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It is common in parametric bo. ~tstrap to select the model from the data, 

and then treat  as if it were the tl ue model. Chatfield (1993, 1996) has shown 

that ignoring the model uncerte inty may seriously undermine the coverage 

accuracy of prediction intervals. In this paper, we propose a method based 

on moving block bootstrap for i atroducing the model selection step in the 

resampling algorithm. We presel t a Monte Carlo study comparing the finite 

sample properties of the propose i method with those of alternative methods 

in the case of prediction interva s. 

A M S  (2000):  62M10, 62F40. 

K e y  words :  sieve bootstrap, [ [ockwise bootstrap, prediction, time series, 

model uncertainty. 

1 I n t r o d u c t i o n  

When studying a time serie ~, one of the main goals is the estimation 

of forecast intervals based on ar observed sample path of the process. The 
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traditional approach to finding prediction intervals assumes that  the series 

{Xt}tez follows a linear finite dimensional model with a known errors distri- 

bution, e.g. a Gaussian autoregressive-moving average ARMA(p, q) model 

as in Box et al. (1994). In such a case, if the orders p and q are known, a 

maximum likelihood procedure could be employed for estimating the param- 

eters and then, plug in those estimates in the linear predictors. In addition, 

some bootstrap approaches have been proposed in order to avoid the use 

of a specified errors distribution, see e.g. Stine (1987) and Thombs and 

Sehucany (1990) for AR(p) models, Pascual et al. (2001) for ARMA(p, q) 

models, and Alonso et al. (2002) for linear processes that  admit a one-sided 

infinite-order moving average representation 

+oo 
X t  - # x  = ~ ~ j r  r = 1, t C Z, (1) 

j=0 

where {r }fez is a sequence of uncorrelated random variables with E [r = 0, 

E let 2] = a 2 and with at most a polynomial decay of the coefficients {~bj};__~. 

But, those bootstrap proposals assume that  p and q are known or, in the 

case of Alonso et al. (2002), it selects an approximating autoregressive model 

AR(ff) from the data, and then use the selected order, if, as if it were the 

true order. Then, those approaches ignore the variability involved in model 

selection, which can be a considerable part of the overall uncertainty (e.g. 

Chatfield 1993, 1996). In practice, having observed a sample of size n, the 

model, and particularly p and q are invariably unknown. Thus, we should 

select a model from the data. Many model selection procedures have been 

proposed, e.g. the final prediction error (FPE) of Akaike (1969), the Akaike 

(1973) information criterion (AIC) or its bias-corrected version (AICC) of 

Hurvich and Tsai (1989) and the Bayesian information criterion of Schwarz 

(1978), see Bhansali (1993) for a review. 

For finite autoregressive models, Masarotto (1990) and Grigoletto (1998), 

propose to take into account model uncertainty as follows: first, to obtain 
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by a consistent model select on procedure, then generate bootstrap re- 

samples from the estimated AI~ (~) and to re-estimate in each resample the 

order by the same method useq. for ~. Essentially the same algorithm was 

suggested by Kilian (1998) in he context of generating impulse response 

confidence intervals, the so cal] ~d endogenous lag order bootstrap. Alonso 

et al. (2004) proposes a sieve el .dogenous order bootstrap for processes that  

admit the moving average repre lentation (1). Also, Alonso et al. (2004) pro- 

poses a sieve exogenous order ,ootstrap based on the probability function 

for ~ calculated using the value~ of the objective function of the information 

criterions (AIC, AICC, or BIC:. 

In this paper we propose a new method for introducing the sampling 

variability of the model selectJ Jn procedure that  is less dependent on ~. 

This approach use an estimatc: of the distribution of ~ based on moving 

block bootstrap. As in the siev .~ exogenous order bootstrap, once we have 

an estimated distribution Fp, ve generate resamples from the estimated 

AR(p*) with the p* i.i.d, ffp, an J then we proceed as in standard bootstrap 

approaches. 

The remaining of this pape: is organized as follows. Section 2 presents 

the sieve exogenous order boot trap based on blockwise bootstrap. In this 

section, we briefly present the m )ving missing block bootstrap and jackknife. 

In Section 3, we present the re~ alts of a Monte Carlo study comparing the 

finite sample properties of the ?roposed method with those of alternative 

methods. 

2 T h e  sieve exogenous  orde  : b o o t s t r a p  based  on blockwise  
b o o t s t r a p  

2.1 Moving block resamplin9 or !er distribution. 

The moving block jackknife and bootstrap were introduced by Kiinsch 

(1989) and independently by Li I and Singh (1992). In the following, we use 
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the presentation of Liu and Singh (1992): Lets X1, X2,. . .  ,Xn be random 

variables with the common distribution function Fx, and let T be the pa- 

rameter of interest and Tn its estimator based on X = (X1,X2,... ,Xn). 

