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Abstract

In this paper, we present a procedure to build a dynamic factor model for a vector of time series.
We assume a model in which the common dynamic structure of the time series vector is explained
through a set of common factors, which may be nonstationary, as in the case of common trends.
Identification of the nonstationary I (d) factors is made through the common eigenstructure of the
generalized covariance matrices, properly normalized. The number of common nonstationary factors
is the number of nonzero eigenvalues of the above matrices. A chi-square statistic is proposed to test
for the number of factors, stationary or not. The estimation of the model is carried out in state space
form. This proposal is illustrated through several simulations and a real data set.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Factor models are of great importance to achieve dimensionality reduction. When data
are dynamic, the so-called curse of dimensionality is an important problem since for vector
autoregressive moving average (VARMA) models the number of parameters grows with
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the squared of the number of series considered. Some works related to this topic are,
for instance, Anderson (1963), Priestley et al. (1974), Box and Tiao (1977), Geweke and
Singleton (1981), Brillinger (1981), Velu et al. (1986), Peña and Box (1987), Stock and
Watson (1988, 2002), Tiao and Tsay (1989), Reinsel (1993), Ahn (1997) and Forni et al.
(2000), among others.

A key problem in factor models is to identify the number of factors. In the stationary
case Peña and Box (1987) develop a procedure to identify this number by looking at the
eigenvalues of lagged covariance matrices, while Bai and Ng (2002) propose several in-
formation criteria to determine the number of factors in approximate factor models, that
is, when the factors are approximated by principal components. In the nonstationary case
finding the number of nonstationary factors is related to finding the cointegration rank in
the econometrics field (whose vast literature we do not pretend to review here), since the
number of cointegration relations among the components of a vector of time series is the
dimension of the vector minus the number of nonstationary common factors (see Escribano
and Peña, 1994). King et al. (1994) estimate factors until the specific variance of the last
factor included in the model is zero in a conditional heteroskedastic model.

Dynamic factor models can be estimated in state space form by the Kalman filter. The
estimation of the parameters can be done by maximum likelihood through the Expectation-
Maximization (EM) or the scoring algorithms. The EM algorithm of Dempster et al. (1977)
was first introduced for this kind of models by Shumway and Stoffer (1982) and Watson
and Engle (1983), who also compared it to the score algorithm.

In this article we propose a methodology for building dynamic factor models for nonsta-
tionary time series. It is organized as follows. Section 2 presents the generalized dynamic
factor model and studies its properties. Section 3 generalizes the definition of covariances
matrices to the nonstationary case and presents two theorems that characterized the asymp-
totic behavior of these matrices. Section 4 proposes a chi-square statistic to test for the
number of factors. Section 5 summarizes the methodology to build nonstationary factor
models. Finally, Section 6 illustrates this proposal through a real data set.

2. The factor model

Let yt be an m-dimensional vector of observed time series, generated by a set of r < m

nonobserved common factors. We assume that each component of the vector of observed
series, yt , can be written as a linear combination of common factors plus noise

yt = Pf t + et , (1)

where ft is the r-dimensional vector of common factors, P is a m× r factor loading matrix,
and the sequence of vectors et are normally distributed, have zero mean and full rank
diagonal covariance matrix �e. Thus, all the common dynamic structure comes through
the common factors, ft . We suppose that the vector of common factors follows a vector
autoregressive moving average, VARMA, (p, q) model

�(B)ft = d + �(B)at , (2)
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where �(B)= I−�1B −· · ·−�pBp and �(B)= I−�1B −· · ·−�qBq are polynomial
matrices r×r , B is the backshift operator, such that Byt =yt−1, the roots of the determinantal
equation |�(B)|=0 can be on or outside the unit circle, d is a r ×1 vector of constants and
at ∼ Nr(0, �a) with �a a full rank variance–covariance matrix, is serially uncorrelated,
E(ata′

t−h) = 0, h �= 0. The components of the vector of common factors, ft , can be either
stationary or nonstationary, and we assume the usual conditions for the invertibility of the
VARMA model (see, for instance, Lütkepohl, 1993, p. 222). It will be useful to write (2) as
ft = U(B)at , where �(B)U(B) = �(B), being U(B) =∑

iUiB
i with U0 = I.

We assume that both noises appearing in the model are uncorrelated for all lags, E(ate′
t−h)= 0, for all h = 0, ±1, ±2, . . . When the factors are stationary, model (1) and (2) is the

factor model studied by Peña and Box (1987).
The model as stated is not identified because for any r × r nonsingular matrix H the

observed series yt can be expressed in terms of a new set of factors, yt = P∗f∗
t + et ,

where �∗(B)f∗
t = �∗(B)a∗

t . In this case P∗′P∗ = (H′−1
)P′PH−1, f∗

t = Hf t , a∗
t = Hat ,

�∗(B)=H�(B)=H−1, �∗(B)=H�(B)H−1 and �∗
a=H�aH′. To solve this identification

problem, we can always choose either �a = I or P′P = I, but it is easy to see that the model
is not yet identified under rotations. The standard restriction in static factor analysis is that
P′�−1

e P should be diagonal. Harvey (1989) andAguilar and West (2000) impose that pij =0,
for j > i, where P = [pij ]. This condition is not restrictive, since the factor model can be
rotated for a better interpretation when needed (see Harvey, 1989, for a brief discussion
about it).

Notice that the model can include also the case where lagged factors are present in Eq.
(1). For instance, assume the presence of lagged factors on the observation equation, such
as yt =P�(B)Ft + et where �(B)= I +�1B +· · ·+�lB

l, l < ∞ and Ft follows a VARMA
model Ft =�(B)at , �0=I. This model can be rewritten as in Eqs. (1) and (2) with ft =�(B)Ft

following the VARMA model ft = �̃(B)at where �̃(B) =∑∞
i=1̃�iB

i = �(B)�(B).

3. Properties of stationary and nonstationary factors

Assume that yt is I (d). We define the generalized sample covariance matrices Cy(k) as

Cy(k) = 1

T 2d+d′
T∑

t=k+1

(yt−k − ȳ)(yt − ȳ)′, (3)

where ȳ = 1
T

T∑
t=1

yt and d ′ can be either 0 or 1. We will see that for nonstationary factor

identification these matrices play the same role as the sample covariance matrices in the
stationary case. Suppose that there are r1 common nonstationary factors f1,t , and r2 common
zero mean stationary factors f2,t . Let us divide the vectors of common factors and their noise
as f ′

t = (f ′
1,t , f ′

2,t ) and a′
t = (a′

1,t , a′
2,t ), respectively. The block diagonal variance matrix for

at can also be partitioned as �a =
[
�1 0
0 �2

]
and the factor loading matrix as P = [P1P2].

