techniques in order to detect and isolate process abnormalities. A novel approach is introduced for monitoring
schemes in the setting of image data when the quality is associated with uniform pixel gray-scales. The proposed approach requires
the definition of a statistic which takes into account both the spatial dependency and the changes in local variability. An application
on paper surface demonstrates how the monitoring scheme performs in practical applications.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In many industrial applications process monitoring by image analysis is emerging as a useful tool in quality control.
For inspection of defects in material surfaces one of the most important properties is texture. Detecting a class of defects
in a monochrome image is similar to separating certain objects of interest from the background.Work in this area includes
a wide range of Bayesian restoration methods (Geman and Geman, 1984; Bendoudjema and Pieczynski, 2005). These
methods produce satisfactory results for high-level problems such as object recognition but they generally fail to capture
small objects of interest (defects). Other approaches to texture defect detection are oriented toward applying different
filters to the textured images (Heiler and Schnörr, 2005; Mandriota et al., 2004a, b). These methods have in common the
choice of particular attributes (features) for the filter response (i.e. the filter applied to the image) which are considered
the most important for characterizing texture. For our purpose, the extracted features are critical in identifying the
presence of a particular defect, and they may be very sensitive to the size of the defect. Another useful approximation
is kriging (Conradsen and Nilsson, 1987), where the prediction error at every pixel is used to detect irregularities in
the image. However, this method is not easy to apply in defining a general quality control scheme for the production
process, which is our main interest. Other texture analysis methods include the use of texture features derived from the
image (Conradsen and Nielsen, 1987; Liu and Jernigan, 1990; Ersboll and Conradsen, 1992; Siew and Hodgson, 1988;
Epifanio and Ayala, 2002; Mandriota et al., 2004a, b). However, while these methods are useful in many applications
they are less suitable for the detection of local variations associated with small defects.
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Fig. 1. Textured paper surface with a class of defect.

Fig. 2. Textured paper surface.

Consider, for instance, the monitoring of paper surface production. Figs. 1 and 2 show images extracted from a long
strip of paper surface during the production process. In Fig. 1 the two images show a defect, whereas in Fig. 2 both
images correspond to non-defective surfaces. These figures also show that the intensity levels among images can be
different due to external factors in the digitalization process. Under such conditions, histogram gray-level processing
techniques (Guo and Pandit, 1998; Sahoo et al., 1988) may fail to provide vital information about clusters in the
histogram corresponding to certain objects of interest. Fig. 3 shows the histograms of gray values in Figs. 1 and 2.
The four images have a similar unimodal histogram and consequently, traditional control charts based on the mean and
standard deviation of the histogram data (Luceño and Box, 1997) are unable to detect defects such as those shown in
the two images in Fig. 1.

Traditional texture analysis methods are more concerned with the problem of extracting textural features than with
the problem of detecting local variations associated with a class of small defects. In these cases, the contribution of the
defect to any statistic computed using all the pixels in the image is expected to be small, and, therefore, statistics based
on the whole image are not expected to be powerful. An alternative way that overcomes this problem is dividing the
image into blocks and defining some numerical descriptor of the spatial dependencies between the pixels inside each
block. This block statistic should be able to discriminate between blocks which contain defects, that will be called defect
blocks, and blocks which do not contain defects, or regular blocks. This work proposes a statistic defined as a ratio of
the maximum and average variability within each block, which has been found to be useful in practical applications.

The rest of this paper is organized as follows. Section 2 describes briefly the notation for the blocks in the image and
presents the proposed statistic for defect detection in textured surfaces. Section 3 illustrates its performance in a sample
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Fig. 3. Histogram for the paper surfaces of Fig. 1 (top panels) and Fig. 2 (bottom panels).

of paper surface images during the production of a long strip of paper surface. Section 4 contains some concluding
remarks.

