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Abstract

A Bayesian approach is used to estimate a nonparametric regression model. The main features
of the procedure are, first, the functional form of the curve is approximated by a mixture of local
polynomials by Bayesian model averaging (BMA), second, the model weights are approximated by
the BIC criterion and third, a robust estimation procedure is incorporated to improve the smoothness of
the estimated curve. The models considered at each sample points are polynomial regression models
of order smaller than four, and the parameters are estimated by a local window. The predictive value
is computed by BMA, and the posterior probability of each model is approximated by the exponential
of the BIC criterion. Robustness is achieved by assuming that the noise follows a scale contaminated
normal model, so that the effect of possible outliers is downweighted. The procedure provides a smooth
curve and allows a straightforward prediction and quantification of the uncertainty. The method is
illustrated with several examples and Monte Carlo experiments.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Bayesian model averaging; BIC criterion; Robustness; Nonparametric curve fitting; Local polynomial
regression

1. Introduction

A Bayesian approach is used to estimate nonparametrically a regression model
vi=mx;)+e, i=1...,n,

given the bivariate data1, y1), ..., (x,, y»). We are interested in estimating the functional
relationship,m, between the variablg and the explanatory variable and to predict the
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response for new values of the covariate. The functional form(©fis unknown and it is
approximated by a mixture of local polynomials estimators.

Both parametric and nonparametric techniques are commonly used to find the regression
functionm (). The first parametric approach was to use polynomial regression by selecting
the best order of the polynomial to fit the data, 8@derson (1962)Guttman (1967)Hager
and Antle(1968)Brooks (1972)andHalpern (1973) The limitations of this approach are
due to its global nature, that is, we may need a high order polynomial to approximate the
data over the whole range and, even then, the approximation can be poor in wiggly curves.
Second, this procedure is very non robust and a simple observation can exert a big influence
on the estimated curve.

There is extensive literature for nonparametric techniques, see for ex&uapbnk
(1988) Wahba (199Q)Hastie and Tibshirani (199@ndGreen and Silverman (199%r a
complete survey. Some often used alternatives are piecewise polynomials, splines smoothers
and local polynomial regression. The first two methods require selecting the number and
positions of the knots. This is not an easy task: a small number of knots reduces the degrees
of freedom of the fitted curve and a large number of knots produces overfitting. An excellent
review of this topic can be found iHansen and Kooperberg (2003ome procedures have
been proposed for the automatic selection of the knots\adea (1975)Smith (1982)
andFriedman and Silverman (198%tone et al. (1997propose a stepwise approach in
which knots can be introduced and deleted and are evaluated by the log-likelihood. From
the Bayesian point of view this process can be carried out by using reversible jump Markov
chain Monte Carlo Green, 1995 where the number and the position of the knots are
determined by the data, treating both quantities as random variableRe®é&mn et al.
(2002)for a general discussion of this curve-fitting with free-knot proced8mith and
Kohn (1996)used this Bayesian approach to select the number of knots over a large set
for additive regression modelBenison et al. (1998)ave applied this method for general
univariate and additive models using piecewise polynomials instead of splines, because the
first are more flexible for fitting curves that are not smoddlallick (1998) proposed esti-
mating the function by taking the order of the polynomial as a random variable and making
inference of the joint distribution of both the order of the polynomial and the polynomials
coefficientsLiang et al. (2001)ntroduced an automatic prior setting for the multiple linear
regression and they applied the method to Bayesian curve fitting with regression splines.
DiMatteo et al. (2001glso applied a free-knot splines approach to data coming from the
exponential family by using the BIC criterion as an approximation to the integrated likeli-
hood ratios for the acceptance probabilitidelmes and Mallick (2003have applied the
free-knot regression to generalized nonlinear modellifeg et al. (2003have proposed
a Bayesianvariable selection and model averaging approach to multinomial nonparametric
regression which can handle a large number of variables and their interactions. They use
a multinomial probit regression model with data augmentatidhdrt and Chib, 199Bto
turn the multinomial regression problem into a sequence of smoothing problems with Gaus-
sian errors. In general all these procedures require a high computational cost. For instance
fitting thin-plate splines to two or more variables requite®?®) computations (seé/ahba,

1984 and this complexity will increase with the free-knot approach. On the other hand they
have a large flexibility, as tightly-spaced knots can produce peaks and widely-spaced knots
smooth functions.
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Local polynomial regression fits simple parametric models in neighborhoods defined by
the regressors. It usually requires a low computational cost and was developed in the works
of Stone (1977)Katkovnik (1979) Stone (1980pndCleveland (1979)See alsd_oader
(1979) Cleveland (1979andCleveland and Devlin (1988)roposed a popular procedure,
the loess (locally weighted regression), which uses local regression with a kernel around
the point of interest and is made robust by using weighted regression. This procedure is fast
to compute (of ordeO (n)) but has two main problems. First, it fits the same local model
over all the range of the data and thus it has no spatial adaptability and makes the result
very dependent on the neighborhood used. Second, it uses M estimators for robustness and
it is well know that these estimates are not robust for high leverage observations (see for
instancePefia and Yohai, 1999