Then:
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Assumption 1. The r1 common nonstationary factors are generated by

(1 − B)d f1,t = d1 + ut ,

ut = �(B)a1,t , (4)

where d is a positive integer, d1 is a r1×1 vector of constants or drifts, E(a1,t )=0, var(a1,t )=
�1 > 0, f1,−(d−1) = f1,−(d−2) = · · · = f1,0 = 0,

∑
i‖�i‖ < ∞ and ‖M‖ = [tr(M′M)]1/2 for

any matrix or vector M. Define �(1) =∑∞
i=0�i where rank(�(1)) = r1.

Theorem 1. For the nonstationary factor model given by (1), (2) and (4) with d1 = 0 and
defining Cy(k) as in (3) with d ′ =0, for k=0, 1, . . . , K , where K is small enough compared
to the sample size T, so that when T → ∞, K

T
→ 0:

(i) The generalized sample covariance matrices, Cy(k), converge weakly to a random
matrix �y , for k = 0, 1, . . . , K , where limits are taken as T goes to infinity and �y is
defined as

�y = P1�(1)�1/2
1

(∫ 1

0
Vd−1(�)Vd−1(�)

′ d�

)
(�1/2

1 )′�(1)′P′
1, (5)

where Vd(�) = Fd(�) − ∫ 1
0 Fd(�) d�, Fd(�) is the d times integrated Brownian motion,

and it is defined recursively by Fd(�)=∫ �
0 Fd−1(s) ds, ford=1, 2, . . .with F0(�)=W(�),

the r1-dimensional standard Brownian motion.
(ii) �y has r1 eigenvalues greater than zero almost sure and m − r1 equal to zero.

(iii) The eigenvectors corresponding to the r1 eigenvalues of �y greater than zero are a
basis of the space spanned by the columns of the loading submatrix P1.

Proof. See the appendix. �

Remarks. (1) Empirically, the number of common nonstationary factors could be found
as the number of eigenvalues of Cy(k) that converge weakly to the r1 nonzero eigenvalues
of �y , since Cy(k) ⇒ �y and the ordered eigenvalues are continuous functions of the coef-
ficient matrix (Lemma 2 of Anderson et al. (1983)), and applying the continuous mapping
theorem, the ordered eigenvalues of Cy(k) converge weakly to those of �y . We will give
a standard chi-square test for the number of common factors, stationary or not, in the next
section.

(2) Similar results are found if we use generalized sample second moment matrices,
Ay(k) = 1

T 2d

∑T
t=1yty′

t , instead of generalized covariance matrices. In this case Ay(k) ⇒
P1�(1)�1/2

1

∫
Fd−1(r)Fd−1(r)

′ dr(�1/2
1 )′�(1)′P′

1.
(3) The results in Phillips and Durlauf (1986) and Chan and Wei (1988) apply to processes

that satisfy more general assumptions of the innovations than the ones needed here. In
particular, these results can be generalized to the case where the innovations present certain
degree of heteroskedasticity.

(4) The theorem can be extended in a straightforward way to other models. For example,
consider the model y

j
t = ft + e

j
t (j = 1, 2, . . . , m) in which ft is a random walk with,

for simplicity, unit residual variance (ft = ft−1 + at ; var(at ) = 1) and the variance of
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the matrix of the serially uncorrelated process et = (e1
t , e

2
t , . . . , e

m
t )′ is nondiagonal. It

can be easily shown (in a similar way to the demonstration of the theorem given) that
1

T 2

∑T
t=k+1(yt−k − y)(yt − y)′ ⇒ 1

(∫ 1
0 V 2

0 (r) dr
)

1′, where V0(s) = W(s) − ∫ 1
0 W(�) d�,

W(s) is the scalar Brownian motion and 1=(1, 1, . . . , 1)′, since all the stationary terms and
the cross products between a stationary and a nonstationary term converge in probability to
zero. The only relevant part at this point are the nonstationary terms. For the same reason,
this result can be extended to the case where e

j
t (j = 1, 2, . . . , m) exhibits stationary serial

correlation.
(5) We have assumed the same order of integration for all the series. This assumption can

be easily relaxed. For instance, consider the following trivariate model, that we will call
example 1, yj

t = f 1
t + e

j
t (j = 1, 2) where (1 −B)2f 1

t = a1
t (assume also for simplicity that

var(a1
t ) = 1) and y3

t = f 2
t + e3

t where f 2
t is a random walk also with unit residual variance

(f 2
t = f 2

t−1 + a2
t ; var(a2

t ) = 1). Obviously the first column of the factor loading matrix is
the vector p1 = (1, 1, 0)′. It can be shown in a similar way as it is done to prove Theorem
1 that the generalized covariance matrices of yt , that is, 1

T 4

∑T
t=k+1(yt−k − y)(yt − y)′ ⇒

p1

(∫ 1
0 V 2

1 (�) d�
)

p′
1 with V1(�) now a scalar process.

The next theorem describes the convergence results when the stochastic process of the
common factors has drifts.

Theorem 2. For the nonstationary factor model given by (1), (2) and (4) with d1 �= 0 and
defining Cy(k) as in (3) with d ′ = 1, for k = 0, 1, . . . , K , such that when T → ∞, K

T
→ 0,

Cy(k)
p→ qP1d1d′

1P′
1 (6)

where q is a constant that depends on d.

Proof. See the appendix. �

Remark. Theorems 1and 2 prove that the asymptotic behavior of the generalized sample
second moment matrices depend on whether or not the stochastic process of the common
factors has a drift. In this last case, these matrices are Op(T

2d) and converge weakly to
matrices of rank r1. With a drift different from zero, the deterministic part dominates the
convergence results, these matrices are O(T 2d+1) and converge to matrices of rank 1.