2. Quantifying spatial dependencies

Data collected from a two-dimensional space, such as image data, usually have spatial dependency. For image data,
the sample points correspond to pixel values taken from a discrete two-dimensional space regularly distributed (lattice
data). When analyzing homogeneous texture, such as paper surface, the local spatial variation of the pixels by rows
and columns must be uniform. To illustrate this, Fig. 4 shows a subset of pixels in a row of a regular block and Fig. 5
in a defect block. In Fig. 5 the gray-level of some elements of the row (15, 16 and 17) is not similar to its neighbors.
This departure from uniformity implies that the local variation of these subsets of pixels is greater than the ones from
Fig. 4. For instance, the standard deviation of the pixels in these rows is 0.07 in Fig. 4 and 0.26 in Fig. 5. The same
difference is found when considering the columns of the block. This result suggests that the relative variances by rows
and columns could be used as a measure of the local spatial variability in the block.

Suppose that we divide each image Xn, from the sample X1, . . . , XN of digitized images from the production process,
into a set of K non-overlapping m1 × m2 pixel blocks, where m1 and m2 are integers. For the sake of simplicity we
consider m1 =m2 =m. If m is not an exact divisor of the number of rows (columns) in the image, the last row (column)
of blocks in Xn is obtained using some of the previous rows (columns) of pixels in order to construct m × m blocks.
The overlap between these last blocks is assumed to be insignificant. The value m is chosen so that m = cD, where D
is the maximum width (or height) of the defect and c > 1. Our experience suggests choosing c in 2 < c < 4.

2.1. Measuring the local spatial variability

Suppose we compute within a block the variances of the pixel intensities by rows

s2
ri(k) = (m − 1)−1

m∑
j=1

(x
(k)
ij − x

(k)
i. )2, (1)



6398 M. Benito, D. Peña / Computational Statistics & Data Analysis 51 (2007) 6395–6403

Fig. 4. Row of pixels in a homogeneous texture.

Fig. 5. Row of pixels that shows a defect in columns 15–17.
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Fig. 6. Function of variances by rows (dash-dot) and variances by columns (solid).
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Fig. 7. Function of variances by rows (dash-dot) and variances by columns (solid) in two blocks which contain one defect. Each panel corresponds
to a block in two different images.

where x
(k)
i. = m−1∑m

j=1 x
(k)
ij is the mean of the pixels in the ith row in the kth block, i = 1, . . . , m. Let S2

r (k) =
(s2

r1(k), . . . , s2
rm(k)) be the vector of variances of the rows in the kth block. We can consider S2

r (k) as a function
of k and compare these functions for different blocks. In the same way we can compute the variances by columns,
s2
cj (k), j = 1, . . . , m, and the function S2

c (k) of the variance of the columns. A homogeneous texture provides variance

functions, S2
r (k) and S2

c (k), with values similar to each other, and Fig. 6 shows these functions for a regular block with
no defects. However, when the block contains a defect, the variance functions will be expected to be different, as shown
in Fig. 7.

Note that when the block has a defect these functions will have a clear maximum, which corresponds roughly to the
center of the defect. The relative size of the maximum of the function depends on its average level, which is defined by
the variances for rows or columns of the regular block. For instance, in the top panel of Fig. 7 the maximum variance
is larger than 0.1 and the average variance is about 0.05. On the other hand, in the bottom panel in this figure, the
maximum is smaller, but the average variance is also smaller. Thus we propose to measure the size of the maximum
with respect to the average level of variability. In order to have a robust measure of this average level we use the median
of the variances. This leads to the following summary statistic of the heterogeneity in the variability for rows:

max(S2
r (k))

med(S2
r (k))

= v2
r (k)

s2
r (k)

,
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where v2
r (k) is the maximum and s2

r (k) the median of (s2
r1(k), . . . , s2

rm(k)). A similar statistic, v2
c (k)/s2

c(k), can be
obtained for columns.

When a defect appears in several rows it will increase the variability of all of them. Thus we may have a more
powerful test procedure if we take this property into account. Suppose that in a given block the maximum variability
for rows occurs at row i∗. If the block has a defect we expect that this maximum corresponds to a row which includes
the defect. In addition, we expect that the neighboring rows, i∗ ± h, will also have a relatively large variability. On
the other hand, if the block is regular this maximum will happen by chance, and will not give information about the
relative variability of neighbor rows. We can take this possible dependency into account by considering not only the
variability at the maximum, but also the relative variability in the neighboring rows or columns.

