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In this article we use projection pursuit methods to develop a procedure for detecting outliers in a multivariate time series. We show that
testing for outliers in some projection directions can be more powerful than testing the multivariate series directly. The optimal directions for
detecting outliers are found by numerical optimization of the kurtosis coefficient of the projected series. We propose an iterative procedure
to detect and handle multiple outliers based on a univariate search in these optimal directions. In contrast with the existing methods, the
proposed procedure can identify outliers without prespecifying a vector ARMA model for the data. The good performance of the proposed
method is illustrated in a Monte Carlo study and in a real data analysis.
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1. INTRODUCTION

Outlier detection in time series analysis is an important
problem because the presence of even a few anomalous data
can lead to model misspecification, biased parameter estima-
tion, and poor forecasts. Several detection methods have been
proposed for univariate time series, including those of Fox
(1972), Chang and Tiao (1983), Tsay (1986, 1988), Chang,
Tiao, and Chen (1988), Chen and Liu (1993), McCulloch and
Tsay (1993, 1994), Le, Martin, and Raftery (1996), Luceño
(1998), Justel, Peña, and Tsay (2000), Bianco, Garcia Ben,
Martínez, and Yohai (2001), and Sánchez and Peña (2003).
Most of these methods are based on sequential detection pro-
cedures. For multivariate time series, Franses and Lucas (1998)
studied outlier detection in cointegration analysis; Tsay, Peña,
and Pankratz (2000) proposed a detection method based on
individual and joint likelihood ratio statistics; and Lütkephol,
Saikkonen, and Trenkler (2004) analyzed the effect of level
shifts on the cointegration rank.

Building adequate models for a vector time series is a diffi-
cult task, especially when the data are contaminated by outliers.
In this article we propose a method for identifying outliers with-
out requiring initial specification of the multivariate model. The
method is based on univariate outlier detection applied to some
useful projections of the vector time series. The basic idea is
simple: A multivariate outlier produces at least a univariate out-
lier in almost every projected series, and by detecting the uni-
variate outliers, we can identify the multivariate ones. We show
that one can often better identify multivariate outliers by apply-
ing univariate test statistics to optimal projections than by using
multivariate statistics on the original series. We also show that
in the presence of an outlier, the directions that maximize or
minimize the kurtosis coefficient of the projected series include
the direction of the outlier, that is, the direction that maximizes
the ratio between the outlier size and the variance of the pro-
jected observations. We propose an iterative algorithm based
on projections to remove outliers from the observed series.
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The article is organized as follows. In Section 2 we intro-
duce some notation and briefly review the multivariate outlier
approach presented by Tsay et al. (2000). In Section 3 we study
properties of the univariate outliers introduced by multivariate
outliers through projection and discuss some advantages of us-
ing projections to detect outliers. In Section 4 we prove that the
optimal directions to identify outliers can be obtained by max-
imizing or minimizing the kurtosis coefficient of the projected
series, and in Section 5 we discuss swamping and masking ef-
fects. In Section 6 we propose an outlier detection algorithm
based on projections. We generalize the procedure to nonsta-
tionary time series in Section 7 and investigate the performance
of the proposed procedure in a Monte Carlo study in Section 8.
Finally, we apply the proposed method to a real data series in
Section 9.

2. OUTLIERS IN MULTIVARIATE TIME SERIES

Let Xt = (X1t, . . . ,Xkt)
′ be a k-dimensional vector time series

following the vector autoregressive moving average (VARMA)
model

�(B)Xt = C + �(B)Et, t = 1, . . . ,n, (1)

where B is the backshift operator such that BXt = Xt−1, �(B) =
I − �1B − · · · − �pBp and �(B) = I − �1B − · · · − �qBq

are k × k matrix polynomials of finite degrees p and q, C is a
k-dimensional constant vector, and Et = (E1t, . . . ,Ekt)

′ is a se-
quence of independent and identically distributed (iid) Gaussian
random vectors with mean 0 and positive-definite covariance
matrix �. For the VARMA model in (1), we have the AR repre-
sentation �(B)Xt = C� + Et, where �(B) = �(B)−1�(B) =
I − ∑∞

i=1 �iBi and C� = �(1)−1C is a vector of constants if
Xt is invertible, and the MA representation Xt = C� +�(B)Et ,
where �(1)C� = C and �(B)�(B) = �(B) with �(B) =
I + ∑∞

i=1 � iBi.
Given an observed time series Y = (Y′

1, . . . ,Y′
n)

′, where
Yt = (Y1t, . . . ,Ykt)

′, Tsay et al. (2000) generalized four types
of univariate outliers to the vector case in a direct manner using
the representation

Yt = Xt + α(B)wI(h)
t , (2)

where I(h)
t is a dummy variable such that I(h)

h = 1 and I(h)
t = 0

if t �= h, w = (w1, . . . ,wk)
′ is the size of the outlier, and Xt fol-
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lows a VARMA model. The outlier type is defined by the ma-
trix polynomial α(B). If α(B) = �(B), then we have a multi-
variate innovational outlier (MIO); if α(B) = I, then we have
a multivariate additive outlier (MAO); if α(B) = (1 − B)−1I,
then we have a multivariate level shift (MLS); and if α(B) =
(I − δIB)−1, then we have a multivariate temporary (or transi-
tory) change (MTC), where 0 < δ < 1 is a constant. An MIO is
an outlier in the innovations and can be interpreted as an inter-
nal change in the structure of the series. Its effect on the time
series depends on the model, and it can affect several consec-
utive observations. An MAO can be due to an external cause,
such us a typo or measurement error, and affects only a sin-
gle observation. An MLS changes the mean level of the series
and thus, it has a permanent effect. An MTC causes an initial
impact, but its effect decreases at a fixed rate in successive ob-
servations. In practice, an outlier may produce a complex ef-
fect, given by a linear combination of the previously discussed
pure effects. Furthermore, different components of Xt may suf-
fer different outlier effects. For instance, an increase in energy
prices can produce a transitory change in one country, without
a permanent effect, and a level shift in another country, with a
permanent effect. An example of this kind of mixed effects is
given in the real data example in Section 9.

The effects of outliers on the innovations are easily obtained
when the parameters of the VARMA model for Xt are known.
Using the observed series and the known parameters of the
model for Xt, we obtain a series of innovations {At} defined
by At = �(B)Yt − C�, where Yt = Xt and At = Et for t < h.
The relationship between the true white noise innovations, Et,
and the computed innovations, At, is given by

At = Et + �(B)wI(h)
t , (3)

where �(B) = �(B)α(B) = I − ∑∞
i=1 �iBi. Tsay et al. (2000)

showed that when the model is known, the estimation of the
size of a multivariate outlier of type i at time h is given by

wi,h = −
(

n−h∑

j=0

�′
j�

−1�j

)−1(n−h∑

j=0

�′
j�

−1Ah+j

)

,

i = I,A,L,T,

where �0 = −I and we use the notation MIO ≡ I, MAO ≡ A,
MLS ≡ L, and MTC ≡ T for subscripts. The covariance matrix
of this estimate is �i,h = (

∑n−h
j=0 �′

j�
−1�j)

−1, and it is easy to
show that the multivariate test statistic

Ji,h = w′
i,h�

−1
i,h wi,h, i = I,A,L,T, (4)

will be a noncentral χ2
k (ηi) random variable with noncentral-

ity parameters ηi = w′�−1
i,h w, for i = I,A,L,T . In particular,

under the null hypothesis H0 : w = 0, the distribution of Ji,h

will be chi-squared with k degrees of freedom. A second sta-
tistic proposed by Tsay et al. (2000) is the maximum compo-
nent statistic defined by Ci,h = max{|wj,i,h|/√σj,i,h : 1 � j � k},
i = I,A,L,T , where wj,i,h is the jth element of wi,h and σj,i,h is
the jth element of the main diagonal of �i,h.

In practice, the time index h of the outlier and the parame-
ters of the model are unknown. The parameter matrices are then

substituted by their estimates, and the following overall test sta-
tistics are defined:

Jmax(i,hi) = max
1≤h≤n

Ji,h and

(5)
Cmax(i,h∗

i ) = max
1≤h≤n

Ci,h, i = I,A,L,T,

where hi and h∗
i denote the time indices at which the maximum

of the joint test statistics and the maximum component statistics
occur.

3. OUTLIER ANALYSIS THROUGH PROJECTIONS

In this section we explore the usefulness of projections of a
vector time series for outlier detection. First, we study the rela-
tionship between the projected univariate models and the mul-
tivariate model. Second, we discuss some potential advantages
of searching for outliers using the projected series.

3.1 Projections of a VARMA Model

We begin with the properties of a univariate series obtained
by the projection of a VARMA series. It is well known that a
nonzero linear combination of the components of the VARMA
model in (1) follows a univariate ARMA model (see, e.g.,
Lütkepohl 1993). Let xt = v′Xt. If Xt is a VARMA(p,q)

process, then xt follows an ARMA(p∗,q∗) model with p∗ � kp
and q∗ � (k − 1)p + q. In particular, if Xt is a VMA(q) se-
ries, then xt is an MA(q∗) with q∗ � q, and if Xt is a VAR(p)

process, then xt follows an ARMA(p∗,q∗) model with p∗ � kp
and q∗ � (k − 1)p. A general form for the model of xt is

φ(B)xt = c + θ(B)et, (6)

where φ(B) = |�(B)|, c = v′�(1)∗C, and v′�(B)Et = θ(B)et ,
where �(B)∗ is the adjoint matrix of �(B), �(B) = �(B)∗ ×
�(B), and et is a scalar white noise process with variance σ 2

e .
The values for θ(B) and σ 2

e can be obtained using the algorithm
proposed by Maravall and Mathis (1994) that always gives an
invertible representation of the univariate process. The AR rep-
resentation of the univariate model (6) is π(B)xt = cπ + et,
where cπ = θ(1)−1c and π(B) = θ(B)−1φ(B) = 1−∑∞

i=1 πiBi,
and its MA representation is xt = cψ + ψ(B)et, where cψ =
φ(1)−1c and ψ(B) = φ(B)−1θ(B) = 1 + ∑∞

i=1 ψiBi.
When the observed series Yt is affected by an outlier,

as in (2), the projected series yt = v′Yt satisfies yt = xt +
v′α(B)wI(h)

t . Specifically, if Yt has an MAO, then the projected
series is yt = xt + βI(h)

t , so that it has an additive outlier of size
β = v′w at t = h provided that v′w �= 0. In the same way, the
projected series of a vector process with an MLS of size w will
have a level shift with size β = v′w at time t = h. The same re-
sult also applies to an MTC. Thus, for the three types of outliers
mentioned earlier, the following hypotheses are equivalent,

H0 : w = 0

HA : w �= 0
⇔ H∗

0 :β = 0

H∗
A :β �= 0

∀v ∈ Sk − {v ⊥ w},

because H0 = {⋃H∗
0 : v ∈ Sk − {v ⊥ w}}, where Sk = {v ∈ R

k :
v′v = 1}.

