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Abstract

We present a random coefficient regression model in which a response is linearly related to some
explanatory variables with random coefficients following a Dirichlet distribution. These coefficients
can be interpreted asweights because they are nonnegative and add up to one. The proposed estimation
procedure combines iteratively reweighted least squares and the maximization on an approximated
likelihood function.Wealso present a diagnostic tool based on a residualQ–Qplot and two procedures
for estimating individual weights. The model is used to construct an index for measuring the quality
of the railroad system in Spain.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It is generally accepted that the quality of a service is usually a function of several quality
factors, dimensions or attributes, (Parasuraman et al., 1988, 1991, 1994; Cronin and Taylor,
1992, 1994; Teas, 1993, 1994) and a key step in measuring service quality is determining
the relative weight of each factor or attribute in overall satisfaction. Methods oriented
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to multidimensional quality measurements are usually based on Conjoint Analysis (Luce
and Tukey, 1964). SeeCarroll and Green (1995)for a survey of the present state of this
methodology andLynch et al. (1994),Wedel andDeSarbo (1994)andOstromand Iacobucci
(1995)for interesting applications to the evaluation of service quality. In this methodology
customers are asked to provide quality evaluation on several hypothetical services defined
by certain levels of the quality attributes. Themethod assumes that the quality attributes can
be given an objective interpretation so that the levels of the attributes have, when presented
to the customers for evaluation, a clear meaning to them.
Conjoint Analysis is less useful in situations in which the quality attributes do not have

objective standards, and therefore it is very difficult to define a series of hypothetical quality
situations for the customers to evaluate. An alternative procedure in these situations is to use
hierarchical Bayesianmethods that can be estimated byMarkovChainMonte Carlomethod
(MCMC), seeLenk et al. (1996),Allenby andRossi (1999)andRossi et al. (2001). A second
alternative is to relate the evaluation of the attributes to the overall evaluation of service
quality by using a random coefficients regression model.Peña (1997)proposed a model
in which the weights of each customer are assumed to be random variables generated by
a common multivariate normal distribution and show how to compute by generalized least
squares (LS) the mean weights in the population imposing the restrictions that the weights
must add up to one. This model was designed for the estimation of the mean weights in the
population and the important problem of estimating the individual weights for each person,
that is easily carried out in the hierarchical Bayesian approach, was not considered.
In this article we propose a random coefficient model in which the individual weights

can be estimated. SeeGumpertz and Pantula (1998)for a review of these models and their
applications andMallet (1986)for a non parametric approach to estimate the distribution of
the coefficients. The model we propose in this article includes two features that generalize
previous applications of random coefficient models for building quality indices. First, it
incorporates the restriction that the weights must be positive and thus it avoids the problem
of estimating some negative weights. Second, it allows that customers, in their evaluations
of the overall quality, may be taking into account some attributes not considered in the
model. This feature is formally incorporated in our model, and the distribution of the values
of the unknown attribute can be obtained.
The rest of this article is organized as follows. In Section 2 the model is presented. In

Section 3 its estimation is discussed and in Section 4 its validation is presented. In Section
5 two procedures for obtaining estimates of individual weights are presented. In Section 6
an application to evaluate the quality of the railroad system in Spain is discussed. In Section
7 some final remarks are included.

2. A model for linear quality indicators

Suppose that we have a population of potential customers.We assume that each customer
has an evaluation scoreyof the perceived quality of a given service that is a weighted linear
combination of several known attributes, factors or dimensions,x1, . . . , xk and, possibly,
of a latent variablez depending on other unidentified factors. Thus the evaluation score
is computed by the customer by giving weights to the different dimensions or attributes
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considered and the evaluation score reported includes some random measurement error
which includes the rounding error and other computation errors made by the customer.
Without loss of generality we assume that the data has been scaled so that the variables
y, x1, . . . , xk andzare scores between0and1.Suppose that a randomsample ofncustomers
has been surveyed, and let(yi, xi ), wherexi = (xi,1, . . . , xi,k)′, be the answer of customer
i. We assume that

yi = wi,1xi,1+ · · · + wi,kxi,k + wi,k+1zi + εi, 1� i�n, (1)

wherezi is the unobserved random variable corresponding to the evaluation of the unspeci-
fied factors for customeri, wi=(wi,1, . . . , wi,k+1)′ is a randomvector ofweightsmeasuring
the relative importance that customeri gives to the different attributesxj , 1� i�k, and toz
in determining overall service qualityy andεi is a measurement error. The variableswi , zi
andεi are not observed.
The errorεi takes into account differences between the theoretical and the observed

