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Abstract  

This paper  defines int:.rin,sic e.t'edible veg~on,~ ~, a method  to produce  object ive 
Bayesian credible regions which only depends  on the  assumed model  and the  avail 
able data .  Lowes t  po,s~,emo.r lo,s,s (LPL) regions are defined as Bayesian credible 

regions ~;hich contain values of minimum poster ior  expected  loss; they depend  
bo th  on the  loss funct ion and on the  prior specification. An invariant,  in ibrmat ion 
theory  ba.~.d loss function,  the  intrirt~sic discrepancy,  is argued to be appropr ia te  
for ~:ientific co.mmunication. Intrinsic credible regions are t he  lowest poster ior  loss 
regions with respect  to  Che intrinsic discrepancy loss and the  appropr ia te  reference 

prior, The proposed procedure  is completely genera.I, and it is invaria.nt under  both  
repara..metrization and marginal izat ion.  The  exact  derivation of intrinsic credible 
regions ofl;en requires numerical  integrat ion,  but  good analyt ical  approx imat ions  are 

provided.  Special a t t en t ion  is given to one-dimensional  intr insic credible interwals; 
their  coverage proper t ies  show t h a t  they are ahvays approx imate  (and somet imes  
exact) frequentist  confidence intervals. The me thod  is i l lustrated with a number  of 

examples.  
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1 I n t r o d u c t i o n  a n d  n o t a t i o n  

This paper is mainly concerned with statistical inference problems such 
as occur in scientific investigation. Those problen~s are typically solved 
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conditional on the assumption tha t  a particular statistical model is an ap- 
propriate description of the probabilistic mechanisni, which has generated 
the data, and the choice of tha t  model naturally involves an element of 
subjectivit3,. It  has become s tandard practice however, to d~c r ibe  a.s %b- 
jective" any statistical analysis which only depends on the niodel assunled 
and the  data  observed. In this precise s e ~ e  (and only in this sense) this 
paper provides an "~%bjective" procedure to Bayesian region estimation. 

Foundational argunients (Bernardo and Smith, 1.994; de Finetti,  1970; 
Savage, 1954) dictate that  scientists shoukt elicit a unique (joint) prior 
distribution on all unknown etenients of the problem on the  b~sis of all 
available information, and use Bayes theorem to combine this with the  in- 
formation provided by the data, encapsulated in the likelihood function, 
to obtain a joint posterior distribution. Standard probabili V theory may 
then be used to derive from this joint, posterior the posterior distribution 
of the qua.ntib~ of interest; nia.theniatically this is the final result of the 

statistical mlalysis. Unfortunately however, elicitation of the  joint prior is 
a formidable task, specially in realistic modeL~ with many mdsance param- 
eters which rarely have a simple interpretation, or in scientific inference, 
where sonie sort  of consensus on the elicited prior would obviously be r~  
quire& In this context, the (unfortunately very frequent) nalve use of 
simple proper ;'flat" priors (often a limiting form of a conjugate family) 
as presmned ~:noninformative" priors often hides important  unwarranted 
assumptions which may easily dominate, or even invalidate, the analysis: 
see e.g., Berger (2000}, and references therein. The uncritical (ab)use of 
such ;'flat" priors should be strongly discouraged. An appropriate r~fer~,ce 

prior" (Berger and Bernardo, 1992c; Bernardo, 1979b, 2005b) should ii~_stead 
be used. 

As mentioned above, from a Bayesian viewpoint, the final outcome of a 
problem of inference about  any unknown quanti V is simply the posterior 
distribution of that  quantits;. Thus, given some data x and conditions C, all 
that  can be said about, any function 0(~o) of the parameter  vector r which 
govern the model is contained in the posterior distribution p(0 Ix, C), and 
all tha t  can be said about  sortie function y of future observations from the 
same model is contained in its p~ t e r i o r  predictive distribution p(y I x, C). 
Indeed (Bernardo, 1979a), Bayesian inference is a decision problem where 
the action space is the class of those posterior probabili V distributio~s of 
the quanti ty of interest which are compatible with accepted assumptions. 
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However, to make it easier for the  user to assimilate the appropri- 
ate conclusions, it is often convenient to s'umm, ar~ze the information con- 
tained in the posterior distribution, while retaining as nluch of the infor- 
mation as possible. This is convelfiently done by providing sets of pos- 
sible values of the quantib;  of interest which, in the  light, of the data, 
are likely to be "close" to its true value. The  pragmatic importance of 
these re, giort estirnates should not  be underest imated;  see Gu t t man  (1970), 
Blyth (1986), E.fron (1.987), H[atm and Meeker (1991), Burdick and Gray- 
bill (1992), Eb.erly and Casella (2003), mid references therein, for some 
monographic works on this topic. In this paper, a new objective Bayesian 

solution to this rvpion estimation, problem is proposed and analyzed. 

