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Abstract: This article compares models for dimension reduction in time series
and tests of the dimension of the dynamic structure. We consider both station-
ary and nonstationary time series and discuss principal components, canonical
analysis, scalar component models, reduced rank models and factor models.
The unifying view of canonical correlation analysis between the present and
past values of the series is emphasized. Then, we review some of the tests based
on canonical correlation analysis to find the dimension of the dynamic relation-
ship among the time series. Finally, the procedures are compared through a
real data example.
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28.1 Introduction

Dimension reduction is very important in vector time series because the number
of parameters in a model grows very fast with the dimension m of the vector
of time series yt. Linear models usually have a number of parameters which
grows with m2 and, for instance, a VARMA(p, q) model contains m2(p+ q) pa-
rameters. This problem can be even more important in nonlinear vector time
series and, for instance, in a bilinear vector model or a threshold AR vector the
number of parameters can easily be very large. The same problem appears in
models with changing conditional variance as multivariate ARCH or GARCH
models. Finding simplifying structures or factors in these models is important
to reduce the number of parameters required to apply them to real data. In
this article, we will consider linear time series models and we will concentrate
in the time domain approach. See Brillinger (1981) and Shumway and Stoffer
(2000) for analysis in the frequency domain. The first approach for reducing the
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dimension of a dynamic linear system is, by analogy with standard multivari-
ate statistical analysis, finding linear combinations of the time series variables
with simple properties. In stationary time series, we would be interested in
finding linear combinations which are white noise because then the dynamics
of the vector time series can be expressed by a number of components smaller
than its dimension, m. In nonstationary series, we also would be interested
in finding linear combinations which are stationary, reducing the dimension
of the nonstationary space. This has been an important topic of research in
the econometric literature under the name of cointegration; see, for instance,
Engle and Granger (1987), Banarjee et al. (1993), and Johansen (1995). For
VARMA models, dimension reduction was already analyzed in the pioneering
work of Quenouille (1968). Some seminal contributions to this problem are
the canonical analysis [Box and Tiao (1977)], the scalar component models,
SCM, [Tiao and Tsay (1989)] and the reduced-rank models [Velu et al. (1986),
Ahn and Reinsel (1990), Ahn (1997) and Reinsel and Velu (1998)]. A second
approach for dimension reduction is by using Dynamic Factor models; see An-
derson (1963), Priestly et al. (1974), Geweke and Singleton (1981), Brillinger
(1981), Peña and Box (1987), Stock and Watson (1988), Molenaar et al. (1992),
Forni et al. (2000) and Peña and Poncela (2004, 2006), among others. Factor
models are very related to cointegration as it can be shown that the number of
cointegration relations among the components of a vector of time series is the
dimension of the vector minus the number of nonstationary common factors
[Escribano and Peña (1994)].

In the state space approach [see Durbin and Koopman (2001)] dimension
reduction appears in a natural way in defining the dimension of the state.
Akaike (1974) in a seminal work introduced canonical correlation between the
present and the future to determine the dimension of the state variables. Aoki
(1987) made also important contributions. The dynamic factor model in state
space form has been considered by Harvey (1989). State space models for
multivariate time series have two advantages over the VARMA representation.
First, the number of parameters in the model depends on the dimension of the
state vector and when the series can be represented by a low dimension state
vector the number of parameters is automatically reduced. Second, the state
space representation provides a direct interpretation of the time series vector
in components such as trend, cycle, seasonal and disturbance terms. In this
way, we have the additional flexibility of searching for dimension reduction in
the components, instead of trying a simplifying structure of the whole vector
of time series.

One of the main tools for building tests for the dimension of a linear system
is canonical correlation analysis. It can be shown that both linear combina-
tions which are white noise and linear combinations which are stationary or
nonstationary can be obtained from this approach. Also, it provides dimension
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tests which are invariant to affine transformations of the time series variables.
The test proposed by Tiao and Tsay (1989) for SCM, the one used by Ahn and
Reinsel (1988) and Reinsel and Ahn (1992) for the reduced rank autoregressive
model, the cointegration test by Johansen (1988, 1991), and the tests proposed
by Hu and Chou (2004) and Peña and Poncela (2006) for dynamic factor mod-
els are all based on canonical correlation analysis between the vector of time
series or some of its differences and its lags. Related tests are the principal
component test of Stock and Watson (1988) and Harris (1997).

This article is organized as follows. Section 28.2 presents different ap-
proaches for finding simplifying linear combinations in time series. Section
28.3 discusses tests for finding the dimension of the system based on canonical
correlation analysis. Section 28.4 applies the procedures to an example and
Section 28.5 includes some final remarks.

28.2 Models for Dimension Reduction

Suppose a m×1 vector yt follows a linear time series process. We are interested
in finding linear combinations x1t = m′yt of the vector of time series with
useful properties for model simplification and dimension reduction. Also, we
will consider dynamic factor models in which the factors are not necessarily
linear combinations of the observed time series.

28.2.1 Principal components

Let yt be a stationary process with mean µ. Define the covariance matrices by

Γy(k) = E
{
(yt−k − µ)(yt − µ)′

}
,

and suppose that we are interested in linear combinations, x1t = m′yt, with
maximum variance. Let xit = ψ(B)ut be the model for the linear combination
x1t; then, as Var(xit) = σ2

u

∑
ψ2

i , linear combinations which are white noise will
be associated to a small variance, and linear combinations close to nonstationary
will be associated to a large variance. This association suggests looking for
linear combinations of large or small variance, and it is well known that they
will be given by the eigenvectors mi in

Γy(0)mi = λimi

and the corresponding eigenvalues, λi, will be the variances of the linear com-
binations. In the particular case in which exact dimension reduction can be
obtained, because one of the series is a linear combination of the others, this
fact will be revealed by a zero eigenvalue in this covariance matrix Γy(0), and
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the linear combination will be given by the corresponding eigenvector. This
approach can be extended to the nonstationary case. Suppose yt is nonstation-
ary I(d). Then, following Peña and Poncela (2006), we define the generalized
covariance matrices by

C(k) =
1
T 2d

∑
(yt−k − y)(yt − y)′,

where y = T−1
∑

yt. The solutions of

C(0)mi = λimi

will provide the interesting linear combinations: those link to large eigenvalues
may define the nonstationary components, and those link to small eigenvalues
may define the stationary components. However, note that principal compo-
nents are not invariant under scale transformation of the variables and we may,
by changing the scale, make the variance of a stationary component much larger
than the one of a nonstationary one. For this reason, principal components in
time series could be useful when all the series have a common scale of measure-
ment, but are less justified otherwise.