4. A chi-square tests for the number of factors

We have seen in Section 3 that when d1 = 0, the sample second moment matrices,
conveniently normalized, converge to random matrices of rank r1 in the nonstationary case.
From Peña and Box (1987) we already know that in the stationary case the population
autocovariance matrices are of rank r = r2. So the next step will be to test the rank of
these matrices. This task has been accomplished previously in the literature. In fact, Tiao
and Tsay (1989) also check the rank of some moment matrices for both the stationary and
nonstationary cases using a canonical correlation analysis and a chi-square statistic.
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We will use canonical correlation analysis to detect the rank of the sample lagged second
moment matrices. To fix ideas, consider first the case of zero mean stationary time series
and let �y(k) = E(yt−ky′

t ), m × m, and �f (k) = E(ft−kf ′
t ), r × r, be the lagged k second

moment matrices of yt and ft . The relation between them is

�y(k) = P�f (k)P′ (7)

for all k �= 0. Throughout this section we will use the identification restriction P′P=I, since
it will simplify all the proofs. Therefore, rank(�y(k)) = rank(�f (k)) = r . Since relation
(7) is true for all k �= 0, there exists a m × (m − r) matrix P⊥, such that for all k �= 0,

�y(k)P⊥ = P�f (k)P′P⊥ = 0. (8)

For instance, P⊥ can be built by using the m−r linearly independent eigenvectors associated
to the m − r zero eigenvalues of �y(k). The condition in (8) also implies that the m − r

independent linear combinations of the observed series given by P′⊥yt are cross and serially
uncorrelated for all lags k �= 0. Also these linear combinations will be uncorrelated to
P′⊥yt−k . Consider now the m × m matrix

M(k) = [E(yty′
t )]−1E(yty′

t−k)[E(yt−ky′
t−k)]−1E(yt−ky′

t ). (9)

The number of zero canonical correlations between yt−k and yt is given by the number of
zero eigenvalues of the matrix defined in (9) and since rank(M(k)) = rank(�y(k)) = r , this
number is m − r . Thus, the number of common factors, r, is equivalent to the number of
nonzero canonical correlations between yt−k and yt .

Consider now the finite sample case in which T observations are available. The squared
sample canonical correlations between yt−k and yt are the eigenvalues of

M̂1(k) =
[

T∑
t=k+1

(yty′
t )

]−1 T∑
t=k+1

(yty′
t−k)

[
T∑

t=k+1

(yt−ky′
t−k)

]−1 T∑
t=k+1

(yt−ky′
t ). (10)

We will see that under certain conditions, given yt stationary or not, the limit of M̂1(k) exists
as the sample size T goes to infinity and that M̂1(k) has m − r eigenvalues that converge in
probability to zero.

Theorem 3. For the r common factors model presented in Section 2, with r1 nonstationary
common factors given by Assumption 1, let M̂1(k) be defined as in (10), for k=0, 1, . . . , K ,
such that K < T . Then, the limit of M̂1(k) exists as the sample size T goes to infinity for
all k = 0, 1, . . . , K , such that K/T → 0. Moreover M̂1(k) has m − r eigenvalues that
converge in probability to zero.

Proof. See the appendix. �

Remarks. As for Theorem 1, the order of integration of the nonstationary factors does
not need to be the same. Assume that the r1 common nonstationary factors have orders
of integration di , i = 1, . . . , r1, where di is a positive integer. Then using the matrix D =
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diag( 1
T d1

, . . . , 1
T

dr1
, 1

T 1/2 , . . . , 1
T 1/2 ) in the proof, it can be shown in a similar way that

M̂1(k) has m − r eigenvalues that converge in probability to zero.

Based on this result we propose the following chi-square test for the number of factors.

Lemma 1. Consider the factor model given by (1) and (2) with r common factors, that can
be nonstationary, let �̂1 � �̂2 � · · · � �̂m be the ordered eigenvalues of the matrix M̂1(k)

given by (10). Then, the statistic

Sm−r = −(T − k)

m−r∑
j=1

log(1 − �̂j ) (11)

is asymptotically a �2
(m−r)2 .

Proof. See the appendix. �

Remarks. (1) The limiting distribution is in agreement to what is found for the case of
i.i.d observations. The result of this lemma is also in the line of Robinson (1973) to test
for zero canonical correlation of stationary time series. This result was modified for Tiao
and Tsay (1989) to test for scalar component models (SCM) by dividing each eigenvalue
by the maximum possible variance that the sample cross correlation might have in the
case of SCM. In our case, the variance of the cross correlation associated to white noise
canonical variates is correctly specified as 1/(T − k) and we do not need to standardize
all the eigenvalues. Johansen (1991) for the cointegration rank of a vector autoregressive
(VAR) model and Reinsel and Ahn (1992) for the number of unit roots in reduced rank
regression models use a similar statistic but with nonstandard asymptotic theory to test for
zero canonical correlations between the levels of the variables and their first differences
corrected both of them for serial correlation.

(2) The lag k used to perform the test is important. For instance, if the r common factors
follow a moving average process of order q, MA(q), then the observed series follow a
MA(q) process as well. Therefore, if we use k =q + 1, we will find that the number of zero
canonical correlations is greater than m − r . To overcome this difficulty one can perform
the test for increasing k = 1, 2, . . .

The performance of the test is shown through the following set of simulations. From now
on, we will denote by (m, r, p, q) a model for m observed series generated by r common
factors which follow a vector ARMA(p, q) model. The first generating process we use is
a factor model with three series, one common nonstationary factor I (1) and no specific
components. The system matrices are P′ = (1, 1, 1)′, �e = I3, the factor is a random walk
and �2

a =1. We denote this model as (3,1,1,0). The second generating process has also three
series and one common factor, but now the factor model is I(2), (1−B)2ft =at .This model
is denoted as (3,1,2,0). The third generating process consists of six series and three common
nonstationary factors I (1) so that the series are I (1). The system matrices are P =[p1p2p3]
where p′

1 = (1, 1, 0, 1, −1, 0), p′
2 = (0, 1, 1, 0, 1, −1), p′

3 = (1, 0, 0, 0, 1, 1); �e = I6 and
the factors are autoregressive of order 1, AR(1), with �1 = I3 and �a = I3. We denote this
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Table 1
Number of times in which the hypothesis of r common factors is rejected for models (3,1,1,0) and (3,1,2,0)

Model r lag k

1 2 3 4 5

(3,1,1,0) 0 1000 1000 1000 1000 1000
1 47 55 48 53 37
2 6 5 4 1 6

(3,1,2,0) 0 1000 1000 1000 1000 1000
1 47 61 47 44 50
2 2 3 4 3 0

Table 2
Number of times the hypothesis of a maximum of r common factors is rejected for models (6,3,1,0) and (6,3,2,0)

Model r lag k

1 2 3 4 5

(6,3,1,0) 0 1000 1000 1000 1000 1000
1 1000 1000 1000 1000 1000
2 1000 1000 1000 999 998
3 67 44 31 39 27
4 6 0 0 0 1
5 0 0 0 0 0

(6,3,2,0) 0 1000 1000 1000 1000 1000
1 1000 1000 1000 1000 1000
2 1000 1000 1000 999 993
3 55 53 50 35 23
4 1 2 2 0 3
5 1 0 0 1 0

model as (6,3,1,0). Finally, the fourth generating process is a slight modification of the third
one, being the second common factor the I(2) process (1 − B)2ft = at . We denote this
model as (6,3,2,0). The number of replications in each simulation was 1000. In all three
simulations, the sample size was T = 200; we generated 1000 observations and discarded
the first 800 to lessen the dependence of the initial conditions.