An MIO produces a more complicated effect. It leads to
a patch of consecutive outliers with sizes v′w, v′�1w, . . . ,

v′�n−hw, starting with time index t = h. Assuming that h is
not close to n and because � j → 0, the size of the outlier in the
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patch tends to 0. In the particular case where v′� iw = ψiv′w,
∀ i = 1, . . . ,n − h, yt has an innovational outlier at t = h with
size β = v′w. But if v′� iw = 0, i = 1, . . . ,n − h, then yt has
an additive outlier at t = h with size w, and if v′� iw = v′w,
i = 0, . . . ,n − h, then yt has a level shift at t = h with size
β = v′w. Therefore, the univariate series yt obtained by the pro-
jection can be affected by an additive outlier, a patch of outliers,
or a level shift.

3.2 Some Advantages of Projection Methods

The first advantage of using projections to search multivari-
ate outliers is simplicity. By using univariate series, we do not
need to prespecify a multivariate model for the underlying se-
ries in outlier detection. Second, if the model parameters are
known, then a convenient projection direction will lead to test
statistics that are more powerful than the multivariate ones.
Third, as we show later in a Monte Carlo study, the same con-
clusion continues to hold when the parameters are estimated
from the observed series.

To illustrate the second advantage, consider a k-dimensional
time series Yt generated from the VARMA model in (1) and
affected by an MAO, MLS, or MTC at t = h. Let V be a k × k
matrix such that the first column is w/‖w‖ and the remaining
columns consist of k − 1 vectors that are orthogonal to w and
have unit length. The multivariate series V′Yt is affected by an
outlier of size (‖w‖,0, . . . ,0)′ at time t = h. Note that the out-
lier affects only the first component of the transformed series.
Because the multivariate test statistic Ji,h of (4) is invariant to
linear transformations, its value is the same for both Yt and
V′Yt series. Thus all of the information concerning the outlier
is in the first component of V′Yt, which is the projection of the
vector time series in the direction of the outlier. The remain-
ing components of V′Yt are irrelevant for detecting the out-
lier. Moreover, because the test statistic Ji,h is distributed as a

noncentral χ2
k (ηi) with noncentrality parameter ηi = w′�−1

i,h w,
its power is given by Pow(M) = Pr(Ji,h > χ2

k,α), where χ2
k,α

is the 100αth percentile of the chi-squared distribution with
k degrees of freedom. In contrast, projecting the series Yt on
a given direction v, we obtain a series yt affected by an out-
lier at time t = h and the univariate test statistic ji,h = β2

i,h/σ
2
i,h,

where βi,h is a consistent estimate of β , is distributed as a non-
central χ2

1 (νi) with noncentrality parameter νi = β2/σ 2
i,h, where

β = v′w and σ 2
i,h = var(βi,h). The power of this test statistic

is Pow(U) = Pr( ji,h > χ2
1,α). Because the detection procedure

that we propose is affine equivariant, for simplicity, we assume
that Yt = Et is white noise and that � = I. If v = w/‖w‖, then
it is easy to see that for every w, ηi = νi = w′w for i = I, A,
ηL = νL = (n−h+1)w′w, and ηT = νT = (1−δ2(n−h+1))/(1−
δ2)w′w. The powers, Pow(U) and Pow(M), and their differ-
ences Pow(U) − Pow(M) for the case of an MAO are shown
in Figure 1 for different values of w′w. The figure shows that
the larger the number of components, the larger the advantage
of the projection test over the multivariate one. When the size
of the outlier increases, both tests have power close to 1, and
hence the difference goes to 0 for large outliers. In Section 8
we show by a simulation study that for correlated series, the
same conclusion will continue to hold when the parameters are
estimated from the data, although the power will depend on the
model.

4. FINDING THE PROJECTION DIRECTIONS

The objective of projection pursuit algorithms is to find in-
teresting features of high-dimensional data in low-dimensional
spaces via projections obtained by maximizing or minimizing
an objective function termed the projection index, which de-
pends on the data and the projection vector. It is commonly

(a)

(b)

Figure 1. Powers of the Multivariate and the Projection Statistics as a Function of the Outlier Size. (a) Absolute powers; (b) difference of powers.
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assumed that the most interesting projections are the farthest
ones from normality, showing some unexpected structure such
as clusters, outliers or nonlinear relationships among the vari-
ables. General reviews of projection pursuit techniques have
been given by Huber (1985), Jones and Sibson (1987), and
Posse (1995). Peña and Prieto (2001a) proposed a procedure
for multivariate outlier detection based on projections that max-
imize or minimize the kurtosis coefficient of the projected data.
Peña and Prieto (2001b) showed that these projected directions
are also useful to identify clusters in multivariate data. Pan,
Fung, and Fang (2000) suggested using projection pursuit tech-
niques to detect high-dimensional outliers and showed that the
projected outlier identifier is a centered Gaussian process on a
high-dimensional unit sphere. Pan and Fang (2002) suggested
looking for outliers in the projection directions given by the di-
rections that maximizes the sample kurtosis and skewness.

In this section we generalize the application of projections
to multivariate time series analysis and define a maximum dis-
crimination direction as the direction that maximizes the size of
the univariate outlier, v′w, with respect to the variance of the
projected series. We show that for an MAO, MLS, and MTC,
the direction of the outlier is a direction of maximum discrimi-
nation, which can be obtained by finding the extremes of the
kurtosis coefficient of the projected series. For an MIO, we
prove that the direction of the outlier is a maximum discrimina-
tion direction for the innovations series, which can be obtained
by projecting the innovations.

In what follows, for a time series zt, we define z = 1
n

∑n
t=1 zt

and z̃t = zt − z, where n is the sample size. Let Yt and At be
the observed series and innovations in (2) and (3). For ease
in presentation and without loss of generality, we assume that
E(Xt) = 0 and �X = cov(Xt) = I, and define the determinis-
tic variable Rt = α(B)wI(h)

t . Projecting Yt on the direction v,
we obtain yt = xt + rt, where rt = v′Rt. In addition, we have
E[ 1

n

∑n
t=1 Yt] = E(Y) = R and

�Y = E

[
1

n

n∑

t=1

(Yt − Y)(Yt − Y)′
]

= E

[
1

n

n∑

t=1

ỸtỸ′
t

]

= I + �R,

where �R = 1
n

∑n
t=1 R̃tR̃′

t. Using the results of Rao (1973,
p. 60), the maximum of (v′w)2/(v′�Yv) under the constraint
v′�Yv = 1 is v = �Yw. For the cases of MAO, MLS, and
MTC, we have �Y = I + βiww′ with βi given by

βA = n − 1

n2
,

βL = n − h + 1

n

(
h − 1

n

)

,

βT = 1

n

[(
1 − δ2(n−h+1)

1 − δ2

)

− 1

n

(
1 − δ(n−h+1)

1 − δ

)2]

,

and v = (1 + βiw′w)w. Thus the interesting direction v of pro-
jection is proportional to w. The same result also holds in the
MIO case for the maximum of (v′w)2/(v′�Av) under the con-
straint v′�Av = 1, where �A is the expected value of the co-
variance matrix of the innovations At.

We prove next that the direction of the outlier, w, can be
found by maximizing or minimizing the kurtosis coefficient of

the projected series. Toward this end, we need some preliminary
results, the proofs of which are given in the Appendix.

Lemma 1. The kurtosis coefficient γy(v) of the project series
yt = v′Yt, under the restriction v′�Yv = 1, is

γy(v) = 3 − 3(v′�Rv)2 + ωr(v), (7)

where ωr(v) = 1
n

∑n
t=1 r̃4

t .

Lemma 2. The extreme directions of the kurtosis coefficient
of yt under the constraint v′�Yv = 1 are given by the eigen-
vectors of the matrix

∑n
t=1 βt(v)R̃tR̃′

t associated with eigen-
values µ(v) = n(v′�Rv)2(γr(v) − 3), where βt(v) = (v′R̃t)

2 −
3(v′�Rv) − µ(v)/n and γr(v) is the kurtosis coefficient of
rt = v′Rt. Moreover, the directions that maximize or minimize
the kurtosis coefficient are given by the eigenvectors associated
with the largest and the smallest eigenvalues µ(v).

The following theorem shows the usefulness of the extreme
directions of the kurtosis coefficient of yt.

Theorem 1. Suppose that Xt is a stationary VARMA( p,q)
process and Yt = Xt + α(B)wI(h)

t as in (2), then we have the
following results:

a. For an MAO, the kurtosis coefficient of yt is maximized
when v is proportional to w and is minimized when v is orthog-
onal to w.

b. For an MTC, the kurtosis coefficient of yt is maximized
or minimized when v is proportional to w and is minimized or
maximized when v is orthogonal to w.

c. For an MLS, the kurtosis coefficient of yt is minimized
when v is proportional to w and is maximized when v is or-
thogonal to w if

h ∈
(

1 + 1

2

(

1 − 1√
3

)

n,1 + 1

2

(

1 + 1√
3

)

n

)

.

Otherwise, the kurtosis coefficient of yt is maximized when v is
proportional to w and is minimized when v is orthogonal to w.

Theorem 1 has two important implications. First, for an
MAO, MLS, or MTC, one of the directions obtained by max-
imizing or minimizing the kurtosis coefficient is the direction
of the outlier. Second, these directions are obtained without the
information of the time index at which the outlier occurs. Given
the characteristics of innovational outliers, it is natural to think
that the direction of the outlier can be obtained by focusing on
the innovations series. This is indeed the case.

Corollary 1. If Xt is a stationary VARMA( p,q) process and
Yt = Xt + �(B)wI(h)

t as in (2) with At = Et + wI(h)
t , then the

kurtosis coefficient of at = v′At is maximized when v is pro-
portional to w and is minimized when v is orthogonal to w.