overall quality due to particular behavior of some of the respondents. We assume that the
attribute evaluations are made without measurement error. In practice there will always be
somemeasurement errorwhich canbedifferent for different attributes.However, weassume
this hypothesis for simplicity, and in Section 7 we will comment on the implications of
deleting it.
We make the following assumptions:
A1. The random variablesxi , zi , wi andεi are independent. The justification thatxi and

wi are independent is that the evaluation of an attribute represents how the level of service
in this attribute compares to an ideal or standard performance,whereas theweights represent
theapriorwishesof thecustomer.The independencebetweenxi , theevaluationof theknown
attributes andzi the evaluation of the unknown attribute is made for simplicity and can be
easily generalized by assuming for instance thatE(zi |xi ) is equal to the mean evaluation
of the known attributes. In Section 7 we will comment on this possible generalization.
A2. The distribution ofwi is Dirichlet with parameter� = (�1, . . . , �k+1)′, (D(�)), the

distribution ofzi is beta with parameterp = (p1, p2)′, (B(p)), and the distribution ofε is
Normal with mean 0 and variance�2, (N(0, �2)). Observe that the Dirichlet assumption
for the weights is in agreement with the basic assumption of a linear quality indicator, that
is, thatwi,j �0 and that

∑k+1
j=1wi,j = 1, and therefore, according to (1), the scoreyi is a

weighted average of the scoresxi,j , 1�j�k, andzi plus a measurement error. The Beta
assumption for the distribution ofzi is in agreement with the values of this variable in the
interval 0–1 and allows a reasonable flexibility in the form of the distribution. The Normal
distribution for the noise is made for simplicity as a priori the value of�2 is expected to be
small and therefore the values of the noise are not expected to move the evaluation score
y out of the interval 0,1. In Section 7 we will comment on alternative ways to model the
noise in this model.
This service quality index has the following advantages: (1) knowledge of the attribute

weights allows the ordering of the attributes according to their relative importance to the
customer, showing the key factors for improving quality. (2) Customer weights can be
related to customer characteristics to make market segmentation directly linked to qual-
ity objectives. (3) Comparing the average value of the attributes in the service studied
to the values of these attributes for other services will reveal their relative strengths and
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weaknesses. (4) If the attributes can be related to some objective measures of performance
it is possible to substitute the subjective evaluations of the attributes for objective measure-
ments, allowing a simple monitoring of the quality index.
Let�T =∑k+1

j=1 �i ,pT =p1+p2, �j =�j /�T , i=1, . . . , k+1 and�= (�1, . . . , �k+1)′.
Then, by A2, we have

E(wi,j )= �j
�T

= �j , var(wi,j )=
�j (1− �j )

1+ �T
, i, j = 1, . . . , k + 1, (2)

cov(wi,jwi,k)=
−�j�k
1+ �T

, j �= k (3)

and

E(zi)= p1

pT
=m, var(zi)= m(1−m)

1+ pT . (4)

If there are many attributes, unless there is an exceptional one, it is very likely that all
the �i ’s are smaller than 0.5. In this case the variability implied by the Dirichlet distri-
bution is such that important attributes with large mean weights will have larger variance
than marginal attributes with small mean weight. Also the correlation between important
attributes will be large, whereasmarginal attributes will be almost uncorrelated. This agrees
with a priori expectations.
Then, using A.1, (1), (2) and (4) we have

E(yi |xi )= � +
k∑
j=1

xi,j�j , (5)

where

� =m�k+1. (6)

In the Appendix we derive the conditional variance ofyi, which is given by

var(yi |xi )= �2s
2
i + xi�1+ �0, (7)

where

s2i =
k∑
j=1

�j x
2
i,j − x2i (8)

is a pseudo weighted variance (note that
∑k
j=1 �j �1) of the attribute evaluations, and

xi =
k∑
j=1

xi,j�j (9)

is a pseudo weighted mean,

�0 = var(wi,k+1z)+ �2, (10)
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�1= − 2�

(1+ �T )
, (11)

and

�2= 1

(1+ �T )
. (12)

Moreover, we show (see (32) in the Appendix) that

var(wi,k+1z)= �(�T , pT , �,m)

= �(1−m)(m− �)

m(1+ �T )(1+ pT )
(
1+ �(1+ �T )

m− �
+ m(1+ pT )

1−m
)
. (13)

Let � be defined by

� = 1

n

n∑
i=1

E





yi − � −

k∑
j=1

�j xi,j


2

∣∣∣∣∣∣∣ xi

 .

From (7) and (13) we get that

� = �(�T , pT , �
2, �,m, �)

= �2+ �(�T , pT , �,m, �)+ 1

n(1+ �T )

n∑
i=1
(s2i − 2�xi). (14)

Thisexpressionwill beused in thenext section for estimating theparametersbymaximum
likelihood.Note that the estimation of� and�2 provides amethod to split the total variability
of the residuals in the regression (5) between a term due to the measurement error,�2,
and a term� − �2 due to the weights variability between customers and to the unknown
attributez.