The performance of the proposed test for testing for r factors is shown in Table 1 for
the first two models and in Table 2 for the last two ones. Testing that the series have r
common factors is equivalent to testing the assumption that there are m − r zero canonical
correlations between yt and yt−k , i = 1, . . . , m. Note that if we accept that m− r canonical
correlation coefficients are equal to zero (r factors) we will always accept with this test that
m− r − 1 will be equal to zero (r + 1 factors). Thus, the test should be applied sequentially
as a test on the maximum number of factors and stop as soon as the hypothesis is rejected. In
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column 1 we describe the model used to generate the data by (m, r, p, q), column 2 includes
the maximum number of factors tested, and the rest of the columns indicate the lag k used
to perform the test. By rows, from the third column onwards, we give the number of times
that the hypothesis of a maximum of r common factors was rejected at the 5% significance
level using the chi-squared statistic of Lemma 1.

Table 1 shows that the hypothesis of zero common factors is always rejected, indicating
a power of the test equal to 1 for both models. The proportion of times the hypothesis of
one common factor is rejected goes from 3.7% to 5.5% for model (3,1,1,0), and from 4.4%
to 6.1% from model (3,1,2,0), indicating that the empirical size of the test seems to be
appropriate. The hypothesis of a maximum of two factors is almost always accepted, as
expected.

Table 2 contains the same information for models (6,3,1,0) and (6,3,2,0). The table is
read as Table 1.

The test seems to be very powerful to detect the number of factors and the size of the test
obtained when r =3 is close to the nominal 5%. Also, notice that the test can handle factors
with different orders of integration without any modification since we seek for stationary
linear combinations.

5. A proposed methodology

5.1. Identification of the number of factors

The procedure we propose will give us the number of stationary and nonstationary com-
mon factors, as well as a first estimation of the factor loading matrix and the time series of
the common factors. We assume that the common factors do not have drifts for the reason
given in Peña (1995). If that was not the case, one could subtract the deterministic part from
the observed series and then apply the following methodology.

Step 1: Build the matrix M̂1(k) in (10) for the variables yt and yt−k , k = 1, 2, . . . , K .
Compute their eigenvalues and sort them in ascending order. Compute the test statistic
defined in (11) for increasing r and compare it with a�2

(m−r)2 for a certain level of significance

�. Reject a maximum of r common factors if the statistic is greater than the �2
(m−r)2 for the

level of significance �.
Step 2: Compute the generalized covariance matrices for yt , Cy(k), k = 1, 2, . . . K, and

their eigenvalues and eigenvectors. Sort them in descending order. The number of common
stable eigenvectors should be r . An initial estimation of the factor loading matrix P̂0 (the
final estimation will be obtained by maximum likelihood) could be the r first eigenvectors
of the generalized covariance matrix for lag k = 1 and the initial estimation of the common
factors is given by f̂0 = (̂P0)′yt .

Step 3: Analyze the univariate time series of the common factors f̂0 to decide how many
of them are nonstationary and their order of integration.

Remarks. (1) An alternative initial estimator of P could be the mean of the r eigenvectors
associated to the r largest eigenvalues of the first K generalized covariance matrices. How-
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ever, we have not observed a clear advantage with respect to the simplest method of taking
the first r eigenvectors of the generalized covariance matrices for k = 1.

(2) Sometimes, the common eigenvectors associated to the stationary factors may not
appear clearly because they are associated to zero eigenvalues and they might not be ex-
tracted always in the same order. A more complicated alternative procedure to solve this
problem is as follows. Let r2 = r − r1 the common eigenvectors of the matrices �y(k),
now associated to the common stationary factors and to zero eigenvalues of these matrices.
The remaining m − r eigenvectors are not common. Let P⊥

1 be a matrix of the null space
of P1. The m × r2 matrix P2 is formed by r2 columns of P⊥

1 . To find out which ones, first
we project yt over P⊥′

1 P⊥
1 . This is the same as estimating the nonstationary factors through

P′
1yt and subtracting them from the observed series. (If P′P �= I, this should be equivalent

to estimating the nonstationary factors through (P′
1P1)

−1P′
1yt and subtracting them from

the observed series). Define a new set of variables y∗
t as

y∗
t = yt − P1P′

1yt . (12)

The auxiliary variables y∗
t are also equal to P2f2,t + e∗

t , where e∗
t = P⊥′

1 P⊥
1 et . Let �∗

y(k),
m×m, be the lagged k covariance matrices of the new variables y∗

t , and �f2(k), r2 × r2, the
lagged k covariance matrix of the common stationary factors. The relation between them is

�∗
y(k) = P2�f2(k)P′

2 if k �= 0. (13)

Extract the principal components of �∗
y(k). We give a first estimation of P2, denoted by P̂0

2,
as the first r2 eigenvectors of the lagged covariance matrix for k = 1. Finally, we give an
estimation of the common stationary factors as (̂P0

2)
′yt .

(3) We have assumed that the order of integration of all the series was the same. This
assumption can be relaxed. If the series have different orders of integration, and we want to
proceed as in Remark (2), first, we have to identify the number of nonstationary factors with
the highest order of integration; then, project the series over the subspace spanned by these
factors and subtract it from the original series defining a new set of variables which will be
of a lower order of integration than the original ones; identify the new order of integration
and apply the same technique. Proceed in a similar way until all the common factors have
been extracted.