1.1  N o t a t i o n  

It will be  assumed that  probabili~; distributions may be described through 
their probabitit?; delksity functions, and no notat ional  distinction will be 
made between a raw, dora qua.ntiS; and the particular values that  it m~;  

take. Bold italic roman fonts are used for ot~servable random vectors (b;P- 
ically data) and bold italic greek fonts for unobservable random vectors 
(typically parameters);  lower case is used for variables and upper  case cal- 
ligraphic for their dominion sets. Moreover, the s tandard mathematical  
convent,ion of referring to functions, say- f~ and 9~ of x E ,t ' ,  respectively 
by f ( x )  m~d 9(x) will be used throughout.  Thus, the  conditional proba- 
bill V densi w of data  x E X given 0 will be represented by either p~lo  or 
p(xIO),  with p ( x l O  ) >_. 0 and ]~rP(x I 0 ) d x  = 1, and the posterior distri- 
bution of 0 ~ O' given a~ will be  represented by either Po! ~ or p(OIx) ,  with 
p(OIx  ) _> 0 and fo  P(OIx) dO = 1. This admit tedly imprecise notation will 
greatly simplify the expc~ition. If the  random vectors are discrete, these 

functions naturally becoine probabili ty mass functions, and integrals over 
their values become sums. Density functions of specific distributions are 
denoted 1)5; appropriate  names. Thlzs, if x is an observable random variable 
with a normal distribution of m.ean t~ and variance ~r 2 . its probabil i ty den- 
sit3; function will be denoted N (x I #, o-). If the p ~ t e r i o r  distribution of t t is 
Student  with location 2, scale ,~, and n degrees of freedom, its probabilib; 
density function will be denoted St(# I t ,  ,s, n). 
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1.2 P r o b l e m  s t a t e m e n t  

The argument  is a.lways defined in terms of some parametric modal of 
the general form 34 - {p(x ]w), x ~ X,  co. ~ f~}, which describes the 
conditions under wiiich data  have been generated. Thus, da ta  x are ~s- 
sumed to consist of one observation of the random vector x E X,  with 
probability density p(x  t co), for some co C n .  Often, but  not necessar- 
ily, da ta  will col~ist of a random sample x ( Y l , - - . ,  Y~,.} of fixed size rt 
from some distribution with, say, densit3~ P(Ylco), Y ~ Y,  in which case 

t co) lq}2  p(y, t co), and x 
Let 0 0(co) E O be some vector of interest; without toss of generalit.y, 

the assumed model 3/l may be reparametrized in the  form 

where A is sortie vector of nuisance parameters;  this is often simply referred 
to as '~model" p ( x I 0 ,  A ). Conditional on the assumed model, all yaM 
Bavesian inferential statement.s about the value of 0 are encapsulated in its 

posterior distribution 

which combine.s the information provided by the da ta  x with any other 
ilfformation about  0 contained in the prior densiV p(O, A). 

With no commonly agreed prior information on (0, A) the reference 
prior fi~nction for the quanti ty of int+erest, a mathematical  description of 
that  situation which maximizes the missing information about  the quanti W 
of interest 0 which will be denoted by ~r(0)zc(A 1 0), should be used to obtain 
the corresponding rvference posterior, 

~ ( 0 I x  ) ~ ~ ( 0 ) f  p ( x I 0 ,  A ) u(A 1 0)dA. (1.3) 
JA 

To describe the inferential content of the posterior distribution p(O Ix) 
of the quantib, of interest and, in particular, tha t  of the reference posterior 
7r(0 tx) ,  it is often convenient to quote regions • c O of given (posterior) 
probabili%, under  p(Olx), often called credible regions. 

This paper concentrates on credible regions for para.meter values. How- 
ever, the ideas may be extended to prediction problems by using the pos- 
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t.erfor predictive density of the quantity y to be predicted, namely p(y I r 
j'~ p(y !co) p(co Ir in place of the posterior density of 0. 

Def in i t ion  1.1 (Cred ib l e  reg ion) .  A (posterior) q-credible region for 
0 E 0 is a subset t~q(x, O) of  the parameter space 0 such that, 

co, f p(ol ) Io 
~(~,o.) 

Thus, giver,, data x ,  the ~r~te vaI'ue of 0 belongs to R,t(r , O) wi#~ (posterior) 
probability q. 

If there is no danger of confusion, dependence on available data r and 
explicit mention of the parametrization used will both be dropped from the 
notation, and a q-credible region Rq(x, O) will simply be denoted by Rq. 

Credible regions are invariant under reparametrization. Thus. for aay 
q-credible region /~q(m, O) for 0 and for any one-to-one transforma.tion 
O = O(0) C O(O) = �9 of the parameter 0, R.,t(x , ~ )  = O{Rq(x,  O)} is 
a q-credible region for 0- However, for a~y given q there are generally 
infinitely many credible regions. Many efforts ha.ve been devoted to the 
selection of an appropriate credible region. 

Sometimes, credible regions are selected to have minimum size (length, 
area, volume), resulting in highest posterior density (HPD) regions, where 
all points in the region have larger posterior probabiliV density than all 
points outside. However, HPD regions are not invariant under reparametri- 
zation: the image/~,t(r (I)) 0{R,t(r O)} of a. HPD q-credible region for 0 
will be a q-credible region for 0, but will not generally be HPD. Thus, the 
apparently intuitive idea behind the definition of HPD regions is found to 
be illusory, for it totally depends on the arbitrary) parametrization chosen 
to describe the problem. 