3. Model estimation

This model is estimated in three stages:

1. Consistent estimateŝ�, m̂, �̂, and �̂ of �, m, �, and � are computed by iterative
reweighted least squares (IRLS).

2. Let �̂, m̂, �̂ and̂� be the estimates obtained in stage 1. In stage 2 the initial estimates of
p, � and�2 are obtained by maximizing an approximate likelihood ofy subject to the
constraints

� = �T �̂, (15)

p= pT (m̂,1− m̂)′ (16)

and

�(�T , pT , �
2, �̂, m̂, �̂)= �̂, (17)



D. Peña, V. Yohai / Journal of Statistical Planning and Inference 136 (2006) 942–961 947

where the function� is defined in (14). Observe that in this stage we have to maximize
the approximate likelihoodwith respect to�T andpT . The other parameters are obtained
from the constraints.

3. Final estimatesofp, �and�2 are computedbyapproximatemaximum likelihood starting
from the solution found in stage 2 and using only the constraints (15) and (16). Observe
that in this stage we have to maximize the approximate likelihood with respect to�T ,
pT and�2. The other parameters are obtained from the constraints.

3.1. Estimation by iterative reweighted least squares

By (5), (7), (11) and (12) we can write

yi = � + �1xi,1+ · · · + �kxi,k + ui, i = 1, . . . , n, (18)

where

E(ui |xi )= 0 (19)

and

var(ui |xi )= �2ti + �0, (20)

where

ti = s2i − 2�xi. (21)

Based on (18) we start by fitting by ordinary LS (18) obtaining coefficients estimates

�(0), �̂
(0)
1 , . . . , �̂

(0)
k and residualŝu(0)i , 1� i�n. Then, using (20), we can write

u2i = �2ti + �0 + u∗
i , (22)

whereE(u∗
i ) = 0. By replacing theu2i ’s by theû(0)2i ’s, we obtain estimateŝ�0 and�̂2 by

fitting by ordinary LS (22). Theti ’s are computed by (8), (9) (21) using the estimates�̂(0),

�̂
(0)
1 , . . . , �̂

(0)
k as parameter values.

Weestimate var(ui |xi )by v̂2i =�̂2ti+�̂0, and thengoback to regression (18),which is now
fitted by weighted LS with weights(̂v2i )

−1. This procedure is iterated until convergence,
obtaining estimateŝ�, �̂, wherê� = (̂�1, . . . , �̂k).
Since the�i�0, the valueŝ�i <0 are replaced by 0. Observe that since the�̂i ’s are

consistent, if the model is correct, for alli such that�i >0, asymptoticallŷ�i >0 and thus
this correctionwill not benecessary for largen. Then, for largen, theonlŷ�i thatmay require
correction are those corresponding to�i = 0. In this case, when̂�i is corrected, we will
havê�i = �i . Another possibility to avoid this correction is to define the�̂i using weighted
LS with the constrain that all̂�i�0. An algorithm for non negative LS was proposed by
Lawson andHanson (1974). This algorithm is available as the functionNNLS ofMATLAB.
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Since the sum of all�i is 1, in the case that

	 =
k∑
i=1

�̂i >1,

all the components of̂� are divided by	. Then we computê�k+1 = 1− ∑k
j=1 �̂j , and

according to (6), we estimatem by m̂ = �̂/̂�k+1. Again, if
∑k
i=1 �i <1, this correction is

not necessary for largen. We can also define thê�i using weighted LS with the constraints
that�̂i�0 and

∑n
i=1 �̂i�1.

Finally, we compute the residuals

ûi = yi − �̂ − �̂1xi,1+ · · · + �̂kxi,k, i = 1, . . . , n (23)

and we estimate� by

�̂ = 1

n

∑
û2i . (24)

Remark. More efficient estimates of�0 an �2 in the simple regression (22) would be
obtained by using weighted LS with weights 1/var(u∗

i |xi ), 1� i�n. However, these vari-
ances depend onp, and this parameter cannot be estimated at this stage. Since the choice
of the weights is not crucial for consistency, we use ordinary LS.