28.2.2 The Box and Tiao canonical analysis

Box and Tiao (1977) proposed to find linear combinations of a stationary time
series with maximum predictability, and called the procedure canonical analysis.
We will refer to this procedure as BT analysis. Let x1t = x̂1t−1(1) + ut, where
x̂1t−1(1) is the one step ahead prediction and ut the forecast error. Let σ2

x

be the variance of x1t, and σ2
u the variance of u. These authors define the

predictability by

q =
(σ2

x − σ2
u)

σ2
x

= 1 − σ−2
x σ2

u. (28.1)

Thus, a white noise series has a predictability equal to zero and a nonstationary
process has a predictability close to one. For instance, an AR(1) has σ2

x =
σ2

u/(1−φ2) and q = φ2. If φ→ 1, then q → 1. This measure can be interpreted
as a generalized determination coefficient. A vector time series model implies a
decomposition of the form

yt = ŷt−1(1) + εt,

where ŷt−1(1) is now the vector of one step ahead predictions and εt the forecast
error. As these terms are uncorrelated, we can also split the covariance matrix,
Γy(0), as

Γy(0) = F y(0) + Σ,
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where E(εtε
′
t) = Σ and E

[
(ŷt−1(1)− µ)(ŷt−1(1)− µ)′

]
= F y(0). It can be

shown that the linear combinations of maximum predictability are defined by
the largest eigenvectors of the predictability matrix

Q = I − Γy(0)−1Σ, (28.2)

and that the eigenvalues give the predictability of these linear combinations.
Note that (28.2) reduces to (28.1) for scalar time series. If h linear combinations
are white noise, this matrix will have h eigenvalues equal to zero and if r linear
combinations approach the nonstationary case, Q will have r eigenvalues close
to one. This analysis can be seen as (1) a generalized principal components
approach for time series, and (2) a canonical correlation analysis between the
vector of variables yt and its lags. To illustrate the first interpretation we will
use that, as the eigenvectors mi of Q must satisfy Qmi = (I − Γy(0)−1Σ)mi

= λim, then Γy(0)−1Σmi = (1 − λi)mi, and also

Σ−1Γy(0)mi = αimi, (28.3)

where αi = (1−λi)−1. Note that in the matrix Σ−1Γy(0) the eigenvectors link to
eigenvalues equal to one define white noise components and those link to a large
eigenvalue define nonstationary components. In the particular case Σ = σ2I,

that is, the noises are uncorrelated with the same variance, the BT analysis is a
principal component analysis of the vector time series. For instance, the linear
combination of maximum predictability is the first principal component of the
data. In the general case where Σ is a positive definite covariance matrix, calling
Σ = ADA′ to the spectral decomposition of the noise covariance matrix, from
(28.3) we have

(D−1/2A′Γy(0)AD−1/2)(D1/2A′mi ) = αi(D1/2A′mi),

and the BT analysis can be interpreted as: (a) transforming the vector of time
series by st = D−1/2A′yt, so that the noise covariance of the transformed time
series is the identity; (b) computing the principal components of st, let us call
them vi; and (c) transforming back the principal components by mi = AD−1/2

vi. To obtain the canonical correlation analysis interpretation note that the
canonical correlation coefficients between yt and y∗

t = (y′
t−1, . . . ,y

′
t−k)

′ are
given by the non-zero eigenvalues of the matrix

M = Γ−1
y (0)Γyy∗(k)Γ−1

y∗ (0)Γ′
yy∗(k) (28.4)

where, assuming to simplify thatE(yt) = 0, we have Γy(0) = E(yty
′
t), Γy∗(0) =

E(y∗
t y

∗′
t ) and Γyy∗(k) = E(yty

∗′
t ). Let

Γy|y∗ = E
[
(yt − β̂y∗

t )(yt − β̂y∗
t )

′
]
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be the residual covariance matrix of a multivariate regression equation between
yt and y∗

t = (y′
t−1, ...,y

′
t−k)

′. As β̂ = Γyy∗ (k)Γ−1
y∗ (0), we have

Γy|y∗ = Γy(0)− Γyy∗ (k)Γ−1
y∗ (0)Γ′

yy∗ (k) (28.5)

and inserting Γyy∗(k)Γ−1
y∗ (0)Γ′

yy∗(k) = Γy(0) − Γy|y∗ in (28.4), the M matrix
can be written as

M = I − Γ−1
y (0)Γy|y∗

which is equivalent to the predictability matrix Q defined in (28.2). Thus,
the linear combinations of maximum predictability are equivalent to the linear
combinations of maximum correlation between the present and the past.

As an illustration, consider the VAR(1) model

yt = Φyt−1 + εt. (28.6)

Then Γy(0) = ΦΓy(0)Φ′ + Σ , Γ′
y(1) = ΦΓy(0) and the matrix Q given by

(28.2) can also be written as Q = I − Γ−1
y (0)(Γy(0)− ΦΓy(0)Φ′), or

Q = Γ−1
y (0)ΦΓy(0)Φ′

which implies
Q = Γ−1

y (0)Γ′
y(1)Γ−1

y (0)Γy(1).