In one dimensional prvblems~ posterior quantiles are often used as an 
alternative to HPD regions to specify credible regions. Thus, if Oq : Oq(x) 
is the posterior cquantite of 0, then Rq(x, @) = [0; 0 < 0,~} is a one-sided, 
typically unique q-credible interval, aad it is inva.riant under reparametriza- 
tion. Posterior quantiles may be ttsed to define probability centred q-credible 
intervals of the form 

e )  = {e; o(1 <_ e <_ 
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so that  there is the same probability, namely (1 - @ / 2 ,  that  the true vMue 
of 0 is at  either side of the interval  Proba.bility centred intervas are easier 
to compute, and th W are often quoted in preference to HPD regions. How- 
ever, probability centred credibte intervals are only really appealing when 
the posterior density has a. unique interior mode had, moreover, they have 
a crucial limitation: they are not uniquely defined in problems with more 
thaa  one dimension. 

Example 1.1 { C r e d i b l e  i n t e r v a l s  for a b i n o m i a l  p a r a m e t e r ) .  Con- 
.sider" a set x {x~ , . . . ,  x~} of n independent Berrtoulti observation~s with 
p ~ m e t e r  e < 0 (0,*), so th~t p(x t e ) e * ( , - e )  ~-'~, a~,d the likelihood 
.f~,,,,tio~ is p(~ It)  = e~(1 e ? - ' ,  with r = E;'=~ ~j- The re.>re,.ce prior, 
which  i . ,  this ca . e  is aI.~o Je f frey ,  V',~or, is ~ ( e )  = B e ( e l  ~ 1 , 7, g), and the re#r- 
ence po.~terior is ~(0 I~', ~) Be(0  I r + ~, n -  'r + ~) ~ - . 
A (po~terio~9 q-cr~dit, le ~vion lo t  0 is aW .~,,.b~et of R~, of (0, 1) s',,'h that 
j'~q Be(0 Ir + } , ~  r + �89 dO = q. 

Consider now the one-to-one (variance stabilizing) reparumetrizat~ion 
2 arcsin v/0 ", ~ E d# (0, n).: .so that O sin 2 (.q.)/2}. Changing vargable.s, 

the 'reference posterior density of  r is 

r r ( r  ) rc(0{r,n) c< (sin2[r '' ~', (1.4) 

wh.h'h conveys precisely the same information that ~r(O!r', n). Clearl w if  the 
.~et R,,(,r , , . , . ,e) i.~ a ,~-credibfe ~Wior,.forO t h e .  R , , ( r , . , ~ ' )  ~,(R,,(, ' , . ,  e ) }  
will be a q-credible rvoion .for r however, ff  Rq(r, n, O) is HPD .for O, then 
R,~(r, n, o2) will generall'.q not be HPD for  (). 

For a numerical illustration, consider the case n 10, r 2, so ~hat the 
reference posterior is the beta density Be(0 I2.5 , 8.5) reprvsented in the left 
panel of Fiqur~ 1. Numer'ieal integration or the use of the incomplete beta 
integral shows that the 0.95 HPD credible inter~val is the set (0.023, 0.462) of 
those 0 v(due~ whose posterior density is larger than 0.585 (~haded region 
in that figure). The rvference posterior 4 e,, given by Equation (t .4),  is 
shown on the right panel of Figur~ t; the 0-HPD intem'al transforms into 
0[(0.023, 0.462)1 (0.308, 1.495) wh.ich is a 0.9S-credible inte'r~al jot" c.), 
but clearly not HPD. The 0.95 probability centred credible interval .for 0 
is (0.044, 0.503), slightly to the right of the HPD interval. Consider now 
the case n = 10, r =: 0, so that no successes have been obser'ved in, ten 
trials. The r~fer~nce poster'io'r'~s densities of 0 and O are now both monotone 
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0 0.2 0.4 0 .6  0.8 1 0 0.5 1 1.5 2 2.5 3 

Fig~u'e 1: HPD credibIe regions do not remain HPD under reparametriza,tion. 

rr(OlO, lO) 

0 0.2 0.4 0 .6  0.8 1 0 0.5 1 1.5 2 2.5 3 

Figure 2: Pruba.bilit.y centred credible interw.i,s a.re not a.ppropria, te if posteriors 
have not a. unique interior mode. 

t~his ~ransforrns into r 0.170)] = (0, 0.852), which now is also H P D  in r 
Clearly, probability centred inte'r'vafs do not make mueh intuitive sense in 

this case: jbr they would leave out the neighbourhood of zero, which is by 
.]hr the region morw likely to contain the tv-ae parwrneter vaSte. 