In this work we also use local polynomial regression, because of its simplicity and
low computational cost, but we introduce two main modifications over previous methods.
First, instead of using a fixed degree local polynomial the functional form of the curve
is approximated by a mixture of local polynomials by Bayesian model averaging (BMA).
Bayesian model averaging leads to forecasts which are a weighted average of the predictive
densities obtained by considering all possible polynomial degrees with weights equal to the
posterior probabilities of each degree. BMA takes into account the uncertainty about the
different models, as was pointed out in the seminal workedmer (1978)SeeGeorge
(1999) Raftery et al. (1997)ernandez et al. (200&ndLiang et al. (2001jor interesting
applications. In our case, BMA isimplemented by fitting local polynomial regression models
of degree going from zero td to the data in a window around each observation, and
estimating the unknown regression function by a weighted sum of the values corresponding
to the polynomials, with weights equal to the posterior probabilities of each polynomial
model. These weights are approximated by the exponential of the BIC critSaobmvarz,

1978, which approximates the Bayes factor. Second, we made our procedure robust by
assuming that the noise may be contaminated. Then the Bayesian estimation provides an
automatic downweighting of outliers which takes into account their leverage.

These two modifications keep the main advantages of local polynomial regression meth-
ods but provide a more flexible and robust procedure. The use of BMA introduces some
spatial adoptability to our procedure, because although we use a fixed window for the local
estimation, we allow for a changing polynomial degree. This spatial adoptability is one of
the main advantages of the free-knot approach, which is able to change the smoothing ap-
plied by taking into account the curvature of the regression function. As showarbgnd
Gijbels (1995) an adaptive bandwidth can be obtained by an adaptive polynomial degree
and by using BMA we introduce this adaptive behavior in our procedure. Then, the use
of the BIC approximation keeps its simplicity and low computational cost and guarantees
that if the true model is a polynomial model of degree smaller thélnen for large sample
size the true model will be used. Also, when the true model is not a polynomial, the use of
BMA allows us to build credible intervals which take into account the uncertainty about the
model and lead to better predictive capability than those built using a single nvbaftibian
and Raftery, 1994 The use of mixtures of normals for robust estimation has several ad-
vantages over classical methods. See for inst@@reson et al. (2002)irst, we can take
into account the leverage of the observations in addition to the residual sizes and avoid the
limitation of M estimation in regression. Second, we obtain posterior probabilities for the
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suspicious observations to be outliers. These mixture estimation methods in general require
a high computational cost but we will show in Section 3.1 that, in this problem, we can take
into account the information obtained in one local window to simplify the computations for
the next window, making the procedure fast and efficient.

The rest of the paper is organized as follows. Section 2 describes the proposed method
and presents its main properties. Section 3 develops the modification of the method to make
it robust to outliers. Section 4 analyzes some real data sets to illustrate the behavior of
the procedure and provides a Monte Carlo comparison with other methods using several
simulated benchmark examples proposed in the literature. Finally, Section 5 presents some
concluding remarks.

2. The proposed method

Suppose that we haveobservationsx;, y;) which are a sample of independent and iden-
tically distributed data from a random varialglg, ). We assume that these observations
are related by

vi=mx)+¢&, i=1,...,n, ()

whereE (¢;) =0, Var(¢) =2, andX ande are independent. Further, we suppose thay

is a smooth function. It is well known that the family of polynomials of degree smaller than
d, for d large enough, can capture the local structure of any curve. Given a valytodie
discussed below, we consider local polynomial modé}sof the form

J
yi=Y Byt =% +e. J=0.....4d, (2)
j=0

for some neighborhood 6f;, y;), wherex is the mean of thevariable in the neighborhood.
Note that in order to simplify the notation, we wrifg; instead ofﬂ(j)., as the regression
parameters are going to depend on the neighborhood. To define tf]1is neighborhood, suppose
that thex observations are all different and ordered, thatiss x2 < - - - < x,,, (if they were

not different we define the neighborhood over the set of different observatiojsidfen,

for a given observation;, the neighborhood around this point is defined by
SNN(xi, w) = {xXg @ Xj—w <Xk SXitw)

wherew is the bandwidth of the window. The number of observations in the window is at
least 2v + 1. We assume thaw is chosen so that the number of different values;oin
SN N (x;, w) is atleast/ + 1, so that the polynomial of degreesan be fitted using the data

in the window. To take into account the left and right endpoints, where the windows contain
fewer observations, we redefined the first and the last windowssVas (x;, w) = {x; :
Xmax(L,i—w) <Xk <Xmin(r,itw) -

In this work we make all the inference for the predicted value of a future observation
y5; = m(x;) corresponding to a given valug, although the same analysis can be applied
for a new observationg belonging to the range of the datay € (x1, x,), by defining
SNN (xg0, w) = SNN (x;, w) wherex; = ming||lx; — xol|.
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The procedure is applied as follows. LBt = {(x¢, yr) : xx € SNN (x;, w)}, for eachy;
in the sample, we locally approximate the general for(m; ) in D; by a linear combination
of the polynomials (2). Thus, using dafa we compute the posterior probabilities for
different polynomial degrees and then estimate;) at each point by its forecast using
BMA. The predictive distribution for a new observatiory,, is given by

d

PGy I D= prp(yy | Di. M),
J=0

wherep; = P(M; | D;) is the posterior probability for the polynomial model of degree
J, M, given dataD;. The prediction under quadratic loss will be givenibyy; | D;) =
E(ys, | D;), and we have that

d

m(x; | D;) = Z pym(x; | D, My), ©))
7=0

whereni(x; | Di, Mj)=E(yy, | D;, M) is the expected value of the predictive distribution
conditional to modelM ;.