Let Bi denote a block of g consecutive observations, i.e. B~ = (Xi, Xi+l, �9 �9 �9 

X~+~+I) for i = 1 , 2 , . . . , n - g +  1. Then, 

- For the moving block jackknife (MBJ), we denote the i-th jackknife 

statistics by T~_i which is equal to the estimator T~_~ evaluated in 

the reduced sample X \ Bi. Then, the following jackknife histogram is a 

distribution estimator of ~'n (Tn - T): 

n--~q-i 

H N ( x ) = ( n - - g +  l) -1 ~ l {r~g-t(n-g)(Tn,_i-T~) < x } ,  (2) 
i--1 

where the r~ is an appropriate normalizing constant. 

- For the moving block bootstrap (MBB), we resample k blocks from 

{B1,/?2, . . . ,  B,~-t+l} with replacement and with equal probability for 

each block to be drawn. For simplicity, we assume n = kg, then a 

bootstrap resample is obtained by joining the blocks together in random 

order. The bootstrap statistic its defined by T* which is equal to the 

estimator Tn evaluated in the bootstrap resample. Then, the bootstrap 

distribution: 

Pr* {r~(T* - T~) < x} (3) 

is a distribution estimator of Tn(T,~ -- T). 

Some works point out that in blockwise bootstrap a smooth transition 

between blocks could be preferable to random joining, see Carlstein et al. 

(1998). Also, Kfinsch (1989) shows that in MBJ it is better to downweight 

the block Bi instead of a Completed deletion. Those facts motivate the 

moving block resampling by missing values techniques proposed in Alonso 

et al. (2003). 
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- In the moving missing block jackknife (M2BJ), we consider the deleted 

block Bi as ~ consecutive missing values and we estimated those obser- 

vations taking into account the dependence structure of {Xt}~ez. Then 

the i-th M2BJ statistics T~,-i is equal to the estimator T~ evaluated in 

(X \ Bi) t_) B~, where Bi denotes the estimate of Bi. Then, the following 

M2BJ histogram is a distribution estimator of ~-~(T~ - T ) :  

n-IH-I 

~IN(x )=(n - -g§  ~ l{Ttg-l(n--g)(en,__i--Tn)~X). (4) 
i = l  

Notice that M2BJ statistics have the computational advantage of using 

the same functional form as T~, while for MBJ statistics we should imple- 

ment the calculations considering that g observations are missing. 

- In the moving missing block bootstrap (M2BB), as in MBB, we have in 

each resample k blocks (B*I, B*2,... , Bi* k). Let g = b§ and we consider 

the m last observations in each block as missing values. Thus, we will 

have km missing observations that will be replaced by their estimates. 

The M2BB statistic is defined by T* which is equal to the estimator T~ 

evaluated in the resulting resample. Then, the bootstrap distribution 

is a distribution estimator of T~ (T~ - T). 

The M2BB scheme resemble to a block joining engine similar to the 

matched-block bootstrap of Carlstein et al. (1998). 

In our case T,~ = ~, and the computational implementation of M2BJ 

and M2BB only requires additionally a missing values estimation method. 

We will use the generalized least square estimators proposed by Pefia and 

Maravall (1991). The consistency of (2)-(5) estimators for this particular 

statistics is beyond of the scope of this paper. 
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A problem related with blockwise resampling is the selection of block 

size g (in ours case, g and k). A general approach to solve this problem was 

proposed by Hall et al. (1995) for MBB distribution and variance estimators. 

This approach could be easily modified in order to select g and k for M2BJ 

and M2BB, but it involves a discrete optimization in g and k that  could be 

a computational disadvantage. Since in each bootstrap resample we have to 

estimate autoregressive models up to order Pmr we use in the Monte Carlo 

study g = 2pm~, 3pma~ and 4pm~ (with pm~ = n/lO as recommended 

Bhansali 1983) and k = 1 in order to have a moderate number of missing 

values. 

2.2 The sieve exogenous order blockwise bootstrap 

Let {Xt }fez be a real valued, stationary process with expectation E [Xt] = 

#x  that  admits a one-sided infinite-order autoregressive representation: 

+co 
E CJ (X t - j  - # x )  = st, r = 1, t e Z, (6) 
j=o 

Ir  "~+co satisfying V'+~ ~h2 with coefficients t 3 J j=0 z_,j=0 ~j < c~. This representation moti- 

vates the AR(co)-sieve bootstrap, that  was first proposed by Kreiss (1988) 

and extensions can be found in Biihlmann (1997) and Inoue and Kilian 

(2002). 