324 J, M. Berv~ardo 

Conventional frequentist theo~! ,fails to produce a convincing confidence 
intevval in thi,s ('r ,simple) ezaraple, fndeed, ,since data are di,~c'r'ete, an 
exact non-randomized cor~fldence inter~val of level 1 q does not exist for 
most q-values. On the other hand the fre.quentist coveraqe of (exact) ob- 
jective q-credible intervals may generally be shown to be q + O(r~-l); thus, 
Bayesian q-credible rwions typically produce approximate confidence inter- 
vats of level 1 q. See Section 5 .for .furCher discussion. 

As the preceding example illustrates, even in simple one-.dimensional 
problems, there is no genera.tly agreed solution on the appropriate choice 
of credible regions. As one would expect, the  si tuation only gets worse in 
many dimensions. 

In the  next  section, a decision theory argument  is used to propose a 
new procedure for the selection of credible intervals, a procedure designed 

go overcome the problears disctrssed above. 

2 Lowest posterior loss (LPL) credible regions 

Let 0 E O be some vector of interest and suppose that  available data  x are 
a~sumed to consist d one observation fi'om 

M = x x ,  o ,  

where A ~ A is some vector of nuisance parameters.  Let p(O,X) the the 
joint prior for (O,X), let p(Olx ) o< j~ p(xIO, X ) p(O,X)da be the corre- 
sponding marginal posterior for 0, and let f ( 0 0 , 0 }  the loaa to be suffered 
if a. particular value 00 E O of the parameter  were used as a pro~;  for the 
unknown true value of 0 in the  specific application under consideration. 

The expected loss from tLsing 00 is then 

t{Oot } Eo  Ie{oo,o}l s e{oo, O}p(Otx) dO (2.1) 

and the optimal (Bayes) est imate of 0 with respect to this loss (given the 
assumed prior), is 

O*(x) ar E inf l{Oo Ix}. (2.2) 
O0 ~ O 

As mentioned before, with no commonly agreed prior information on (0, co) 
the prior p(O, A) will Vpical ly be taken to be the reference prior function 
for the quantiW of interest, ~r(0) ~r(w t 0). 
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More generally, the  loss to be suffered if O0 were used as a proxy for 0 
could also depend on the t rue value of the nuisance parameter  ~. In this 
case, the loss function would be of the gelleral form e{00, (O,X)} and the 
expected loss from using 00 would be 

I{oo (2.3> 

where p(O, ) ~ l x ) ~  p(x I0, N)p(O, ,k)is the joint posterior of (0, a) .  

With a loss s t ructure precisely defined, coherence dictates that  param- 
eter values with smaller expected loss should always be preferred. For rea- 
sonable loss fmlctions, a typically unique credible region may be selected 
as a low'est posterior loss (LPL) region, where all point.s in the region have 
smaller posterior expected loss than all points outside. 

Defini t ion 2.1 (Lowest posterior loss credible region).  Let data ~c 

artd let g{O0, (0, ,k)} be the loss to be s~uffered if Oo were 'used as a prox~ 
for  O. A lowest posterior toss q-credible region is a s~ubset R~ = R ; ( x ,  O) 
of the pararnet~er ,space 0 such that, 

J :i p(o'l ) do,= q, 

'whe   l(O  = J ;  L e{0 , (0, p(O,a dO da. 

Lowest posterior loss regions obviously depend on the particular loss 
function used. In principle, any loss function could be used. However, in 
scientific inference one would expect the loss function to be in~'ar~ant under 
o n , t o - o n e  reparametrization. Indeed, if 0 is a positive quaxttity of interest, 
the loss suffered from using 00 il~,tead of the t rue value of 0 should be pre- 
cisely the stone the same as, say, the loss suffered from usillg log00 instead 
of log 0. Moreover. the (arbitrary) parmneter  is only a label for the model. 
Thus, for any one-to-one transformation ~b = q~(0) in ~ =  ~ ( O ) ,  the model 
{p(x I 0), x E X,  0 E O} is precisely the same as the @eparametrized) 
model {p(x I~b), x E X,  0 E e } ;  the conclusions to be derived from avail- 
able da ta  x should be preciseiy the smite whether  one chooses to work in 
terms of 0 or in terms of qS. Thus. in scientific inference, where only t ru th  
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is supposed to matter ,  the toss suffered ~{0o, O} from using O0 instead of 0 
should not measure the (irrelevant) discrepancy in the parameter  spa~:e 0 
between the parameter values Oo mid O, but the (relevant) discrepancy in 
the appropriate functional space between the models p~ I oo and p~ I o which 
the?, labet. Such a loss function, of general form ~{00, O} = t~(p~ I o0, P~ I o}, 
will obviously be invariant under  o n , t o - o n e  reparmnetrizations, so tha t  for 
any such transformation 0 = 0(0) ,  one will have g{Oo, O} = g{r  with 
~b0 = ~b(00), a~ required. 

Lc~s flmctions which depend on the  modeka they label rather  tha~l on the 
paranie te~ then~elves are known ~ in~Tinsic loss functions (Robert,  1996). 
This concept is not related to the concepks of "intril~sic B a y ~  factors" and 
"intrinsic priors" introduced by Berger and Pericchi (1996). 