Define the distance weight of the (i∗ + h)th row with respect to the maximum value in the i∗th row in the kth block
as w̃

(k)
h = 1/h if h �= 0 and w̃

(k)
0 = 2 if h = 0, where the subscript h indicates the distance between the rows. If we

standardize these values so that they add up to one across the rows we obtain the weights,

w
(k)
h = w̃

(k)
h

2(1 + ∑H
h=1 w̃

(k)
h )

, (2)

where H = [m/2]. Then we can compute the weighted relative variability of the rows in the kth block by

t (k)
r =

∑H
h=1 w

(k)
h s2

ri∗±h
(k)

s2
r (k)

. (3)

We can carry out the same analysis for the columns and obtain t
(k)
c . The value

t (k) = t (k)
r + t (k)

c (4)

describes the heterogeneity in the block. The heterogeneity in the image can be measured by

t = max
k=1,...,K

(t(k)
r + t (k)

c ). (5)

This statistic computes the maximum of a weighted average of relative variances and, as we show in the next section,
it can be useful in identifying heterogeneity in many applications. Note that when a defect image is found, because the
statistic (5) is larger than a given threshold, the block with maximum variability will be expected to include the defect,
or the largest part of it, and the coordinates (i∗, j∗) of the rows and columns of maximum variability in this block will
provide an estimate of the position of the center of the defect.

In some applications, such as the one we will analyze next, we know in advance that we are searching for dark
groups of pixels and so a white spot, caused by illumination effects, may be detected wrongly as a defect. This can be
avoided by checking that the pixel which defines the rows and columns of maximum variability corresponds to a dark
spot, instead of a white spot.

2.2. Sampling distribution of the statistic to monitor

We will estimate the sampling distribution of t using the bootstrap. The procedure is non-parametric, and its validity
does not rely on special assumptions such as normality. The only assumption we need is that the data are independently
and randomly chosen from some population with unknown distribution.

Let Y1, Y2, . . . , YM be a sample of M homogeneous texture images. By splitting each image into K blocks we obtain
a sample of L = MK independent regular blocks. Given a parameter that is defined as a function � = T (X) of the
values in the population of homogeneous textured blocks (regular blocks) and a statistic that is the same function of the
observations, t =T (Y ), the bootstrap estimates the sampling distribution Ft(X) of the statistic of interest by resampling
(Efron and Tibshirani, 1993). The resampling is done many times, B. Each time b, b = 1, . . . , B, a random sample of
K blocks is chosen with replacement from the set of L blocks. The statistic (5) is evaluated at each bootstrap sample,
giving a set of bootstrap values t∗b , b = 1, . . . , B. A bootstrap sample is indicated by ∗. The empirical distribution of
these bootstrap values F̂t (X) estimates the theoretical sampling distribution Ft(X). Bootstrap confidence intervals can
be computed by using the �/2 and 1 − �/2 quantiles of F̂t (X) as a (1 − �) level confidence interval for the parameter.
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Fig. 8. Bootstrap distribution of �.

As we are interested in one-sided confidence intervals, we use the (1−�) quantile as the critical value for the estimator.
One of the reviewers had suggested that a Chi-squared distribution might provide a good approximation to the null
distribution of the proposed statistic. This was investigated and found not to be the case. For this study, M = 50 images
are arbitrarily selected from the homogeneous texture paper surface. Using B = 1000, the statistic (5) is estimated for
each bootstrap sample, giving the set of values t∗b , for b = 1, . . . , B. The histogram of these values is plotted in Fig. 8.

3. Experimental results

In this section, we present the experimental results from a number of textured paper surfaces for evaluating the
validity of the proposed algorithm. The sample to monitor is composed of a set of N = 92 digitized images acquired
during the production process of a long paper surface. The images are 492 × 496 pixels and are all displayed as gray-
level images. It is known that the maximum surface of the defect is 20 × 20 pixels. We recommend that m be at least
three times the maximum width (or height) of the defect, and thus blocks of size 60 ×60 (m=60) have been chosen. A
99% confidence interval for � is estimated with B = 1000 bootstrap samples, and the endpoint is used as the threshold
�c of product acceptability. In this experiment, we obtain the value �c = 3.7. We have chosen a significance level of
� = 0.01 to avoid detecting wrongly defects in homogeneous textured images.