The method proceeds as follows: 

1. Given a sample { X 1 , . . . ,  X,~}, select the order ~ of the autoregressive 

approximation by some information criterion (e.g. AIC, AICC or BIC). 

2. Obtain the Yule-Walker estimates of the coefficients for the Pmax + 1 

autoregressive models: (r r162 (v)) for 1 < p < Pma~, and 

r (p) = 1 for 0 < p <_ Pmaz. 

3. Compute the residuals for the model with p = ~: 

~t = E r  - f(),  t e (~+ 1 , . . . ,  n). (7) 
j=0 
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4. Define the empirical distribution functions of the centered residuals: 

ff:(x) = (~-~-: ~ I::,_<~, (s) 
t=~+l 

where gt = gt - :'('), and k'(') = (n - p~-: ~t=~+: :t. 

5. Draw a M=BB resample from the sample {X1,. . . ,  X~}, and select the 

order p* of the autoregressive approximation (as in the step 1) for this 

resample. 

6. Draw a resample :~ of i.i.d, observations from ff~. 

7. Define Xt* by the reeursion: 

p* 

y ~ ( ~ ' ~ Y *  - 2 )  * wj V~ t - - j  =" ~t 
5=0 

where the starting p* observations are equal to X. 

(9) 

8. Compute the estimation of the autoregressive coefficients: (r ^* , Cp.) ,  

as in step 2. 

9. Compute future bootstrap observations by the recursion: 

p* 

x *  2 ^* * * (10) r+h = -- ~ r (Xr+h-j  -- 2 )  + e~, 
j = l  

where h > 0, and Xt* = Xt, for t _< T. 

Finally, F~.+h the bootstrap distribution of X~.+h is used to approx- 

imate the unknown distribution of X T +  h given the observed sample. As 
A 

usual, a Monte Carlo estimate F~;.+h is obtained by repeating the steps 5 

to 9 B times. The (1 - c~)% prediction interval for XT+h is given by 

[Q* (c~/2), Q*(: - c~/2)], (11) 

A . - -  1 where Q* (.) = F)~+ h (.) are the quantiles of the estimated bootstrap distri- 

bution. 
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3 S imu la t i ons  r e su l t s  

We compare the different sieve bootstrap approaches for the following 

models: 

Model 1:(1 - 0.75B + 0.5B2)Xt = et 

Model 2: Xt = (1 - 0.3B + 0.7B2)Et. 

Model 3:(1 + 0.7B - 0.2B2)Xt = et 

Model 4: Xt = (1 + 0.TB - 0.2B2)et. 

Model 1 was considered by Cao et al. (1997) and Model 2 by Pascual et 

al. (2001). Model 3 and 4 were considered by Alonso et al. (2004). As in those 

papers we used the following error distributions Fe: the standard normal, a 

shifted exponential distribution with zero mean and scale parameter equal 

to one, and a contaminated distribution 0.9 F1 + 0.1 F2 with F1 ~ Af( -1 ,  1) 

and F2 ~ Af(9, 1). But, for sake of brevety, we only present the results for 

the standard normal. We take sample sizes n = 50, and 100, leads h -- 1 to, 

h = 5, and nominal coverage 1 - c~ = 0.95. 

To compare the different prediction intervals, we use their mean coverage 

(CM) and length (f~M), and the proportions of observations lying out to the 

left and to the right of the interval. 

The different sieve bootstrap are denoted by: 

S corresponds to the sieve bootstrap without introducing model uncer- 

tainty, i.e. the algorithm of Section 2 but omitting the step 5 and using 

p* = ~ in steps 7 - 9. 

EnS the endogenous sieve bootstrap using ~ obtained by AICC (see section 

2.1 of Alonso et al., 2004). 

ExS1 the exogenous sieve bootstrap using the moving missing block bootstrap. 

ExS2 the exogenous sieve bootstrap using the AICC information criterion 

(see section 2.2 of Alonso et  al., 2004). 
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Notice that  the difference between S and the other sieve bootstrap pro- 

cedures corresponds to the variability associated to model uncertainty. A 

Fortran implementation of procedure S can be found in Alonso (2004). 

In Tables 1-4, we present the results for the four models, using the two 

sample sizes and Gaussian innovations, nominal coverage 95%, and lead 

times h = 1 and 5. For ExS1, we report the results with g = 3p . . . .  The 

other possible combinations of parameters are available on request to the 

authors. 

