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Measures of I28. Measures of Influence and Sensitivity
in Linear Regression

This chapter reviews diagnostic procedures for de-
tecting outliers and influential observations in
linear regression. First, the statistics for detect-
ing single outliers and influential observations are
presented, and their limitations for multiple out-
liers in high-leverage situations are discussed;
second, diagnostic procedures designed to avoid
masking are shown. We comment on the proce-
dures by Hadi and Smirnoff [28.1,2], Atkinson [28.3]
and Swallow and Kianifard [28.4] based on find-
ing a clean subset for estimating the parameters
and then increasing its size by incorporating new
homogeneous observations one by one, until
a heterogeneous observation is found. We also
discuss procedures for detecting high-leverage
outliers in large data sets based on eigenvalue
analysis of the influence and sensitivity matrix, as
proposed by Peña and Yohai [28.5,6]. Finally we
show that the joint use of simple univariate statis-
tics, as predictive residuals, and Cook’s distances,
jointly with the sensitivity statistic
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proposed by Peña [28.7] can be a useful diagnostic
tool for large high-dimensional data sets.

Data often contain outliers or atypical observations. Out-
liers are observations which are heterogeneous with the
rest of the data, due to large measurement errors, dif-
ferent experimental conditions or unexpected effects.
Detecting these observations is important because they
can lead to new discoveries. For instance, penicillin was
found because Pasteur, instead of ignoring an outlier,
tried to understand the reason for this atypical effect. As
Box [28.8] has emphasized “every operating system sup-
plies information on how it can be improved and if we
use this information it can be a source of continuous im-
provement”. A way in which this information appears
is by outlying observations, but in many engineering
processes these observations are not easy to detect. For
instance, in a production process a large value in one
of the variables we monitor may be due, among other
causes, to: (1) a large value of one of the input control
variables; (2) an unexpected interaction among the input
variables; (3) a large measurement error due to some de-
fect in the measurement instrument. In the first case, the

outlying observations may provide no new information
about the performance of the process but in the sec-
ond case may lead to a potentially useful discovery and
in the third, to an improvement of the process control.
A related problem is to avoid the situation where these
outliers affect the estimation of the statistical model and
this is the aim of robust estimation methods.

This chapter discusses outliers, influential and sen-
sitive observations in regression models and presents
methods to detect them. Influential observations are
those which have a strong influence on the global prop-
erties of the model. They are obtained by modifying
the weights attached to each case, and looking at the
standardized change of the parameter vector or the vec-
tor of forecasts. Influence is a global analysis. Sensitive
observations can be declared outliers or not by small
modifications in the sample. Sensitivity is more a lo-
cal concept. We delete each sample point in turn and
look at the change that these modifications produce in
the forecast of a single point. We will see that influence
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524 Part D Regression Methods and Data Mining

and sensitivity are important concepts for understanding
the effect of data in building a regression model and in
finding groups of outliers.

Many procedures are available to identify a single
outlier or an isolated influential point in linear regres-
sion. The books of Belsley et al. [28.9], Hawkins [28.10],
Cook and Weisberg [28.11], Atkinson [28.12], Chatter-
jee and Hadi [28.13] Barnett and Lewis [28.14] and
Atkinson and Riani [28.15] present good analyses of this
problem. To identify outliers and to measure influence
the point can be deleted, as proposed by Cook [28.16]
and Belsley et al. [28.9], or its weight decreased, as in
the local influence analysis introduced by Cook [28.17].
See Brown and Lawrence [28.18] and Suárez Rancel
and González Sierra [28.19] for a review of local influ-
ence in regression and many references, and Hartless
et al. [28.20] for recent results on this approach. A re-
lated way to analyze influence has been proposed by
Critchley et al. [28.21] by an extension of the influence-
curve methodology. The detection of influential subsets
or multiple outliers is more difficult, due to the mask-
ing and swamping problems. Masking occurs when one
outlier is not detected because of the presence of oth-
ers; swamping happens when a non-outlier is wrongly
identified due to the effect of some hidden outliers, see
Lawrance [28.22]. Several procedures have been pro-
posed for dealing with multiple outliers, see Hawkins,
Bradu and Kass [28.23], Gray and Ling [28.24], Maras-
inghe [28.25], Kianifard and Swallow [28.26, 27], Hadi
and Simonoff [28.1,2], Atkinson [28.3,28] and Swallow
and Kianifard [28.4]. A different analysis for detecting
groups of outliers by looking at the eigenvectors of an in-

fluence matrix was presented by Peña and Yohai [28.5].
These authors later proposed [28.6] the sensitivity ma-
trix as a better way to find interesting groups of data, and
from this approach Peña [28.7] has proposed a powerful
diagnostic statistic for detecting groups of outliers.

We do not discuss in this chapter, due to lack of
space, robust regression methods and only refer to them
when they are used as a first step in a diagnosis pro-
cedure. See Huber [28.29] for a good discussion of
the complementary role of diagnosis and robustness.
For robust estimation in regression see Rousseeuw and
Leroy [28.30] and Maronna, Martin and Yohai [28.31].
Robust estimation of regression models has also re-
ceived attention in the Bayesian literature since the
seminal article of Box and Tiao [28.32]. See Justel and
Peña [28.33] for a Bayesian approach to this problem
and references.

The paper is organized as follows. In Sect. 28.1 we
present the model and the notation, and define the main
measures which will be used for outlier and influence
analysis. In Sect. 28.2 we review procedures for de-
tecting single outliers and influential observations in
regression. In Sect. 28.3 we discuss the multiple-outlier
problem and two types of diagnostic procedures, those
based on an initial clean subset and those based on eigen-
value analysis of some diagnostic matrices. In Sect. 28.4
we introduce a simple statistic which can be used for
diagnostic analysis of a large data set, avoiding the
masking problem. Section 28.5 includes an example
of the use of diagnostic methods for detecting groups
of outliers and Sect. 28.6 contains some concluding
remarks.