To make the inference about the polynomial models (2), we consider a reference prior
distribution by taking a priori the elements pf = (o, ..., ;) ando; independently
and uniformly distributed,

1
pBy,oy) x —.
oy

Then, the predictive distribution for a new observatipiiy s, | D;, M), is at-Student
distribution withv = ng — (J + 1) degrees of freedom, wherg is the sample size of
SNN(x;),meanE(yy, | Di, Mj)=x;B;, wherep; =(f o, ..., ;) isthe vector of usual
least-squares estimators for the parameters of the polynomial of ddgretata inD; , X; =
(L (i =X, ..., (i —x)7)andx;={3"x¢/no: xx € SNN(x;)},andvariance given by
Var(ys, | Di, My) = 75552 (1+ (x; — %) (X, X)) "*(x; — X;))wherevs? is the standard
sum of the squared residuals aXgl is the design matrix of the polynomial model (2) of
degree] fitted to the data irD;. Note that this estimation is applied for each neighborhood,
although, to simplify, we do not include this dependence in the notation.

The posterior probability for mode¥/; is approximated by the exponential of the BIC
criterion, which, aKass and Raftery (1995ointed out, approximates the Bayes factor
with a relative error0 (1). The Schwarz criterionrSchwarz, 1978for M is defined as

1
S(My)=logp(ylBs) — 5 +Dlog no,

wherep (y fﬁ,) is the likelinood of the modelz,, B, is the MLE of the parameter vector
under model, for data inD;, ng is the sample size fN N (x;) as before and/ + 1) is
the dimension of the vectgt,;. The Bayesian information criterion (BIC) of a mod#|,
iSBIC(Mj)=—-2S(M;), and expS(M,) — S(M,,)) approximates the Bayes factBy, j,
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with a relative errorO (1). Thus, we can approximate the Bayes factors by

exp(—0.5BIC(M ;)

. 2

and obtain the posterior probability for a model by

p(M; | D) o p(M;) {log py | Bs) = $(J + 1 log no} .

wherep (M) is the prior probability for the polynomial model. The likelihood for a normal
linear model evaluated at the MLE estimator is easily seen to be

—~ —no/2 vs% “ro/? no
p(yIB) =@ RS L) e

and the posterior probability ¥/ ; may be approximated, after absorbing common con-
stants, byp(M; | D;) = KB|Cp(M_])(US§)_’10/2na(1+l)/2, whereKpic is obtained by the
condition Z‘;Zop(MJ | D;) = 1. Then we approximate the posterior probability of the
models by

- —(J+1)/2
p(My| D) ocs;"ong VD2, (4)

Note that we are applying Bayesian inference locally, so that we do not assume a fixed joint
likelihood function for the data, as it is standard in nonparametric statistics. From this point
of view our approach can be seen as a Bayesian nonparametric approach in which the prior
and the likelihood are specified locally. This provides a flexible approach in situations in
which a global model would be very complicated to specify.

In order to apply this method several decisions must be made. First we have to decide
about the maximum degrekof the polynomials to be fitted. We propose to take 3. We
have found that this value is large enough to fit any curve locally very well and it avoids
the problem of overfitting. Second, we have to decide on the a priori probabilities of the
models. Two possible choices are unifor;(M;) = (d + 1)~1 or decreasing with the
polynomial degree. We propose the uniform prior for simplicity. The third choice is the
bandwidth parametev. A classical solution is to choose this parameter by cross-validation
as follows. Lety!” be the estimated value oi(x;) with bandwidthw, where the observed
valuey; is omitted in the estimation c’;]j‘” Then, the value fow is chosen to minimize the
mean squared error

n

1 N sw)\2
MSEw_n ; (m(x;) —3%)°.

We have checked by simulation that the results are not very sensitive to the choice of the
parametemw. This fact can be explained by the work B&n and Gijbels (1995)They

proposed a method which replaces an adaptive bandwidth by an adaptive order of the
polynomial to be fitted, and observed that if the bandwidth parameter is large, then the
order chosen for the polynomial order is high, whereas when a small bandwidth is used the
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order chosen was low. This same effect has been observed in the proposed method, and this
compensation effect makes the procedure fairly robust to the bandwidth parameter chosen.

The consistency of the proposed method can be obtained from the consistency of the
polynomial model approach. Also, we can obtain the expressions of the bias and the variance
based on the Theorem 3.1, page 6Za&m and Gijbels (1996)

3
E[i(x) —m(x)| X] = E HZ pifi (x)} —m(x) | X}

i=0

po+ p1 w? p2+ p3 wt
=< 2 )?m”(xH( 2 )m’”w(x)ﬂp(w“%

3
Var[im(x)] = Var [Z pii; (x):|

i=0

_(rotpl) o (retrl (oji)ﬂ, (i)

N 2 2 c nw P\nw)’
wheres? is the residual variance, are the posterior probability of the polynomials models,
w is the bandwidthp is the sample size and’ (x) indicates theth derivative of then (x)
function. We are supposing that the marginal density of the observaiigiis), is uniform
over the range of the dat#(x) = c and f'(x) = 0.

In order to have a smoother curve the procedure can be iterated. As iterating the procedure
does not have a clear Bayesian justification, this stage can be skipped, although we have
found in practice (see Section 4) that it often leads to better results. The iteration can be
carried out as follows. L&IY by the predicted value obtained by (3) in the first application
of the procedure or the first iteration. Then the observed values) are replaced by the
output of the first iteration(x, 7)), and the procedure is applied to this modified data set
to obtainy@, which is the output in the second iteration. In the same way the values in the
kth iteration,7®), can be computed by using the output of the- 1)th iteration(x, 7* 1)
as input data. In practice, we have found that a single iteration is enough to produce a good
result.