5. MASKING AND SWAMPING EFFECTS

In the presence of multiple outliers, it would be of limited
value if one considered only the projections that maximize or
minimize the kurtosis coefficient because of the potential prob-
lem of masking effects. For instance, a projection might effec-
tively reveal one outlier but almost eliminate the effects of other
outliers. To overcome such a difficulty, we present an iterative
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procedure for analyzing a set of 2k orthogonal directions con-
sisting of (a) the direction that maximizes the kurtosis coeffi-
cient, (b) the direction that minimizes the kurtosis coefficient,
and (c) two sets of k − 1 directions orthogonal to (a) and (b).
Our motivation for using these orthogonal directions is twofold.
First, the results of Section 4 reveal that in some cases the di-
rections of interest are orthogonal to those that maximize or
minimize the kurtosis coefficient of the projected series; sec-
ond, these directions ensure nonoverlapping information, so
that if the effect of an outlier is almost hidden in one direction,
then it may be revealed by one of the orthogonal directions.
Furthermore, after removing the effects of outliers detected in
the original set of 2k orthogonal directions, we propose to iter-
ate the analysis using new directions until no more outliers are
detected. Therefore, if a set of outliers are masked in one direc-
tion, then they may be revealed either in one of the orthogonal
directions or in a later iteration after removing detected outliers.
To illustrate, we analyze in detail the cases of a series with two
MAOs and an MAO and an MLS.

Theorem 2. Suppose that Xt is a stationary VARMA( p,q)
process, Yt is the observed vector series, and yt = v′Yt is a pro-
jected scalar series.

a. Let Yt = Xt +w1I(h1)
t +w2I(h2)

t , with h1 < h2. There are
three possibilities as follows:

1. If w1 and w2 are proportional to each other, then the kur-
tosis coefficient of yt is maximized when v is proportional
to wi and is minimized when v is orthogonal to wi.

2. If w1 and w2 are orthogonal, then the kurtosis coefficient
is maximized when v is proportional to the outlier with
larger Euclidean norm and minimized when v is in one of
the orthogonal directions.

3. Let ϕ be the angle between w1 and w2, then the kur-
tosis coefficient is approximately maximized when v is
the direction of the outlier that gives the maximum of
{‖w1‖/‖w2‖ cosϕ,‖w2‖/‖w1‖ cosϕ}, where the quan-
tity denotes the ratio between the norm of outlier wi and
the length of the projection of outlier wj on wi, where
j �= i.

b. Let Yt = Xt + w1I(h1)
t + w2S(h2)

t with h1 < h2. Then the
kurtosis coefficient of yt is maximized or minimized when v is
proportional to w2, and it is minimized or maximized when v is
orthogonal to w2.

In the case of two MAOs, Theorem 2 shows that if both out-
liers are proportional, then the maximum of the kurtosis co-
efficient is obtained in the direction of the outliers, and if the
outliers are orthogonal, then the maximum of the kurtosis is ob-
tained in the direction of the outlier with larger Euclidean norm
and the minimum is obtained in an orthogonal direction. Thus
an orthogonal direction of the one that gives the maximum of
the kurtosis coefficient will reveal the presence of the outlier
with smaller norm. If the outliers are neither proportional nor
orthogonal to each other, then the direction of the outlier with
the largest projection on the direction of the other outlier will
produce a maximum kurtosis coefficient. Note that the projec-
tion of w2 on the direction of w1 is given by ‖w2‖ cosϕ. The
ratio ‖w1‖/‖w2‖ cosϕ is large if ‖w1‖ is large enough com-
pared with ‖w2‖, in which case the kurtosis coefficient will be

maximized in the direction of w1, or if cosϕ is small enough,
in which case an orthogonal direction to w1 will reveal w2.

Second, the direction of the MLS gives the maximum or
the minimum of the kurtosis coefficient of the projected series.
Thus the MLS will be revealed in the directions that maximize
or minimize the kurtosis coefficient of yt. Projecting in the or-
thogonal directions will eliminate the effect of this level shift
and reveal the second outlier. If the statistics for this second
outlier are not significant, then we remove the effect of the level
shift, and a new set of directions may reveal the second outlier.

In contrast, outlier detection procedures are sometimes af-
fected by swamping effects; that is, one outlier affects the series
in such a way that other “good” data points appear like outliers.
The procedure that we propose in the next section includes sev-
eral steps to avoid swamping effects, which can appear in the
univariate searches using the projection statistics. The idea is
to delete nonsignificant outliers after a joint estimation of the
parameters and detected outliers. We clarified this in the next
section.

6. ALGORITHMS FOR OUTLIER DETECTION

Here we propose a sequential procedure for outlier detection
based on the directions that mimimize and maximize the kur-
tosis coefficient of the projections. We refer to these directions
as the optimal projections. The procedure is divided into four
steps: (1) Obtain these directions, (2) search for outliers in the
projected univariate time series, (3) remove the effect of all de-
tected outliers by using an approximated multivariate model,
and (4) iterate the previous steps applied to the cleaned series
until no more outliers are found. Note that in step 2, the detec-
tion is carried out in two stages: First, MLSs are identified, and
second, MIOs, MAOs, and MTCs are found. Finally, a vector
model is identified for the cleaned time series, and the outlier
effects and model parameters are jointly estimated. The fitted
model is refined if necessary, for example, removing insignifi-
cant outliers, if any.

6.1 Computation of the Projection Directions

We use the procedure of Peña and Prieto (2001b) to construct
the 2k projection directions of interest. For an observed vector
series Yt, our goal here is to obtain the maximum and mini-
mum of the kurtosis coefficient of the projected series and the
orthogonal directions of the optimal projections. Toward this
end, consider the following procedure:

1. Let m = 1 and Z(m)
t = Yt.

2. Let �
(m)
Z = 1

n

∑n
t=1 Z̃(m)

t Z̃(m)′
t , and find vm such that

vm = arg max
v′

m�
(m)
Z vm=1

1

n

n∑

t=1

(
v′

mZ̃(m)
t

)4
. (8)

3. If m = k, then stop; otherwise, define Z(m+1)
t = (I −

vmv′
m�

(m)
Z )Z(m)

t ; that is, Z(m+1)
t is the projection of

the observations in an orthogonal direction to vm. Let
m = m + 1 and go to step 2.

4. Repeat the same procedure to minimize the objective
function in (8), to obtain another set of k directions,
namely vk+1, . . . ,v2k.
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A key step of the foregoing algorithm is to solve the
optimization problem in (8). Toward this end, we use a
modified Newton method to solve the system given by the
first-order optimality conditions, ∇γz(v) − 2λ�

(m)
Z v = 0 and

v′�(m)
Z v − 1 = 0, by means of linear approximations. (See Peña

and Prieto 2001b for technical details of the method.) One rel-
evant issue is that the proposed procedure is affine equivariant;
that is, the method selects equivalent directions for series mod-
ified by an affine transformation.

6.2 Searching for Univariate Outliers

The most commonly used tests for outlier detection in uni-
variate time series are the likelihood ratio test (LRT) statis-
tics, λi,h, i = I,A,L,T (see Chang and Tiao 1983; Tsay 1988).
Because the location of the outlier and the parameters of the
model are unknown, the estimated parameters are used to de-
fine the overall test statistics �(i,hi) = max{|λi,t|,1 ≤ t ≤ n},
i = I,A,L,T . Using these statistics, Chang and Tiao (1983)
proposed an iterative algorithm for detecting innovational and
additive outliers. Tsay (1988) generalized the algorithm to de-
tect level shifts and transitory changes (see Chen and Liu 1993;
Sánchez and Peña 2003 for additional extensions).

In this article we consider a different approach. There is sub-
stantial evidence that using the same critical values for all the
LRT statistics can easily misidentify a level shift as an innova-
tive outlier (see Balke 1993; Sánchez and Peña 2003). The latter
authors showed that the critical values for the LRT statistic for
detecting level shifts are different from those for testing addi-
tive or innovative outliers. Therefore, we propose to identify the
level shifts in a series before checking for other types of outlier.
Toward this end, it is necessary to develop a procedure that is
capable of detecting level shifts in the presence of the other
types of outliers. Using the notation of Section 3.1, Bai (1994)
proposed the cusum statistic,

Ct = t√
nψ(1)σe

(
1

t

t∑

i=1

yi − y

)

, (9)

to test for a level shift at t = h+1 in a linear process and showed
that the statistic converges weakly to a standard Brownian
bridge on [0,1]. In practice, the quantity ψ(1)σe is replaced
by a consistent estimator,

ψ̂(1)σe =
[

γ̂ (0) + 2
K∑

i=1

(

1 − |i|
K

)

γ̂ (i)

]1/2

,

where γ̂ (i) = cov( yt, yt−i) and K is a quantity such that
K → ∞ and K/n → 0 as n → ∞. Under the assumption of
no level shifts in the sample, the statistic max1≤t≤n |Ct| is as-
ymptotically distributed as the supremum of the absolute value
of a Brownian bridge with cumulative distribution function
F(x) = 1 + 2

∑∞
i=1(−1)ie−2i2x2

, for x > 0. The cusum statis-
tic (9) has several advantages over the LRT statistic for detect-
ing level shifts. First, it is not necessary to specify the order
of the ARMA model, which can be difficult in the presence of
level shifts. Second, as shown in Section 8, this statistic seems
to be more powerful than the LRT in all the models considered.
Third, the statistic (9) seems to be robust to the presence of
other outliers whereas the LRT statistic is not.

6.2.1 Level Shift Detection. Given the 2k projected uni-
variate series yt,i = v′

iYt for i = 1, . . . ,2k, we propose an it-
erative procedure to identify level shifts based on the algorithm
proposed by Inclán and Tiao (1994) and Carnero, Peña, and
Ruiz (2003) for detecting variance changes and level shifts in a
white noise series. Let H be the prespecified minimum distance
between two level shifts. The proposed algorithm divides the
series into pieces after detecting a level shift and proceeds as
follows:

1. Let t1 = 1 and t2 = n. Obtain

DL = max
1≤i≤2k

max
t1≤t≤t2

|Ci
t|, (10)

where Ci
t is the statistic (9) applied to the ith projected

series for i = 1, . . . ,2k. Let

(imax, tmax) = arg max
1≤i≤2k

arg max
t1≤t≤t2

|Ci
t|. (11)

If DL > DL,α , where DL,α is the critical value for the
significance level α, then there is a possible level shift at
t = tmax + 1, and we go to step 2a. If DL < DL,α , then
there is no level shift in the series, and the algorithm
stops.

2a. Define t2 = tmax of step 1, and obtain new values of DL
and (imax, tmax) of (10) and (11). If DL > DL,α , and t2 −
tmax > H, then we redefine t2 = tmax and repeat step 2a
until DL < DL,α or t2 − tmax ≤ H. Define tfirst = t2, where
t2 is the last time index that attains the maximum of the
cusum statistic that is larger than DL,α and satisfies t2 −
tmax > H. The point tfirst + 1 is the first time point with a
possible level shift.