28.1 The Leverage and Residuals in the Regression Model

We assume that we have observed a sample of size n
of a random variable y = (y1, . . . , yn)′ and a set of
p−1 explanatory variables which are linearly related
by

yi = x′
iβ+ui , (28.1)

where the ui are the measurement errors, which
will be independent normal zero-mean random vari-
ables with variance σ2, and u = (u1, . . . , un)′. The
xi = (1, x2i , . . . , x pi ) are numerical vectors in Rp and
we will denote by X the n × p matrix of rank p
whose i-th row is x′

i . Then, the least-squares estimate
of β is obtained by projecting the vector y onto the
space generated by the columns of X, which leads

to

β̂ = (X′X)−1X′y

and the vector of fitted values, ŷ = (ŷ1, . . . , ŷn)′, is given
by

ŷ = Xβ̂ = Hy, (28.2)

where

H = X(X′X)−1X′

is the idempotent projection matrix. The vector or-
thogonal to the space generated by the X variables is
the residual vector, e = (e1, . . . , en)′, which is defined
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Measures of Influence and Sensitivity in Linear Regression 28.2 Diagnosis for a Single Outlier 525

by

e = y − ŷ = (I−H)y (28.3)

and we will let ŝ2
R = e′e/(n − p) be the estimated residual

variance.
From (28.3), inserting Xβ+u instead of y and using

HX = X, we obtain the relationship between the residu-
als and the measurement errors, e = (I−H)u. Thus, each
residual is a linear combination of the measurement er-
rors. Letting hij = x′

i

(

X′X
)−1 x j be the elements of the

matrix, H, we have

ei = ui −
n

∑

j=1

hiju j (28.4)

and, if the second term is small, the residual ei will be
close to the measurement error, ui . The variance of this
second term is

Var(
n

∑

j=1

hiju j ) = σ2
n

∑

j=1

h2
ij = σ2hii

and if hii , the diagonal term of H, is large, the difference
between the residual and the measurement error can be
large. The values hii are called the leverage of the obser-
vation and measure the discrepancy of each observation
xi with respect to the mean of the explanatory variables.
It can be shown (see for instance [28.11] p. 12) that

hii = x′
i (X

′X)−1xi = 1

n

[

1+ (

x̃i − x̄
)′ S−1

xx (̃xi − x̄)
]

,

where x̃h = (x2h, . . . , x ph) does not include the constant
term, x̄ is the vector of means of the p−1 explana-
tory variables and Sxx is their covariance matrix. Note
that, if the variables were uncorrelated, hii would be the
sum of the standardized distances [(xij − x j )/s j ]2. As
∑n

i=1 hii = tr(H) = p, the average value of the lever-
age is h̄ = ∑

hii/n = p/n, and it can be shown that
1/n ≤ hii ≤ 1. From (28.4) we conclude that the residual
will be close to the measurement error for those observa-
tions close to the center of the explanatory data, where
hii � 1/n, but will be very different for the extreme

points where hii � 1. Note that the residual covariance
matrix is

Var(e) = E[ee′] = E[(I−H)uu′(I−H)]
= σ2(I−H) (28.5)

and Var(ei ) = σ2(1− hii), which will be large when
hii � 1/n, and close to zero if hii � 1. As the mean
of the residuals is zero if the variance of ei is very small
this implies that its value will be close to zero, whatever
the value of ui .

The problem that each residual has a different vari-
ance leads to the definition of the standardized residuals,
given by

ri = ei

ŝR
√

1−hii
(28.6)

which will have variance equal to one. A third type
of useful residuals are the predictive, deleted, or out-
of-sample residuals, defined by e(i) = yi − ŷi(i), where
ŷi(i) is computed in a sample with the i-th observation
deleted. It can be shown that

e(i) = ei

(1−hii )
(28.7)

and the variance of these predictive residuals is σ2/(1−
hii ). If we estimate σ2 by ŝ2

R(i), the residual variance in
a regression which does not include the i-th observation,
the standardization of the predictive residual leads to the
Studentized residual, defined by

t̂i = ei

ŝR(i)
√

1−hii
(28.8)

which has a Student t distribution with n − p−1 degrees
of freedom. An alternative useful expression of these
residuals is based on hii(i) = x′

i (X(i)X(i))−1xi = hii/(1−
hii ), where X(i) is the (n −1) × p matrix without the row
x′

i , and therefore, we have the alternative expression:

t̂i = e(i)

ŝR(i)
√

1+hii(i)
. (28.9)

28.2 Diagnosis for a Single Outlier

28.2.1 Outliers

If one observation, yh , does not follow the regression
model, either because its expected value is not x′

hβ, or
its conditional variance is not σ2, we will say that it is

an outlier. These discrepancies are usually translated to
the residuals. For instance, if the observation has been
generated by a different model, g(x′

h)+uh , then

eh = g(x′
h)− x′

h β̂+uh
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526 Part D Regression Methods and Data Mining

and the deviation
∣

∣g(x′
h)− x′

h β̂
∣

∣ will be larger than
∣

∣x′
h(β− β̂)

∣

∣. However, we may not detect this observa-
tion because of the key role of the variable x′

h . Suppose,
in order to simplify, that we write g(x′

h) = x′
hα, that is,

the data is also generated by a linear model but with
different parameter values. Then, even if α is very dif-
ferent from β, the size of

∣

∣x′
h(α− β̂)

∣

∣ depends on x′
h and

the discrepancy between the parameter values would
be easier to detect when

∣

∣x′
h

∣

∣ is large than when it is
small.