5.2. Estimation

Model estimation is carried out by maximum likelihood, writing the model in state space
form. The vector of observable time series yt , is assumed to be generated by the measurement
equation,

yt = P̃zt + �,

where the state space vector has dimension s and E(�t ) = 0, E(�t�
′
t ) = �� and E(�t�

′
�) = 0

if t �= �. The state space vector zt is driven by the transition equation,

zt = Gzt−1 + ut
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with E(ut ) = 0, E(utu′
t ) = �u and E(utu′

�) = 0 if t �= �. Both noises, �t and ut , are also
uncorrelated for all lags, E(�tu′

�)=0 for all t and �. To write an ARMA(p, q) model in state
space form, a state vector of dimension max(p, q + 1) (e.g. Akaike, 1974; Gardner et al.,
1980; Ansley and Kohn, 1983) gives a minimal representation with uncorrelated errors in
the transition and measurement equations. The dimension of the state vector can be reduced
if we allow for correlation between the error terms in the transition and measurement
equations. In our case, the state vector, zt , will contain lagged and contemporaneous factors
and will have dimension R1 + R2, where R1 is the number of elements of the state vector
associated to the common nonstationary factors, and R2 are the components of the state
vector linked to the stationary common factors. The matrix P̃ typically contains the elements
of P and zeros. For example if there is an AR(2) stationary factor f2,t that loads into the
series through the m × 1 vector p, the state vector has two components associated to this
factor (f2,t and f2,t−1) and the columns of the P̃ matrix are p and 0m×1.

Estimation of the model by maximum likelihood can be done by the EM algorithm of
Dempster et al. (1977) or through the scoring algorithm. Watson and Engle (1983) compared
both algorithms for estimation of state space models. The estimation through the scoring
algorithm is more tedious, but one can obtain as a by-product the standard error of all the
estimates of the parameters in the model and it permits joint estimation in the case of specific
components. The EM algorithm was also proposed for state space models by Shumway and
Stoffer (1982) andWu et al. (1996), among others. See also Koopman (1993), Harvey (1989),
Shumway and Stoffer (2000) and Durbin and Koopman (2001) for application details of the
EM algorithm. Further studies show how the precision of the parameter estimates can be
assessed. For instance, Stoffer and Wall (1991) propose to use bootstrap techniques while
Cavanaugh and Shumway (1996) give a recursive algorithm to compute the expected Fisher
information matrix.

To run either of the algorithms we first proceed as follows: (i) Set the number of nonsta-
tionary and stationary common factors and P as it was discussed previously. (ii) Set G by
writing the ARMA model for the factors as the transition equation of the state space model.
(iii) Set the initial condition for the state vector as z1 = P̃−y1 where P̃− is a generalized
inverse of P̃ and its covariance matrix as �I with � great enough. (See, for instance, Harvey,
1989 for details about the selection of �). (iv) Set �ε = I or any diagonal matrix. (v) In this
paper, we will impose for identification purposes at the estimation stage that �a = I (this
restriction excludes the case where a common factor is just a constant which is not analyzed
here) and pij = 0, for j > i.

6. A real data example

Data consists of 238 observations, from June 1982 until March 2002, of four time series
of Spanish interbank interest rates: one day r1, three months r90, six months r180, and one
year r365, interest rates. Fig. 1 shows a graph of the series. We will identify the number of
common factors and obtain an initial estimate for the factor loading matrix and the common
factors using Steps 1 through 3 of the proposed automatic procedure.

Step 1: We apply the test of Section 4 for k = 1–5 and obtain the results shown in Table
3. The entries of the table are the values of the S statistic for each lag k. These values are
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Fig. 1. Graphs of the four series of Spanish interbank interest rates.

Table 3
Outcome of the test of Section 4 for the number of factors

r lag k

1 2 3 4 5

0 79.2∗ 61.2∗ 52.3∗ 47.5∗ 43.3∗
1 29.8∗ 16.6∗ 11.3 9.7 7.8
2 9.13 4.9 4.9 7.0 4.4
3 0.3 0.2 0.3 0.7 0.2

An asterisk indicates that the null of a maximum of r common factors was rejected at the 5% significance level.

used to test a maximum of r common factors and should be compared to a �2 with (m− r)2

degrees of freedom. We perform the test sequentially for increasing r, for k = 1–5. For any
lag k we reject a maximum of zero common factors, therefore there is at least one common
factor very persistent (probably nonstationary); a second factor appears for the first two
lags indicating the possibility of a second common stationary factor (its autocorrelation
dies faster than for the first factor). Therefore, the number of common factors is two, with
the first one possible nonstationary and the second one possible stationary.
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Table 4
First and second eigenvalues and associated eigenvectors for the first six generalized covariance matrices associated
to the interest rates data

1st eigenvalue and eigenvector 2nd eigenvalue and eigenvector

k 0 1 2 3 4 5 k 0 1 2 3 4 5

102�̂ 0.52 0.51 0.50 0.49 0.48 0.47 104�̂ 0.36 0.27 0.23 0.22 0.20 0.17

v 0.50 0.50 0.50 0.50 0.50 0.50 v −0.78 −0.75 −0.77 −0.78 −0.80 −0.78
e 0.50 0.50 0.50 0.50 0.50 0.50 e −0.03 −0.09 −0.09 −0.05 −0.04 −0.00
c 0.50 0.50 0.50 0.50 0.50 0.50 c 0.27 0.26 0.26 0.27 0.29 0.31
t 0.49 0.49 0.50 0.50 0.50 0.50 t 0.55 0.60 0.60 0.58 0.54 0.51

Step 2: To provide an initial estimator of the factor loading matrix and the common factors,
we build the generalized covariance matrices. The first two eigenvalues and associated
eigenvectors for the generalized lagged covariance matrices Cy(k), for k = 0, 1, . . . , 5 and
d = 1 are shown in Table 4. The second row of each matrix shows the lag considered, the
third row shows the eigenvalue and rows 4–7 show each component of the corresponding
eigenvector.

As it was pointed out in Section 5, we use as pre-estimation of the loading matrix, the
eigenvectors associated to lag k=1. Our initial estimate of the factor loading matrix is P̂0 =
[̂p0

1p̂0
2] where (̂p0

1)
′ = (0.50, 0.50, 0.50, 0.49) and (̂p0

2)
′ = (−0.75, −0.09, 0.26, 0.60). With

this matrix we calculate a first estimation of the common factors as
f̂0 = (̂P0)′̂̃yt .

Step 3: The analysis of the plots and the correlation structure of the factors time series
shows that clearly the first one is nonstationary and there are some doubts about the second
one. The outcome of the augmented Dickey–Fuller (ADF) unit root test for the pre-estimated
common factors were −1.10 and −3.44, respectively. Compared with a critical value of
−2.88 a unit root cannot be rejected at the usual 5% significance level for the first common
factor.

We conclude that there is one common nonstationary factor and one common stationary
factor. Then the EM algorithm is applied assuming as initial condition P̂0 for the factor
loading matrix. For identification purposes we interchange series one and two and on the
original matrix we restrict p22 = 0. The estimated model is given by yt = Pf t + et and
ft = �ft−1 + at with the following estimates for the system matrices P̂ = [̂p1p̂2], p̂1 =
(0.52, 0.52, 0.51, 0.48) and p̂2 = (−0.16, 0, 0.14, 0.31); �̂ = diag(1, 0.925), �a = I and
�̂e = diag(0.9547, 0.0042, 0.0155, 0.0051).