3.2. Maximum likelihood estimation

The likelihood function ofy1, . . . , yn is

l(�,p, �2)=
n∏
i=1
fi(yi, �,p, �2), (25)

where

fi(yi, �,p, �2)=
∫
f (yi |w∗, z, �2)fD(w∗, �)fB(z,p)dw∗ dz

=
∫


((yi − x′
iw

∗ − zwk+1)/�)fD(w∗, �)fB(z,p)dw∗ dz (26)

andwhere
, fD andfB are the standardNormal, Dirichlet andBeta densities, respectively,
andw∗ = (w1, . . . , wk)′. This integral can be approximated by

f Ai (yi, �,p, �
2)= 1

N

N∑
j=1


((yi − x′
iw

∗
j − zjwj,k+1)/�), (27)

wherewj = (w∗′
j , wj,k+1)

′ andzj , j = 1, . . . , N are two independent random samples of
theDirichlet andBeta distributionwith parameters�andp, respectively. Then the likelihood
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(25) can be approximated by

lA(�,p, �2)=
n∏
i=1
f Ai (yi, �,p, �

2), (28)

where the integrals (26) are substituted by the sums (27). Since obtaining the value of this
approximate likelihood is computationally very intensive, we use this likelihood to estimate
the parameters,�T , pT and�2 fixing �, �, andm to the values obtained in the first stage.
This is done in stages 2 and 3, asmentioned above. In stage 2, we take a grid of values for�T
andpT and for each choice of values for these two parameters the corresponding value of
�2 is obtained by the constraint (17). To define the grid we take into account that, according
to (12), an initial estimate of�T is given bŷ�T = �̂−1

2 − 1, wherê�2 is obtained in stage 1.
Then we find the combination of the two parameters in the grid which maximizes (28). In
stage 3 we keep the values of�, �, andm fixed on the values of stage 1 and maximize the
likelihood on the three parameters�T , pT and�2 using as initial values those obtained in
stage 2.

4. Model validation

Themodel can be validated by comparing the observed residuals after fitting themodel to
the residuals computed with artificial samples generated by using the estimated parameters.
If the model is appropriate the observed residuals should have a similar distribution as
the simulated residuals. We start by computing the residualsûi by (23) and its empirical
distribution functionFn.
We generateN artificial samples of the formy∗

1, . . . , y
∗
n, wherey

∗
i is generated as in (1)

with �,p and�2 replaced by the estimated parameters. LetF ∗
hn be the empirical distribution

function of the errors

u∗
i = yi −

k∑
j=1

xi,j �̂j − �̂, 1� i�n

corresponding to thehth artificial sample and define

F ∗
n = 1

N

N∑
h=1

F ∗
nh.

Then the Q–Q plot betweenFn andF ∗
n will be a diagnostic tool for detecting discrepancies

between the model and the data.
In particular theQ–Q plot may detect outliers corresponding to respondents with atypical

views or recording errors. However some groups of outliers may go undetected because of
a masking effect, although this effect is not expected to be large, because the data must be
between zero and one. In any case, it is safer to check that a robust estimate for regression
is similar to LS.
The model assumes that the overall evaluation is a continuous variable when in fact in

most applications this variable is measured on a discrete scale. Suppose that the observed
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evaluation is made on a discrete rating scale, for example 0–10. Then the response variable
in the model is not observed exactly but rounded off to the closest integer. In order to check
the effect of this discrete scale we can simulate the model and, using the estimated values
of the parameters, generate two types of samples (1) samples of continuousy values, and
(2) samples of discretey values obtained by rounding off the continuous values. Then we
can estimate the model in both samples and compare the results. The average discrepancy
found in many replications of this analysis will provide an estimate of the expected bias
due to the discrete scale effect. We will give more details when analyzing an example with
real data in Section 6.

5. Predicting the weights for each observation

Predicting the weights for each respondent is important if we want to relate these weights
to the personal characteristics of the respondents (such as gender, income, education and
so on). In this section we present two possible approaches to this problem. However, as we
want to estimate the vector of weights (a dimensionk + 1 vector) with the information of
just one dependent variable this estimation will necessarily have a large error as there is an
infinite number of weight vectors which produce the observed value of the response given
the explanatory variables.

5.1. Linear prediction

Assuming that the parameters are known, the weights of each customer in the sample can
beestimatedby computing thebest linear predictor of the randomvariableswi,1, . . . , wi,k+1
given the observationyi. In practice, since the parameters are unknown, this predictor is
computed by using the estimated parameters as true parameters.
The vector of the optimal (minimum mean squared error) linear predictor of the weights

wi for the ith individual is given by

ŵi = � + 1

var(yi |xi ) cov(wi , yi)

yi − k∑

j=1
xi,j�j − �


 .