2b. Define t1 = tmax of step 1 and t2 = n, and obtain new val-
ues of DL and (imax, tmax) of (10) and (11). If DL > DL,α

and tmax − t1 > H, then we redefine t1 = tmax and re-
peat step 2b until DL < DL,α or tmax − t1 ≤ H. Define
tlast = t1, where t1 is the last time index that attains the
maximum of the cusum statistics that is larger than DL,α

and satisfies tmax − t1 > H. The point tlast + 1 is the last
time point with a possible level shift.

2c. If tlast − tfirst < H, then there is just a level shift, and the
algorithm stops. If not, then keep both values as possi-
ble changepoints and repeat steps 2a and 2b for t1 = tfirst
and t2 = tlast until no more possible changepoints are de-
tected. Then go to step 3.

3. Define a vector hL = (hL
0, . . . ,hL

rL+1), where hL
0 = 1,

hL
rL+1 = n and hL

1 < · · · < hL
rL

are the changepoints de-
tected in step 2. Obtain the statistic DL in each subin-
terval (hL

i ,hL
i+2) and check its statistical significance. If

it is not significant, then eliminate the corresponding
possible changepoint. Repeat step 3 until the number of
possible changepoints remains unchanged and the time
indexes of changepoints are the same between iterations.
Removing hL

0 = 1 and hL
rL+1

= n from the final vector of
time indexes, we obtain rL level shifts in the series at
time indexes hL

i + 1 for i = 1, . . . ,L.
4. Let {hL

1, . . . ,hL
rL

} be the time indexes of rL detected level
shifts. To remove the impacts of level shifts, we fit the
model

(I − �1B − · · · − �p̂Bp̂)Y∗
t = A∗

t , (12)
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where Y∗
t = Yt −∑rL

i=1 wiS
(hL

i )
t and the order p̂ is chosen

such that

p̂ = arg max
0≤p≤pmax

AIC(p) = arg max
0≤p≤pmax

{

log |�̂p| + 2
k2p

n

}

,

where �̂p = 1
n−2p−1

∑n
t=p+1 A∗

t A∗′
t and pmax is a pre-

specified upper bound. If some of the effects of level
shifts are not significant, then we remove the least sig-
nificant one from the model in (12) and reestimate the
effects of the remaining rL − 1 level shifts. This process
is repeated until all of the level shifts are significant.

Some comments on the proposed procedure are in order.
First, the statistic DL is the maximum of dependent random
variables and has an intractable distribution. We obtain criti-
cal values by simulation in the next section. Second, the test
statistics (9) are highly correlated for close observations. Thus
consecutive large values of Ct might be caused by a single level
shift. To avoid overdetection, we do not allow two level shifts
to be too close by using the number H in steps 2 and 3. In the
simulations and real data example, we chose H = 10 and found
that it works well.

6.2.2 An Algorithm for Outlier Detection. Using the level-
shift adjusted series, we use the following procedure to detect
additive outliers, transitory changes, and innovative outliers in
the 2k projected univariate series yt,i = v′

iY
∗
t and their associ-

ated innovational series at,i = v′
iA

∗
t for i = 1, . . . ,2k.

1. For each projected series yt,i, fit an AR( p) with p selected
by the Akaike information criterion (AIC) and compute
the LRT statistics λi

A,t and λi
T,t. In addition, compute the

LRT statistics λi
I,t using the associated innovational se-

ries at,i. This leads to the maximum statistics

�A = max
1≤i≤2k

max
1≤t≤n

|λi
A,t|,

�T = max
1≤i≤2k

max
1≤t≤n

|λi
T,t|, and (13)

�I = max
1≤i≤2k

max
1≤t≤n

|λi
I,t|.

2. For i = A,T , and I, let �A,α , �T,α , and �I,α be the crit-
ical values for a predetermined significance level α. If
�i < �i,α for i = I,A,T , then no outliers are found, and
the algorithm stops. If �i > �i,α for only one i, then iden-
tify an outlier of type i and remove its effect using the
multivariate parameter estimates. If �i > �i,α for more
than one i, then identify the outlier based on the most sig-
nificant test statistic and remove its effect using the multi-
variate parameter estimates. Repeat steps 1 and 2 until no
more outliers are detected.

3. Let {hA
1 , . . . ,hA

rA
}, {hT

1 , . . . ,hT
rT

}, and {hI
1, . . . ,hI

rI
} be the

time indexes of the rA, rT , and rI detected additive out-
liers, transitory changes, and innovative outliers. Estimate
jointly the model parameters and the detected outliers for
the series Y∗

t , (I − �1B − · · · − �p̂B̂p)Y∗∗
t = A∗∗

t , where

Y∗∗
t = Y∗

t −
rA∑

iA=1

wiA I
(hA

iA
)

t −
rT∑

iT=1

wiT

1 − δB
I
(hT

iT
)

t

and

A∗∗
t = A∗

t −
rI∑

iI=1

wiI I
(hI

iI
)

t .

If some of the outlier effects become insignificant, then
remove the least significant outlier and reestimate the
model. Repeat this process until all of the remaining out-
liers are significant.

In Section 8 we obtain critical values for the test statis-
tics λi

A,t, λi
T,t, and λi

I,t through simulation.

6.3 Final Joint Estimation of Parameters,
Level Shifts, and Outliers

Finally, we perform a joint estimation of the model parame-
ters, the level shifts, and the outliers detected using the equation
(I − �1B − · · · − �p̂B̂p)Zt = Dt, where

Zt = Yt −
rL∑

iL=1

wiL S
(hL

iL
)

t −
rA∑

iA=1

wiA I
(hA

iA
)

t −
rT∑

iT=1

wiT

1 − δB
I
(hT

iT
)

t

and

Dt = At −
rI∑

iI=1

wiI I
(hI

iI
)

t ,

and {hL
1, . . . ,hL

rL
}, {hA

1 , . . . ,hA
rA

}, {hT
1 , . . . ,hT

rT
}, and {hI

1, . . . ,hI
rI
}

are the time indexes of the rL, rA, rT , and rI detected level shifts,
additive outliers, transitory changes and innovative outliers. If
some effect is found to be not significant at a given level, then
we remove the least significant one and repeat the joint estima-
tion until all of the effects are significant.

Some comments on the proposed procedure are as follows.
First, as mentioned in Section 2, an outlier can be a combina-
tion of different effects. This does not cause any problem for
the proposed procedure, because it allows for multiple outlier
detections at a given time point either in different projection
directions or in successive iterations. The real data example of
Section 9 demonstrates how the proposed procedure handles
such a situation. Second, the procedure includes several steps
to avoid swamping effects. Specifically, after detecting level
shifts, we fit an autoregression and remove any nonsignificant
level shifts. We repeat the same step after detecting the other
types of outlier. Finally, we perform a joint estimation of model
parameters and detected level shifts and outliers to remove any
nonsignificant identification of level shift or outliers.

7. THE NONSTATIONARY CASE

In this section we study the case when the time series is
unit-root nonstationary. Assume that Xt ∼ I(d1, . . . ,dk), where
the di’s are nonnegative integers denoting the degrees of dif-
ferencing of the components of Xt. Let d = max(d1, . . . ,dk)

and consider first the case of d = 1, which we denote simply
by Xt ∼ I(1). For such a series, in addition to the outliers in-
troduced by Tsay et al. (2000), we also entertain the multi-
variate ramp shift (MRS) defined as Yt = Xt + wR(h)

t , where
R(h)

t = (I − B)−1S(h)
t with S(h)

t being a step function at the time
index h (i.e., S(h)

t = 1 if t ≥ h and = 0 otherwise). This out-
lier implies a slope change in the multivariate series, and it may



Galeano, Peña, and Tsay: Outlier Detection by Projection Pursuit 661

occur in an I(1) series. It is not considered in the stationary
case because the series has no time slope. Consequently, for an
MRS, we assume that it applies only to the components of Yt
with dj = 1; that is, the size of the outlier w = (w1, . . . ,wk)

′
satisfies wj = 0 if dj = 0.

The series Xt can be transformed into stationarity by tak-
ing the first difference of its components even though dj might
be zero for some j. As we show later, this is not a drawback
for our method. The first differencing affects the existing out-
liers as follows. In the MIO case, (I − B)Yt = (I − B)Xt +
�̃(B)wI(h)

t , where �̃(B) = (I − B)�(B). Therefore, an MIO
produces an MIO in the differenced series. In the MAO case,
(I − B)Yt = (I − B)Xt + w(I(h)

t − I(h)
t−1), producing two consec-

utive MAOs with the same size but opposite signs. In the MLS
case, (I−B)Yt = (I−B)Xt +wI(h)

t , resulting in an MAO of the
same size. In the MTC case, (I−B)Yt = (I−B)Xt +ζ(B)wI(h)

t ,
where ζ(B) = 1 + ζ1B + ζ2B2 + · · · such that ζj = δj−1(1 − δ).
Thus an MTC produces an MTC with decreasing coefficients ζj.

In the MRS case, (I − B)Yt = (I − B)Xt + wS(h)
t , which pro-

duces an MLS with same size.
The results of Section 4 can be extended to include the

aforementioned outliers induced by differencing. For instance,
Theorem 1 shows that the directions that maximize or minimize
the kurtosis coefficient of the projected series under the pres-
ence of two consecutive MAOs with the same size but opposite
signs are the direction of the outlier or a direction orthogonal to
it. Therefore, in the I(1) case, we propose a procedure similar
to that of the stationary case for the first differenced series. This
procedure consists of the following steps:

1. Take the first difference of all of the components of Yt.
Check for MLS as in Section 6.2.1. All of the level shifts
detected in the differenced series are incorporated as ramp
shifts in the original series and are estimated jointly with
the model parameters. If any ramp shift is not significant,
then remove it from the model, and repeat the detecting
process until all of the ramp shifts are significant. This
leads to a series, Y∗

t = Yt − ∑rR
i=1 wiR

(h)
t , that is free of

ramp shifts.
2. Take the first difference of all of the components of Y∗

t .
The series (I − B)Y∗

t may be affected by MIOs, two con-
secutive MAOs, MAOs, and MTCs. Then proceed as in
Section 6.2.2. All of the outliers detected in the differ-
enced series are incorporated by the corresponding effects
in the original series and are estimated jointly with the
model parameters. If any of the outliers becomes insignif-
icant, then remove it from the model. Repeat the process
until all of the outliers are statistically significant.