When the observation is an outlier because it has
a measurement error which comes from a distribution
with variance kσ2, where k > 1, we expect that |uh | will
be larger than the rest of the measurement errors. It is
intuitive, and it has been formally shown [28.34], that we
cannot differentiate between a change in the mean and
a change in the variance by using just one observation;
also models which assume a change in the variance are
equivalent to those which assume shifts in the mean of
the observations. Thus, we consider a simple mean-shift
model for a single outlier

yh = x′
hβ+w+uh,

where w is the size of the outlier and uh is N(0, σ2).
A test for outliers can be made by estimating the param-
eter w in the model

yi = x′
iα+wI (h)

i +ui , i = 1, .., n,

where I (h)
i is a dummy variable given by I (h)

i = 1, when
i = h and I (h)

i = 0, otherwise. We can test for outliers by
fitting this model for h = 1, . . . , n, and checking if the
estimated coefficient ŵ is significant. It is easy to show
that:

1. α̂ = (X′
(i)X(i))−1X′

(i) y(i) = ̂β(i), the regression pa-
rameters are estimated in the usual way, but deleting
case (y j , x j );

2. ŵ = yh − x′
h α̂, and therefore the estimated residual

at this point, eh = yh − x′
hα̂− ŵ = 0.

3. The t statistic to check if the parameter ŵ is sig-
nificant is equal to the Studentized residual, th, as
defined in (28.8).

Assuming that only one observation is an outlier the
test is made by comparing the standardized residual to
the maximum of a t distribution with n − p−2 degrees
of freedom. Often, for moderate n, cases are consid-
ered as outliers if their Studentized residuals are larger
than 3.5.

28.2.2 Influential Observations

An intuitive way to measure the effect of an observation
on the estimated parameters, or on the forecasts, is to
delete this observation from the sample and see how this
deletion affects the vector of parameters or the vector
of forecasts. A measure of the influence of the i − th
observation on the parameter estimate is given by:

D(i) = (̂β−̂β′
(i))X

′X(̂β−̂β(i))

p̂s2
R

, (28.10)

which, as the covariance of ̂β is ŝ2
R(X′X)−1, measures

the change between ̂β and ̂β(i) with relation to the
covariance matrix of ̂β, standardized by the dimen-
sion of the vector p. This measure was introduced
by Cook [28.16]. Of course other standardizations are
possible. Belsley et al. [28.9] propose using ŝ2

R(i), the
variance of the regression model when the ith obser-
vation is deleted, instead of ŝ2

R, and Diaz-García and
Gonzalez-Farias [28.35] have suggested standardizing
the vector (̂β−̂β(i)) by its variance, instead of using the
variance of ̂β. See Cook, Peña and Weisberg [28.36] for
a comparison of some of these possible standarizations.

Equation (28.10) can also be written as the standard-
ized change in the vector of forecasts:

Di =
(

ŷ − ŷ(i)
)′ (ŷ − ŷ(i)

)

p̂s2
R

, (28.11)

where ŷ(i) = X̂β(i) = (ŷ1(i), . . . , ŷn(i))′. Note that
from (28.2) we have that Var(ŷi ) = σ2hii and as the
average value of hii is p/n, (28.11) is standardized by
this average value and by the dimension n of the vec-
tor. A third way to measure the influence of the ith point
is to compare ŷi with ŷ(i), where ŷ(i) = x′

i
̂β(i). With the

usual standardization by the variance we have:

Di =
(

ŷi − ŷ(i)
)2

p̂s2
Rhii

(28.12)

and, using the relation between the inverse of X′X and
X′

(i)X(i), we obtain

β−̂β(i) = (X′X)−1xi
ei

1−hii
. (28.13)

Inserting this into (28.10) it is easy to see that (28.12) is
equivalent to (28.10) and (28.11). Also, as from (28.13)
we have that

ŷ − ŷ(i) = hi
ei

1−hii
, (28.14)

Part
D

2
8
.2



Measures of Influence and Sensitivity in Linear Regression 28.2 Diagnosis for a Single Outlier 527

where hi is the i − th column of the H matrix, insert-
ing this expression into (28.11) we obtain a convenient
expression for the computation of Cook’s statistics:

Di = r2
i hii

p(1−hii )
, (28.15)

where ri is the standardized residual given by (28.6). For
large n, the expected value of Di can be approximated
by

E(Di ) � hii

p(1−hii )
, (28.16)

and it will be very different for observations with differ-
ent leverage.

Cook proposed judging the values of Di by an
F(p; n − p; 1−α), where F is the distribution used in
building a confidence region for the β parameters. Thus,
we may identify points as influential when they are able
to move the estimate out of the confidence region for
a fixed value of α and declare as influential those ob-
servations which verify Di ≥ F(p; n − p; 1−α). This
solution is not satisfactory for large sample sizes be-
cause it is difficult for any observation to be deemed
influential. Muller and Mok [28.37] have obtained the
distribution of the Di for normal explanatory variables,
but this distribution is complicated.