It is easy to show that

cov(w, yi)= �x∗
i ,

where� is the covariance matrix ofw given in the Appendix andx∗
i = (x′

i , m)
′. Therefore

ŵi = � + �x∗
i (yi −

∑k
j=1 xi,j�j − �)

var(yi |xi ) ,

By (7), (11) and (12), we can estimate var(yi |xi ) by v̂2i = �̂2ti + �̂0. Then if theûi ’s are
defined as in (23), the weights can be estimated by

ŵi = �̂ + ûi

v̂2i

�̂x∗
i .
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A shortcoming of this procedure is that the predictions of the weights can be negative.
In the next subsection we present an alternative nonlinear predictor giving nonnegative
weights.

5.2. Nonparametric prediction

Thevector ofweights of theith element of the samplewi=(wi,1, . . . , wi,k, wi,k+1) canbe
predicted by estimatingE(wi |yi, xi ). To this end, we generate samples(w̃i1, . . . , w̃iN ) and
(ỹi1, . . . , ỹiN ) as follows. We generate three independent random samples(̃zi1, . . . , z̃iN ),
(w̃i1, . . . , w̃iN ) and(̃εi1, . . . , ε̃iN ) where each̃zi,j is B(̂p), w̃i,j = (w̃∗

i,j , w̃i.j,k+1)is D(̂�)
and̃εij isN(0, �2).Asampleof thedistributionofyi is generatedas̃yij=x′

iw̃
∗
ij+w̃ij,k+1̃zj+

εij , 1�j�N. Then the expectation ofwih (h = 1, . . . , k) givenyi can be computed by
nonparametric regression between(yi1, . . . , yiN ) and (wi1,h, . . . , wwN,h). For example,
we can use a nearest neighborhood estimate. In this case,wih can be estimated by

ŵih = 1

#A

∑
j∈A

w̃ij,h,

where

A= {j : |̃yij − yi |�a},
and where the window sizea should be conveniently chosen andnh = #A. An overview of
nonparametric regression including the choice of the window size can be found for example
in Härdle (1990).

5.3. Diagnostic checks

Predicted weights can be used as an additional diagnostic tool for checking the model:
we can compare the distribution of the predicted weights of the observed data with those
of artificial samples generated by using the proposed model with the estimated parameters.
Suppose thatN samples are generated and letG∗

hj be the empirical distribution function
of the weights for attributej in the sampleh and

G∗
j = 1

N

N∑
h=1

G∗
hj .

We can use a Q–Q plot to compareG∗
j and the empirical distribution of the predicted

weights for attributej using the real data.

6. Measuring the quality of the Spanish railroad system

In this example we apply the previous model to build a quality index of the railroad
system in Spain. The procedure used to build this index can be summarized as follows: (1)
identifying the quality attributes, (2) taking a random sample of customers and obtaining
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Table 1
Descriptive measure of the attributes and the overall quality evaluations for the Railroad data

Attribute Mean Median St. Dev.

1. Information pre-journ. 5.1808 5 2.1884
2. Station security 4.3189 5 2.2868
3. Ticket sales 4.5330 5 2.3687
4. RR cleanness station 3.4803 4 2.3130
5. Information station 4.7298 5 2.0666
6. Train cleanness 4.6211 5 2.1876
7. Train security 4.7011 5 2.2462
8. Punctuality 3.7305 4 2.5145
9. Speed 3.8266 4 2.2576
10. Train cleanness 5.1568 5 2.0544
11. RR cleanness train 4.2548 5 2.2995
12. Comfort 4.9887 5 2.1017
13. Noise level 4.4777 5 2.1960
14. Information train 3.6631 4 2.3763
15. Person responsible 4.5991 5 2.3066
16. Claims information 4.0274 5 2.2033
17. Claims handling 3.5964 4 2.2095
Overall 5.2115 5 1.7313

their evaluations; (3) estimating the parameters of the model and predicting the customer
weights.
Starting with the first step, the identification of the attributes was the result of several

group sessions with customers of RENFE (the public railroad system in Spain). Initially 52
attributes were identified: 28 of these 52 attributes correspond to the pre-journey (informa-
tion, ticket office, railroad station), 20 to the journey and 6 to the post-journey (claims and
so on). A small random sample of 400 customers was taken to check these attributes and as
a result of the statistical analysis of the questionnaire the number of attributes was reduced
to 17: 6 for the pre-journey, 9 for the journey and 2 for the post-journey.
In order to obtain a representative sample of the railroad service, a stratified sample

of 2000 people was selected including different types of train and days of the week. The
interviews were held during the journey by train and the passengers were requested to
evaluate on a 0–9 scale the observed quality of these attributes in RENFE and to evaluate
theoverall servicequality.Of the2000questionnaires51havemanymissingvaluesandwere
disregarded, so that the final sample size includes 1499 questionnaires. The data is available
athttp://halweb.uc3m.es/esp/personal/personas/dpena/articles/datarenfeJSPI2004.zip.
Table 1lists the 17 attributes and presents some descriptive statistics of their distribution.