This matrix is the standard canonical correlation matrix whose eigenvalues are
the canonical correlations between yt and yt−1. A zero canonical correlation
defines a linear combination which is white noise and a close to one canonical
correlation defines a close to nonstationary component.

28.2.3 Reduced rank models

An alternative procedure for finding linear combinations with useful properties
for model simplification are the reduced rank models; see Robinson (1973),
Ahn and Reinsel (1990), Reinsel and Ahn (1992), and Reinsel and Velu (1998).
Suppose for simplicity that a vector of time series is fitted by the VAR(1)
model (28.6) and suppose that Φ = ArBr, where Ar is a full rank matrix of
dimension m × r, (m > r), and Br is also full rank with dimension r × m.

Denoting zt−1 = Bryt−1, the model for the series can be written as

yt = Arzt−1 + at (28.7)

and also, as Bryt = BrArzt−1 + Brat, we have

zt = Czt−1 + ut (28.8)

where C = BrAr is a r× r matrix and ut = Brat. This is like a factor model
with r factors zt−1 which follow an AR(1) model. An important implication
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from this model is that there exist m− r linear combinations which are white
noise. Denoting Am−r,⊥ for the orthogonal complement of Ar, defined as the
m× (m− r) matrix such that

A′
m−r,⊥Ar = 0,

the m − r linear combinations A′
m−r,⊥yt are white noise, or, in other words,

there must be m − r zero canonical correlations between yt and yt−1. These
ideas can be generalized to general VAR(p) models. We can write

yt = Fy∗
t + at,

where y∗
t = (y′

t−1, ...,y
′
t−k)′ and F = (Φ1, ...,Φk). Then, as before, if F has

reduced rank, F = ArBr, we have

yt = Arzt + at,

where zt = Br yt. The implication of this model is that the canonical cor-
relations between yt and y∗

t will have as many zero canonical correlations as
white noise combinations. Also, it can be shown that the number of canonical
correlations equal to one is the number of nonstationary linear combinations of
the vector.

28.2.4 The scalar component models

Tiao and Tsay (1989) presented the concept of scalar component models as
simplifying tools in VARMA models. A scalar component model is a linear
combination of the vector time series which follows a simpler structure than the
vector itself. These authors define SCM as follows. Assume that we can write
yt =

∑
Ψiat−i, where at is white noise. We will say that xt = v′

0yt follows
a SCM(p1,q1) if there exist p1 vectors m × 1, v1, . . . , vp1 such that (i) vp1 is
non-zero when p1 > 0, and (ii) the linear combination of yt,yt−1, . . . ,yt−p1

given by mt = v′
0yt +

∑p1

l=1 v′
lyt−l satisfies

E(at−jmt)
{

6= 0 if j = q1
= 0 if j > q1

.

The above definition implies the following restriction among the autocovariance
matrices of yt:

Γy(k)v0 + Γy(k − 1)v1 + · · ·+ Γy(k − p1)vp1 = 0, for l > q1. (28.9)

Of particular interest are SCM(0,0) which are white noise and SCM(1,0), which
can define a particular type of common trends. See Peña, Tiao and Tsay (2001)
for a simple introduction to the use of SCM for model simplification. To find
out the number of scalar component models, Tiao and Tsay (1989) proposed
a chi-square test based on canonical correlation ideas for the rank of extended
second moment matrices, which will be discussed in Section 28.3.
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28.2.5 Dynamic factor models

A generalization of the idea of linear combinations with useful properties is the
Dynamic Factor model. In this model, the m-dimensional vector of observed
time series is generated by a set of r non-observed common factors and m

specific components as follows:

yt = P f t + nt,

m× 1 m× r r × 1 m× 1
(28.10)

where f t is the r-dimensional vector of common factors, P is the factor loading
matrix, and nt is the vector of specific components. Thus, all the common
dynamic structure comes through the common factors, f t, whereas the vector
nt explains the specific dynamics for each component. If there is no specific
dynamic structure, nt is reduced to white noise. We assume linear time series
models for the latent variable f t and the noise nt. In particular, using the
VARIMA(p, d, q) representation, the latent variable will be given by

Φ(B) f t = Θ(B) at,

r × r r × 1 r× r r × 1
(28.11)

where B is the backshift operator, such that Byt = yt−1, and (i) the r × r

matrix Φ(B) = I −Φ1B − · · · − ΦpB
p has the roots of the determinantal

equation|Φ(B)| = 0 on or outside the unit circle; (ii) the r × r matrix Θ(B) =
I − Θ1B − · · · − ΘqB

q has the roots of the determinantal equation|Θ(B)| =
0 outside the unit circle; and (iii) at ∼ Nr(0,Σa) is serially uncorrelated,
E(ata

′
t−h) = 0, h 6= 0. The noise, nt, also follows the VARMA model

Φn(B)nt = Θn(B)εt, (28.12)

where Φn(B) and Θn(B) are m × m diagonal matrices with Φn(B) = I −
Φn1B − · · · − ΦnpB

p and Θn(B) = I − Θn1B − · · · − ΘnqB
q . The most in-

teresting case is when the specific component is stationary so that the possible
nonstationary dynamic structure in the vector of time series is due to the com-
mon factors. In this case the roots of the determinantal equations |Φn(B)| = 0
and |Θn(B)| = 0 are outside the unit circle. Therefore, each component follows
a univariate ARMA(pi, qi), i = 1, 2, · · · , m, being p=max(pi) and q=max(qi),
i = 1, 2, · · · , m. The sequence of vectors εt are normally distributed, with zero
mean and diagonal covariance matrix Σε. We assume that the noises from the
common factors and specific components are also uncorrelated for all lags, that
is, ∀h E(atε

′
t−h) = 0. When nt is white noise and the factors are station-

ary, models (28.10) and (28.11) are the factor model studied by Peña and Box
(1987). The model as stated is not identified and we can choose either Σa = I
or P ′P = I, although the model is not yet identified under rotations. Harvey
(1989) imposes the additional condition that pij = 0 for j > i, where P = [pij ].
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Note that this factor model is very general and includes other formulations pre-
sented in the literature. For instance, Molenaar et al. (1992) have proposed a
model of the form

yt =
s∑

i=0

P if t−i + nt.