Cook [28.17] proposed a procedure for the assess-
ment of the influence on a vector of parameters θ of
minor perturbation of a statistical model. This approach
is very flexible and can be used to see the effect of
small perturbations which would not normally be de-
tected by deletion of one observation. He suggested
introducing a n × p vector w of case weights and use
the likelihood displacement [L(θ̂)− L(θ̂w)], where θ̂ is
the maximum likelihood (ML) estimator of θ̂, and θ̂w
is the ML when the case weight w is introduced. Then,

Table 28.1 Three sets of data which differ in one observation

Case 1 2 3 4 5 6 7 8 9 (a) (b) (c)

x1 −2 0 2 −4 3 1 −3 −1 4 0 −3 −3

x2 6.5 7.3 8.3 6.0 8.8 8.0 5.9 6.9 9.5 7.2 9 7.3

y −1.5 0.5 1.6 −3.9 3.5 0.8 −2.7 −1.3 4.1 5 −1.5 4

Table 28.2 Some statistics for the three regressions fitted to the data in Table 28.1

̂β0 t(̂β0) ̂β2 t(̂β2) ̂β1 t(̂β1) ŝR h28 r28 D28

(0) 2.38 (0.82) −0.30 (0.78) 1.12 (6.24) 0.348 − − −
(a) 13.1 (1.7) −1.72 (−1.66) 1.77 (3.69) 0.96 0.11 4.68 0.92

(b) −2.74 (−2.9) 0.38 (3.08) 0.80 (13.87) 0.36 0.91 1.77 11.1

(c) −25.4 (−5.41) 3.43 (5.49) −0.624 (2.22) 0.91 0.65 4.63 13.5

he showed that the directions of greatest local change
in the likelihood displacement for the linear regression
model are given by the eigenvectors linked to the largest
eigenvalues of the curvature matrix, L = EHE, where E
is the vector of residuals. Later, we will see how this ap-
proach is related to some procedures for multiple-outlier
detection.

28.2.3 The Relationship Between Outliers
and Influential Observations

An outlier may or may not be an influential observa-
tion and an influential observation may or may not be an
outlier. To illustrate this point consider the data in Ta-
ble 28.1. We will use these data to build four data sets.
The first includes cases 1–9 repeated three times, and
has sample size n = 27. The other three are formed by
adding a new observation to this data set. The set (a)
is built by adding case 28(a), the set (b) by adding
case 28(b) and the set (c) by adding case 28(c). Ta-
ble 28.2 shows some statistics of these four data sets
where (0) refers to the set of 27 observations and (a), (b)
and (c) to the sets of 28 observations as defined before.
The table gives the values of the estimated parameters,
their t statistics in parentheses, the residual standard
deviation, the leverage of the added point, the standard-
ized residual for the added point and the value of Cook’s
statistics.

In set (a) observation 28 is clearly an outlier with
a value of the standardized residual of 4.68, but it is not
influential, as D28(a) = 0.92, which is a small value. In
case (b) the 28-th point is not an outlier, as r28(b) = 1.77
is not significant, but it is very influential, as indicated
by the large D28 value. Finally, in set (c) the observa-
tion is both an outlier, r28 = 4.63, and very influential,
D28 = 13.5.
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Note that if the leverage is small hii � 1/n, hii/(1−
hii ) � (n −1)−1, and by (28.15):

Di = r2
i

p

(

1

n −1

)

,

then, if n is large, the observation cannot be influential,
whatever the value of r2

i . On the other hand, high-
leverage observations with hii close to one will have
a ratio hii/(1−hii ) that is arbitrarily large and, even if
r2

i is small, will be influential.

28.3 Diagnosis for Groups of Outliers

The procedures that we have presented in the previ-
ous section are designed for a single outlier. We can
extend these ideas to multiple outliers as follows. Let
I be an index set corresponding to a subset of r data
points. The checking of this subset can be done by in-
troducing dummy variables as in the univariate case.
Assuming normality, the F test for the hypothesis that
the coefficients of the dummy variables are zero is given
by

Fr,(n−p−r) = e′
I (I−HI )−1eI

rŝ2
R(I )

where eI is the vector of least-squares residuals, HI the
r ×r submatrix of H, corresponding to the set of obser-
vations included in I , and ŝ2

R(I ) the residual variance of
the regression with the set I deleted. Cook and Weis-
berg [28.11] proposed to measure the joint influence of
the data points with index in I by deleting the set I and
computing, as in the single outlier case,

DI = (̂β−̂β′
(I ))X

′X(̂β−̂β(I ))

p̂s2
R

,

which can also be written as a generalization of (28.15)
by DI = [e′

I (I−HI )−1HI (I−HI )−1eI ]/ p̂s2
R. Note that

a large value of DI may be due to a single influen-
tial observation included in the set I or a sum of small
individual effects of a set of observations that are mask-
ing each other. However, in the first case this single
observation will be easily identified. Also, a subset of
individually highly influential points, whose effect is to
cancel each other out, will lead to a small value of DI ;
again in this case, the individual effects will be easy to
identify. However, to build this measure we should com-
pute all sets of I in the n data, which would be impossible
for large I and n.

The procedures for finding multiple outliers in re-
gression can be divided into three main groups. The
first is based on robust estimation. If we can compute
an estimate that is not affected by the outliers, we can
then find the outliers as those cases with large residu-
als with respect to the robust fit. We present briefly here

the least median of squares (LMS) estimate proposed
by Rousseeuw [28.38], which is used as an initial es-
timate in some diagnostic procedures based on a clean
set, which we will review below. Rousseeuw [28.38]
proposed generating many possible values of the pa-
rameters, β1, . . . ,βN , finding the residuals associated
with each parameter value, ei = y −X βi (i = 1, .., N),
and using the median of these residuals as a robust scale

s(βi ) = median(e2
1i , . . . , e2

ni ). (28.17)

The value βi that minimizes this robust scale is the
LMS estimate. Rousseeuw [28.38] generates the pa-
rameter values β1, . . . ,βN by resampling, that is, by
taking many random samples of size p, (Xi , yi ), where
the matrix Xi is p × p and yi is p × 1, and comput-
ing the least-squares estimate (LSE) for each sample,
βi= X−1

i yi . The LMS, although very robust, is not very
efficient, and many other robust methods have been
proposed to keep high robustness and achieve better
efficiency in regression [28.31].