D e f i n i t i o n  2.2 ( I n t r i n s i c  loss f u n c t i o n ) .  Consider" the prvbability model 
AA ~= {p(x  Ico), x ~ X ,  co ~ ~ } .  An intrinsic toss function for" f14 is a 
symmetric, non-negative fl.tnction f{co o, co} 4 ~he general ]brw~, 

e{~0,co} e{~,co0} e{p~l~0, p~l~} 

,.,h.~ch. ~ ~ o  ~f. ~..d o..l~ if, p(~ I coo) = P(~ I co) ~l,~o.t ~,<,.,,,h~,~. 

Well known examples of intrinsic loss functions include the s norm, 

j/a~ I~~ ~ Ico0) -  P(X t " ) I  dx (2.4) gl(W0,co} 

and the t ;~  norm 

e~{~0,co} = sup Ip(x Ico0) p(x Ico)l (zs) 
~cC,V 

All intrinsic toss functions are invariant under reparametrization, but  they 
they are not necessarily invariant under one-to-one transformations of x. 
Thus, f~ in Equation (2.4) is invarim~t in this sense, but  t ~  in Equation (2.5) 
is noL Intrinsic loss functiol~s which are invariant under  o n , t o - o n e  trans- 
forniatiol~s of the  data  are %~pically also invariant under  reduction to suf- 
ficient statistics. For example, if t t (x)  E 7- is sufficient for the model 
under consideration, so that  p(x ]co) p ( t l w  ) p(s It}, where s s (x)  is 
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an ancillm'y statistic, the intrinsic l~ 1 lOSS becomes 

s p(t  

f lv(t 

1 dm 

r y(t]~oo) 1 at 

~0) - p(t I~)I dr. 

Hence, the Q loss would be the stone whether  one uses the flfll model 
p(x t~o) or the margiua.1 model p ( t l w )  induced by the sm,,pling distribution 
of the sufficient statistic t. The  loss g~o however is not invariant is this 
statistically importm~t sel~se. 

The conclusions to be derived from amy da.ta set x should obviously the 
same as those derived from reduction to any sutficient statistic; hence, only 
intrinsic loss functions which are invariant under reduction by suKiciency 
should really be  considered. 

E x a m p l e  2.1 (Credible  intervals for a b inomial  parameter  (con- 
t inued) ) ,  Consider again ~he problem considered in Example 1.1 and take 
the C~ loss function of Equation (2.4). Since this loss is invar~iant under 'r~- 
&lotion ~o a sufficient ,statistic, t~he expected loss .from using Oo rather than 
0 may be .[bund 'using th, e sampling distributiort p(r ]0) Bi(r  In, O) of the 
sufficient star&tic r. This yields 

j[ 1 1 1 Z~{O,,Ir,,,,} = e~{Oo,O}Be(Otr+~,~ rmCdO 

e~{00,0} ~ IBi(r I",, 00) - Bi(,-In, 0)I. 
r' 0 

The e~pected loss I1{0o It, n} is shown in the "~Fp~r panel of FiguT~ 3 jbr 
the case r 2 and n 10 discussed beJbr~. This has a un ique m i n i m u m  

at O* = 0.210 which is thers the Bayes estimator ,for" this toss (marked 
with a solid dot in the lower panel of Figure 3). The 0.95-LPL crrdibte 
interval.for this loss is nv, merically found to consist of  the set (0.037, 0.482) 
whose expected loss is lower than 1.207 (shaded region in the lower panel of 
Fiqu'r~ 3). Since intrinsic loss functions ar~ invariant under r~par~tmetriza- 
lions, the Bayes estimate ~* and LPL q-credible region of some one-to-one 
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~___ ~~b (0o t2~ 10) 
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Figure 3: Bayes esthna.tor and LPL 0.95-credible region for e binomial parameter 
using the E1 intrinsic loss. 

ple t.1 these av~, rrspectively, 0.952 and (0.385, 1.535). 

Notice that if one were to use a conventional, not invariant loss fltnc- 
tion~ the result,~ would not be invariant under r~p(tr~metviz(~tion. For in- 
stance, with a quadratic lo,~s g{Oo,O} (0o - 0)2, the Baye,~ estimator is 
the postemor mea% E[OIr ,n] = 0.227; similarly, the Bayes estimator ,for 

r wouht be its po~te',{or mean E[O]r,n] 0.965, w'hieh is &ff~r~nt fl'om 
r = 0.994; c'mdible 'rwqions would be similarly inconsistent. Yet, it 
would be hard to awu G say to a quality engineer ~, that your best guess for 
the proportion of defective items is 0", but that your best guess for tog 0 is 
not log 0' .  
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In t.he next section, a particular, invm'ia~lt intrinsic loss, the intrinsic 
discrvpancy will be int.roduced. It is argued that this provid~ a far better 
conventional loss function of choice for mathematical statistics than the 
ubiquitous, overused quadratic loss. 

