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Abstract. A projection method for robust estimation of shape and location in
multivariate data and cluster analysis is presented. The key idea of the procedure
is to search for heterogeneity in univariate projections on directions that are ob-
tained both randomly, using a modification of the Stahel-Donoho procedure, and
by maximizing and minimizing the kurtosis coefficient of the projected data, as
proposed by Peña and Prieto (2005). We show in a Monte Carlo study that the
resulting procedure works well for robust estimation. Also, it preserves the good
theoretical properties of the Stahel-Donoho method.

1 Introduction

As a few outliers in multivariate data may distort arbitrarily the sample
mean and the sample covariance matrix, the robust estimation of location
and shape is a crucial problem in multivariate statistics. See for instance
Atkinson et al. (2004) and the references therein. For high-dimensional large
data sets a useful way to avoid the curse of dimensionality in data mining
applications is to search for outliers in univariate projections of the data. Two
procedures that use this approach are the Stahel-Donoho procedure, that
searches for univariate outliers in projections on random directions, and the
method proposed by Peña and Prieto (2001, b), that searches for outliers in
projections obtained by maximizing and minimizing the kurtosis coefficient
of the projected data. The first procedure has good theoretical properties,
but fails for concentrated contamination and requires prohibitive computer
times for large dimension problems. The second procedure works very well
for concentrated contamination and it can be applied in large dimension
problems, but its theoretical properties are unknown. As both procedures
are based on projections, it seems sensible to explore if a combination of
both could avoid their particular limitations and this has been proposed by
Peña and Prieto (2005). They show that the combination of random and
specific directions leads to a affine equivariant procedure which inherits the
good theoretical properties of the Stahel-Donoho method and it is fast to
compute so that it can be applied for large data sets.



2 Peña and Prieto

The procedure can also be applied for cluster analysis by generalizing
the approach presented in Peña and Prieto (2001,a). Then, instead of just
searching for directions which are extremes of the kurtosis coefficient, we add
random directions to obtain a better exploration of the space of the data.

This article summarizes the method proposed by Peña and Prieto (2005)
and includes two contributions: we present new results on the relative per-
formance of the procedure with several groups of outliers, and we discuss the
application of the procedure for cluster analysis. The article is organized as
follows. Section 2 summarizes the main ideas of the procedure for generating
directions and presents the algorithm combining random and specific direc-
tions. Section 3 discuss the extensions of these ideas for clustering . Section
4 illustrates the performance of the proposed method as an outlier detection
tool for robust estimation.

2 Finding Interesting Directions

Suppose we have a sample (x1, . . . , xn) of a p-dimensional vector random
variable X. We are interested in searching for heterogeneity by projecting
the data onto a set of directions dj , j = 1, . . . , J . The key step of the method
is obtaining the directions dj . The Stahel-Donoho procedure is based on gen-
erating these directions randomly: a random sample of size p is chosen, a
hyperplane is fitted to this sample and the direction dj orthogonal to this
hyperplane is chosen. Note that if we have a set of outliers and the data is
standardized to have variance equal to one, the direction orthogonal to the
fitted plane is, a priori, a good one to search for outliers.

A procedure for obtaining specific directions that can reveal the presence
of heterogeneity was proposed by Peña and Prieto (2001b). They showed that
the projection of the data on the direction of the outliers will lead to (1) a
distribution with large univariate kurtosis coefficient if the level of contami-
nation is small and (2) a distribution with small univariate kurtosis coefficient
if the level of contamination is large. In fact, if the data come from a mixture
of two distributions (1−α)f1(X) + αf2(X), with .5 < α < 0 and fi, i = 1, 2,
is an elliptical distribution with mean µi and covariance matrix Vi, the direc-
tions that maximize or minimize the kurtosis coefficient of the projected data
are of the form of the admissible linear classification rules. In particular, if
the distributions were normal with the same covariance matrix and the pro-
portion of contamination is not large, 0 < α < 0.21, the direction obtained by
maximizing the kurtosis coefficient is the Fisher linear discriminant function
whereas when the proportion of contamination is large, 0.21 < α < .5, the
direction which minimizes the kurtosis coefficient is again the Fisher linear
discriminant function. Thus, the extreme directions of the kurtosis coefficient
seem to provide a powerful tool for searching for groups of masked outliers.
Peña and Prieto (2001b) proposed an iterative procedure based on the projec-
tion on a set of 2p orthogonal directions obtained as extremes for the kurtosis
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of the projected data. Note that the first set of p directions are closely re-
lated to the independent components of the data, which are defined as a set
of p variables obtained by linear transformations of the original data such
that the new variables are as independent as possible. It can be shown that
the independent components can be obtained by maximizing the absolute
value or the square of the kurtosis coefficient and, as this coefficient cannot
be smaller than one, these directions will be the same as the one obtained
by maximizing the kurtosis coefficient. The performance of these directions
for outlier detection was found to be very good for concentrated contamina-
tion but, as it can be expected from the previous results, it was not so good
when the proportion of contamination is close to .3 and the contaminating
distribution has the same variance as the original distribution. This behavior
of the algorithm is explained because then the values of the kurtosis for the
projected data are not expected to be either very large or very small.