A second class of procedures uses robust ideas to
build an initial clean subset and then combine least-
squares estimates in clean subsets and diagnosis ideas
for outlier detection. Three procedures in this spirit will
be presented next; they can be very effective when p and
n are not large.

For large data sets with many predictors and high-
leverage observations, robust estimates can be very
difficult to compute and procedures based on the clean-
set idea may not work well, because of the difficulty in
selecting the initial subset. The third type of procedures
are based on eigenstructure analysis of some diagnostic
matrices and are especially useful for large data sets.

28.3.1 Methods Based on an Initial Clean
Set

Kianifard and Swallow [28.26, 27] proposed to build a
clean set of observations and check the rest of the data
with respect to this set. If the observation closest to the
clean set is not an outlier, then the clean set is increased
by one observation, and continue to do so until no new
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Measures of Influence and Sensitivity in Linear Regression 28.3 Diagnosis for Groups of Outliers 529

observations can be incorporated into the basic set. The
key step in this procedure is to find the initial subset,
because if it contains outliers the whole procedure breaks
down. These authors proposed using either the predictive
or standardized residuals, or a measure of influence such
as Di .

A similar procedure was proposed by Hadi and Si-
monoff [28.1, 2]. In [28.2] they recommend building
the initial subset using the LMS. The clean set is built
by computing this robust estimate and then uses the
h =

(

n+p+1
2

)

observations with the smallest residuals
with respect to this robust fit to form the initial clean
set, which we call M. The procedure continues by fit-
ting a regression model by least squares to this clean set
M. Calling ̂βM the estimated LSE parameters and σ̂M
the residual standard deviation, a set of in-sample and
out-of-sample residuals is obtained as follows

di =
∣

∣yi − x′
iβM

∣

∣

σ̂M

√

1− x′
i (X

′
MXM)−1xi

, if i ∈ M,

di =
∣

∣yi − x′
iβM

∣

∣

σ̂M

√

1+ x′
i (X

′
MXM)−1xi

, if i /∈ M.

That is, di represents the standardized residual (28.6) for
the data in set M and the predictive residual (28.9) for
observations outside this set. Then, all of the observa-
tions are arranged in increasing order according to di .
Let s be the size of the set M (which is h in the first it-
eration, but will change as explained below). If d(s+1)
is smaller than some critical value, a new set of size
s +1 is built with the s +1 observations with smallest d
values. If d(s+1) is larger than some critical value, all ob-
servations out of the set M are declared as outliers and
the procedure stops. If n = s +1 we stop and declare
that there are no outliers in the data. These authors pro-
posed using as critical values those of the t distribution
adjusted by Bonferroni, that is t

(

α
2(s+1) , s − p

)

.
Atkinson [28.3] proposed a similar approach called

the forward search. His idea is again to combine a ro-
bust estimate with diagnostic analysis. He computes the
LMS estimate but, instead of generating a large set of
candidates by random sample, he generates a set of can-
didate values for ̂β by fitting least-squares subsamples
of size p, p+1, . . . , n. The procedure is as follows. We
start by generating a random sample of size p; let Ip be
the indices of the observations selected. Then, we com-
pute the parameters ̂β(p) by LSE, and the residual for
all cases, e = y −X̂β(p). The residuals are corrected by

u2
i = e2

i , i ∈ I (28.18)

u2
i = e2

i /(1+hii ), i /∈ I

and these residuals u2
i are ordered and the smallest p+1

are selected. With this new sample of size m = p+1 the
process is repeated, that is, the parameters are computed
by LSE and the residuals to this fit for the n points are
obtained. The corrected residuals (28.18) are computed
and the process is continued. In this way we obtain a set
of estimates,̂β(m), m = p, .., n, the corresponding resid-
uals, e(m) = y −X̂β(m), and the robust scales (28.17),
s[̂β(m)]. The value selected is thêβ(m) which minimizes
the robust scale. This process is a complete forward
search and several forward searches are done starting
with different random samples. The residuals are then
identified by using this LMS estimate computed from
several forward searches. An improvement of this proce-
dure was proposed by Atkinson and Riani [28.15], which
clearly separates the estimation of the clean subset and
the forward search. The initial estimate is computed, as
proposed by Rousseeuw [28.38], by taking many random
samples of size p. The forward search is then applied,
but stressing the use of diagnostic statistics to monitor
the performance of the procedure.

Finally, Swallow and Kianifard [28.4] also suggested
a similar procedure, which uses a robust estimate of the
scale and determines the cutoff values for testing from
simulations.

These procedures work when both p and n are not
large and the proportion of outliers is moderate, as shown
in the simulated comparison by Wisnowski et al. [28.39].
However, they do not work as well in large data sets with
high contamination. The LMS estimates rely on having
at least a sample of size p without outliers, and we need
an unfeasible number of samples to have a large proba-
bility of this event when p and n are large [28.6]. This
good initial estimate is the key for procedures based on
clean sets. In the next section we will present procedures
that can be applied to large data sets.

28.3.2 Analysis of the Influence Matrix

Let us define the matrix of forecast changes, as the ma-
trix of changes in the forecast of one observation when
another observation is deleted. This matrix is given by

T =

⎛

⎜

⎜

⎜

⎜

⎝

ŷ1 − ŷ1(1) ŷ1 − ŷ1(2) . . . ŷ1 − ŷ1(n−1) ŷ1 − ŷ1(n)

ŷ2 − ŷ2(1) ŷ2 − ŷ2(2) . . . ŷ2 − ŷ2(n−1) ŷ2 − ŷ2(n)

. . . . . . . . . . . . . . .