3 T h e  intr ins ic  d i s c r e p a n c y  loss 

Probability- theory makes frequent use of divergence measures between prot> 
abiti~ distributions. The total variation distance, Hellinger distance, Kull- 
back-Leibler logarithmic divergence, and Jeffrey-s logarithmic divergence 
are all frequently cited; see, for example, Kullback (19(58), and Guti6rrez- 
Pefia (1992) for precise definitions m~d properties. Each of those divergence 
measures may be ~ised to define a type of convergence. It has been found, 
however, that the behaviour of many important linfiting processes, in both 
probabiliV theory and statistical ilderence, is better described in tern~s of 
another ilfformation-theory related divergence measure, the intr~insie dis- 
cmpancy (Bernardo and Rueda, 2002), which is now defined and illustrated. 

Def in i t ion  3.1 ( Intr insic  d i screpancy) .  Consider two probability dis- 
tributions of a random vector x E X ,  specified by their" density fanetions 
p l ( x ) ,  x C X1 �9 X ,  and p2(x),  zc C X2  �9 X ,  with either identical or 
nested supports. The intrinsic discrepancy 6(pl ,p2}  between pl and p2 is 

Pl(~)  , P2(X) ~ ~, 
d{pl,p2}�9 = nfin { J ;  p~ (x) log ~ oks, J ; 2  pz(x ) ~  ~og Pl - -  (x) (3.1) 

prwvided one of  the integrals (or sums) is finite. The intrinsic discrepancy 
d{f~, C-z} between two families Y-~ and 2-,2 of prvbability distributions is the 
m in imum intr~insic discrepancy between their elements, 

d{Y~, S-el = inf 6{p~, p2}. (3.2) 
pICSI,p2CJ2 

It is immediate from Definition 3,t that the intrinsic discrepancy b e  
tween two probability distributions may be written in terms of their two 
possible dir~eted divergences (Kullback ~md Leibler, 1951) as 

6{p2,pl} = min { r,:fp2 IPl}, r,:fpl tP2} } (3.3) 

where the ~;(p) lpt}'s are the non-negative quaatities defined by 

r,;fp) ]Pi,} = p z ( x ) t o g ~ d x ,  with 2r C Xj .  (:3.4) 
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which are invariant under  o n , t o - o n e  t rmtsformations of x. Since e;,(pjlpi } 
is the expected value of the logar i thm of the density (or probability) ratio 
for pi, against p) when p~ is true, it also follows from Definition 3,1 that ,  if p: 
and pz describe two al ternative modek% one of which is assumed to generate 
the  data,  their intrinsic discrepancy 6{pl, P2 } is the minimum ezpected tog- 
likelihood ratio in favour of the model which generates the data (the "true" 
model) .  

The  intrinsic discrepancy 5{pl,p':} is a divergence measure  (i.e., it is 
symmetric ,  non-negative and zero iff pl  pz a.e.) with  two added i m p o f  
rant properties which make it virtually unique: (i) the intrinsic discrepancy 
is still defined when the supports  are strictly nested; hence, the intrinsic 
discrepancy 5{p,/3} between, say a dis t r ibut ion p with suppor t  on IR and 
its approximat ion /3  with suppor t  on some compact  subset [a, b] may be 
computed;  and (ii) the intrinsic discrepancy is addit ive for independent  
observations, a s  a consequence of (ii), the intrinsic discrepancy 6{01,0z} 
between two possible joint  models I ] j= l  pl (:cj {01 ) and  1]~=1 p~ (z'jI 0~) for a 
r andom sample  x = {x 1 , . . . ,  x,~} is s imply r~ Umes the discrepancy between 
W(xtO~ ) and p2(~,: 1 02). 

T h e o r e m  3.1 (Propert i e s  o f  the  intrinsic d iscrepancy) .  Let  p~ and P2 
be any two probability densitie~ Jot the r~ndom vector x E X with ei- 
ther identical or nested supports X ~ and X e. Their intrinsic disc~paney 
~{~,  ;,~ } is 

(iii). 

iv). 

S'~'rr.r~etric: 5{.1,P2} 5{ .2 ,Pl}  

Non-n<qative: 6{pl ,pz}  ~_ O, and 
5{p~, p~ } o ~]; and o~tv iL p~ (~) p~ (~) a.e. 

Defined for str~ictly nested supports: 
i f X i  �9 X j ,  then 6{p; ,pj} -- 5{pj,pi} =: ~:{pj IPi}. 

In.racism.t: I f  z : z (x )  is one-to-one and q,~(z) i~ the p~vbability den- 
sity of z induced by pi,(x), then 5{p],p2} = 5{ql,q2} 

Additive for" independent observations: If  x ( y ~ , . . . ,  y~},  and 
p~(~) = HL~ q~(y~), then ~{p~,p~} = ~ ~{q~, q~}. 