Letting f∗
t = (I + P −1

0 P 1B + · · ·+ P−1
0 P sB

s)f t = ϕ(B)f t, we can write this
model as yt = P 0f

∗
t + εt where the new factors follow a different VARMA

model. The factor model has an interesting implication in terms of canonical
correlation. Suppose that there is no specific components so that the model is

yt = Pf t + εt;

then, denoting P ′
⊥ for the (m− r) ×m matrix which defines the null space of

P , such that P ′
⊥P = 0, we have

P ′
⊥yt = P ′

⊥εt

and there must be m− r zero canonical correlations between yt and y∗
t .

28.2.6 State space models

State space models have been studied by Akaike (1974), Aoki (1987), Hannan
and Deistler (1988), Harvey (1989), and Durbin and Koopman (2001), among
others. They are defined by a measurement equation

yt = Czt +εt,

where C is m× s, zt is the s × 1 state vector and εt, m× 1, is the innovation
vector with E(εt) = 0, E(εtε

′
t) = Σε E(εtε

′
τ) = 0 if t 6= τ . The transition

equation is
zt = Gzt−1+ut

with E(ut) = 0, E(utu
′
t) = Σu and E(utu

′
τ) = 0 if t 6= τ . Although any

VARMA model can be written in the state space form and we can always obtain
the VARMA form of a state space representation, the state space formulation
has the advantage of being defined in terms of the state vector which is the
key component for dimension reduction. In fact, Akaike (1974) introduced
canonical correlation in time series in order to find the dimension of the state
space vector. For instance, we may have a dynamic factor model by

yt = Czt +εt,

where C is m× r and
zt = zt−1 +β + ut.
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This is the common trends model because the vector of dimension m is gener-
ated by r factors which follows a random walk with drift model. Note that the
state vector coincides with the factor. The VARMA form of this model is

∇yt = C(β + ut) + ∇εt = c + (I − ΘB)at

and the observed series will follow a VARIMA(1,1). However, in this formula-
tion, the factor is completely lost and, as shown by Peña and Box (1987), fitting
an ARIMA model to an observed time series generated from this model may
be a difficult task because of lack of identification of the parameter matrices.
An additional advantage of the state space approach is that it allows for di-
mension reduction in some of the time series components and not in the others.
See Casals et al. (2002) for useful structural decompositions in the state space
approach. Suppose that the state vector is written as including the trend and
the cycle of the time series as

yt = AT t + Bst + εt,

where A ism×r and B ism×c where r ≤ m and c ≤ m. Then, if A′
m−r,⊥A = 0

and B ′
m−c,⊥B = 0, we have

A′
m−r,⊥yt = A′

m−r,⊥Bst + A′
m−r,⊥εt

and
B ′

m−c,⊥yt = B′
m−c,⊥AT t + B′

m−c,⊥εt,

and we may have some linear combinations free from the trend and others free
from the cycle. It could be that some of them are white noise if there are
common vectors in the null space of the matrices A and B.

28.2.7 Some conclusions

We have seen that canonical analysis plays a key role in all of the dimension re-
duction procedures for time series. If h ≥ 1 linear combinations are white noise,
there is only dynamics in m − h dimensions and this implies h zero canonical
correlations between yt and y∗

t . Also, for integrated processes, an important
simplification tool is finding linear combinations which are stationary. If there is
cointegration and h ≥ 1 linear combinations are stationary, then m− h canon-
ical correlations between yt and y∗

t will be equal to one. It is interesting to
understand the relationship between canonical analysis and principal compo-
nents in time series. We have shown that when Σ = σ2I, principal components
and canonical analysis leads to similar conclusions. This is similar to the re-
lationship between factor analysis and principal components in the static case.
If the specific innovations of all the time series have the same variance and are
uncorrelated, then a zero eigenvalue in the canonical correlation analysis of the
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series and its past values will be equivalent to an eigenvalue equal to one in
the standardized principal components (SPC) of the matrix σ−2Γy(0). Also a
canonical correlation close to one will be equivalent to a large eigenvalue in the
SPC. In practice, with nonstationary time series, the elements of Γy(0) will be
much larger than those of Σ, and this matrix often has diagonal elements of
similar sizes and larger than the off-diagonal elements. In this case, the princi-
pal component matrix Γy(0) will be similar to the canonical correlation matrix
Σ−1Γy(0), and both approaches will lead to similar results when applied for
finding the cointegration or the factor space.

28.3 Dimension Reduction Tests

We present in this section tests for dimension reduction based on canonical
correlation coefficients. Other related tests are the principal components tests
by Stock and Watson (1988) and Harris (1997). An alternative way to decide
about the dimension of the system is by using model selection criteria, such as
AIC, BIC and others. The relative advantages of these two approaches require
more research before a clear recommendation can be made.