Our results are similar to those given in Engle and Granger (1987), Stock and Watson
(1988), Hall et al. (1992) and Reinsel and Ahn (1992) for USA interest rates who found one
common nonstationary factor. Zhang (1993) found three common nonstationary factors in
a bigger set of series. In this application, we find two common factors, one related to the
general level of the series which is roughly the average of the four and is nonstationary,
and a second one which measures the difference between the short and the long run and is
stationary.
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Appendix

Proof of Theorem 1. (From now on 0 is a vector or a matrix of appropriate dimensions.)
(i) Replacing yt , expressed as in (1), in Eq. (3) with d ′ = 0, we have

Cy(k) = 1

T 2d

T∑
t=k+1

(yt−k − ȳ)(yt − ȳ)′

= P

(
1

T 2d

T∑
t=k+1

(ft−k − f̄)(ft − f̄)′
)

P′ + P
1

T 2d

T∑
t=k+1

(ft−k − f̄)e′
t

+
(

1

T 2d

T∑
t=k+1

et−k(ft − f̄)′
)

P′ + 1

T 2d

T∑
t=k+1

et−ke′
t

= P1

(
1

T 2d

T∑
t=k+1

(f1,t−k − f̄1)(f1,t − f̄1)
′
)

P′
1 + op(1), (A.1)

where f̄1=1/T
∑T

t=1f1,t . Since et is white noise, 1
T 2d

∑T
t=k+1et−ke′

t

p→ 0m×m. In fact, all the
cross products of stationary terms are op(1) since d �1. For the nonstationary factors, it will

be shown that 1
T 2d

∑T
t=k+1(f1,t−k − f̄1)e′

t

p→ 0. Let �i,j = 1
T 2d

∑T
t=k+1(f

i
1,t−k − f̄ i

1 )e
j
t , for

i = 1, . . . , r1, j = 1, . . . , m, where f i
j,t stands for the ith component of vector fj,t , j = 1, 2,

and ei
t for the ith component of et . It will be shown that �i,j

p→ 0, for all i = 1, . . . , r1 and

j = 1, . . . , m. Each �i,j is bounded from above since, calling M �max1� t �T |ej
t |,

1

T 2d

T∑
t=k+1

(f i
1,t−k − f̄ i

1 ) e
j
t � 1

T 2d

T∑
t=k+1

(f i
1,t−k − f̄ i

1 )|ej
t |

� 1

T 2d

T∑
t=k+1

(f i
1,t−k − f̄ i

1 ) max
1� t �T

|ej
t |

� M

T 2d

T∑
t=k+1

(f i
1,t−k − f̄ i

1 )

= M

T d−1/2

1

T d+1/2

k

T

T∑
1

f i
1,t .

From Tanaka (1996), 1
T d+1/2

∑T
t=1f

i
1,t is Op(1), therefore �i,j

p→ 0, and 1
T 2d

∑
(f1,t−k −

f̄1)et
p→ 0. The proof of 1

T 2d

∑T
t=k+1(f1,t−k − f̄1)(f2,t − f̄2)

′ p→ 0r1×r2 goes as before, with

f2,t − f̄2 instead of et and M �max1� t �T |f j
2,t − f̄

j
2 |.

From (4), and following the notation in Tanaka (1996, p. 99), the I (d) factors, f1,t

can also be expressed as f1,t = f (d)
1,t = f (d−1)

1,t + f (d)
1,t−1 = ∑t

j=1f (d−1)
1,j , where {f (d−1)

1,t }Tt=1
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is an I (d − 1) process recursively defined in the same way, with f (0)
1,t = u1,t . With this

notation,f1,t−k = f1,t −∑k−1
i=0 f (d−1)

1,t−i , so

1

T 2d

T∑
t=k+1

(f1,t−k − f̄1)(f1,t − f̄1)
′

= 1

T 2d

T∑
t=k+1

(f1,t − f̄1)(f1,t − f̄1)
′ − 1

T 2d

T∑
t=k+1

(
k−1∑
i=0

f (d−1)
1,t−i

)
(f1,t − f̄1)

′. (A.2)

From Chan and Wei (1988) and Tanaka (1996, Sections 3.8 and 3.10),
∑

f (d−1)
1,t−i f ′

1,t is

Op(T
2d−1) for finite i and i small enough compared to T ; also

1

T d+1/2

T∑
t=1

f1,t ⇒ �(1)�1/2
1

∫ 1

0
Fd−1(�) d�,

1

T 2d

T∑
t=1

f1,t f ′
1,t ⇒ �(1)�1/2

1

∫ 1

0
Fd−1(�)Fd−1(�)

′ d�(�1/2
1 )′�(1)′,

where Fd(�) is defined as in (i). By the continuous mapping theorem (Billingsley, 1968)

1

T 2d

T∑
t=1

(f1,t − f̄1)(f1,t − f̄1)
′

⇒ �(1)�1/2
1

∫ 1

0
Vd−1(�)Vd−1(�)

′ d�(�1/2
1 )′�(1)′ (A.3)

with Vd(�)=Fd(�)−∫ 1
0 Fd(�)d�. Partitioning P as [P1P2], where P1 is the m×r1 submatrix

associated to the common nonstationary factors, and P2 is the m × r2 submatrix associated
to the common stationary ones, and by the continuous mapping theorem (Billingsley, 1968)

Cy(k) ⇒ P1�(1)�1/2
1

∫ 1

0
Vd−1(�)Vd−1(�)

′ d�(�1/2
1 )′�(1)′P′

1 = P1�f1 P′
1 = �y,

where �f1 = �(1)�1/2
1

∫ 1
0 Vd−1(�)Vd−1(�)′ d�(�1/2

1 )′�(1)′. Notice that matrix L = �1/2
1

(
∫ 1

0 V(r)V(r)′ dr)(�1/2
1 )′ is a nondiagonal matrix and that all generalized covariance ma-

trices (for lag 0, as well as, for lag k, finite) have the same limiting distribution.
To prove part (ii), notice that (see, for instance, Hamilton, 1994, p. 546) for the non-

stationary variables f1,t defined in (4), the matrix ST = 1
T 2d

∑
(f1,t − f̄1)(f1,t − f̄1)