Thus it seems that we may have a very powerful procedure by combining
the specific directions obtained as extremes of the kurtosis with some random
directions. However, as we are interested in a procedure that works in large
data sets and it is well known (and it will be discussed in the next section)
that the Stahel-Donoho procedure requires a huge number of directions to
work as the sample size increases, the random directions are not generated by
random sampling, but by using some stratified sampling scheme that is found
to be more useful in large dimensions. The univariate projections onto these
directions are then analyzed as previously described in a similar manner to
the Stahel-Donoho algorithm. See Peña and Prieto (2005) for the justification
of the method.

We assume that first the original data are scaled and centered. Let x̄
denote the mean and S the covariance matrix of the original data, the points
are transformed using yi = S−1/2(xi − x̄), i = 1, . . . , n.

Stage I: Analysis based on directions computed from finding extreme values
of the kurtosis coefficient. Compute n1 orthogonal directions and projections
maximizing the kurtosis coefficient (1 ≤ n1 ≤ p) and n2 directions minimizing
this coefficient (1 ≤ n2 ≤ p).

1. Set y
(1)
i = yi and the iteration index j = 1.

2. The direction that maximizes the coefficient of kurtosis is obtained as the
solution of the problem

dj = arg maxd
1
n

n∑
i=1

(
d′y

(j)
i

)4

s.t. d′d = 1.

(1)
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3. The sample points are projected onto a lower dimension subspace, or-
thogonal to the direction dj . Define

vj = dj − e1, Qj =


I −

vjv
′
j

v′jdj
if v′jdj 6= 0

I otherwise,

where e1 denotes the first unit vector. The resulting matrix Qj is orthog-
onal, and we compute the new values

u
(j)
i ≡

(
z
(j)
i

y
(j+1)
i

)
= Qjy

(j)
i , i = 1, . . . , n,

where z
(j)
i is the first component of u

(j)
i , which satisfies z

(j)
i = d′jy

(j)
i (the

univariate projection values), and y
(j+1)
i corresponds to the remaining

p− j components of u
(j)
i .

We set j = j + 1, and if j < n1 we go back to step 1(b). Otherwise, we
let z

(p)
i = y

(p)
i .

4. The same process is applied to the computation of the directions dj (and
projections z

(j)
i ), for j = n1 + 1, . . . , n1 + n2, minimizing the kurtosis

coefficient.
5. For finding outliers, as in the Stahel-Donoho approach the normalized

univariate distances rj
i are computed as

rj
i =

1
βp

|z(j)
i −mediani(z

(j)
i )|

MADi(z
(j)
i )

, (2)

for each direction j = 1, . . . , n1 + n2, where βp is a predefined reference
value.

Stage II: Analysis based on directions obtained from a stratified sampling
procedure as follows:

1. In iteration l, two observations are chosen randomly from the sample
and the direction d̂l defined by these two observations is computed. The
observations are then projected onto this direction, to obtain the values
ẑl
i = d̂T

l yi. Then the sample is partitioned into K groups of size n/K,
where K is a prespecified number, based on the ordered values of the
projections ẑl

i, so that group k, 1 ≤ k ≤ K, contains those observations i
satisfying

ẑl
(b(k−1)n/Kc+1) ≤ ẑl

i ≤ ẑl
(bkn/Kc).

2. From each group k, 1 ≤ k ≤ K, a subsample of p observations is chosen
without replacement. The direction orthogonal to these observations, d̃kl,
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is computed, as well as the corresponding projections z̃kl
i = d̃T

klyi for all
observations i. These projections are used to obtain the corresponding
normalized univariate distances rj

i ,

rj
i =

1
β̄p

|z̃kl
i −mediani(z̃kl

i )|
MADi(z̃kl

i )
, (3)

where j = 2p+ b(k−1)n/Kc+ l, and β̄p is a prespecified reference value.
3. This procedure is repeated a number of times L, until l = L.

Stage III: For each observation i its corresponding normalized outlyingness
measure ri is obtained from the univariate distances rj

i defined in (2) and
(3), as

ri = max
1≤j≤2p+bLn/Kc

rj
i .

Those observations having values ri > 1 are labeled as outliers and re-
moved from the sample, if their number is smaller than n− b(n + p + 1)/2c.
Otherwise, only those n − b(n + p + 1)/2c observations having the largest
values of ri are labeled as outliers.

The values of the parameters needed in the procedure are explained in
Peña and Prieto (2005).