28.3.1 A test for zero canonical correlation coefficients

Let y∗
t = (y′

t−1, . . . ,y
′
t−k)′ be a km × 1 vector of lag values of the series. We

want to test if there exist linear combinations of yt which are uncorrelated to
linear combinations of y∗

t or, in other words, if there are zero canonical cor-
relation coefficients between the two sets of variables. This test will allow to
find the least predictable components in the canonical analysis of Box-Tiao, the
rank r in the reduced rank model, and can also be used to test for the number
of factors in the dynamic factor model. Suppose that the null hypothesis is that
there are h zero canonical coefficients. Note that if we accept the presence of
h zero coefficients we must accept the presence of h − 1. Thus, the test must
be done sequentially starting with h = 0 and increasing h until m − 1. The
alternative hypothesis will be that there are less than h zero canonical corre-
lation coefficients, and the test is: H0 : h (h = 0, 1, ...,m− 1) zero correlation
coefficients versus H1 : less than h zero correlation coefficients. The standard
multivariate test for h zero canonical correlation coefficients is

L = −{(T −mk) + g(m, k)}
h∑

j=1

log(1 − λ̂j), (28.13)

where g(m, k) = (mk−m−1)/2 is a correction factor to improve the asymptotic
distribution of the test statistic and λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂j ≤ · · · ≤ λ̂m are the
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ordered eigenvalues of

M̂k = C−1
y Cyy∗C

−1
y∗ Cy∗y, (28.14)

where

Cy = T−1
T∑

t=2

(yty
′
t),

Cyy∗ = T−1
T∑

t=k

(yty
∗′
t ),

Cy∗ = T−1
T∑

t=k

(y∗
t y

∗′
t ),

and L it is distributed asymptotically as χ2
h(mk−(m−h)) . This test can be derived

as a likelihood ratio test [see, for instance, Rechner (1995)]. It has a simple
interpretation as a Box-Pierce test on the canonical correlation coefficients as
under the null

L ' T

m−h∑

j=1

λ̂j = T

m−h∑

j=1

ρ̂2
j

where ρ̂2
j are the canonical correlations. This test has been used in reduced rank

models [see Reinsel and Velu (1998)] to test for the dimension of the reduced
rank matrix.

A modification of the previous test was proposed by Tiao and Tsay (1989)
in order to test for SCM. Let Y ∗

h,t−j−1 = (y′
t−j−1, . . . ,y

′
t−h−j−1)

′ and Y k,t =
(y′

t, . . . ,y
′
t−k)

′be (h + 1)m × 1 and (k + 1)m × 1, respectively, vectors of lag
values of the series for h ≥ k ≥ j ≥ 0. The purpose is to test the number
of zero eigenvalues or zero canonical correlations between Y ∗

h,t−j−1 and Y k,t

which is determined by the rank of the lag second moment matrices yt and the
Yule-Walker equations of the overall process for yt. The test statistic is

TT = −(T − h − j)
s∑

j=i

log

(
1 − λ̂j

dj

)
, (28.15)

where s is the number of zero canonical correlations between Y ∗
h,t−j−1 and

Y k,t and dj/(T − h − j) is the sample variance of the two canonical variates
whose sample canonical correlation is given by λ̂j . Under the null hypothesis
of s zero canonical correlations, the test statistic follows a chi-squared with
s((h− k) ×m+ s) degrees of freedom.
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28.3.2 A non-standard test for canonical correlations

Suppose that in an I(1) process we are interested in finding the number of
nonstationary dimensions r or the number of independent linear combinations
which are stationary, m− r, which is the cointegration dimension. We say that
the components of a nonstationary I(d) time series vector yt are cointegrated if
there exists a linear combination of them which is I(d− b), where b > 0, d ≥ b

and d and b belong to the set of the natural numbers. The most interesting case
is when the series are I(1) but some linear combinations are I(0) or stationary.
A cointegration test in this case tries to determine how many independent
linear combinations of the series can be considered as stationary. To simplify the
exposition, suppose the VAR(1) given by (28.6). If all the roots of |I − ΦB| = 0
are equal to one, all the eigenvalues of the matrix Φ are equal to one and all
the eigenvalues of the matrix

Π = Φ − I

are equal to zero. Note that this does not imply that Π is a zero matrix
because it may not be symmetric. If the series are stationary, all the roots
of |I − ΦB| = 0 are inside the unit circle and the matrix Π is a full rank
matrix. Cointegration represents the intermediate situation in which the series
are nonstationary but some linear combinations are stationary. Suppose that
the matrix Φ has r eigenvalues equal to one, or, equivalently, the matrix Π
has r eigenvalues equal to zero. These properties can be applied to the error
correction formulation of the VAR(1) obtained subtracting yt−1 from both sides
of (28.6). Then

∇yt = Πyt−1 + εt. (28.16)

If all the series are nonstationary, but there is no cointegration, Π is a null
rank matrix; if all of them are stationary, Π is a full rank matrix and if there is
cointegration the matrix Π must be rank deficient. Then, if rank(Π) = m− r,

we can write
Π = Am−rBm−r

and the r linear combinations

A′
r,⊥∇yt = A′

r,⊥εt (28.17)

must be white noise. Note that the cointegration relations are given by zt =
Bm−ryt. To see this, multiplying (28.16) by Bm−r , we have

∇zt = Bm−rAm−rzt−1 + Bm−rεt

and as Bm−rAm−r is a squared full rank matrix of dimension m−r, zt must be
stationary. We may build a test of cointegration by searching for zero canon-
ical correlations between ∇yt and yt−1. Let 0 ≤ λ̂1 ≤ · · · ≤ λ̂m ≤ 1 be the
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eigenvalues of the matrix

M2 = S−1
11 S10S

−1
00 S01,

where

S11 = T−1
T∑

t=1

∇yt∇y′
t,

S10 = T−1
T∑

t=1

∇yty
′
t−1,

S00 = T−1
T∑

t=1

yt−1y
′
t−1.