The procedure can also be applied to series that have dj = 0
for some components and to cointegrated series. In these
cases ∇Yt is overdifferenced, implying that its MA component
contains some unit roots. Nevertheless, this is not a problem for
the proposed procedure. If the series is not cointegrated, then
any projection direction provides an univariate series without
unit roots in its MA component. If the series is cointegrated,
then the directions of the outliers will in general be different
from the directions of cointegration. In other words, if v is a
vector obtained by maximizing or minimizing the kurtosis co-
efficient, then it is unlikely to be a cointegration vector, and

v′∇Yt = ∇(v′Yt) is stationary and invertible because v′Yt is
a nonstationary series. However, if the series are cointegrated,
then the final estimation should be carried out using the error
correction model of Engle and Granger (1987). Note that if v is
the cointegration vector, then v′Yt is stationary and ∇v′Yt is
overdifferenced. Although no relationship is expected between
the outlier directions and the cointegration vector, we have ver-
ified, by using Monte Carlo simulations, that the probability
of finding the cointegration relationship as a solution of the
optimization algorithm is very low. Specifically, we generated
10,000 series from a vector AR(1) model with two components
and a cointegration relationship and found the directions in (8).
To compare the directions with the cointegration vector, we
calculated the absolute value of the cosine of the angle be-
tween these two directions. The average value of this cosine
is .62 with variance .09. It is easy to show that if the angle has
a uniform distribution in the interval (0,π), then the distribu-
tion of the cosine of the angle has mean .63 and variance .09.
Next, we repeated the same experiment with the same series
but affected by outliers, level shifts, or transitory changes, and
obtained in every case that the mean of the angles between the
direction found and the cointegrating direction is the one that
exits between the direction of the outlier and the cointegration
direction. Therefore, we conclude that there should be no con-
fusion between the cointegration vectors and the directions that
maximize or minimize the kurtosis coefficient of the projected
series.

Consider next the case where d = 2. Define a multivari-
ate quadratic shift (MQS) as Yt = Xt + wQ(h)

t where Q(h)
t =

(I − B)−1R(h)
t . This outlier introduces a change in the quadratic

trend of the multivariate series. The series Xt can be trans-
formed into a stationary one by taking the second differences.
Hence an MQS is transformed into an MLS, an MRS is trans-
formed into an MAO, and so on. A similar procedure as that
proposed for the I(1) case applies. In fact, the discussion can
be generalized to handle outliers in a general I(d) series.

8. SIMULATIONS AND COMPUTATIONAL RESULTS

In this section we investigate the computational aspects of the
proposed procedures through simulation. First, we obtain criti-
cal values for all of the test statistics; second, we compare the
power of the multivariate and projection procedures for detect-
ing outliers. We begin with the power of detecting level shifts,
followed by power of identifying other types of outlier. To save
space, we show only the results for the stationary case.

8.1 Critical Values

Critical values of the test statistics for outlier detection for
univariate and multivariate time series are usually obtained
through simulation using a numerous series from different mod-
els. For instance, the outlier detection routines in the pro-
grams TRAMO and SCA use critical values obtained by such
a simulation study. We follow this stream and consider eight
VARMA( p,q) models to generate the critical values. The di-
mensions used in the simulation are k = 2,3,5, and 10, and the
parameter matrices used are given in Table 1. The constant term
of the models is always the vector 1k, and the innovations co-
variance matrix is the identity matrix. For cases of k = 2 and 3,
the AR parameter matrices have eigenvalues of approximately
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Table 1. Vector Time Series Models Used in Simulation Study

Model

1 2 3

Dimension k = 2

�

[
.6 .2
.2 .4

] [
.6 .2
.2 .4

]

�

[−.7 0
−.1 −.3

] [−.7 0
−.1 −.3

]

Model

4 5 6

Dimension k = 3

�

[
.6 .2 0
.2 .4 0
.6 .2 .5

] [
.6 .2 0
.2 .4 0
.6 .2 .5

]

�

[−.7 0 0
−.1 −.3 0
−.7 0 −.5

] [−.7 0 0
−.1 −.3 0
−.7 0 −.5

]

Model 7

Dimension k = 5
� diag(�) = (.9, .7, .5, .3, .1), and �(i , i + 1) = −.5, i = 1, . . . , 4,

�(i , j) = 0, elsewhere

Model 8

Dimension k = 10
� diag(�) = (.9, .8, . . . , .1, 0), and �(i , i + 1) = −.5, i = 1, . . . , 9,

�(i , j) = 0, elsewhere

.276 and .724, and .276, .5, and .724, whereas the MA para-
meter matrices have eigenvalues −.3 and −.7, and −.3,−.5,
and −.7. For the cases where k = 5 and 10, the AR parameter
matrices have nonzero elements in their main and first upper di-
agonals only, and their eigenvalues are the elements of their re-
spective main diagonals. Using the eight models, we generated
critical values of the test statistics �I,�A,�L, and �T in (13)
and DL in (10). The LRT statistic for detecting level shifts is
included for comparison purposes.

The sample sizes used are n = 50,100,200,300,400,
and 500, covering most of the cases encountered in practice.
For a given model and sample size, we generated 10,000 se-
ries and computed the test statistics. Table 2 summarizes the
empirical critical values of the simulation. From this table, we
see only minor differences in the critical values among dif-
ferent models of the same dimension, and hence recommend
the critical values in Table 3 for practical use. In application,
if the sample size is different from those used in the simula-
tion, then we recommend interpolating the values of Table 3.
To better understand the relationship between critical values
and the number of components and sample size, we fitted three
linear regressions in which each column of critical values in
Table 3 at the 95th percentile serving as the dependent vari-
ables, with the number of components, k, and the number of
observations, n, as the regressors. The fitted regressions are
�i = 3.24 + .1561k + .0014n, �L = 2.86 + .0780k + .0008n,
and DL = 1.21+ .0240k + .0005n, for i = I,A,T . All estimated
parameters are statistically significant, and the R2 of the regres-
sions are .97, .94, and .82. We used these three regressions to
obtain critical values for various samples sizes and numbers
of components and found that a small increase in the sample
size produced a small increase in the critical values. The three
regressions work well in general.

Finally, we also obtained critical values for the multivariate
test statistics in (5) through the same simulation method for
sample sizes n = 100 and 200. Table 4 shows the recommended
critical values for practical use. These critical values are used in
power comparisons of the next section.

8.2 Power and Robustness Comparison of the Statistics
for Detecting Level Shifts

Next, we compare the performance of the multivariate LRT
statistics, the test statistics based on projections, and the cusum
test for detecting level shifts. We use sample sizes n = 100
and 200 and three different outlier sizes, wL = 3 × 1k, 4 × 1k,
and a random wL. The direction of the random wL is generated
by drawing a uniform [0,1] random variable u for each com-
ponent of wL and defining wL,i = 0 or 3 if u is in the interval
(0,1/2) or (1/2,1). If wL,i = 0 for all i, then we discard the
outlier.

For a given sample size and level shift, we generated 1,000
series and computed the test statistic Jmax in (5) for a level shift,
the maximum projection statistic �L in (13), and the maximum
cusum statistic in (10) based on the proposed procedure. We
compare each statistic with its critical values in Tables 3 and 4
at the 5% significance level and tabulate the number of times a
level shift is detected. The results are given in the first part of
Table 5 (see columns Jmax, �L, and DL). For all of the mod-
els considered, the cusum test outperforms the other two, but
all three tests seem to have good power when the sample size
is 200.

We also study the power of these three statistics in the pres-
ence of other outliers. Specifically, for each model, we gener-
ated 1,000 series of size n = 100. Each series is contaminated
by an MIO at hI = 20 with size wI = w × 1k, an MAO at
hA = 40 with size wA = −w × 1k, an MTC at hT = 80 with size
wT = −w × 1k, and an MLS at hL = 60 with size wL = w × 1k,
where w = 3 or 4. A random vector w, generated by the same
method as before, is also used as the size for all outliers. We
compute and compare the three test statistics of level shift with
their respective critical values in Tables 3 and 4 at the 5% sig-
nificance level. The power of these three statistics are given in
the second part of Table 5 (see columns Jmax, �L, and DL).
All three tests are affected by the presence of other outliers, but
similar to the case of a single level shift, the cusum test contin-
ues to outperform the other two test statistics. Furthermore, we
measured the power loss of each test by

loss(i) = 1 − power with outliers in model i

power with no outliers in model i
,

and obtained the mean power loss of the three test statistics for
the eight models used with w = 3. The average losses for the
multivariate statistic, the projection statistic, and the cusum test
are 24.1%, 13.3%, and 5.4%. Therefore, the multivariate and
projection test statistics for level shift seem to be more suscep-
tible to masking effects than the cusum test statistic.

Finally, we study the robustness properties of these statistics
in the presence of other outliers. With this objective, we obtain
the empirical type I error and compare it with the nominal level
of the test. We use a generating procedure similar to that of the
power study to conduct the simulation. However, for each gen-
erated series, the outliers consist of an MIO at hI = 25 with size
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Table 2. Empirical Critical Values of the Test Statistics Considered

95th percentiles 99th percentiles

n k M ΛI ΛA ΛL ΛT DL ΛI ΛA ΛL ΛT DL

50 2 1 3.53 3.48 2.91 3.47 1.26 3.81 3.75 3.24 3.76 1.32
2 3.47 3.47 2.87 3.34 1.26 3.90 3.76 3.17 3.70 1.33
3 3.57 3.41 2.97 3.44 1.25 3.92 3.84 3.26 3.72 1.32

3 4 3.90 3.77 3.08 3.70 1.28 4.10 3.94 3.41 3.91 1.35
5 3.85 3.71 2.94 3.65 1.29 4.13 3.94 3.49 3.94 1.36
6 3.89 3.66 3.07 3.70 1.28 4.11 3.91 3.45 3.93 1.35

5 7 4.20 3.92 3.34 3.77 1.31 4.45 4.24 3.69 4.02 1.36

10 8 4.92 4.67 3.75 4.30 1.34 5.13 4.89 4.21 4.56 1.39

100 2 1 3.75 3.71 3.08 3.64 1.34 4.08 4.03 3.40 4.06 1.44
2 3.75 3.61 3.06 3.59 1.33 4.15 3.98 3.45 3.98 1.43
3 3.76 3.62 3.08 3.63 1.34 4.12 4.02 3.50 4.06 1.43

3 4 4.03 3.80 3.19 3.78 1.37 4.39 4.10 3.50 4.15 1.45
5 4.08 3.91 3.16 3.77 1.36 4.45 4.09 3.49 4.14 1.45
6 4.00 3.78 3.16 3.75 1.36 4.36 4.06 3.56 4.10 1.45