Pr~@ (i) From DefiniUon 3.1, 5{pl,p~} is obviously symmetric.  (ii) Mor~  
over, d(pl ,  p~} -- min{r,:(pi ]P2}, r,:.{p2 I P~ }}; bu t  H.(p~ ]P9 } is non-negative 
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(use the inequality log w <_ w 1 with w = p~/pj, multiply by p~ and inte- 
grate), and vaxfishe~s if (and only i f )p t (~)  pj(x)  almost everywhere. (iii) 
If p~ (x) and p~ (~) have strictly nested supports, one of the two directed di- 
vergences will not  be finite, and their intri~sic discrepancy simply reduces to 
the other directed divergence. (iv) The new densities are q.i(~c)= p.i(a)/IJ I, 
where J is the j acobian of the tra.ns formation; hence, 

which is n{p.i !pj}. (v) Under independence, pi(x) = I~}~__1 qi(Y2); tln~s 

/ = 1  

q2(v) 

and the result follows from Definition 3.1. [] 

The statisticMly important  additive proper~7 is essentially unique to 
logarithmic discrepancies; it is btLMcally a consequence of two f~:ts (i) 
the joint densits; of independent random quantities is the product  of their 
marginals, a~ld (ii) the logarithm is the only analytic function which t rals-  
fornzs products into sums. 

The intrinsic discrepancy may be ~e( t  to define a new ~ p e  of conver- 
gence for probability distributions which finds many appiicatioi~s in both 
probabilib; theory a~ld B~yeMan inference. 

D e f i n i t i o n  3 .2  ( I n t r i n s i c  c o n v e r g e n c e ) .  A ,sequence of prvbabiftty dis- 
tributions specified by their density fanetions {p~( )}~=1 is said to converge 
intrinsicMly to a probability distribution with density p(x)  whenever the 
swuence of their intmnsic discrepancies (d(pi, P)}i~:l converges to zero. 

E x a m p l e  3 .1  ( P o i s s o n  a p p r o x i m a t i o n  t o  a B i n o m i a l  d i s t r i b u t i o n ) .  
The intrinsic discrepancy between a Binomial  distribution with probability 
funct ion Bi(r In , 0) and its Poisson approximation Po(r  I nO), is 

~{Bi,Po I~,0}  Bi(r In, 0)log Bi(r In, 0) 
,.=0 �9 Po(r  I r, O) ' 
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since the second sum in Def ini t ion 3.:i diverqes. It may  easily be verified that 
l i m ~  d { B i , P o l r ~ , A / n  } 0 and t imo~0~{Bi ,  Po I A/0, 0} (); th'us, the 

sequences 4 B inomia l s  Bi(r  tr~ , )~/n) and Bi( r  I )~/Oi, Oi.) both intrinsically 
converge to a Poisson Po( r  I ~) when ft. ~ ~ and O~ ~ O, re~spectivefy. No- 

tice how:ever that in the approximation a B inomia l  B i ( r l n  , 0) by a Poisson 
po(r In 0) the rdles 4 and 0 are far  simiIa  ; the e r  eial con- 

dition f o r  the approximat ion to work is that the value of  0 m u s t  be small, 
while the value of n is largely irrvlevant. Indeed, as sho~t~m in Figure 4, 
t imo~0 5 { B i , P o l n  , 0} 0, f o r  all rt > O, so arbitrarily good apprvxima- 
tions are possible with amy n,  prw' ided 0 is sufficiently small. However,  

t im ... . . . .  6{Bi, Po  In, 0} 1 �9 ~ [ - 0  - log(1 - 0)] for" all 0 > O; thus, for . f ixed O, 
the quality of  the approximat ion cannot  irnprvve over a certain limit, no 
mat t e r  how large n might  be. 

0.15 O(Bi, Poln,  O} / n=l 
/ 
/ / n=3 

0.05 

0 . . . . . . . . . . . . . . . . . . .  

0.1 0.2 0.3 0.4 0,5 

Figm'e 4: hm'ir~sic dL~crepancy d{Bi, Po I n, 0} t,e~uree~ a BinouSaI Bi(r I n, 0) and 
a. Pd.s~on Po(r [ r~O) a.s a. fmlction of O, tbr n - 1, 3, 5 and oc. 

D e f i n i t i o n  3.3 ( Intr ins ic  d i s c r e p a n c y  los s ) .  For any given parametric 

eiated to the use of  Wo as a proxy .for w is the intrinsic dise'Jv.pancy 

between the models identified by aJo and ~ .  Morv generally, i f  a~ = (O,A), 
,so that the model is M ~ {p(x ] 0, A), x C X ,  0 ~ O, A C A},  the intrinsic 
discrepancy toss associated to the use of  Oo as a proxy .for 0 is the intrinsic 
discrepancy 

XoEA 
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{~,(~ ! Oo, ),o), ),o < A}. 

E x a m p l e  3 .2  ( In tr ins i c  d i s c r e p a n c y  loss  in  a B i n o m i a l  m o d e l ) .  The 
intrinsic discre.pane:q loss d,.{0o, O In } associated to the use of  Oo as a proxy! 
for 0 with Binomial Bi(r In, 0) data is 

~,,{oo, o In}  r, ~, {0o, 0},  

4~{0o,0} n~in{~'.{0o I0}, ~,:{0 10o}] 
~:(0~ I0j) 0, l o < 0 j / 0 d  + (1 - 0 j ) l o < ( 1  - 0 j ) / (~  - <)1, 

(a.5) 

wherv 6,~. { 0o, O} is the intrqnsie discrvpancy between Ber=ov, tli rundom vari- 
ables w'ith parameters Oo and O. The intrinsic loss fi~nction 5:~{0o,0} is 
represented in Figur~ 5. 

o . 4 /  i ~  ...... ---------- 
/ 

6 

Figure 5: hm'insie di.~erepancy Io.s.s d:~:{0~, 0} ti'om ,.41Jg (?o as a proxy fbr 0 in a 
binomia.i settirig. 