Then the statistic for testing that there are r zero canonical correlations, or
m− r cointegration relations, is

Lm−r = −T
r∑

j=1

log(1− λ̂j). (28.18)

This is the cointegration test for I(1) variables developed by Johansen (1991,
1995) for VAR processes, which has become very popular in econometrics. The
distribution of the test is non-standard because although the linear combina-
tions A′

r,⊥∇yt are white noise and uncorrelated to zt−1 = Bm−ryt−1, these lin-
ear combinations are not white noise. The percentiles of the distribution have
been tabulated by simulation. Note that we could also test for zero canonical
correlations between ∇yt and ∇yt−1, ∇yt−2, ... since by (28.17) there are r lin-
ear combinations of ∇yt that are white noise. For instance, if we want to search
for zero canonical correlations between ∇yt and its first lag ∇yt−1, we will find
zero canonical correlations between each sample and also within each sample of
the variables due to (28.17). In this particular case, the asymptotic distribution
of the test statistic is χ2 since under the null hypothesis the smallest r canonical
variates are white noise.

The generalization of the test for VAR(p) is straightforward. Suppose

yt = Φ1yt−1 + · · ·+ Φpyt−p + εt,

where εt ∼ N(0,Σ). The process is nonstationary if some of the roots of the
determinantal equation |Φ(B)| = 0 are on the unit circle, which implies that
the matrix I−

∑p
i=1 Φi = −Π is rank deficient. In order to use this property,

we write the VAR model in the error correction form

∇yt = Πyt−1 +
p−1∑

i=1

Γi∇yt−i + εt, (28.19)
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where

Π =
p∑

i=1

Φi − I , and Γi =
p∑

j=i+1

Φj . (28.20)

Then, if rank(Π)= m− r, this matrix can be written as Π = Am−rBm−r and
there will be m−r cointegration relationships and r zero canonical correlations
between ∇y∗

t = ∇yt −
∑p−1

i=1 Γi∇yt−i and y∗
t−1 = yt−1 −

∑p−1
i=1 Γi∇yt−i. Note

that, by (28.19), the r linear combinations

∇A′
r,⊥(yt −

p−1∑

i=1

Γi∇yt−i) = A′
r⊥εt

are white noise, where Ar,⊥ is the orthogonal complement of Am−r , that is
A′

r,⊥Am−r = 0. Them−r linear combinations given by Bm−ryt are I(0). Thus,
the test uses the residuals of a regression of ∇yt and yt−1 on the lags of the first
differences and then looks at the canonical correlation between these two sets
or residuals. As before, the test is done sequentially assuming 0 cointegration
relations at the initial stage and going up to m− 1 cointegration relations. The
(nonstandard) critical values can be taken from Johansen (1995). Reinsel and
Ahn (1992) have proposed a similar test for the number of unit roots in reduced
rank autoregression models.

It is interesting to analyze this test when is applied to the dynamic factor
model. Assuming that the factors are integrated with d = 1, and follow the
model

(1− B)Φ∗(B) f t = Θ(B) at,
r × r r × 1 r× r r × 1

(28.21)

with Φ∗(B) having all its roots outside the unit circle. Then

f t = f t−1 + (Φ∗(B))−1 Θ(B) at. (28.22)

From (28.10), we obtain
f t = P +(yt − nt), (28.23)

where P + = (P ′P )−1P , r×m, is the Moore-Penrose inverse matrix of P , and
from (28.10), (28.23) and (28.22) we can write

yt = PP +(yt−1 − nt−1) + P (Φ∗(B))−1 Θ(B)at + nt

and subtracting yt−1, we have

(1−B)yt = −(I−PP +)yt−1+P (Φ∗(B))−1 Θ(B)at+nt−PP +nt−1. (28.24)

This is the error correction form implied by the factor model. Notice now that
PP + = P (P ′P )−1P ′ is a projection matrix, such that rank(PP +) = r and
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it has all its eigenvalues equal one or zero since it is an idempotent matrix.
Therefore, rank (I − PP +) = m − r. The matrix (I − PP +) plays the role
of the Π = AB matrix in the cointegration analysis and the test of r common
factors is equivalent to the test of m − r cointegration relations. However, in
order to use Johansen’s cointegration test, we have to assume that the process
followed by yt can be approximated by an unrestricted VAR. When the true
model is the dynamic factor model usually we also have MA structure.

28.3.3 A canonical correlation test for factor models

Canonical correlation tests for factor models have been proposed by Hu and
Chou (2004) and Peña and Poncela (2006). In this subsection, we review the
latest one. Suppose the factor model without specific components is

yt = Pf t + εt. (28.25)

Then, as shown by Peña and Box (1987), denoting Γf (k) for the covariance
matrix of order k of the factors and assuming stationarity we have, for k 6= 0

Γy(k) = PΓf(k)P
′ (28.26)

and rank(Γy(k))=rank(Γf (k)). Since (28.26) is true for all k 6= 0, there exists
a m× (m− r) matrix P⊥, such that for all k 6= 0,

Γy(k)P⊥ = PΓf (k)P ′P⊥ = 0. (28.27)

The condition in (28.27) also implies that the m− r independent linear combi-
nations of the observed series given by P ′

⊥yt are cross and serially uncorrelated
for all lags k 6= 0. Therefore, the number of zero canonical correlations between
yt−k and yt is given by the number of zero eigenvalues of the matrix M (k)
defined as

M(k) =
[
E(yty

′
t)
]−1

E(yty
′
t−k)

[
E(yt−ky′

t−k)
]−1

E(yt−ky′
t) (28.28)

and since rank(M(k))=rank(Γy(k)) = r, this number is m− r. Thus, the num-
ber of common factors, r, is equivalent to the number of non-zero canonical
correlations between yt−k and yt.

Consider now the finite sample case in which T observations are available.
The squared sample canonical correlations between yt−k and yt are the eigen-
values of

M̂1(k) =

[
T∑

t=k+1

(yty
′
t)

]−1 T∑

t=k+1

(yty
′
t−k)

[
T∑

t=k+1

(yt−ky
′
t−k)

]−1 T∑

t=k+1

(yt−ky′
t).