A possible problem when applying this procedure is that a single outlier observation can
have a large effect on the estimated models. In the next section we propose a robustified
version of the method.

3. Robustifying the method

The method can be made robust to reduce the influence of the outliers in the local
estimation by modelling the residuals by a mixture of normals. This model was introduced
by Tukey (1960)and studied byBox and Tiao (1968)Suppose that observatiogsare
generated by the model (1), where now the erepese random variables with the mixture
distribution

g ~ (L— )N (o, 02) +aN (o, kzaz) ,
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whereu is the prior probability that one observation comes fromti8, k2¢2) distribution
andk > 1. To make inference about this model, a set of dummy variablese defined
by 0; = 1 if Var(e) = k%¢2 andd; = O otherwise. Let\y = (61 =11, ...,0, =1,) be a
possible configuration of the data, whére-0, 1. Then there are”2possible classifications
of the observations into the two components of the mixture \Léke a diagonal matrix
with elementsi, i), v;; equal to 1 ifs; = 0 andv;; = 1/k? if §; = 1. Then, by making the
transformatiory , = V/2Y, X, = V1/2X standard inference results for linear models can
be applied. The BMA predictive distribution for the future observatigngiven the data
D;, will be given by

2" d

POy | Di) = ZZ POsi | Di, My, Ap)pin, (5)
h=0J=0

which is a mixture ofd + 1) x 2" distributions p(yy, | D;, M, A;), where the weights, for
each model and each configuration of the data, are givenby p(M; | Ay, D;) p(Ay | D;).
We compute the predicted valagx; | D;) as the expected value of the predictive distribu-

tion p(yy, | Dy),

d 2

mxi | D)= puii(xi|Di, My, Ap).

J=0 h=0

Given the model and the configuration, the predictive distributiory | D¢, M, Ay) fora
new observation ¢, is at-student distribution(v, X ¢ B75,, 1) with v=n — (J +1) degrees of
freedom. The expected valu@sxy | Dy, M, Ay) =X 7By is the mean of the disAtribution,
X = (1, (xXxr—=%xp) ..., (xr —ff)j) s Xf = > xk/no : xx € SNN(xp)}, andp;, are
the estimated parameters given tyyeconfiguration and the modaf,,

B = XX ) XY = (X[ VX ) TG VY

and the variance of the predictive distribution is

5% (14 @ = VO = %)

where
s2, = (Y = XunBn) (Yn = XunBn) = Y'IV = VX (X, VX J)_lX’,V]Y

is the standard sum of the squared residuals.

The weights of the mixture are given by, = p(M; | Ay, Dy)p(A, | Dy), where the
firstterm,p(M; | An, Dy), is the posterior probability of the models given a configuration
Ay. We approximate this term by the exponential of the BIC, given by (4), wﬁiarie
replaced b)fs?h which depends on the model and on the configuration. The integration
constant is computed by using the restriction that the sum of the posterior probabilities of
the four polynomials models, given each configuratidp, is one.
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The second term for the weights, is computed by

d

p(An 1Y) =Kap(y| An)p(Ap) = K2 Z p(Y | An, Mp)p(Ap I M) p(My),
J=0

where p(y | Ay, My) is the marginal distribution of the data, given a modé} and a
configurationA;, p(A, | M) is the prior probability of a configuration, which does not
depend on the modeé;, p(A, | My) = p(Ap) = o« (1 — o)™ andny, is the number
of elements with high variance in the configuratidp, n, = > ;. Finally, p(M}), the
prior probabilities, are equal for all the models and this term is absorbed by the integration
constant.

In order to compute the marginal densipfy | Ay, M) the likelihood of the model for
the parameter&; = (f,, o) can be written as

FYIX, 05, My, Ap)

= (27t)_”’1/26;}’:"k—”h exp{— (Yo, — Xjnhﬁ])/ (Yo, — Xjnhﬁj)}

2
209, k?
X (zn)f(nfnh)/za;}(ln—”h)

1
x expy —=——(Yu-ny) — XJ(n—nh)ﬂJ)/ (Y =np) — XJ(n—n,,)ﬁJ)}
207,

“n/2 —ng—
=@2n)~" ok
1

x exp{ — T

<V1/2Y _ Vl/zx,ﬁj)/ (Vl/ZY B Vl/zx,ﬁj) } ’

whereX,, indicates the rows of ; corresponding to the observations with variak?czﬁ%h,
andX;—n,) those corresponding to observations with variaf@e The marginal density
. . . . o \—(n—J+1)/2 _

is obtained by integrating,, p(y|As, M) o (57,) (=T | X, VX ;| Y2 and we

can obtain the expression for the marginal probability of the configuration,
d
pAn 1Y) =Kz ) p(y|An, Mp)p(Ay)
J=0
d Lo\~ T+D/2 U
K2 ) (s,h) | X VX | Y20 (1 — gyn
J=0

where the constark, is computed by using the conditi@i”zop(Ah ly)=1
3.1. Implementation
The scale contaminated normal model has the problem that the inference is made over

the 2* possible configurations of the data and it requires intensive computation. Although
in our case we have many local estimation problems with small sample size, the number
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of computations grows in exponential form. For example, for window size- 20, the
procedure requires computing approximatel§ posterior probabilities for the models, for
each one of the — ng windows.