The seventeen attributes are highly correlated, for instance, the first principal component of
these attributes explains 93.4% of the variability. This principal component is a weighted
averageof all the attributeswith similarweights, the smallestweight corresponds to attribute
3 (.0517) and the largest to attribute 13 (.0623).Table 1shows that themean value for overall
quality is higher than themean evaluation of all the attributes, suggesting that overall quality
is not a weighted mean of the considered attributes and that some other unknown attributes
are taken into consideration when evaluating the overall quality.

http://halweb.uc3m.es/esp/personal/personas/dpena/articles/datarenfe
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Fig. 1. Median and range of the evaluations of the attributes by each respondent for the RENFE data.

Rossi et al. (2001)have shown that when respondents vary in their use of the scale, for
instance, some use only the middle of the scale or the upper or lower end, some biased are
expected in the correlation inferences. This problem can appear in a plot of the range on the
evaluation of the attributes for each customerwith respect to themedian of the attributes. For
instance, if some respondents use only the top end of the scale they will produce points in
the plot with large median and small range in the evaluation.Rossi et al. (2001)suggested
a plot in which the points are slightly jittered so that the plot illustrates the number of
respondents at any given combination of the variables.Fig. 1shows this plot for our data.
Some indication of scale usage heterogeneity is found in respondents with median response
9, which have a very small range in their evaluations, but this effect seems to be small since
for the other median values the range has a similar variability.
The IRLS estimates was applied to the full model with the 17 attributes.Table 2gives

the results of applying the IRLS estimate to a model using only those attributes found
significative at level 0.05 in the full model. The LSE column gives the coefficients estimated
by ordinary LS and the IRLS column the ones obtained at the end of stage 1 as described
in Section 3.1. When estimating the model all the evaluations have been divided by 10
to transform them to a 0–1 scale as assumed for our model, but we present the estimation
results for theoriginal data. Thehigh value for the intercept is suggesting that someattributes
considered by the customers are not taken into account in the questionnaire. Also, the sum
of the regression coefficients is .8067 indicating that the overall quality is not a weighted
average of the observed attributes. This is confirmed by the IRLS estimate. The IRLS stage
leads tôm=8.492, �̂=1.72,̂�= .136 and̂�T =4.84. TheML estimates obtained at the end
of stage 3 arê�T = 5.9, p̂T = 1.35 and� = .52.We conclude that an attribute with weight
�̂k+1 = �̂/m̂= .2026 and mean evaluation in the samplem̂= 8.492 is missing. Regarding
the variability, the total residual variance,�̂ = 1.356, can be split into the variance due to
measurement error,�2= .274, and the variance due to weights variability including the one
due to the missing attribute, 1.356− .274= 1.082. Thus the weight variability represents
79.7% of the observed variability.
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Table 2
Regression coefficients of the attributes to explain the overall quality evaluations for the Railroad data

Attribute

LSR IRLS t-values

Intercept 1.700 1.72 19.36
1. Information pre-journey 0.08422 0.0898 5.157
3. Ticket sales 0.05241 0.0527 3.47
6. Train cleanness 0.05852 0.0517 3.00
8. Punctuality 0.05273 0.0536 3.30
9. Speed 0.12650 0.1158 5.92
11. RR cleanness train 0.02534 0.0289 1.69
12. Comfort 0.09741 0.1032 4.59
13. Noise level 0.10720 0.1015 4.7
15. Person responsible 0.05623 0.0541 2.96
16. Claims information 0.06513 0.0661 2.89
17. Claims handling 0.08111 0.0798 3.58
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Fig. 2. Q–Q plot of the empirical distribution function of the observed residuals versus the theoretical distribution.

Formodel validationwe proceeded as described in Section 4 and theQ–Qplot is shown in
Fig. 2. It can be seen that agreement is very good apart from a few outliers in the tails. There
are 19 residuals with absolutes values larger than three standard deviations and dropping
these observations (1,2% of the sample data) we obtain the Q–Q plot indicated inFig. 3. It
can be seen that the agreement is now better.
In order to check the effect of the discreteness of the response variable we generated 500

samples ofy using the estimated parameters as a true model and with the samex variables.
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Fig. 3. Q–Q plot of the empirical distribution function of the observed residuals versus the theoretical distribution
after deleting 19 outliers.