(28.29)
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In Peña and Poncela (2006), it has been shown that, given λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂m,

the ordered eigenvalues of the matrix M̂1(k) given by (28.29), the statistic

Sm−r = −(T − k)
m−r∑

j=1

log(1− λ̂j) (28.30)

is asymptotically a χ2
(m−r)2 , both for stationary and nonstationary series. Note

that we obtain standard distribution because: (1) P ′
⊥yt and P ′

⊥yt−1 are un-
correlated, and (2) both P ′

⊥yt and P ′
⊥yt−1 are white noise.

The result of this lemma is in the line of Robinson (1973) to test for zero
canonical correlation of stationary time series. This result was modified by Tiao
and Tsay (1989) to test for SCM, dividing each eigenvalue by the maximum
possible variance that the sample cross correlation might have in the case of
SCM. In our case, the variance of the cross correlation associated to white
noise canonical variates is correctly specified as 1/(T −k). Hu and Chou (2004)
proposed a similar test using several second moment matrices simultaneously
but instead of using canonical correlation between yt and its past and future
in order to check the rank of the second moment matrices, they use canonical
correlation twice: once between yt and its past and future in order to define past
and future canonical variates and a second time between yt and the canonical
variates define in the previous step. This means that while we are interested
in the rank of the matrices defined in (28.26), they test for the rank of the
matrices defined by Q = MΓy(k)M ′ which have m − r eigenvalues equal to
zero if M = [P ′

⊥ P ]. Note that the test presented in this section leads to
standard distribution in contrast to the ones presented in 28.3.2, as Johansen
(1988) test for the cointegration rank of a VAR model and Reinsel and Ahn
(1992) for the number of unit roots in reduced rank regression models.

28.4 Real Data Analysis

We study seven monthly stock indexes from November 1990 until April 2000.
The indexes are (by alphabetical order as they are collected in the vector of time
yt) DAX-30 from Germany, Dow Jones Composite (DJCOM) form the USA,
FTSE from United Kingdom, NASDAQ, New York Stock Exchange (NYSE),
Standard and Poor 500 (SP500) from USA, and the Canadian TSE. In order to
correct for heteroskedasticity, we take the natural log of all the indexes. Plots
of the logs of these indices are shown in Figure 28.1.

We apply the common factors canonical correlation test of Section 28.3.3
and obtain the results shown in Table 28.1. We have used up to 18 lags to show
that the number of identified factors does not depend on the upper bound used
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Figure 28.1: Logs of the monthly stock indexes

for the number of lags. The statistics have already been divided by their critical
values, so that a number greater than 1 means that we reject the null hypothesis
of a maximum of r common factors at the usual 5% significance level, while a
number smaller than 1 means that we cannot reject the null hypothesis of a
maximum of r common factors. We present the results after lag two because
some small correlations are found for lags 1 and 2. The outcome of the test
indicates that a maximum of 6 common factors cannot be rejected.

To obtain the factors we build the generalized covariance matrices for lags
one to five and extract the eigenvectors associated to the first common six
eigenvalues of each matrix.

The first common factor is a weighted mean of all the indexes, and it can be
interpreted as the general level of the world stock indexes. The second factor
differentiates the behavior of the Nasdaq, the NYSE and the SP500 from the
Canadian TSE and the British FTSE. The third factor separates the NASDAQ
and British FTSE from the others. The fourth and sixth common factors are
mainly assigned to a single index to characterize its differential performance
(the fourth common factor to the German DAX and the sixth to the Chicago’s
SP500). Finally, the fifth common factor differentiates the British FTSE from
the TSE.

In order to obtain the dynamics of the factors, we can perform univariate
analysis over the linear combinations of the stock indexes given by the common
eigenvectors (we have chosen the eigenvector associated to the generalized co-
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Table 28.1: Outcome of the test of Section 28.3.3 for the number of factors.
The statistics have already been divided by their critical value, so that an
outcome greater than 1 means that the null of a maximum of r common factors
is rejected at the 5% significance level, while an outcome smaller than 1 means
that the null of a maximum of r common factors cannot be rejected at the 5%
significance level

lag k
r 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 32.6 30.5 29.5 29.0 28.0 27.0 26.3 25.7 25.8 25.4 25.1 24.6 24.2 24.9 25.0 24.7
1 18.8 16.9 16.1 15.9 15.0 13.8 13.0 12.4 12.8 12.6 12.2 11.6 11.2 11.9 12.2 12.0
2 12.8 10.7 10.0 9.9 9.0 7.8 6.9 6.4 6.6 6.7 6.5 6.4 6.7 7.4 7.3 6.9
3 10.0 7.8 6.9 7.2 7.0 6.3 5.4 4.5 4.1 4.1 4.4 4.9 5.3 5.5 5.6 5.4
4 6.2 3.9 3.4 4.5 4.2 3.3 2.4 1.8 1.7 1.7 1.8 2.1 2.8 3.1 3.3 3.7
5 2.5 1.5 1.6 3.2 3.4 1.8 1.0 1.2 1.1 1.0 1.0 1.1 1.2 1.0 1.2 1.3
6 0.7 0.05 0.5 0.5 0.05 0.09 0.10 0.2 0.7 0.5 0.04 0.02 0.04 0.08 0.2 0.06

Table 28.2: Eigenvectors associated to the first and second eigenvalues for the
first five generalized covariance matrices of the stock indexes data

1st eigenvector
lag k

1 2 3 4 5
0.40 0.40 0.40 0.40 0.40
0.38 0.38 0.38 0.38 0.38
0.42 0.42 0.42 0.42 0.42
0.36 0.36 0.36 0.36 0.36
0.30 0.30 0.30 0.30 0.30
0.33 0.33 0.33 0.33 0.33
0.43 0.43 0.43 0.43 0.43