ŷn−1 − ŷn−1(1) ŷn − ŷn(2) . . . ŷn − ŷn(n−1) ŷn − ŷn(n)

ŷn − ŷn(1) ŷn − ŷn(2) . . . ŷn − ŷn(n−1) ŷn − ŷn(n)

⎞

⎟

⎟

⎟

⎟

⎠

.

The columns of this matrix are the vectors ti = ŷ − ŷ(i),
and Cook’s statistic is their standardized norm. These

Part
D

2
8
.3



530 Part D Regression Methods and Data Mining

vectors can also be written as ti = e(i) − e, where e(i)
is the vector of residuals when the i-th observation is
deleted. Therefore, T can also be considered the matrix
of residual changes. Peña and Yohai [28.5] define the
n × n influence matrix M as

M = 1

ps2
R

T′T.

As H is idempotent it can be shown immediately that M
is given by

M = 1

ps2
R

EDHDE, (28.19)

where E is a diagonal matrix with the residuals on the
main diagonal, and D is a diagonal matrix with ele-
ments (1−hii )−1. By (28.7) ED is the diagonal matrix
of predictive residuals. Therefore, the ij-th element of
M, is

mij = eie j hij

(1−hii )(1−h jj)ps2
R

= ei(i)e j( j)hij

ps2
R

.

Assuming that all the residuals are different from
zero, from (28.4) the rank of M is equal to p, the rank
of H. Observe that the diagonal elements of M are the
Cook’s statistics.

Let rij = mij/m1/2
ii m1/2

jj be the uncentered correla-
tion coefficient between ti and t j . Let us show that the
eigenvectors of the matrix M will be able to indicate
groups of influential observations. Suppose that there
are k groups of influential observations I1, . . . , Ik, such
that

1. If i, j ∈ Ih , then |rij | = 1. This means that the effects
on the least-squares fit produced by the deletion of
two points in the same set Ih have correlation 1 or
−1.

2. If i ∈ I j and l ∈ Ih with j �= h, then ril = 0. This
means that the effects produced on the least-squares
fit by observations i and j belonging to different sets
are uncorrelated.

3. If i does not belong to any Ih , then mij = 0 for all
j. This means that data points outside these groups
have no influence on the fit.

Now, according to (1) we can split each set
Ih into I1

h and I2
h such that: (1) if i, j ∈ Iq

h , then
rij = 1; (2) if i ∈ I1

h and j ∈ I2
h , then rij = −1.

Let v1 = (v11, . . . , v1n)′, . . . , vk = (vk1, . . . , vkn)′ be
defined by vh j = m1/2

jj if j ∈ I1
h ; vh j = m1/2

jj if j ∈
I1
h ; vh j = −m1/2

jj if j ∈ I2
h and vh j = 0 if j /∈ Ih . Then,

if (1)–(3) hold, by (28.6) the matrix M is

M =
k

∑

i=1

viv
′
i ,

and since the vi are orthogonal, the eigenvectors of
M are v1, . . . , vk, and the corresponding eigenvalues
λ1, . . . , λk are given by

λh =
∑

i∈Ih

mii .

It is clear that, when the matrix M satisfies (1)–
(3), the only sets I with large CI are Iq

h , 1 ≤ h ≤ k,
q = 1, 2, and these sets may be found by looking
at the eigenvectors associated with non-null eigen-
values of M. Note that (28.6) can also be written
as

rij = sign(ei )sign(e j )hij/(hiih jj )
1/2,

which means that, in the extreme case that we have pre-
sented, the H matrix and the signs of the residuals are
able, by themselves, to identify the set of points that
are associated with masking. For real data sets, (1)–
(3) do not hold exactly. However, the masking effect
is typically due to the presence of blocks of influential
observations in the sample having similar or opposite
effects. These blocks are likely to produce a matrix M
with a structure close to that described by (1)–(3). In
fact, two influential observations i, j producing similar
effects should have rij close to 1, and close to −1 when
they have opposed effects. Influential observations with
non-correlated effects have |rij | close to 0. The same will
happen with non-influential observations. Therefore, the
eigenvectors will have approximately the structure de-
scribed above, and the null components will be replaced
by small values.

This suggests that we should find the eigenvectors
corresponding to the p non-null eigenvalues of the influ-
ence matrix M, consider the eigenvectors corresponding
to large eigenvalues, and define the sets I1

j and I2
j

by those components with large positive and negative
weights, respectively. Peña and Yohai [28.5] proposed
the following procedure.

Step 1: Identifying sets of outlier candidates. A set
of candidate outlier is obtained by analyzing the eigen-
vectors corresponding to the non-null eigenvalues of the
influence matrix M, and by searching in each eigenvec-
tor for a set of coordinates with relatively large weight
and the same sign.

Step 2: Checking for outliers. (a) Remove all candi-
date outliers. (b) Use the standard F and t statistics to
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Table 28.3 A simulated set of data

1 2 3 4 5 6 7 8 9(a) 10(a) 9(b) 10(b) 9(c) 10(c)

x 1 2 3 4 5 6 7 8 12 12 12 12 12 12

y 2.0 2.9 3.9 5.1 6.2 6.9 7.8 9.1 19 20 19 7 13 7

Table 28.4 Eigen-analysis of the influence matrix for the data from Table 28.3. The eigenvectors and eigenvalues are
shown

λ1 λ1/λ2 1 2 3 4 5 6 7 8 9 10

(a) 1.27 2.87 −0.17 −0.06 −0.00 −0.00 −0.02 −0.10 −0.22 −0.33 0.42 0.79

(b) 3.78 3.783 0.00 −0.00 −0.00 −0.00 −0.00 0.00 −0.00 −0.00 −0.71 0.71

(c) 3.25 32 −0.05 −0.02 −0.00 −0.00 −0.01 −0.02 −0.04 −0.10 −0.50 0.85

test for groups or individual outliers. Reject sets or in-
dividual points with F or t statistics larger than some
constant c. For the F statistic the c value corresponds to
the distribution of the maximum F over all sets of the
same size, and this distribution is unknown. Therefore,
it is better to use the t statistic and choose the c value by
the Bonferroni inequality or, better still, by simulating
the procedure with normal errors. (c) If the number of
candidate outliers is larger than n/2, the previous pro-
cedure can be applied separately to the points identified
in each eigenvector.