The quality control scheme is implemented as follows. Let t (1), t (2), . . . , t (K), be the values of the statistic (4) by
blocks in an image X. Assume that these statistics are ordered, so that t (1) � t (2) � · · · � t (K). Then if t (1) is smaller than
the critical value �c = 3.7, we conclude that there are no defects in the image. Otherwise we assume that the image has
at least a defect. As in a given image we may have more than one defect, we test for an additional defect by comparing
the next largest value t (2) with �c. If a new defect is detected in another block, then continue this process until some t (k)

is lower than the estimated critical value, and we conclude that there are no more defects in X. It may happen that the
image has only one defect but it is located between two consecutive blocks. Then we expect that the two highest values
of the statistic, t (1) and t (2), should be greater than �c. Moreover, the corresponding blocks must be located together.

In order to check the efficiency of the algorithm we compute the size and the power of the test. For this task,
two different sets of images were used. The first one, composed of 50 non-defective images, was used to compute
the empirical size. The second one, composed of 92 defective images, was used to compute the power. We report in
Table 1 the results obtained in the experiment when varying the size of m. Note that best results were obtained when
m = 60.

As an illustration we show in Figs. 9–11 the defect detection procedure in four defective images choosing m = 60.
In Fig. 9 the defect can be seen clearly. In the middle panel the values of the statistic t (k) are plotted for the 64 blocks,
and the circle point corresponds to the maximum value, t (1), which occurs in the 29th block. The horizontal line is
the threshold �c = 3.7. The bottom panel shows the function of variances for the defective block, S2

r (29) and S2
c (29).

From this graph we can observe that the spatial location of the spot is around the 30th row and 40th column. Fig. 10
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Table 1
Results of the quality control monitoring when varying the size of the window m

N 50

m = 40 m = 60 m = 80 m = 100

Homogeneous surface
Images detected as defectives 0 0 0 0
Percentage of defectives (%) 0 0 0 0

N 92
m = 40 m = 60 m = 80 m = 100

Surface with a class of defect
Images detected as defectives 57 89 78 72
Percentage of defectives (%) 61.9 96.7 84.8 78.3
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Fig. 9. Quality control monitoring for an image with a defect.

shows an image where the defect is difficult to detect at first sight although the algorithm is able to do it successfully. In
Fig. 11 we show an example where the defect appears between two blocks. The two panels in the top of Fig. 11 show
the blocks 36 and 44 as defect blocks. In the middle panel the values of the statistic t (k) are plotted and the circle points
correspond to these defect blocks. The 36th block has the defect at the end of the last row, hence the last components
of S2

r (36) should be high, as well as those of S2
c (36). This is observed in the lower left panel of Fig. 11. Block 44 has

the defect in the first row, so that the first elements of S2
r (44) have high variances, as well as those at the end of S2

c (44)

(see the right side of the figure). The images wrongly detected as non-defective have in common the small size of the
defect.
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Fig. 10. Quality control monitoring for an image with a defect.
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Fig. 11. Quality control monitoring for an image when the defect is between two blocks.
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4. Conclusions

In this paper we have introduced a procedure based on a new statistic for defect detection in textured surfaces.
This procedure can be used to develop a quality control system for automatically locating and identifying defects on
textured surfaces. The main idea of the proposed procedure is to divide the image into a set of non-overlapping blocks,
compute the relative variability in each block and use as a measure of the heterogeneity in the image the maximum
relative variability in the blocks. The relative variability is measured by comparing the maximum variability for rows or
columns to the average variability, estimated in a robust way.Also we make our statistic more powerful by making a local
smoothing to take into account spatial dependence. The sampling distribution of the statistic is obtained by bootstrap
and we have explored the use of parametric approximation, such as the Chi-squared, that, while not appropriate for
our data, can be useful in other applications. Based on experimental results, the proposed method performs reliably
for homogeneous textures such as paper surfaces. Further investigation may extend this technique to the inspection of
defects in any homogeneous texture, such as leather, wood, and other industrial products.
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