′ ⇒
�(1)�1/2

1

∫
Vd−1(r)Vd−1(r)

′ dr(�1/2
1 )′�(1)′ =�(1)L�(1)′. The eigenvalues of the limit-

ing sequence ST , are all greater than zero, since this is always a positive definite symmetric
matrix as it can be easily seen using equality (A.4) given in Bellman (1960, p. 49), for
s = 1, 2, . . . , r1, which it is used to show that all principal minors of ST have determinants
strictly greater than zero, so ST is positive defined. Let xi , i = 1, 2, . . . , s be the set of
T-dimensional vectors, T �s, given by xi = f i

1 − f̄ i
1 1, where f i

1 = (f i
1,1, f

i
1,2, . . . , f

i
1,T )′
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is the ith sample common nonstationary factor, of dimensions T × 1, f̄ i
1 = 1/T

∑T
j=1f

i
1,j

and 1′ = (1, . . . , 1) is the T × 1 vector of ones. Then,

|(xi, xj )|i,j=1,2,...,s = 1

s!
∑
{is }

∣∣∣∣∣∣∣∣∣∣∣

x1
i1

x1
i2

· · · x1
is

x2
i1

x2
i2

· · · x2
is

...
...

...

xs
i1

xs
i2

· · · xs
is

∣∣∣∣∣∣∣∣∣∣∣

2

, (A.4)

where (xi, xj ) = ∑T
k=1x

i
kx

j
k is the i, j element of the left-hand side matrix of the above

equation,whose determinant we are calculating and the sum goes over the whole set of
integers, {is}, con 1� i1 � i2 � · · · � is �T .

Now, we are going to show that N = ∫ 1
0 Vd−1(�)Vd−1(�)′ d� is nonsingular almost sure.

Let

	 =
{

w: W(w, t) is the standard r1 dimensional Brownian motion
with continuos and nondifferentiable paths for 0� t �1

}
.

Since W(w, t) is the standard Brownian motion, �w ∈ 	 and a = (a1, . . . , ar1)
′ �= 0

such that a′W = 0, (recall that the variance–covariance matrix of W(w, t) is the identity).
Also P(	) = 1. Let V

j
g (w, �) be the j th component of the process Vg(w, �), for g =

0, 1, . . . , d−1, we will show that N=N(w) is nonsingular for any w ∈ 	. If not, there exists

c = (c1, . . . , cr1)
′ �= 0 and w ∈ 	 such that c′Nc = 0, or

∫ 1
0

(∑r1
j=1cjV

j
d−1(w, �)

)2
d�.

Since
∑r1

j=1cjV
j
d−1(w, �) is a continuous function in � it must happen for the previous

integral to be equal to zero that
∑r1

j=1cjV
j
d−1(w, �) = 0, for 0���1. Since c �= 0, ∃

ci �= 0, such that V i
d−1(w, �) = 1

ci

∑r1
j=1,j �=icjV

j
d−1(w, �). But for each realization of

Vd−1(w, �) = Fd−1(w, �) − ∫ 1
0 Fd−1(w, �) d�; this means that

F i
d−1(w, �) −

∫ 1

0
F i

d−1(w, �) d� = 1

ci

×
r1∑

j=1,j �=i

cj

(
F

j
d−1(w, �) −

∫ 1

0
F

j
d−1(w, �)d�

)
or

F i
d−1(w, �) = 1

ci

r1∑
j=1,j �=i

cjF
j
d−1(w, �) − H,

where H =1/ci

∑r1
j=1,j �=icj

∫ 1
0 F

j
d−1(w, �) d�−∫ 1

0 F i
d−1(w, �) d�. Now the technique used

in the proof of Lemma 3.1.1 of Chan and Wei (1988) can be employed to prove the result.
Notice that differentiating d −1 times H is equal to zero. Therefore N is nonsingular almost
sure and by (5) has r1 strictly positive eigenvalues almost sure and m − r1 equal zero.
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(iii) The spectral decomposition of matrix L for each realization, leads to L=B�B′, where
B is orthogonal. Then �y = A�A′, where A = P1B, A′A = I and � has its r1 eigenvalues
different from zero. Therefore, the number of zero eigenvalues of �y is m−r1. The columns
of A are eigenvectors of �y and they span the same linear subspace as the columns of P1.
�

Proof of Theorem 2. Again, following the notation in Tanaka (1996, p. 99), we can write

f1,t = f (d)
1,t = f (d)

1,0 +
d−1∑
h=1

f (d−h)
1,0

t∑
�=1

�h−1 + c1

t∑
�=1

�d−1 +
t−1∑
i1=1

t−i1−1∑
i2=1

· · ·
t−i1−i2−···id−1−1∑

id=1

f (0)
1,t−i1−i2−···id . (A.5)

Therefore f1,t = Op(
∑t

�=1�
d−1). Notice that

∑t
�=1�

d−1 = O(td). In a similar way to (A.1)
we can prove that

Cy(k) = P1

(
1

T 2d+1

T∑
t=k+1

(f1,t−k − f̄1)(f1,t − f̄1)
′
)

P′
1 + op(1). (A.6)

And analogously to (A.2)

1

T 2d+1

T∑
t=k+1

(f1,t−k − f̄1)(f1,t − f̄1)
′

= 1

T 2d+1

T∑
t=k+1

(f1,t − f̄1)(f1,t − f̄1)
′

− 1

T 2d+1

T∑
t=k+1

(
k−1∑
i=0

f (d−1)
1,t−i

)
(f1,t − f̄1)

′. (A.7)

Notice that the stochastic part in (A.7) is Op(T
2d) by Theorem 1; and by (A.5) f̄1 =

1
T

∑T
t=1 f1,t = Op(T

d) and f (d−1)
1,t−i is Op(T

d−1) for finite i and i small enough compared to

T . Therefore
∑T

t=k+1(f1,t − f̄1)(f1,t − f̄1)
′ is Op(T

2d+1). Moreover, by (A.5) and (A.7)

Cy(k) = P1

(
1

T 2d+1

T∑
t=k+1

(f1,t−k − f̄1)(f1,t − f̄1)
′
)

P′
1 + op(1)

p→ qP1d1d′
1P′

1,

where q is a constant that depends on d . �

Proof of Theorem 3. Define 
̂
+
(k) = [∑T

t=k+1(yty′
t )]−1∑T

t=k+1(yty′
t−k) and 
̂(k) =

[∑T
t=k+1(yt−ky′

t−k)]−1∑T
t=k+1(yt−ky′

t ), and denote their limits (if they exist) when T goes
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to infinity as 
+(k) and 
(k), respectively. Therefore M̂1(k) = 
̂
+
(k)
̂(k). Define also

zt = DQ′yt , where Q = [P P⊥] is such that P′P⊥ = 0 and P′⊥P⊥ = Im−r , and D as

D =
⎡⎣ 1

T d Ir1 0 0

0 1
T 1/2 Ir2 0

0 0 1
T 1/2 Im−r

⎤⎦ . (A.8)

Notice that Q′ = Q−1 and that M̂1(k) can also be written as

M̂1(k) = QD

[
T∑

t=k+1

(ztz′
t )

]−1 T∑
t=k+1

(ztz′
t−k)

[
T∑

t=k+1

(zt−kz′
t−k)

]−1

×
T∑

t=k+1

(zt−kz′
t )D

−1Q′.