As an illustration we will use the simulated data
from Table 28.3, which are plotted in Fig. 28.1.

The three sets of data have in common cases 1–8 and
differ in cases 9 and 10. In the first set of data the largest
values of the Cook’s statistics are D10 = 0.795, D1 =
0, 29 and D9 = 0.228. The most influential observation
is the 10-th, which has a standardized residual r10 =
1.88, thus there is no evidence that the point is an outlier.
However, the first eigenvector of the influence matrix
leads to the results shown in Table 28.4. We see that
both cases 9 and 10 appear separated from the rest.
When they are deleted from the sample and checked
against the first eight observations we obtain the values
indicated in Table 28.5, where they are clearly declared
as outliers. Thus, in this example the eigenvalues of the
influence matrix are able to avoid the masking effect
which was clearly present in the univariate statistics.

In case (b), as both outliers have a different sign,
they do not produce masking, and both of them are

Table 28.5 Values of the t statistics for testing each point
as an outlier

Case 9 10

(a) 27.69 32.28

(b) 31.94 −32.09

(c) −0.07 −32.09

detected by the univariate analysis: D9 = 1.889, and
D10 = 1.893, and the outlier tests are t10 = 5.20 and
t9 = −5.24. The two points are also shown in the ex-
tremes of the eigenvalue. Finally in case (c) there is only
one outlier which is detected by both the univariate and
multivariate analysis.

The influence matrix M may be considered
a generalization of Cook’s local influence matrix
L = EHE [28.17]. It replaces the matrix of residu-
als E by the matrix of standardized residuals ED.
If there are no high-leverage observations and the
hii are similar for all points, both matrices will
also be similar, and will have similar eigenvectors.
However, when the observations have very different
leverages, the directions corresponding to the eigen-
vectors of the matrix M give more weight to the
influence of the high-leverage observations, which are

0
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Fig. 28.1 The simulated data from Table 28.3
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Table 28.6 Eigenvalues of the sensitivity matrix for the data from Table 28.3

1 2 3 4 5 6 7 8 9 10

v1 0.502 0.455 0.407 0.360 0.312 0.264 0.217 0.170 −0.020 −0.020

v2 −0.191 −0.119 −0.046 0.026 0.099 0.172 0.245 0.318 0.610 0.610

precisely those that are more likely to produce masking
effects.

Note that the rank of the influence matrix M is
p, the same as the rank of H, and therefore we do
not need to compute n eigenvectors as we only have
p eigenvalues linked to nonzero eigenvalues. Thus,
the procedure can be applied for very large data
sets, see Peña and Yohai [28.5] for the details of the
implementation.

28.3.3 The Sensitivity Matrix

If instead of looking at the columns of the matrix of
forecast changes T we look at its rows, a different
perspective appears. The rows indicate the sensitivity
of each point, that is, how the forecast for a given
point changes when we use as the sample the n sets
of n −1 data built by deleting each point of the sam-
ple. In this way we analyze the sensitivity of a given
point under a set of small perturbations of the sample.
Let

si = (ŷi − ŷi(1), ..., ŷi − ŷi(n))
′

be the i-th row of the matrix T. From (28.14) we can
write

si = (hi1e1/(1−h11), ..., hinen/(1−hnn)) = EDhi ,

where E and D are diagonal matrices of residuals and
inverse leverage, respectively, defined in the previous
section, and hi is the i-th column of H. We define the

sensitivity matrix by

P = 1

p̂s2
R

⎛

⎜

⎝

s′
1s1 . . . s′

1sn

. . . . . . . . .

s′
1sn . . . s′

nsn

⎞

⎟

⎠ ,

which can be computed by

P = 1

p̂s2
R

HED2EH , (28.20)

and has elements

pij = 1

p̂s2
R

n
∑

k=1

e2
k

(1−hkk)2
hikh jk.

It can be shown that the sensitivity and the influence
matrix have the same eigenvalues and we can obtain
the eigenvectors of one matrix from the eigenvectors
of the other. Peña and Yohai [28.6] have shown that
eigenvectors of the sensitivity matrix are more powerful
for the identification of groups of outliers than those
of the influence matrix, although they often lead to the
same results. These authors also show that these methods
work very well for large sets with many predictors and
high levels of contamination.

In the following example we show the use of this ma-
trix for detecting groups of outliers. If we compute the
eigenvectors of the sensitivity matrix for the data in Ta-
ble 28.3 we obtain the results presented in Table 28.6.
The first eigenvector clearly separates the observations 9
and 10 from the rest. In fact, if we order the coordinates
of this vector we find the largest ratio at 170/20 = 8.5
which separates cases 9 and 10 from the others.