5 7 4.49 4.14 3.47 4.13 1.44 4.77 4.51 3.84 4.49 1.51

10 8 5.30 4.94 3.82 4.79 1.49 5.59 5.28 4.25 5.10 1.53

200 2 1 4.01 3.92 3.15 3.95 1.41 4.28 4.24 3.54 4.29 1.50
2 3.97 3.88 3.18 3.84 1.40 4.20 4.19 3.50 4.28 1.49
3 3.95 3.84 3.21 3.80 1.40 4.25 4.11 3.49 4.10 1.50

3 4 4.27 4.05 3.25 4.07 1.43 4.77 4.39 3.69 4.46 1.55
5 4.34 4.09 3.25 4.06 1.42 4.77 4.44 3.58 4.50 1.54
6 4.32 3.98 3.29 4.04 1.42 4.69 4.34 3.71 4.37 1.55

5 7 4.69 4.32 3.56 4.33 1.54 5.04 4.70 3.94 4.66 1.67

10 8 5.53 5.13 3.84 5.07 1.62 5.93 5.57 4.27 5.42 1.74

300 2 1 4.05 4.03 3.25 4.00 1.43 4.32 4.31 3.65 4.30 1.56
2 4.07 3.93 3.22 4.01 1.42 4.30 4.27 3.66 4.30 1.55
3 4.04 3.92 3.26 3.98 1.43 4.34 4.34 3.72 4.25 1.56

3 4 4.38 4.18 3.38 4.11 1.47 4.73 4.50 3.79 4.53 1.61
5 4.38 4.17 3.32 4.17 1.46 4.80 4.61 3.64 4.52 1.60
6 4.36 4.13 3.38 4.17 1.47 4.72 4.50 3.77 4.60 1.60

5 7 4.82 4.45 3.63 4.48 1.54 5.31 4.79 3.99 4.83 1.70

10 8 5.62 5.22 3.89 5.11 1.67 5.99 5.60 4.30 5.46 1.81

400 2 1 4.13 4.08 3.41 4.09 1.44 4.50 4.47 3.83 4.47 1.58
2 4.17 4.05 3.42 4.05 1.45 4.62 4.37 3.77 4.50 1.57
3 4.19 4.05 3.38 4.13 1.44 4.64 4.39 3.78 4.60 1.58

3 4 4.36 4.24 3.45 4.26 1.47 4.89 4.61 3.93 4.70 1.62
5 4.44 4.34 3.54 4.24 1.48 4.79 4.71 3.85 4.65 1.61
6 4.44 4.21 3.48 4.20 1.48 4.86 4.65 3.89 4.52 1.62

5 7 4.90 4.47 3.60 4.51 1.57 5.38 4.89 4.05 4.88 1.73

10 8 5.69 5.24 3.92 5.15 1.68 6.03 5.68 4.32 5.53 1.82

500 2 1 4.18 4.19 3.46 4.21 1.45 4.62 4.54 3.84 4.45 1.60
2 4.18 4.13 3.42 4.11 1.46 4.60 4.52 3.82 4.53 1.59
3 4.18 4.07 3.46 4.14 1.45 4.48 4.48 3.82 4.50 1.59

3 4 4.46 4.28 3.50 4.26 1.49 4.91 4.71 3.96 4.72 1.62
5 4.51 4.32 3.53 4.32 1.48 4.98 4.73 3.91 4.75 1.63
6 4.44 4.31 3.56 4.25 1.49 4.93 4.67 3.91 4.67 1.63

5 7 4.95 4.53 3.65 4.57 1.59 5.40 4.92 4.10 5.01 1.78

10 8 5.77 5.25 3.95 5.19 1.69 6.06 5.70 4.35 5.58 1.84

NOTE: These values are based on sample size n and 10,000 realizations. M denotes the models in Table 1.

wI = w × 1k, an MAO at hA = 50 with size wA = −w × 1k, and
an MTC at hT = 75 with size wT = w × 1k, where w = 3 or 4.
Again, we also used a random vector w generated as before
for the size of all outliers. The last eight rows of Table 5 give
the frequencies that the test statistic is greater than its empiri-
cal 95th percentile of Tables 3 and 4. These frequencies denote
chances of a false detection of a level shift by the three statis-
tics. Once again, the cusum statistic outperforms the other two
in maintaining the size of a test and being robust to the other

types of outliers. The multivariate and projection statistics seem
not robust to the presence of other outliers.

8.3 Power Comparison of the Multivariate and
Univariate Statistics for Other Outliers

In this section we investigate the power of the test statistics
for detecting other types of outlier. The outliers considered are
MAOs, MIOs, and MTCs. Again, we used the eight models in
Table 1 and sample sizes n = 100 and 200. The outlier occurs
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Table 3. Recommended Critical Values of the Test Statistics
Considered for Sample Size n

95th percentiles 99th percentiles

n k ΛI , ΛA, ΛT ΛL DL ΛI , ΛA, ΛT ΛL DL

50 2 3.5 2.9 1.26 3.8 3.2 1.33
3 3.8 3.0 1.28 4.0 3.4 1.35
5 4.0 3.3 1.31 4.2 3.7 1.36

10 4.6 3.7 1.34 4.9 4.2 1.39

100 2 3.7 3.1 1.34 4.1 3.4 1.43
3 3.9 3.2 1.36 4.2 3.5 1.45
5 4.2 3.4 1.44 4.6 3.9 1.51

10 5.0 3.8 1.49 5.3 4.2 1.53

200 2 3.9 3.2 1.40 4.2 3.6 1.50
3 4.1 3.3 1.42 4.5 3.7 1.55
5 4.4 3.6 1.54 4.8 3.9 1.67

10 5.2 3.8 1.62 5.6 4.3 1.74

300 2 4.0 3.3 1.43 4.3 3.7 1.56
3 4.2 3.4 1.47 4.6 3.8 1.60
5 4.6 3.6 1.54 5.0 4.1 1.70

10 5.3 3.9 1.67 5.7 4.3 1.81

400 2 4.1 3.4 1.44 4.5 3.8 1.58
3 4.3 3.5 1.48 4.7 3.9 1.62
5 4.6 3.6 1.57 5.1 4.2 1.73

10 5.4 3.9 1.68 5.8 4.3 1.82

500 2 4.2 3.4 1.45 4.5 3.8 1.59
3 4.3 3.5 1.49 4.8 3.9 1.63
5 4.7 3.7 1.59 5.1 4.1 1.78

10 5.5 4.0 1.69 5.9 4.4 1.84

at t = n/2 and assumes three possible sizes as before. For each
combination of model, sample size, and outlier, we generated
1,000 series to compute the proposed test statistics. We then
compared the statistics with their empirical 95th percentiles of
Tables 3 and 4, and tabulated the frequencies of detecting a sig-
nificant outlier. Table 6 summarizes the power of various test
statistics. From this table, it seems that projection test statis-
tics outperform their corresponding multivariate counterparts.
Overall, our limited simulation study supports the use of pro-
jections and cusum statistics in detecting outliers in a vector
time series.

9. AN ILLUSTRATIVE EXAMPLE

We illustrate the performance of the proposed procedures
by analyzing a real example. The data are the logarithms of
the annual gross national product (GNP) of Spain, Italy, and
France, denoted by S, I, and F, from 1947 to 2003. The series
have 57 observations and are depicted by solid lines in Fig-
ure 2. Because the GNP are clearly nonstationary, we take the
first difference of each series. We then compute the projection

directions using the proposed procedure of Section 6 and ap-
ply the level shift detection algorithm to detect ramp shifts in
the original series. The critical value is chosen by means of
the regressions in Section 8.1 and turns out to be 1.32. The
algorithm detects a ramp shift at time hL

1 = 1975. The value
of the test statistic (10) for the time index is 1.39. To esti-
mate the effect of the ramp shift, we first check whether the
series are cointegrated using Johansen’s test (Johansen 1991).
We find a cointegration vector β , and we use the AIC to select
the error correction model with a cointegrating vector given by
∇Yt = D1∇Yt−1 − αβ ′Yt−1 + At, where the estimated para-
meters are

D̂1 =
(

.299 .095 .510

.069 .344 .524

.100 .221 .728

)

,

α̂ =
(

.007
−.001
.003

)

,

and

β̂ =
( 10.762

−22.355
11.975

)

.

Note that this model is equivalent to the VAR(2) model
Yt = �1Yt−1 + �2Yt−2 + At with �̂1 = I + D̂1 − α̂β̂ ′ and
�̂2 = −D̂1. Then, using this model, we remove the effect of
the ramp shift by estimating the regression model At = (I −
�̂1B − �̂2B2)wR(1975)

t + Et, and obtain the series free from the
effect of the ramp shift by Y∗

t = Yt − ŵR(1975)
t .

Next, we consider the detection of other types of outlier. The
critical value is chosen using the fitted regression of Section 8.1
and turns out to be 3.8. The first part of Table 7 summarizes the
results of the detection procedure. It identifies an MLS in 1966,
and its effect on the series is removed as in the case of the MRS.
The procedure then detects an MAO in 1975, which is estimated
and cleaned from the series. The procedure fails to detect any
other outliers and is terminated. The outlier-adjusted series are
shown by dashed lines in Figure 2.

After identifying the outliers for the series, we estimate
jointly the outlier effects and the model parameters using a first-
order vector error correction model with a cointegration rela-
tionship. The estimated effects of the three detected outliers,
along with the t-ratios of the estimates, are given in Table 8.
The ramp shift detected by the algorithm in 1975 implies a de-
crease in the rate of GNP growth of about 2% in the three coun-
tries with the largest in Italy (−2.2%) and smallest in Spain

Table 4. Empirical Critical Values of the Multivariate Statistics Considered

95th percentiles 99th percentiles

n k Jmax (I) Jmax (A) Jmax (L) Jmax (T) Jmax (I) Jmax (A) Jmax (L) Jmax (T)

100 2 14.0 13.5 9.5 13.6 16.1 15.7 11.3 16.3
3 16.0 15.8 11.7 15.4 18.3 18.1 13.6 18.4
5 18.9 19.2 14.4 18.7 21.5 22.3 17.3 21.4

10 25.4 25.8 19.2 26.7 27.6 28.7 21.8 26.7

200 2 15.5 15.9 10.8 15.7 18.5 19.4 13.4 18.9
3 17.8 18.3 12.9 18.0 20.7 20.8 15.9 20.3
5 21.8 22.3 16.6 21.7 25.4 25.6 20.0 24.2