In this appendix, it is shown that for d1 = 0, M̂1(k) converges to a matrix that has m − r

eigenvalues equal to zero. First, we will find the limits of
∑T

t=k+1(ztz′
t ),
∑T

t=k+1(zt−kz′
t−k),∑T

t=k+1(ztz′
t−k) and

∑T
t=k+1(zt−kz′

t ). Notice that zt = DQ′yt and taking into account Eq.
(1), then

zt =
⎡⎣ 1

T d (f1,t + P′
1et )

1
T 1/2 (f2,t + P′

2et )
1

T 1/2 P′⊥et

⎤⎦
and therefore

T∑
t=1

(zt z′
t )=⎡⎢⎣

1
T 2d

∑
(f1,t f ′

1,t + P′
1et e′

t P1) 1
T d+1/2

∑
(f1,t f ′

2,t + P′
1et e′

t P2) 1
T d+1/2

∑
(f1,t e′

t P⊥ + P′
1et e′

t P⊥)

1
T d+1/2

∑
(f2,t f ′

1,t + P′
2et e′

t P1) 1
T

∑
(f2,t f ′

2,t + P′
2et e′

t P2) 1
T

∑
(f2,t e′

t P⊥ + P′
2et e′

t P⊥)

1
T d+1/2

∑
(P′⊥et f ′

1t + P′⊥et e′
t P1) 1

T

∑
(P′⊥et f ′

2t + P′⊥et e′
t P2) 1

T

∑
P′⊥et e′

t P⊥

⎤⎥⎦,

where all the summations in the previous matrix go from t = 1 to T . Now, it can be
easily proven, as it was made in Theorem 1, from standard asymptotic results for station-
ary variables and the asymptotic results of Chan and Wei (1988), Phillips and Durlauf

(1986), Tsay and Tiao (1990) and Tanaka (1996), that 1
T

∑T
t=1P′⊥ete′

tP⊥
p→ P′⊥�eP⊥;

1
T

∑T
t=1(f2,t f ′

2,t + P′
2ete′

tP2)
p→ E(f2t f ′

2t ) + P2�eP′
2; 1

T

∑T
t=1(P

′⊥et f ′
2t + P′⊥ete′

tP2)
p→

P′⊥�eP2; 1
T 2d

∑T
t=1(f1,t f ′

1,t + P′
1ete′

tP1) ⇒ �(1)�1/2
1

∫
Fd−1(r)Fd−1(r)

′ dr(�1/2
1 )′�(1)′;

1
T d+1/2

∑T
t=1(f1,t f ′

2,t + P′
1ete′

tP2)
p→ 0; and 1

T d+1/2

∑T
t=1(f1,te′

tP⊥ + P′
1ete′

tP⊥)
p→ 0.

In a similar way, it can be proven that
∑T

t=k+1(zt−kz′
t−k)has the same limiting distribution

as
∑T

t=k+1(ztz′
t ) and that

T∑
t=k+1

(zt z′
t−k) ⇒

⎡⎣�(1)�1/2
1

∫
Fd−1(r)Fd−1(r)′ dr(�1/2

1 )′�(1)′ 0 0
0 E(f2,t f ′

2,t−k
) 0

0 0 0(m−r)×(m−r)

⎤⎦
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and

T∑
t=k+1

(zt−kz′
t ) ⇒

⎡⎣�(1)�1/2
1

∫
Fd−1(r)Fd−1(r)′ dr(�1/2

1 )′�(1)′ 0 0
0 E(f2,t−kf ′

2,t ) 0
0 0 0(m−r)×(m−r)

⎤⎦.
Therefore from the continuous mapping theorem M̂1(k) converges weakly to a random
matrix that has m − r eigenvalues equal to zero. �

Proof of Lemma 1. Since there exist m−r linear combinations of the observed series that
are white noise, it means that there are at least m − r zero canonical correlations between
yt−k and yt . These canonical variates can be estimated as v′

j yt and w′
j yt−k where vj and

wj , j = 1, . . . , m − r , are the eigenvectors associated to the smallest eigenvalues of the
matrices M̂1(k) and

M̂2(k) =
[∑T

t=k+1
(yt−ky′

t−k)

]−1 T∑
t=k+1

(yt−ky′
t )

[∑T

t=k+1
(yty′

t )

]−1∑T

t=k+1
(yty′

t−k),

respectively.
Notice that log(1−�̂j ) � −̂�j for small and positive �̂j and �̂j is the squared of the sample

cross correlation between two canonical variates. The limit distribution of the sample cross
correlations is jointly normal; each cross correlation has asymptotic variance (T − k)−1;
therefore (T −k)̂�j is asymptotically a chi square where T −k is the number of observations
used to compute the cross correlation between the two canonical variates.

The number of degrees of freedom is computed as follows. Denote by Vj and Wj , j =
1, . . . , m−r, the population vectors estimated by the sample vectors vj and wj , respectively.
Testing that 0 is an eigenvalue of multiplicity m − r is equivalent to testing that there are
m − r linear combinations of yt uncorrelated with m − r linear combinations of yt−k . That
is, there are m − r regressions such that Wj = 0m×1 for j = 1, . . . , m − r in the equation

V′
j yt = W′

j yt−k + ut , (A.9)

which gives a total of m(m−r) zero restrictions. Notice now that Vj has to be estimated and
that the subspace associated to the eigenvectors linked to the zero eigenvalues of M1(k) is of
dimension m− r by hypothesis. This means that in each of the vectors Vi , i =1, . . . , m− r

there are r restrictions among its components. Since they are estimated from cross products
of the data, there are (m − r)r restrictions in the cross products and therefore the number
of degrees of freedom of the chi-squared is m(m − r) − (m − r)r = (m − r)2. �
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