Table 3
Root mean squared error and bias of the unrounded (RMSEU, BIASU) and rounded estimators (RMSEU, BIASR)
for the Railroad data and root mean squared error of the two methods for predicting the weights

Attribute

RMSEU RMSER BIASU BIASR

Intercept 0.0095 0.0101 0.0004 0.0006
1. Information pre-journey 0.0160 0.0166 −0.0012 −0.0010
3. Ticket sales 0.0148 0.0152 0.0004 0.0003
6. Train cleanness 0.0168 0.0173 0.0025 0.0025
8. Punctuality 0.0149 0.0156 −0.0007 −0.0006
9. Speed 0.0190 0.0197 0.0002 −0.0002
11. RR cleanness train 0.0162 0.0169 0.0009 0.0009
12. Comfort 0.0205 0.0207 0.0006 0.0007
13. Noise level 0.0201 0.0206 −0.0009 −0.0012
15. Person responsible 0.0170 0.0174 −0.0019 −0.0019
16. Claims information 0.0218 0.0224 −0.0005 −0.0002
17. Claims handling 0.0214 0.0219 0.0004 0.0003

We estimate the parameters� and� in these samples first, with the generatedy and second,
by rounding off the values ofy to the closest integer. The first two columns inTable 3show
the root mean squared error (RMSE) of estimation computed as

RMSE(�i )=
[
1

N

∑
(̂�i − �i )

2
]1/2

,
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Fig. 4. Predicted and true weights for attribute speed in a generated sample.

The first column (RMSEU) corresponds to the exact one and the second (RMSER)
to the rounding one. The next two columns correspond to the bias of the estimate
computed as

BIAS(�i )=
1

N

∑
(̂�i − �i ),

for both estimates, the exact one (BIASU) and the rounding one (BIASR). The table shows
that the effect of rounding on the estimation of the parameters is small. As expected there is
a small increase in the RMSE when observations are rounded off but the average increase
in RMSE of the rounding is just around 3%. The effect on the bias is negligible.
We have also compared the RMSE of the estimates of the weights for the two procedures

presented in Section 4 applied to 500 generated samples. We have found that although
as an average the nonparametric estimates have smaller error, the differences are small.
Fig. 4 shows the true weights in one of these generated samples from the model and the
nonparametric predicted weights for the attribute speed. It can be seen that estimation is
not very good, especially for small values of the weights. This result is not surprising since
we are estimating all the components of the vector of weights only with the information of
the response at this point.
Fig. 5 presents the histogram of the nonparametric estimation of the weights for the

most important attribute, speed in the railroad data. Note that this distribution is quite
different from the one implied by the model which is a Beta (0.68,5.22). This discrepancy
does not imply that the model is wrong because when generating samples from the model
and estimating the weights using these samples similar distributions were obtained. For
instance,Fig. 6presents the Q–Q plot of this distribution with respect to the nonparametric
predictedweights inageneratedartificial sample.Thisplot showsahighdegreeofagreement
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Fig. 5. Histogram of the distribution of weights for attribute speed estimated by nonparametric regression.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

pr
ed

ic
te

d 

generated 

Fig. 6.Q–Qplot of the distributions of two nonparametric predictedweights: for the real sample and for a generated
artificial sample. The selected attribute is speed.

between the two distributions except for a few outliers. Since the sample size is large, all
the generated samples produce almost the same distribution. The same pattern was obtained
with the other attributes. Thus we consider that the discrepancy between the theoretical and
predicted distribution of the weights may be due to the limited information available for the
prediction.
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7. Discussion and conclusion

An alternative methodology that have been used for building quality indexes is by using
linear structural relation models (LISREL). In this approach the unobserved latent variable
quality,�, is related to a vector ofp unobserved latent factors,�, by

� = �′�, (29)

In order to estimate this model we have an observed variableywhich is related to the latent
variable quality by

y = � + ε, (30)

whereε is a N(0,�2) variable. We also have a set ofm>p observedx variables, which are
related to thep factors� by the linear factor model equation

x = �� + �, (31)

where the vector� has a Nm(0,) multivariate normal distribution. As the factors� will
be estimated as linear function of thex variables, by using (29) and (30) we have that the
relation between the observed variables is given by

y = �′x + �,

which is a linear regression model. From this point of view the model we are proposing can
be seen as a reduced form of the structural model. However, the LISREL model usually
assumesafixed regressioncoefficient in the relation (29) among the latent variables,whereas
our model allows for different weights among the customers, which we believe is a more
realistic assumption. On the other hand, our model assumes that there is no measurement
error in the explanatory variables. This possibility can be introduced into the model by
using a equation similar to (31) with� = I , the identity matrix, and assuming some error
distribution for the measurement error and incorporating it into the model. Also, if a priori
information on themean of the attributes is available it can be included as prior information.
Then the model can be set up in a Bayesian framework and estimated by Markov Chain
Monte Carlo(MC2)methods. Note that, as it has been used in the estimation of the model,
the hierarchical structure of the model is well suited for Gibbs sampling estimation.
We have also assumed that the evaluation of the unknown attribute is independent of