The problem has been solved in the literature using the Gibbs sample¥gsheelli
and Wasserman, 19%hdJustel and Pefia, 199but the local character of the estimation
implies solving approximately —ng local problems which requires intensive computation.
Note that in this problem we may take advantage of the fact that the inference in a given
window gives us information about the inference in the next window, because they will
only differ in a few observations. Suppose we have computed the posterior probabilities
for all the configurations of the data corresponding to the set of observations belonging to
window D;. The next window,D; 11, is obtained from the previous one by deleting some
observations in the left extreme B and adding some new observations in the right hand
of the D; 1. Thus, we can obtain the configurations with highest probability in the first
windows and use this information to obtain the configurations with highest probabilities in
the next windowD; 1.

For this first window, if the sample size is small enough, the simplest solution is to carry
out an exhaustive study of the configurations. Otherwise, an alternative fast method which
allows an automatic implementation was proposeéPbgia and Tiao (1992f5uppose that
we have a sample of sizeand that we can classify the observations in two groups. The
firstincludes:; observations of potential outliers and the second the remainiag: — n1
observations which we believe have a high probability of not being an outlier. Then, as

()= (1) 6)=(0) -2 ()

instead of studying all the combinationstodutliers out ofn we can compute all the combi-
nations ofh outliers out of the:; potential set of outliers and a sample of the combinations
which includej = 1,2,...,h — 1 outliers and a small sample of all the combinations
of h points out ofny. In order to do so we need to divide the observations in these two
groups.Pefa and Tiao (1993roposed studying the differences between the probabilities
P (A,»Aj), andP (A;) P (Aj), whereA; is the event that; is an outlier, and consider as
potential outliers those observations in which both probabilities were different.

To apply this idea to the problem, the set of potential outliers is identified as follows:

(1) Compute the posterior probabilities for all the configurations which have the number
of outliers less or equal to 2. LeXg be the configuration without outlierg; the
configuration with only one outlier, the observatignand A;; the configuration in
which only the elementé;, x ;) are outliers.

(2) Include in the set of potential outliers the isolated outliers defined by the set

_ ). . PA D
A= {x, ' BAgD) 23].

(3) Include also the partially masked outliers as those belonging to the set

P(Ai; | D) _
P(T/\D)>3’ X; € A} .

BZ{XJ'Z
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(4) Include also the completely masked outliers, defined by the elements of the set

P(Ai; | D
C= {(x,',xj) PP >3, (i xj) ¢ (AU B)}.

The set of potential outliers is formed by elements belongingito B U C).

Once the configurations of outliers and good points with highest probability are detected
for the first window, D1, we use this information to select the configurations in the next
window, D». In the same way we use the informationfof to select the configurations of
D;1inarecursive form. In order to do so we introduce some notatiof:llgt= D;\ D; 11,
the left part ofD;, the set of observations belonging I which do not belong td; 1,

mlL the cardinal ofL D;, similarly let R D; the right part ofD; andmlR the cardinal olR D;.

Suppose that we have the posterior probabiliﬁe(&ﬁl |y) for all the configurations in
the window D; which do not have negligible probability. We select the selMotonfig-
urationsVp, = { ’l ce A‘M} with highest posterior probability. Now, we move to the

next window, D; 11, and letVgp, = {Af, ., AR R} be the 2 possible configura-
2"1[»

tions for them® new observations with are incorporated 1. In addition we have
to delete fromVp, the terms corresponding to the observations which are né in.
Let A,’;i be the configuration obtained fromj; € Vp, by deleting the firstmiL terms.
Then, the configurations with highest probabilities in the next windyw; will belong

to the set{[A”l‘i UAST], ..., [Af UARR},..., (A5 VAT, ..., [A;*VQUAR R“Where
2ml 2"1[-
[A" U A}] represents tha' configuration for the observations which belongipand

the configuratiom,R for the new observation incorporated. If there are not repeated ob-
servations in the data set amf =1, for all the windowsD;, then we can choosd big

enough to guarantee that the best configurations are selected. In data sets with repeated
observationsM should be chosen moderate to avoid expensive computations.

4. Examples

To illustrate the methods developed, we consider three data set frequently analyzed in
the nonparametric curve fitting. The first one is the Helmets data. The data consists of ac-
celerometer readings taken through time in an experiment on the efficacy of crash helmets
in simulated motor-cycle crashes, described in detabblymidt et al. (1981)The second
one is the Ethanol data. The data includes 88 measurements of two variables from an exper-
iment in which ethanol was burned in a single cylinder automobile test engiirék(nan,

1981). The two variables measured are the concentration of nitric oxide (NO) and nitrogen
dioxide (NQ) in engine exhaust and the equivalence ratio at which the engine was run (a
measure of the richness of the air-ethanol mix). The third example is the Diabetes data. It
includes two variables measured in children with insulin-dependent diabetes. The variables
are the age of the children and the level of serum C-peptide, and were obtainetiitaett

etal. (1987)We have analyzed the same subset of 43 observations that appeatimand
Tibshirani (1990which use this data to show the effect of several smoothers in Chapter 2
of their book.
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Fig. 1. Curves fit for Helmets data. The left figure shows the curve for the standard method (solid line), the robust
method with parameter@ = 0.05, k2 =3) (dotted line) and the robust method witla= 0.1, k2 =5) (dashed
line). The right figure shows the second iteration of the procedure for these three cases.
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Fig. 2. Curves fit for Ethanol data. The left figure shows the curve fitted by the standard method (solid line), the
robust method with paramete¢g = 0.05, k2 = 3) (dotted line) and the robust method withh = 0.1, k2 = 5)
(dashed line). The right figure shows the second iteration of the procedure for these three cases.