Table 1 Simulation results for Model 1, with Gaussian Errors. 

Lag Sample 
h n 
1 50 

I00 

h n 
5 50 

100 

Method CM (se) Coy. (b./a.) LM (se) 
Theoretical 95% 2.50% / 2.50% 3.93 

S 92.27 (0.13) 3.92/3.81 3.83 (0.02) 
EnS 92.59 (0.12) 3.75/3.66 3.87 (0.02) 
ExS1 92.56 (0.12) 3.79/3.65 3.85 (0.02) 
ExS2 92.74 (0.12) 3.69/3.57 3.88 (0.02) 

S 93.53 (0.09) 3.17/3.30 3.88 (0.01) 
EnS 93.83 (0.08) 3.00/3.18 3.92 (0.01) 
ExS1 93.77 (0.09) 3.07/3.16 3.92 (0.01) 
ExS2 93.96 (0.08) 2.97/3.07 3.96 (0.01) 

Theoretical 95% 2.50% / 2.50% 5.20 
S 92.01 (0.12) 4.03/3.96 4.86 (0.02) 

EnS 92.18 (0.12) 3.91/3.92 4.88 (0.02) 
ExS1 92.12 (0.13) 3.92/3.96 4.87 (0.02) 
ExS2 92.29 (0.12) 3.82/3.89 4.91 (0.02) 

S 93.47 (0.09) 3.27/3.26 5.02 (0.02) 
EnS 93.66 (0.08) 3.19/3.15 5.05 (0.02) 
ExS1 93.71 (0.08) 3.17/3.12 5.06 (0.02) 
ExS2 93.93 (0.08) 3.08/2.99 5.13 (0.02) 

NOTE: Standard error (se) are in parentheses. 

For Models 1 and 3 with Gaussian errors, methods EnS, ExS1 and ExS2 

have a better performance than S in terms of mean coverage and length for 

all sample sizes and lead times (up to a 0.4% more of mean coverage for 

Model 1 and h = 1 and up to a 1.5% more of mean coverage for Model 3 and 

h -- 1). If we use the following measure of the improvement by introducing 

model uncertainty of a procedure M: OM--OS where Cs is the mean coverage 0.95-Cs 
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Table 2 Simulation results for Model 2, with Gaussian Errors. 

Lag Sample 
h n 
1 50 

100 

h n 

5 5O 

100 

Method OM (se) Cov. (b./a.) LM (se) 
Theoretical 95% 2.50% / 2.50% 3.93 

S 91.30 (0.19) 4.05/4.65 3.96 (0.02) 
EnS 91.69 (0.19) 3.89/4.43 4.03 (0.02) 
ExS1 91.67 (0.18) 3.93/4.40 4.00 (0.02) 
ExS2 92.00 (0.18) 3.77/4.23 4.00 (0.02) 

s 93.00 (0.11) 3.58/3.43 3.93 (0.01) 
EnS 93.26 (0.11) 3.42/3.32 3.97 (0.01) 

ExS1 93.36 (0.11) 3.33/3.31 3.96 (0.01) 
ExS2 93.59 (0.11) 3.24/3.17 3.99 (0.01) 

Theoretical 95% 2.50% / 2.50% 4.94 
S 91.69 (0.13) 4.08/4.23 4.63 (0.02) 

EnS 91.88 (0.13) 3.99/4.13 4.64 (0.02) 
ExS1 91.75 (0.13) 4.05/4.20 4.62 (0.02) 
ExS2 91.93 (0.13) 3.99/4.08 4.63 (0.02) 

S 93.03 (0.09) 3.51/3.46 4.75 (0.01) 
EnS 93.20 (0.09) 3.45/3.35 4.77 (0.01) 
ExS1 93.21 (0.09) 3.38/3.42 4.76 (0.01) 
ExS2 93.30 (0.09) 3.33/3.37 4.76 (0.01) 

NOTE: Standard error (se) are in parentheses. 

of the bootstrap method without including model uncertainty. Then the 

increases are up to 17.2% for Model 1 and up to 42.3% for Model 3. 

We obtain similar results for Models 2 and 4. Notice that  in these case, 

the sieve approach never uses the correct model. We observe that,  for h = 

1, S method is outperformed by all sieve approaches that  include model 

variability (up to a 0.7% more of mean coverage for Model 2 and up to 

a 2.2% more of mean coverage for Model 3). The improvements are up to 

18.9% for Model 1 and up to 52.6% for Model 3. 

In all models ExS1 have similar results to the previous proposed ExS2. 