10 29.8 30.3 21.7 29.6 33.3 34.5 25.7 33.1
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Table 5. Empirical Power of Multivariate, Projection, and Cusum Test Statistics for Detecting a Level Shift

w = 3 × 1k w = 4 × 1k w = random

n k M hI hA hL hT Jmax ΛL DL Jmax ΛL DL Jmax ΛL DL

100 2 1 50 70.0 83.0 100 96.6 98.2 100 53.0 82.9 99.2
2 2 50 58.3 82.6 100 89.2 96.9 100 52.6 81.0 99.3
2 3 50 46.5 73.3 87.6 91.5 93.2 100 41.4 70.0 86.3
3 4 50 93.6 92.7 99.6 100 98.8 100 60.4 71.0 98.4
3 5 50 68.1 98.8 100 94.7 99.7 100 27.5 95.3 100
3 6 50 86.3 86.6 88.7 98.9 99.0 99.2 28.3 83.6 88.1
5 7 50 43.3 98.1 98.6 83.7 99.8 99.8 33.3 75.0 85.6

10 8 50 28.6 93.8 96.4 72.7 96.9 98.3 15.0 80.2 80.9

200 2 1 100 80.7 95.4 100 98.1 99.6 100 74.3 83.9 100
2 2 100 92.2 95.6 100 97.0 99.3 100 86.1 93.4 100
2 3 100 78.1 90.6 99.5 97.1 98.4 100 73.1 87.2 97.2
3 4 100 98.7 98.9 100 100 100 100 92.2 74.7 100
3 5 100 85.8 99.8 100 99.0 100 100 83.7 96.6 100
3 6 100 97.5 97.8 100 99.6 99.7 100 80.8 95.8 100
5 7 100 70.9 99.8 99.9 94.7 99.9 100 73.5 75.7 97.6

10 8 100 69.4 100 100 97.3 100 100 53.2 86.5 96.1

100 2 1 20 40 60 80 45.6 76.0 92.6 73.0 91.8 99.3 45.0 77.8 92.9
2 2 20 40 60 80 52.0 87.6 100 74.3 96.7 100 63.7 87.4 100
2 3 20 40 60 80 17.0 53.6 66.6 40.3 84.3 86.6 35.6 70.4 100
3 4 20 40 60 80 73.6 74.0 90.3 92.0 85.0 100 47.3 64.5 90.6
3 5 20 40 60 80 61.3 81.6 100 71.3 92.0 100 78.0 91.5 100
3 6 20 40 60 80 63.6 55.3 74.3 87.0 80.0 95.0 25.6 79.4 99.8
5 7 20 40 60 80 14.3 86.0 87.4 17.3 90.4 93.9 25.4 59.3 84.7

10 8 20 40 60 80 3.2 58.4 74.6 2.7 61.9 79.8 6.0 58.1 71.6

100 2 1 25 50 75 4.0 14.0 3.3 2.6 26.3 3.3 3.5 15.0 4.5
2 2 25 50 75 .3 9.0 3.0 1.3 11.0 2.0 .7 8.0 1.7
2 3 25 50 75 4.0 21.3 4.3 2.3 31.3 4.6 .9 10.5 2.7
3 4 25 50 75 6.3 15.6 3.0 7.0 28.0 6.3 4.3 19.3 4.1
3 5 25 50 75 3.3 8.0 4.0 2.3 12.6 4.3 .3 9.0 2.7
3 6 25 50 75 16.3 22.3 4.3 16.6 27.3 4.6 1.9 12.3 3.9
5 7 25 50 75 3.4 36.1 4.5 4.4 49.5 5.5 5.8 31.7 4.8

10 8 25 50 75 4.6 44.8 4.3 3.9 60.4 4.6 4.5 38.9 3.3

NOTE: n is the sample size, M denotes the model in Table 1, hi denotes time point at which a type i outlier occurs, and w is the outlier.

Table 6. Empirical Power of Multivariate and Projection Test Statistics for Detecting an Outlier in a Vector Time Series

n = 100, h = 50 n = 200, h = 100

w = 3 × 1k w = 4 × 1k w = random w = 3 × 1k w = 4 × 1k w = random

k M Jmax ΛI Jmax ΛI Jmax ΛI Jmax ΛI Jmax ΛI Jmax ΛI

MIO
2 1 59.9 77.8 95.0 98.0 44.2 65.9 58.8 71.8 92.6 96.8 42.6 56.1
2 2 53.9 71.5 89.8 95.3 36.4 58.1 58.5 68.4 92.5 95.5 38.7 52.8
2 3 51.1 68.6 88.0 95.2 40.5 61.2 57.0 68.3 92.7 95.6 42.4 54.0
3 4 81.9 91.5 99.6 99.2 46.3 74.5 81.6 87.5 100 100 48.3 66.7
3 5 62.0 76.1 95.1 97.4 33.2 70.0 67.4 76.2 97.7 98.5 34.2 64.0
3 6 61.8 78.1 92.3 97.6 38.5 70.2 67.1 75.8 98.2 98.8 42.8 63.8
5 7 95.4 99.7 100 100 58.7 91.4 96.7 99.3 100 100 57.5 82.5

10 8 99.6 100 100 100 69.7 99.7 98.1 100 100 100 80.4 98.4

MAO
2 1 86.6 93.6 99.3 99.3 58.3 86.3 87.3 93.6 99.3 100 55.2 74.3
2 2 67.0 96.0 96.0 100 38.9 87.6 67.0 91.0 95.6 99.3 35.6 75.7
2 3 91.0 99.0 99.6 100 44.4 87.7 98.0 98.0 100 100 36.2 69.1
3 4 98.3 99.3 99.6 100 68.6 84.9 99.3 99.6 100 100 66.1 69.3
3 5 78.6 95.6 98.6 100 37.5 86.3 82.6 89.6 99.0 99.0 37.7 75.3
3 6 97.0 99.0 99.6 100 39.7 91.2 98.8 97.8 100 100 46.3 80.8
5 7 91.1 99.4 100 100 74.9 93.5 97.5 97.5 100 100 72.6 84.8

10 8 99.2 100 100 100 81.6 97.1 100 100 100 100 90.1 95.3

MTC
2 1 61.3 88.6 93.3 98.6 46.1 82.6 61.0 88.6 98.0 98.0 41.8 78.3
2 2 64.5 97.0 94.0 100 58.8 93.7 66.0 92.0 94.6 99.3 62.1 87.1
2 3 71.3 93.6 92.6 99.3 57.7 86.7 73.6 90.3 97.7 98.6 60.8 81.8
3 4 90.0 98.0 100 100 59.4 84.9 92.0 92.8 99.5 99.5 54.9 68.1
3 5 71.0 97.6 95.3 99.6 67.0 91.4 75.3 93.3 99.3 100 61.7 77.3
3 6 82.6 95.6 97.0 98.6 52.4 88.2 95.9 95.7 100 99.2 53.9 81.5
5 7 97.2 99.6 100 100 69.4 88.4 99.2 100 100 100 71.1 80.2

10 8 97.2 100 100 100 76.3 97.4 99.4 100 100 100 81.3 94.7

NOTE: n is the sample size, M denotes the model in Table 1, h is the time index of outlier, and w is the size of the outlier.
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(a)

(b)

(c)

Figure 2. Original ( —–) and Modified ( - - - -) Logarithms of the GNP of (a) Spain, (b) Italy, and (c) France.

(−1.67%). The detected shift can be associated with the first
oil crisis. In fact, the ramp shift is visible from the plot of the
series. The proposed algorithm also identifies an MAO in 1975
indicating that the first year of the oil crisis also had a transitory
effect that was most important in Italy (−6.7%). As mentioned
in Section 6, the proposed procedure allows for multiple outlier
detections at a time point. In this case, one MRS affecting all of
the components and one MAO affecting primarily the GNP of
Italy are found. The final fitted vector error correction model is

∇Yt =
(

.2856 .1839 .3461

.0341 .6710 .2721
−.0912 .3765 .5778

)

∇Yt−1

−
(

.007
−.000
.002

)

(14.412 −21.651 8.132 )Yt−1 + At.

There are marked changes in the parameter estimates of
the model with and without outlier detection. For instance,
substantial changes in the diagonal elements of the D1 ma-
trix are observed before and after the outlier detection for the
Italian and French GNP. The estimates of the cointegration vec-
tor also change. The estimated long-run equilibrium relation-
ship between the variables before outlier detection is roughly
(.5S + .5F) − I. After outlier modeling, the cointegration vec-
tor becomes roughly (.64S + .36F) − I, which gives heavier
weight to the Spanish GNP.

Finally, we compare the results with those obtained by ap-
plying the procedure of Tsay et al. (2000). We obtained critical
values for the multivariate test statistics in a simulation not re-
ported here using the models in Table 1. The 5% critical values
for the multivariate statistics are 17.3 for MIO, MAO, and MTC
and 14.8 for MLS. The critical values for the component statis-
tics are 3.9 for MIO, MAO, and MTC and 3.6 for MLS. The

Table 7. Outliers Found by the Proposed Algorithm and the Tsay, Peña, and Pankratz Procedure

Proposed procedure
Iterations (ΛI , hI ) (ΛA, hA) (ΛL, hL) (ΛT , hT ) Time Type

1 (4.11, 1966) (4.05, 1965) (4.78, 1966) (4.22, 1966) 1966 MLS
2 (3.37, 1976) (4.77, 1975) (4.15, 1975) (4.45, 1975) 1975 MAO
3 (3.14, 1960) (3.74, 1960) (3.49, 1960) (3.68, 1960)

Procedure of Tsay, Peña, and Pankratz
Iterations (JI , hI ) (JA, hA) (JL, hL) (JT , hT ) Time Type

1 (15.08, 1966) (15.54, 1965) (11.39, 1975) (14.11, 1966)

Iterations (CI , hI ) (CA, hA) (CL, hL) (CT , hT ) Time Type

2 (3.78, 1966) (3.84, 1965) (3.16, 1975) (3.42, 1966)
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Table 8. Estimation of the Sizes of the Outliers Detected
by the Algorithm

S I F
Time Type (t-ratio) (t-ratio) (t-ratio)

1966 MLS .0165 .0473 .0152
(1.7046) (7.0546) (2.0114)

1975 MRS −.0167 −.0224 −.0196
(−1.9723) (−2.4668) (−2.2817)

1975 MAO −.0434 −.0672 −.0312
(−1.8392) (−4.1121) (−1.6917)

second part of Table 7 summarizes the results using the same
first-order vector error correction model. The procedure fails to
detect any outliers at the 5% level, even though some of the test
statistics are only slightly smaller than the critical values.

APPENDIX: PROOFS

Proof of Lemma 1

Taking into account that yt = xt + rt , xt , and rt are independent, that
E[xt] = E[x3

t ] = 0, and recalling that y = 1
n

∑n
i=1 yi,

E[( yt − y)4] = E[(xt + r̃t)
4] = E[x4

t ] + 6E[x2
t ]̃r2

t + r̃4
t .