the evaluation of the known attributes. This assumption can be modified by assuming that
zi | xi has a distribution with parameters which depend onxi . For instance, we may take
E(zi |xi ) = 1′xi/k and we can also relate var(zi |xi ) to the observed variance among the
components ofxi . These assumptions by including additional informationmaymake easier
the estimation of the model but the problem is that they are hard to check with the observed
data.
The assumption that the errorsεi are normally distributed can be replaced by the more

general assumption that theyhaveadensity of the form�(u/�)/�,where�(u) is anarbitrary
density with mean 0 and variance 1. For example�may have compact support. In this case,
the only difference in the estimation procedure would be to replace in (26) and (27) the
normal density
 by�. We can also consider different alternatives for� and choose the one
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giving the largest value of the likelihood function. Although these alternatives are worth
exploring if we have evaluations close to the extremes of the scale, they are not expected to
have a large effect on the conclusions of the model.
Another assumption we have made is that the observed variables can be approximated

by continuous variables. An alternative approach would be to take into account that, in fact,
they are measured as ordinal variables and to including this property into the model. For
instance,Johnson (1996)has proposed to consider the evaluation as latent variables which
are later discretised into the observed ordinal variables and use MC2 to estimate the model.
SeeMoreno and Rios-Insúa (1998)for an application of these ideas to Service Quality. This
alternative will make the model more realistic, but also more complex and according to our
experience will have a small effect in the conclusions.
A referee has suggested that in case of strong heterogeneity between subjects it would

be useful to incorporate it into the main model. We agree with this suggestion and this can
be done by assuming that the weights are generated by a mixture of Dirichlet distributions.
That is, instead of assumption A2 we may assume that

wi�
J∑
j=1

�jD(�j )

where
∑J
j=1 �j =1 are the prior probabilities of theJpopulations of weights and D(�j ) the

Dirichlet distributions. The model can be estimated by the EM algorithm (seeMcLachlan
and Krishnan, 1997) or by Markov Chain Monte Carlo methods.
In summary, knowledge of the relative importance of quality attributes for customers is

crucial for any process of service quality improvement. The procedure presented in this
paper seems to be a useful way to estimate the implicit weights used by the customers in
their overall evaluation of service quality and to understand the relative importance of the
different sources of variability in the overall evaluations. However, the model can still be
improved in several ways and these extensions would be the subject of further research.
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Appendix

Fromyi = x′
iw

∗
i + wi,k+1zi + εi, wherew∗

i = (w1, . . . , wk)′, we have
var(yi |x′

i )= x′
i�xi + var(wi,k+1z)+ 2 cov(x′

iwi , wik+1z)+ �2,

where� is the covariance matrix ofw∗
i . Denoting by�

∗ = (�1, . . . , �k)′, we have that
� = (diag(�∗) − �∗�∗′)/(1 + �T ), where diag(�∗) is a thek × k diagonal matrix with
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diagonal terms the elements of�∗. Then

x′
i�xi =

∑k
j=1 x2i,j�j − (∑k

j=1 xi,j�j )2

1+ �T
=

∑
�j x

2
i,j − x2i

1+ �T
= s2i

1+ �T
.

Now

var(wi,k+1z)= var(wi,k+1) var(z)+ E2(wi,k+1) var(z)+ var(wi,k+1)E2(z).
This can also be written as

var(wi,k+1z)= m(1−m)�k+1(1− �k+1)
(1+ pT )(1+ �T )

(
1+ �k+1(1+ �T )

1− �k+1
+ m(1+ pT )

1−m
)

and since� =m�k+1 we have

var(wik+1z)= �(1−m)(m− �)

m(1+ �T )(1+ pT )
(
1+ �(1+ �T )

m− �
+ m(1+ pT )

1−m
)
. (32)

Then, this term does not depend on the observations and is a constant function of the
parameters of the model. Finally

cov(x′
iw, wik+1z)= x′

iE(w
∗
i wi,k+1)m− x′

i�
∗�k+1m= −xi�

(
1+ 1

1+ �T

)
= x′

i cov(w
∗
i , wi,k+1)m+ x′

iE(w
∗
i )E(wi,k+1)m− x′

i�
∗�k+1m

− x′
i�

∗�k+1m
1+ �T

+ x′
i�

∗�k+1m− x′
i�

∗�k+1m

= − x′
i�

∗�
1+ �T

= − xi�

1+ �T
.

wherexi = ∑k
j=1 �j xji . Therefore we can write var(yi |xi ) = �2s

2
i + xi�1 + �0, where

�0, �1 and�2 are given by (10), (11) and (12), respectively.
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