28.4 A Statistic for Sensitivity for Large Data Sets

The analysis of the eigenvalues of the sensitivity ma-
trix is a very powerful method for finding outliers.
However, for large data sets it would be very con-
venient to have a simple statistic, fast to compute,
which can be incorporated into the standard out-
put of regression fitting and which could indicate
groups of high-leverage outliers, which are the most
difficult to identify. This statistic can be obtained

through a proper standardization of the diagonal el-
ements of the sensitivity matrix. Peña [28.7] defines
the sensitivity statistic at the i-th observation Si as
the squared norm of the standardized vector si , that
is,

Si = s′
isi

p̂Var(ŷi )
, (28.21)
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and using (28.14) and ̂Var(ŷi ) = ŝ2
Rhii , this statistic can

be written as

Si = 1

p̂s2
Rhii

n
∑

j=1

h2
ji e

2
j

(1−h jj )2
. (28.22)

An alternative way to write Si , is as a linear com-
bination of the sample Cook’s distance. From (28.12)
and (28.22), we have

Si =
n

∑

j=1

ρ2
ji D j , (28.23)

where ρij = (h2
ij/hiih jj )1/2 ≤ 1 is the correlation be-

tween forecasts ŷi and ŷ j . Also, using the predictive
residuals, e j( j) = e j/(1−h jj ), we have that

Si = 1

p̂s2
R

n
∑

j=1

w ji e
2
j( j) (28.24)

and Si is a weighted combination of the predictive
residuals.

The sensitivity statistics has three interesting prop-
erties. The first is that, in a sample without outliers or
high-leverage observations, all the cases have the same
expected sensitivity, approximately equal to 1/p. This is
an important advantage over Cook’s statistic, which has
an expected value that depends heavily on the leverage
of the case. The second property is that, for large sam-
ple sizes with many predictors, the distribution of the Si

statistic will be approximately normal. This again is an
important difference from Cook’s distance, which has
a complicated asymptotic distribution [28.37]. This nor-
mal distribution allows the computation of cutoff values
for finding outliers. The third property is that, when the
sample is contaminated by a group of similar outliers
with high leverage, the sensitivity statistic will discrim-
inate between the outliers and the good points, and the
sensitivity statistic Si is expected to be smaller for the
outliers than for the good data points.

These properties are proved in Peña [28.7]. The
normality of the distribution of the Si statistic implies
that we can search for outliers by finding observations
with large values of [Si − E(Si )]/std(Si ). As the possible
presence of outliers and high leverage points will affect
the distribution of Si , it is better to use robust estimates
such as as the median or the median of the absolute de-
viations (MAD) from the sample median, and consider
as heterogeneous observations those which satisfy:

|Si −med(S)| ≥ 4.5MAD(Si ) (28.25)

where med(S) is the median of the Si values
and MAD(Si ) = med |Si −med(S)|. For normal data
MAD(Si )/.645 is a robust estimate for the standard de-
viation and the previous rule is roughly equivalent to
taking three standard deviations in the normal case. In
Peña [28.7] it is shown that this statistic can be very
useful for the diagnostic analysis of large data sets.

28.5 An Example: The Boston Housing Data

As an example of the usefulness of the sensitivity statis-
tics and to compare it with the procedures based on
eigenvalues, we will use the Boston housing data set
which consists of 506 observations on 14 variables,
available at Carnegie Mellon University, Department of
Statistics, Pittsburgh (http://lib.stat.cmu.edu). This data
set was given by Belsley et al. [28.9] and we have used the
same variables they considered: the dependent variable
is the logarithm of the median value of owner-occupied
homes.

Figure 28.2 shows the diagnostic analysis of this
data set. The first row corresponds to the residuals of
the regression model. The residuals have been divided
by their standard error and the first plot shows a few
points which can be considered as outliers. The plot
of the Studentized residual is similar and identifies the
same points as outliers. The second row gives informa-
tion about Cook’s D statistics. There are clearly some

points in the middle of the sample which are more
influential than the rest, but all the values of the statis-
tic are small and, as we expect a skewed distribution,
the conclusion is not clear. However, the sensitivity
statistics clearly identifies a group of extreme obser-
vations which are not homogeneous with the rest. The
median of the sensitivity statistic is 0.0762, which is
very close to the expected value 1/p = 1/14 = 0.0714.
The MAD is 0.0195 and the plot indicates that 45 ob-
servations are heterogeneous with respect to the rest.
These observations are most of the cases 366–425 and
some other isolated points. From Belsley et al. [28.9]
we obtain that cases 357–488 correspond to Boston,
whereas the rest correspond to the suburbs. Also, the
45 points indicated by the statistic Si as outliers all cor-
respond to some central districts of Boston, including
the downtown area, which suggests that the relation
among the variables could be different in these dis-
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Fig. 28.2 Residuals, Cook’s statistics and sensitivity statistics for the Boston housing data. Right, histogram; left case
plot of the value of the statistic

tricts than in the rest of the sample. In fact, if we
fit regression equations to these two groups we find
very different coefficients for the regression coeffi-
cients in both groups of data, and in the second group
only five variables are significant. Also, we obtain a
large reduction in the residual sum of squares (RSE)

when fitting different regression equations in the two
groups.

Figure 28.3 shows the first eigenvalues of the matrix
of influence and sensitivity. Although both eigenvec-
tors indicate heterogeneity, the one from the matrix of
sensitivity is more clear.
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Fig. 28.3 First eigenvalue of the influence and sensitivity matrices

28.6 Final Remarks

We have shown different procedures for diagnosis in re-
gression models and have stressed that the detection of
groups of outliers in regression in large data sets can
be made by eigen-analysis of the influence and sensitiv-
ity matrices. We have also shown that a single statistic
of sensitivity is able to reveal masked outliers in many
difficult situations. The most challenging problem to-
day is to identify heterogeneity when we do not have
a central model which explains more than 50% of the
data and groups of outliers, as has been assumed in

this article, but different regression models in differ-
ent regions of the parameter space. In this case robust
methods are no longer useful and we need other meth-
ods to solve this problem. A promising approach is
the split and recombine (SAR) procedure, which has
been applied to find heterogeneity in regression mod-
els by Peña et al. [28.40]. These situations are very
close to cluster analysis and finding clusters around
different regression lines is today a promising line of
research.
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