It should be remarked that  none of the procedures that  include model vari- 

ability is superior to the others. The EnS and ExS2 procedures have the ad- 

vantage of a simpler implementation. ExS2 is computationally better  than 

EnS since it does not select a model in each resample. In the other hand the 

blockwise bootstrap is applicable to more general dependence structures. 
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Table  3 Simulation results for Model 3, with Gaussian Errors. 

Lag Sample Method 
h n Theoretical 
1 50 S 

100 

h n 

5 50 

100 

EnS 
ExS1 

CM (se) Cov. (b./a.) LM (se) 
95% 

91.29 (0.16) 
92.69 (0.13) 
92.81 (0.12) 

2.50% / 2.50% 
4.32/4.40 

93.93 (0.09) 

3.63/3.68 
3.55/3.63 

3.94 
3.76 (0.02) 
3.93 (0.02) 

3.14/2.94 

3.90 (0.02) 
ExS2 92.86 (0.13) 3.55/3.58 3.95 (0.02) 

S 93.08 (0.11) 3.48/3.44 3.85 (0.01) 
EnS 93.69 (0.09) 3.16/3.15 3.92 (0.01) 

ExS1 
3.08/3.12 ExS2 93.80 (0.09) 

3.93 (0.01) 
3.94 (0.01) 

Theoretical 95% 2.50% / 2.50% 6.45 
S 92.14 (0.19) 3.91/3.95 6.36 (0.04) 

EnS 92.93 (0.18) 3.54/3.53 6.50 (0.04) 
ExS1 93.41 (0.17) 3.23/3.36 6.57 (0.04) 
ExS2 92.37 (0.18) 3.85/3,78 6.35 (0.03) 

S 93.22 (0.13) 3.42/3.36 6.35 (0.03) 
EnS 93.85 (0.12) 3.09/3.07 6.49 (0.03) 
ExS1 94.20 (0.11) 2.92/2.88 6.53 (0.03) 
ExS2 93.58 (0.12) 3.22/3.20 6.39 (0.03) 

NOTE: Standard error (se) are in parentheses. 

Table  4 Simulation results for Model 4, with 

Lag Sample Method CM (se) 
h n Theoretical 95% 
1 50 S 

EnS 
90.82 (o.18) 
92.60 (o.12) 

Gaussian Errors. 

Coy. (b./a.) 
2.50% / 2.50% 

4.62/4.56 
3.73/3.67 

LM (se) 
3.93 

3.74 (0.02) 
3.88 (0.02) 

3.52/3.46 
ExS1 92.80 (0.13) 3.68/3.53 3.90 (0.02) 
ExS2 

100 S 
93.02 (0.12) 
93.05 (0.11) 3.54/3.41 

93.85 (0.08) 3.00/3.15 

3.92 (0.02) 
3.83 (0.01) 

EnS 93.63 (0.09) 3.27/3.10 3.89 (0.01) 
ExS1 
ExS2 93.83 (0.09) 

95% h n Theoretical 
5 50 

3.15/3.o2 

94.31 (0.11) 
94.24 (0.il)  

2.50% / 2.50% 

3.93 (0.01) 
3.91 (0.01) 

4.87 

2.90/2.86 

S 93.48 (0.12) 3.30/3.23 4.78 (0.02) 
EnS 93.84 (0.11) 3.13/3.02 4.85 (0.02) 

ExS1 2.79/2.90 4.94 (0.02) 
ExS2 

2.98/2.97 
2.81/2.82 
2.60/2.61 

94.05 (0.09) 100 S 
EnS 

ExS1 
94.37 (o.o8) 
94.79 (0.07) 
94.56 (0.08) ExS2 2.73/2.71 

4.91 (0.02) 
4.80 (0.01) 
4.85 (0.01) 
4.92 (0.02) 
4.89 (0.02) 

NOTE: Standard error (se) are in parentheses. 
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4 Conclusion 

It has been shown by Masarotto (1990) and Grigoletto (1998) that if the 

order of the AR is unknown, but finite, it can obtained prediction intervals 

by bootstrap incorporating the sampling variability of ~ with better cov- 

erage probabilities than those produced by standard bootstrap procedures. 

Their approaches could be affected by the selected order ~. In Alonso et 

al. (2004) a sieve endogenous (and exogenous) order bootstrap have been 

proposed and a simulation experiment have shown that both procedures 

improve the standard sieve bootstrap. In this paper we have proposed an 

alternative method based on moving blocks bootstrap for introducing the 

model selection variability in the prediction intervals. Monte Carlo simula- 

tions show that the proposed procedure provide comparable coverage results 

than previous methods in general cases meanwhile its less dependent on the 

initial selected order. 
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