Fig. 1 shows the estimated curve for the Helmets data, with 12 estimated by cross
validation. The figure in the left-hand side shows the estimated curve with the procedure
presented in Section 2 and two robust curve estimates with paranteter8.01, k2 = 3)
and(xz=0.1, k>=5). It can be seen that the smoothness of the curve increases with the prior
proportion of outliers. On the right hand a second iteration for each of these three cases are
shown and it can be seen that these curves are very smooth and the differences among them
are very small.

Fig. 2 shows the estimated curve for the Ethanol data. In this data set the value of the
parametemw obtained by minimizing the MSE for cross validationus= 10. The three
curves shown are the ones obtained by the standard estimation and two obtained by a robust
approach with the same values of the parameters as in the previous example1, k>=3)
and (¢ = 0.1, k2 = 5). We can observe that there are small differences among the three
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Fig. 3. Curves fit for diabetes data. The left figure shows the curve fitted by the standard method (solid line), the
robust method with parameteis=0.01, k2=3) (dotted line) and robust method with = 0.05, kK2=7) (dashed
line). The right figure shows the second iteration of the procedure for these three cases.

curves and none of them is completely smooth. Note that as the data is homogeneous the
robustification does not modify the standard estimation. In the right hand figure we show
the second iteration of the procedure in the three cases, the three curves obtained are smooth
and very similar.

Fig. 3 shows the fitting curve for the diabetes data in the first two iterations of the
algorithm. The window which minimizes the MSE for cross validation is mow 22, and
the sample size is 43. The lack of smoothness observed in the curve fitted by the standard
procedure corresponds to the incorporation of the extreme observations aretititl The
robust estimate of the curve reduces this effect. Apart from the variability at this point there
are small differences among the fitted curves due to the large window used. The second
iteration of the procedures leads to similar fitted curves.

4.1. Monte Carlo experiment

We compare the behavior of the proposed method to the popular loess metiiedsénd
(1979)which is implemented in many computer programs, and to the Bayesian free-knot
splines approach byiMatteo et al. (2001as implemented in the BARS code which can be
downloaded fronmhttp:// www.stat.cmu.edu/jliebner/. The comparison is made by using
four simulated functions proposed Bpnoho and Johnstone (1994hich have been used
oftenin the literature for comparison purposes (3erison et al., 1998The four simulated
functions are:

Heavisine f(x)=[4sin(4nx) — sgn(x — 0.3) + ¢3 — sgn(0.72— x)],
Blocks f(x) = thiz)K(x —xj)+ea Kx)=(1+sgn(x)/2,
Bumps f(x)=» h\"K((x —xj)/wj)+es K(x)=(1+ x4
Doppler f(x) = v/x(1 — x) sin(2.1n/(x + 0.05)) + &,


http://www.stat.cmu.edu/jliebner/
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Fig. 4. The four simulated functions used to compare the proposed method: Heavisine, Blocks, Bumps and Doppler.

wherex; = {0.1,0.13,0.15,0.23, 0.25, 0.4, 0.44, 0.65,0.76,0.78,0.81}, h\") = {4,5.3,

4,54221,43,31,51,42), i'? = {4,-53 -4,5-42,21,43,-31,51,-42)
and w; = {0.005 0.005, 0.006, 0.01, 0.01, 0.03,0.01, 0.01, 0.005, 0.008 0.005. These
functions are standardized oar(f) = 72. The errors are generated by~ N (0, ¢2),

wheres? is chosen so that the root of the signal-noise rafRSNR= %gf) are35,7

and 10 The simulation are based on 1000 points. The four simulated functions are showed
in Fig. 4.

Inthe tables the mean of the squared errors, M$E_"_, (7 (x;) — m(x;))?,is presented
with 72 (x;) computed by eight different procedures. BMA1 and BMA2 both use the method
proposed in Sections 2 and 3 of this paper with 1 and 2 iterations, respectively. This iterations
are made as explained in Section 2, thatis, the predicted value obtained in the first application
of the procedure is used as data in the second application of the procedure. LB1, LB3, LT1
and LT3 use the loess method as proposedClgveland (1979)LB1 and LB3 with a

bisquare weight functionB(x) = (1 - xz)2 for |x| <1, and polynomial of degrees= 1
ord = 3, respectively and LT1 and LT3 with the tricube kerrie{x) = (1 — |x|3)3, and
again degrees 1 and 3, respectively. In both kemé&dgescaled byx — x;)/ h; whereh;
is the distancéx — x;| from x to therth nearest neighbor. Finally, BARS is the approach
of DiMatteo et al. (2001)We also include a column with the number of knots (mean and
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Fig. 5. Heavisine function with different root of signal-noise ratio: 3, 5, 7, 10.

standard error) used to fit the curve by this last procedure. The results are the mean of
1000 replications. The simulated curves with the four levels of root signal-to-noise ratio,
RSNR= {3, 5, 7, 10}, are shown irFigs. 5-8

Table 1shows the mean and the standard deviation, in small letter size, of the MSE of the
1000 replications of the function Heavisine. We can observe that when the ratio signal-to-
noise is small, RSNR: 3, the smallest MSE is obtained by BMA2, the proposed method
with two iterations of the algorithm, but when this ratio increases the best performance is
obtained by BARS, which uses between 9 and 13.5 knots to fit the curve. The number of
knots grows when the RSNR grows. With regards to the loess method, the bisquare kernel
is slightly better than the tricube, and the linear fit works better than the cubic fit.