As v′�Yv = 1, the kurtosis coefficient of y, is given by

γy(v) = 1

n

n∑

t=1

(
E[x4

t ] + 6E[x2
t ]̃r2

t + r̃4
t
)
.

Finally, as E[x2
t ] = v′v, E[x4

t ] = 3E[x2
t ]2 = 3(v′v)2, 1

n
∑n

t=1 r̃2
t =

v′�Rv, and v′v = v′�Yv − v′�Rv, we obtain γy(v) = 3(v′�Yv)2 −
3(v′�Rv)2 + ωr(v).

Proof of Lemma 2

The Lagrangian for the extreme points of γy(v) is £(v) = 3 −
3(v′�Rv)2 + ωr(v) − λ(v′�Yv − 1), with gradient

∇£(v) = −12(v′�Rv)�Rv +
(

4

n

n∑

t=1

r̃2
t R̃tR̃′

t

)

v − 2λ�Yv.

Letting ∇£(v) equal 0, multiplying by v′ in the equality and taking
into account the constraint v′�Yv = 1, we have λ = −6(v′�Rv)2 +
2ωr(v). Because �R = 1

n
∑n

t=1 R̃tR̃′
t , we have

−12(v′�Rv)�Rv + 4

(
1

n

n∑

t=1

r̃2
t R̃tR̃′

t

)

v

=
(

−12(v′�Rv)2 + 4

n

n∑

t=1

r̃2
t

)

(I + �R)v.

Therefore,

−3(v′�Rv)�Rv + 3(v′�Rv)2�Rv +
(

1

n

n∑

t=1

r̃2
t R̃tR̃′

t

)

v

− 1

n

n∑

t=1

r̃2
t �Rv = −3(v′�Rv)2v + 1

n

n∑

t=1

r̃2
t v

and, finally,

n∑

t=1

[

r̃2
t − 3(v′�Rv) − µ(v)

n

]

R̃tR̃′
tv = n(v′�Rv)2(γr(v) − 3)v.

Thus the extreme directions of £(v) under v′�Yv = 1 are the
eigenvectors of the matrix

∑n
t=1 βt(v)R̃tR̃′

t with eigenvalues µ(v) =

n(v′�Rv)2(γr(v)−3), where βt(v) = [(v′R̃t)
2 −3(v′�Rv)−µ(v)/n].

From (7), we get that γy(v) = 3 −σ 4
r (3 −γr(v)) = 3 +µ(v)/n. There-

fore, the maximum or the minimum of γy(v) will be given when µ(v)

is as large or as small as possible, and the maximum and the minimum
of the kurtosis will be given by the maximum and the minimum of the
eigenvalues of the matrix

∑n
t=1 βt(v)R̃tR̃′

t .

Proof of Theorem 1

We use the equalities v′�Rv = 1
n

∑n
t=1 r̃2

t and (v′�Rv)2γr(v) =
1
n

∑n
t=1 r̃4

t .

a. For an MAO, rh = v′w, rt = 0, ∀ t �= h, and r = rh/n. First,
n(v′�Rv)2γr(v) = c1r4

h and v′�Rv = c2r2
h , where

c1 =
(

1 − 1

n

)[(

1 − 1

n

)3
+ 1

n3

]

, c2 = 1

n

(

1 − 1

n

)

,

and the eigenvalues are given by µ(v) = c0r4
h , where c0 = c1 − 3nc2

2.
In contrast, after some algebra, it can be shown that

[ n∑

t=1

βt(v)R̃tR̃′
t

]

v = [m1r3
h + m2r5

h]Rh, (A.1)

where

m1 =
(

1 − 1

n

)[
1

n3
+

(

1 − 1

n

)3
− 3c2

]

, m2 = −c0
1

n

(

1 − 1

n

)

.

Because Rh = w,

v = m1r3
h + m2r5

h

c0r4
h

w,

and the other eigenvectors are orthogonal to w. Moreover, because the
eigenvalues are given by c0r4

h and c0 > 0 for n > 5, we get that the
maximum of the kurtosis coefficient is given in the direction of w,
whereas the minimum is attained in the orthogonal directions to w.

b. For an MTC, rt = 0 if t < h, rt = δt−hrh for t ≥ h and r = mrh,
where m = (1 − δn−h+1)/(n(1 − δ)). First, n(v′�Rv)2γr(v) = c1r4

h
and v′�Rv = c2r2

h , where

c1 = (h − 1)m4 +
n∑

t=h

(δt−h − m)4,

c2 = 1

n

[

(h − 1)m2 +
n∑

t=h

(δt−h − m)2

]

,

and the eigenvalues are given by µ(v) = c0r4
h , where c0 = c1 − 3nc2

2.
In contrast, after some algebra, it can be shown that the relation (A.1)
is valid in this case for the values

m1 = (h − 1)(m4 − 3c2m2) +
n∑

t=h

[
(δt−h − m)4 − 3c2(δt−h − m)2]

,

m2 = − c0

n

[

(h − 1)m2 +
n∑

t=h

(δt−h − m)2

]

,

and one eigenvector is proportional to w and the others are orthogonal
to it. Because the eigenvalues are given by c0r4

h , the kurtosis coeffi-
cient of yt is maximized or minimized when v is proportional to w
depending on the sign of c0, which in general depends on the values
of n, h, and δ.

c. For an MLS, rt = 0 if t < h, rt = rh for t ≥ h and r = n−h+1
n rh.

First, n(v′�Rv)2γr(v) = c1r4
h and v′�Rv = c2r2

h , where

c1 = (h − 1)(n − h + 1)

n4
[(n − h + 1)3 + (h − 1)3],

c2 = (h − 1)(n − h + 1)

n2
,
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and the eigenvalues are given by µ(v) = c0r4
h , where c0 = c1 − 3nc2

2.
In contrast, after some algebra, it can be shown that the relation (A.1)
is valid in this case for the values

m1 = (h − 1)(n − h + 1)

n4

[
(n − h + 1)3 + (h − 1)3 − 3c2

]

and

m2 = −c0
(h − 1)(n − h + 1)

n2
,

showing that one eigenvector is proportional to w and the others are or-
thogonal to it. The eigenvalues are given by c0r4

h , and it is not difficult
to see that c0 < 0 if and only if

h ∈
(

1 + 1

2

(

1 − 1√
3

)

n,1 + 1

2

(

1 + 1√
3

)

n

)

and c0 > 0 otherwise. Thus the maximum of the kurtosis coefficient is
given in the direction of w if c0 > 0, and the minimum of the kurtosis
coefficient is given in the direction of w if c0 < 0.

Proof of Corollary 1

The result follows immediately from Theorem 1, because the rela-

tion At = Et + wI(h)
t coincides with the MAO case in a white noise

series.

Proof of Theorem 2

First, the results of Lemmas 1 and 2 continues to hold in both cases.
Let β1 = v′w1 and β2 = v′w2.

a. Let Rt = w1I(h1)
t + w2I(h2)

t . Following the steps of the proof of
Theorem 1, and after some algebra, it can be shown that the eigen-
vectors of the matrix

∑n
t=1 βt(v)R̃tR̃′

t , ignoring terms O(n−1), are
given by

v = β3
1

(β4
1 + β4

2 )
w1 + β3

2

(β4
1 + β4

2 )
w2, (A.2)

and their orthogonal, with eigenvalues µ(v) = β4
1 + β4

2 .

(1) If w1 and w2 are proportional, then w2 = �w1, v = w1/‖w1‖,
and µ(v) = (1+�4)‖w1‖4. Thus the kurtosis coefficient is maximized
when v is proportional to w1 and is minimized when v is orthogonal
to w1.

(2) If w1 and w2 are orthogonal, then v = w1/‖w1‖ with µ(v) =
‖w1‖4 and v = w2/‖w2‖ with µ(v) = ‖w2‖4 are extremes of the kur-
tosis coefficient. Multiplying (A.2) by w1 and w2, we obtain

v = ± ‖w2‖2

‖w1‖(‖w1‖4 + ‖w2‖4)3/2
w1

± ‖w1‖2

‖w2‖(‖w1‖4 + ‖w2‖4)3/2
w2, (A.3)

with µ(v) = ‖w1‖4‖w2‖4/(‖w1‖4 + ‖w2‖4). Thus the vector with
larger norm between w1 and w2 gives the global maximum, the other
one gives a local maximum, and the directions in (A.3) give the global
minimum.

(3) From (A.2), we get

β4
1 + β4

2 = β2
1‖w1‖2 + β3

2
β1

w′
1w2 = β3

1
β2

w′
1w2 + β2

2‖w2‖2.

Let ψ = β1/β2, which verifies ψ4 −a1ψ3 +a2ψ −1 = 0, where a1 =
‖w1‖/‖w2‖ cosϕ and a2 = ‖w2‖/‖w1‖ cosϕ. Note that a1 and a2
are simultaneously positive or negative. Assume first that a1 > 0. The
polynomial p(ψ) = ψ4 − a1ψ3 + a2ψ − 1 tends to ∞ when ψ → ∞.
To show that the largest root of the polynomial tends to ∞ when
ψ → ∞, it is sufficient to show the following:

(c.1) If r = a1 − 1, then p(r) is negative and p(λ) has a root larger
than r.

(c.2) p′(ψ) is positive in the interval (r,∞), and thus p(ψ) is
strictly positive in this interval, so the root is the largest one.

To show (c.1), p(r) = −a3
1 + 3a2

1 − 3a1 + a2a1 − a2 < 0 if a1 is

large enough. To show (c.2), p′(r) = a3
1 − 6a2

1 + 9a1 − 4 + a2 > 0 if
a1 is large enough. This proves that the largest root of p(ψ) tends to ∞
when a1 → ∞. Thus

v = 1

β1

[
λ4

1 + λ4
w1 + 1

1 + λ4
w2

]

→ w1,

when a1 is sufficiently large, giving the maximum of the kurtosis coef-
ficient µ(v) = β4

1 (1+1/λ4) → ‖w1‖4 that increase with a1. If a1 < 0,
then take r = a1 +1, and the preceding reasoning shows that the small-
est root of the polynomial tends to −∞ when a1 → −∞, and the same
conclusions hold.

b. Let Rt = w1I(h1)
t + w2S(h2)

t . Following the steps of the proof
of Theorem 1, and after some algebra, it can be shown that, ignoring
terms O(n−1),

1

n

[ n∑

t=1

βt(v)Bt

]

v = m0w2,

for some constant m0 with corresponding eigenvalues µ(v)/n =
(v′�Rv)2γr(v) − 3(v′�Rv)2 � c0β4

2 for some constant c0, which
proves the stated result.

[Received August 2004. Revised August 2005.]
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