2nd eigenvector
lag k

1 2 3 4 5
0.10 0.10 0.10 0.10 0.107
-0.09 -0.08 -0.06 -0.05 -0.05
-0.36 -0.36 -0.35 -0.35 -0.35
0.64 0.62 0.60 0.58 0.57
0.21 0.22 0.24 0.25 0.26
0.28 0.29 0.31 0.31 0.32
-0.56 -0.57 -0.59 -0.60 -0.60
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Table 28.3: Eigenvectors associated to the 3rd and 4th eigenvalues for the first
five generalized covariance matrices of the stock indexes data

3rd eigenvector
lag k

1 2 3 4 5
0.36 0.62 0.77 0.78 0.73
0.20 0.04 - 0.10 - 0.13 - 0.12

- 0.10 - 0.21 - 0.28 - 0.33 - 0.42
- 0.66 - 0.62 - 0.52 - 0.49 - 0.48
0.39 0.29 0.17 0.15 0.20
0.30 0.20 0.08 0.05 0.06

- 0.37 - 0.25 - 0.12 - 0.04 - 0.05

4th eigenvector
lag k

1 2 3 4 5
0.88 0.86 0.87 0.86 0.84
-0.28 -0.22 -0.30 -0.35 -0.36
-0.21 -0.24 -0.25 -0.24 -0.27

- 0.29 - 0.38 - 0.25 - 0.16 - 0.12
0.09 0.00 - 0.09 - 0.16 0.20

- 0.06 - 0.01 - 0.10 - 0.15 - 0.16
-0.02 -0.05 0.04 0.09 0.15

Table 28.4: Eigenvectors associated to the 5th and 6th eigenvalues for the first
five generalized covariance matrices of the stock indexes data

5th eigenvector
lag k

1 2 3 4 5
0.09 0.07 0.02 0.01 0.09

- 0.11 - 0.12 - 0.11 - 0.13 - 0.18
0.76 0.76 0.76 0.74 0.67
0.12 0.13 0.16 0.21 0.29

- 0.31 - 0.35 - 0.39 - 0.44 - 0.54
- 0.13 - 0.09 - 0.05 - 0.06 - 0.14
- 0.52 - 0.50 - 0.48 - 0.44 - 0.34

6th eigenvector
lag k

1 2 3 4 5
0.17 0.17 0.18 0.18 0.19
0.41 0.27 0.23 0.21 0.20
0.06 -0.04 -0.16 -0.22 -0.20
0.11 0.11 0.11 0.12 0.13
0.33 0.42 0.38 0.35 0.35

- 0.81 - 0.82 - 0.81 - 0.81 - 0.81
-0.15 -0.18 - 0.26 - 0.30 - 0.27
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Figure 28.2: Plots of the six common factors of the stock indexes

variance matrix of lag one since it is built with more data than the remaining
ones). Plots of the six common factors are shown in Figure 28.2.

From the plot, we see that the first two common factors, and possibly the
third one, are nonstationary. In fact, if we apply the Augmented Dickey-Fuller
unit root test with automatic lag selection to minimize the Schwarz information
criterion, we cannot reject a unit root for the first three factors, the p-value of
the test for the fourth factor is 0.0688 and it is clearly rejected for the fifth and
sixth common factors. The first three factors are random walks. The fourth
factor could be considered as an AR(1) with autoregressive parameter very
close to one (it is estimated as 0.9). The fifth and sixth common factors can be
modeled as stationary autoregressive processes of order 2 and 1, respectively.

This analysis shows that the dimension of the nonstationary subspace for
the 7 stock indexes can be reduced to 3 or, at most, 4.
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From this analysis, we expect to find three or four cointegration relations
(number of series minus number of common trends) if we apply Johansen’s
cointegration test. All the selection criteria (Akaike, Schwartz, Hannan-Quin,
maximum likelihood and forecasting prediction error) indicate the order of the
VAR process in levels should be 1. With this in mind, we perform Johansen’s
cointegration test and for a significance level of α = 0.05. Assuming that there
is no deterministic trends in the data and using the trace statistic of Section
28.3.2, we found 4 cointegration relations, which is in agreement with the factor
analysis results. It is interesting to check that if we assume a deterministic
trend, which we believe is a rather unusual fact with economic data [see, Peña
(1995)], the number of cointegration relationships found is zero. In order to
check the robustness of this conclusion, we perform the maximum eigenvalue
test of Johansen, which tests the null hypothesis of s cointegrating relations
against the alternative of s + 1 cointegrating relations. This test statistic is
computed as (being the eigenvalues as the same ones as in Section 28.3.2)

L(s|s+ 1) = −T log(1 − λ̂s+1), (28.31)

but now we found zero cointegration relations. This result is also obtained if
we assume the rather unlikely assumption of deterministic trends in the data.
When computing the roots of the companion matrix of the VAR process, one
root very close to 1 (estimated as 0.998) and three (a real one and a pair of
complex ones) of modulus 0.97 and 0.93 are found. The remaining roots are not
close to 1. This might explain why the different versions of the tests detect from
0 to 4 cointegration relations, depending on the assumptions made in order to
perform the test.

28.5 Concluding Remarks

We have shown in this paper that canonical correlation analysis between the
present and past values of the time series is a very powerful tool for dimension
reduction. This approach allows a unified view of many of the procedures pro-
posed for dimension reduction, including principal components, the canonical
analysis of Box and Tiao, the reduced rank models of Reinsel et al., the scalar
component models of Tiao and Tsay, the Dynamic Factor model, and state
space models. Canonical correlation offers also a unifying view for dimension
reduction tests and will lead to similar results than principal components tests
when the innovation covariance matrix of the time series is close to a scalar
matrix σ2I .
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