3 Application to Clustering

The directions obtained in the previous section can be used for finding clus-
ters by identifying holes in the distribution of the projected data; we use the
sample spacings or first-order gaps between the ordered statistics of the pro-
jections. If the univariate observations come from a unimodal distribution,
there will be large gaps near the extremes of the distribution and small gaps
near the center. However, this pattern will change if there are clusters in the
data. For example, with two clusters of similar size we expect a large gap sep-
arating the clusters, lying towards the center of the observations. Thus, once
the univariate projections are computed for each one of the n1+n2 projection
directions, the problem is reduced to finding clusters in unidimensional sam-
ples, where these clusters are defined by regions of high probability density.
We consider that a set of observations can be split into two clusters when
we find a sufficiently large first-order gap in the sample. Let zki = x′

idk for
k = 1, . . . , n1 +n2, and let zk(i) be the order statistics of this univariate sam-
ple. The first-order gaps or spacings of the sample, wki, are defined as the
successive differences between two consecutive order statistics

wki = zk(i+1) − zk(i), i = 1, ..., n− 1

As the expected value of the gap wi is the difference between the expected
values of two consecutive order statistics, it will be in general a function of i
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and the distribution of the observations. For a unimodal symmetric distrib-
ution Peña and Prieto (2001a) showed that, under reasonable assumptions,
the largest gaps in the sample are expected to appear at the extremes, w1 and
wn−1, while the smallest ones should be those corresponding to the center of
the distribution. Therefore, if the projection of the data onto dk produces a
unimodal distribution we would expect the plot of wki with respect to k to
decrease until a minimum is reached (at the mode of the distribution) and
then to increase again. The presence of a bimodal distribution in the projec-
tion would be shown by a new decreasing of the gaps after some point. A
sufficiently large value in these gaps would provide indication of the presence
of groups in the data. The cut-off for the gaps can be determined by Monte
Carlo. In summary, the algorithm will be as follows:

1. For each one of the directions dk compute the univariate projections of
the original observations uki = x′idk.

2. Standardize these observations, zki = (uki−mk)/sk, where mk =
∑

i uki/n
and sk =

∑
i(uki −mk)2/(n− 1).

3. Sort the projections zki for each value of k, to obtain the order statis-
tics zk(i) and transform then using the inverse of the standard normal
distribution function z̄ki = Φ−1(zk(i))

4. Compute the gaps between consecutive values, wki = z̄k,i+1 − z̄ki.
5. Search for the presence of significant gaps in wki. These large gaps will

be indications of the presence of more than one cluster. In particular, we
introduce a threshold κ = ν(c), where ν(c) = 1 − (1 − c)1/n denotes the
c-th percentile of the distribution of the spacings, define i0k = 0 and

r = inf
j
{n > j > i0k : wkj > κ}.

If r < ∞, the presence of several possible clusters has been detected.
Otherwise, go to the next projection direction.

6. Label all observations l with z̄kl ≤ z̄kr as belonging to clusters different
to those having z̄kl > z̄kr. Let i0k = r and repeat the procedure.

4 Simulation results

We present in Table 1 the percentage of successes in a simulation experiment
where we have compared: (1) An efficient algorithm for the implementation
of the Minimum Covariance Determinant (MCD) procedure, the FASTMCD
algorithm as proposed by Rousseeuw and van Driessen (1999). (2) An im-
plementation of the Stahel-Donoho algorithm, as described in Maronna and
Yohai (1995). (3) A computationally efficient algorithm recently proposed by
Maronna and Zamar (2002), based on the analysis of the principal compo-
nents of an adjusted covariance matrix computed from information on pairs
of observations. Two iterations of the algorithm have been carried out, as sug-
gested by the authors. (4) An algorithm based on the directions computed
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from the minimization and maximization of the kurtosis coefficient, as de-
scribed in Peña and Prieto (2001b). (5) A stratified Stahel-Donoho sampling
procedure, corresponding to the second part of the RASP algorithm described
in Section 2. (6) An implementation of the RASP(1) algorithm described in
Section 2. (7) An implementation of RASP(p), that is, the same algorithm as
before but using now the full 2p directions maximizing and minimizing the
kurtosis coefficient. The data for the experiment in Table 1 was generated
from a standard normal multivariate distribution in dimensions 5, 10 and 20,
contaminated with a proportion of outliers in a single cluster (from 10% to
40%), obtained from a second normal distribution with different covariance
matrices. A total of 100 replications were carried out for each case and each
algorithm.

Table 1. Overall success rates for the detection of outliers forming one cluster

FASTMCD SD MZ kurtosis mod-SD RASP(1) RASP(p)

74.9 90.1 70.2 88.0 94.9 97.5 98.0

In a second computational experiment, we have generated samples com-
posed of one main cluster obtained from a standard normal distribution and
two or four additional clusters. The success rates for algorithms FASTMCD,
SD, MZ and RASP(p) are presented in Table 2. The number of directions
generated in algorithm SD was chosen to have comparable running times for
both SD and RASP(p). Note again the improvement obtained when using
RASP(p) over the alternative algorithms.

Table 2. Overall success rates for the detection of clusters

FASTMCD SD MZ RASP(p)

88.5 97.5 86.2 100.0

Table 3. Average running times for the algorithms

FASTMCD SD MZ RASP(p)

233.8 7.0 17.8 7.9

Finally, to illustrate the computational efficiency of the different algo-
rithms, Table 3 presents the average running times for the analysis of sets of
100 replications corresponding to the preceding algorithms, given in seconds
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on a Pentium M 1.6 GHz. Those for both SD and RASP(p) are significantly
lower than for the other algorithms.
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