Table 2shows the result obtained for the function Blocks. The results are similar to
the previous ones. When the signal-to-noise ratio is small, RSISRBMA2, the second
iteration of the proposed algorithm, has the best performance. However, when this ratio
increases the best results are obtained by BARS. Again for the loess procedure the linear
fit is better than the cubic and the bisquare kernel slightly better than the tricube. We also
observe that although the Blocks function presents eleven discontinuity points, and it is
constant between them, the BARS procedure uses 50 knots for the highest level of RSNR,
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Fig. 6. Blocks function with different root of signal-noise ratio: 3, 5, 7, 10.

Table 1
MSE obtained for the Heavisine data with four different signal-to-noise ratio
RSNR BMA1 BMA2 LB1 LB3 LT1 LT3 BARS #Knots
3 0.2869 0.2634 0.2709 0.3690 0.2745 0.3739 0.3210 9.09
0.0445 0.0443 0.0437 0.0544 0.0436 0.0548 0.0821 1.06
5 0.1566 0.1458 0.1629 0.2264 0.1653 0.2249 0.0992 12.05
0.0183 0.0173 0.0173 0.0409 0.0172 0.0371 0.0267 0.78
7 0.1075 0.1016 0.1137 0.1411 0.1160 0.1411 0.0449 13.06
0.0108 0.0095 0.0092 0.0160 0.0093 0.0143 0.0153 0.45
10 00748 0.0707 0.0791 0.1279 0.0809 0.1464 0.0224 1349
0.0060 0.0051 0.0050 0.0093 0.0050 0.0169 0.0064 0.58

The procedures compared are the proposed BMA with 1 and 2 iterations (BMA1 and BMAZ2), four implementation
of loess (LB1, LB2, LT1, LT3) and the free-knots splines BARS.

RSNR= 10. For the functions Bumps and Doppler (Sebles 3and4) the results are
different as now in all cases the best results are obtained by the BARS procedure. In these
cases, the BMA1, the first iteration of the algorithm presents better results than BMA2. This
is not surprising as these functions are not smooth and a second iteration smooths the picks,
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Fig. 7. Bumps function with different root of signal-noise ratio: 3, 5, 7, 10.

Table 2
MSE obtained for the Blocks data with four different signal-to-noise ratio
RSNR BMA1 BMA2 LB1 LB3 LT1 LT3 BARS #Knots
3 20494 1.9042 2.0050 2.2307 2.0674 2.2730 2.3972 26.41
0.0907 0.0808 0.0811 0.0767 0.0811 0.0769 0.3352 235
5 16817 1.5643 1.6366 1.8625 1.7019 1.9003 1.3003 34.06
0.0509 0.0379 0.0376 0.0324 0.0377 0.0325 0.4955 5.88
7 15821 1.4763 1.5405 1.7673 1.6068 1.8043 0.6827 4331
0.0356 0.0232 0.0237 0.0196 0.0238 0.0199 0.6269 9.43
10 15271 1.4278 1.4879 1.7148 1.5548 1.7512 0.3791 5107
0.0251 0.0151 0.0155 0.0117 0.0155 0.0116 0.5820 1051

The procedures compared are the proposed BMA with 1 and 2 iterations (BMA1 and BMAZ2), four implementation
of loess (LB1, LB2, LT1, LT3) and the free-knots splines BARS.

for the bumps data, or the extremes, for the Doppler data. With regards to loess the results
are the same as before: the linear fit with the bisquare kernel has the best performance. Also,
we can observe that for the wiggly curve (see TalRe®nd3), the BARS method uses a

large quantity of knots, and this may be the reason for the huge standard deviation of the

estimated MSE for the blocks and bumps functions.
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Fig. 8. Doppler function with different root of signal-noise ratio: 3, 5, 7, 10.

Table 3
MSE obtained for the Bumps data with four different signal-to-noise ratio
RSNR BMA1 BMA2 LB1 LB3 LT1 LT3 BARS #Knots
3 6.6577 6.7748 6.8940 8.3255 7.2484 8.5622 4.2794 4993
0.2094 0.1491 0.1297 0.1136 0.1288 0.1144 4.5466 14.20
5 6.2017 6.3904 6.5223 7.9670 6.8808 8.2016 3.4574 56.10
0.1294 0.0862 0.0718 0.0608 0.0717 0.0615 4.7053 1753
7 6.0877 6.3014 6.4385 7.8787 6.7981 8.1110 2.4413 63.35
0.0913 0.0611 0.0511 0.0438 0.0510 0.0446 4.2878 18.16
10 6.0097 6.2435 6.3788 7.8223 6.7384 8.0543 2.4897 66.95
0.0630 0.0383 0.0335 0.0295 0.0332 0.0300 4.7674 20.19

The procedures compared are the proposed BMA with 1 and 2 iterations (BMA1 and BMAZ2), four implementation
of loess (LB1, LB2, LT1, LT3) and the free-knots splines BARS.

4.2. Simulation with outliers

To show the behavior of the method when there are outliers in the sample, we repeat the
simulation for the first two functions of the previous section, Heavisine and Blocks, but now
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Table 4
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MSE obtained for the Doppler data with four different signal-to-noise ratio

RSNR BMA1 BMA2 LB1 LB3 LT1 LT3 BARS #Knots
3 1.0856 1.1069 1.2312 1.3782 1.2655 1.4068 0.7952 2395
0.0809 0.0765 0.0815 0.0832 0.0814 0.0838 0.1533 1.84
5 0.7284 0.8025 0.8713 1.0230 0.9085 1.0476 0.3514 30.28
0.0349 0.0308 0.0355 0.0332 0.0354 0.0336 0.0643 1.94
7 0.6284 0.7155 0.7701 0.9213 0.8078 0.9446 0.2053 35.16
0.0215 0.0193 0.0250 0.0203 0.0248 0.0200 0.0395 2.36
10 05717 0.6693 0.7187 0.8695 0.7569 0.8921 0.0993 4119
0.0137 0.0116 0.0157 0.0125 0.0156 0.0125 0.0160 251

The procedures compared are the proposed BMA with 1 and 2 iterations (BMA1 and BMAZ2), four implementation
of loess (LB1, LB2, LT1, LT3) and the free-knots splines BARS.
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Fig. 9. A replication of the simulated outliers with RSNR3.

Table 5
MSE obtained for the Heavisine data with outliers

RSNR BMA1 BMA2 LB1 LB3 BARS #Knots
3 3.0956 11771 24.3396 7.6680 5.5503 15.80
0.2893 0.1431 4.4235 2.6390 3.3667 117
5 26917 11110 46.2537 20.3535 8.8345 25.89
0.2412 0.1061 3.5707 3.2370 3.5595 1.59
7 24896 1.0880 535682 27.9767 10.7109 3197
0.1753 0.0768 2.6243 2.6776 3.1900 1.25
10 22456 1.0371 57.0434 31.6018 11.3895 33.85
0.1420 0.0605 17318 2.2795 3.0064 0.98

adding 3% of outliers. They have been added in groups of three consecutive outliers equal-
spaced in the interval [0,1] and always with= 20. One sample of the data configuration
obtained with this distribution of the outliers and with a RSRIS is presented ifig. 9.

The results obtained in the comparison of the methods are shovablas 5and6. The
methods included are the proposed procedure, BMA1 and BMAZ2, the loess method with
bisquare kernel and polynomial degrees 1 and 3, LB1 and LB3, and the BARS method. We
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Table 6
MSE obtained for the Blocks data with outliers
RSRN BMAL BMA2 LB1 LB3 BARS #Knots
3 4.0725 4.1641 6.6320 6.2982 5.1663 36,51
0.1504 0.1391 0.2058 0.4627 0.7927 1.55
5 37817 39714 9.3803 5.4019 5.7939 5166
0.1200 0.1043 0.5900 0.1845 0.9939 1.95
7 3.6300 3.8811 135658 5.6632 6.1844 63.59
0.0843 0.0688 0.7973 0.7042 0.9925 1.95
10 35143 3.8182 17.9794 5.8036 6.3139 67.62
0.0491 0.0445 0.6079 0.2424 0.8695 167

have not included in this table the loess method with kernel tricube, LT1 and LT3, because
of their bad results. These results illustrate the danger of using a model based approach,
such as BARS, blindly when there are outliers in the sample. The first conclusion from
Tables5 and6 is that the performance of the BARS method, as it can be expected, is now
much worse than before, and this procedure seems to be very sensitive to outliers. Both the
proposed procedure and the loess method include some robust estimation and thus although
their MSE increases for the larger variability due to the outliers, they are much less affected
by it than the BARS method. For both functions, Heavisine and Blocks, the best result are
obtained by BMA2, the second iteration of the proposed algorithm. We can observed that,
when the RSNR grows, the MSE increases for the BARS method. This is due to the fact
that when the residual noise decreases, the outliers have a larger relative size and their effect
in introducing biased in the estimation of the curve increases. This effect also appears in
general in loess, although more in the Heavisine function than in the Blocks function. On
the other hand, with the proposed procedure the MSE decreases with the variance of the
noise, as it should be for a robust procedure which is able to identify and downweight the
outliers.

5. Concluding remarks

In this article a new method for fitting a curve by local polynomials is proposed. It
introduces more flexibility in the local fitting by using BMA, and robustness by using
mixtures of normals for the noise. The proposed method is simple to apply and to programme
and completely automatic. We have shown in a Monte Carlo study that this method works
better than others of similar computational complexity.

The main ideas of the method can be generalized to vector valued regregs®3 in
a straightforward way. First, we need to define a neighborhood in the space of independent
variables and a distance function. Second, to avoid the curse of dimensionality problem,
we have to control the number of parameters of the surface pliecreases so that the
number of parameters are a small fraction of the sample size. This can be done in a number
of ways. The first is to assume an additive mode ts$astie and Tibshirani, 1990in order
to reduce the dimensional functiom (x) to a sum ofp univariate functions in which the
linear effects enter independently into the model. Gastafson (2000fpr some Bayesian
generalizations of this approach. A second alternative is to use regression trees, as in the
Treed procedure (sédexander and Grimshaw, 199 which the sample is divided using a
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variable at each step. A third alternative is to use index models, in whichis written as a

sum of functions of some index or components variapleg) x. Finally, a fourth possibility

is to use projection pursuit regressidfriedman and Stuetzle, 198The extension of this
approach comparing these alternative ways to avoid the curse of dimensionality will be the
subject of further research.
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