The intrinsic discrepancy toss, was introduced by Bernardo and Rueda 
(2002) in the context of hypothesis testing. It  is an intrinsic loss function 
(Definition 2.2) and, hence, it is invariant under  reparametrization. More- 
over, as one would surely require, (i) the intrinsic discrepancy between 
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two elements of a parametric family of distributions is ak~o invariant un- 
der marginalization to the model induced by the sampling distribution of 
any suKicient statistic, m~d (ii) the int~rinsic discrepm~cy l~ss is addit.ive for 
conditionally independent  observations. More precisely, 

T h e o r e m  3.2 ( P r o p e r t i e s  o f  t h e  i n t r i n s i c  d i s c r e p a n c y  loss) .  Con- 
.side," model .A4 = {p(x ]0, A), x E 1", 0 E O, .x E A} and let 5,~{0{}, (0, .x)} 
be the loss associated to the use of Oo as a proxy for  O. 

(i). Consistent rr~awinatization: I f  t (x )  C T is su~Tcient .for Rd, then 
6~{Oo, (0.,a)} = &{00, (o,a)).  I,. wt~(,,,,la~., a~{00, (o,a)} i.~ ~,~- 
variant under one-to-one trar~,sformations of x .  

(ii). Additivity: If  x { y z , . . .  , y~}  and the yj  % are independent given 
(o, a), ~he~, ~{00, (0, a)} E;2~ a~ {o0, (o, a)}. If the~j ~'~ ,,l.~o 
ide~.t~(,~ll~! d~,t~b~,,ted, the~ &{o0, (o, a)} = ~ 6~{oo, (o, a)}. 

Prvof. (i) If t ( x )  < 2r" is sufficient for AA and s ( x )  is an ancitlar3,~ statistic:. 
so that,, in tern~ of ~ (0, A), p(x ]w) p(tI~o)p(~tt), the required 
directed divergences e~',{p(x 1 co,i)tp(x ]~oj)} may be written as 

~p(tl~oj)p(slt) " o p(t]r176 ~ P(tlwY) 
p(t  I~o~):o(, It) p(t  I ~o,~) 

It follows that  the intrinsic discrepancy loss 6~{0o, (0, A)} calculated from 
the full model is the same as the intrinsic discrepancy 6, (00, (0, A)} calcu- 
lated from the marginal model {p(t]O, A), t E T ,  0 E ID, A E A} induced 
by the sufficient statistic. (ii) AdditiviW is a direct cor~sequence of the  last 
s ta tement  in Theorem 3.1. [] 

Computat ion of intrinsic loss functions in welt-behaved problems may 
be simplified by the use of tt~e result below: 

T h e o r e m  3 . 3  ( C o m p u t a t i o n  of  t h e  i n t r i n s i c  loss f u n c t i o n ) .  Consider" 
,~ rrBodel .A4 = {p(x {0, A), x E X,  0 E {i}, .~. E A} ,s~zef,, that tt, e ,s'apporl of 
v(* I o,),) is co~,ve~ fo~" all V~.~ (0,),). Tae,,. 

~{Oo, (o,.x)} inf 5{p,~ I Oo,~Xc,, P~ I o.x} 

Irlill { .k0EAillf/~2(0,..~ ] O{},)k0), XoEAinf ~;(0{},..~{} ] O,)k)}. 
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Prvof. This  follows f rom the  fac t  t h a t  the  d i rec ted  divergences are convex 
func t ions  which are b o u n d e d  above zero; for details,  see J u & e z  (2004). [] 

E x a m p l e  3 .3  ( I n t r i n s i c  d i s c r e p a n c y  loss  i n  a n o r m a l  m o d e l ) .  By 

sociated to the use o f  tt o as a p'rvxy for H, with a r~ndom sample x 
{ x ~ , . . . ,  x , ,}  of norraat N ( x  If", (7) data is n 5,.{po, (y., G)}, where 

5:,.{P.o, (P., (7)} = rain[ inf , '{y,  (7 IP.o, dr,,}, inf ":.{P.o, (7,)]ff, (7}]. 
Go>0 Go>O 

I f  (7 ia known, then the two directed divergence,s." are equal; indeed~ given (7, 

/ .  

I,J} = JR N(.~ I#.~, (7)toe~ 

and, therefore, 

~{vo,~t(7)} 7 az 

N(:~ i ;.>, (7) & _ 1 (#,. - t, ,) ~ 

1 [,Uo ,u12 
2 k (7/,/77 j ' (a.6) 

jus t  one ha!l: the squarv of  the standardized d{fference between H,o and 1-*. 

I f  (7 i.s not a:uo'wn: using Theorem 3.3, 

f N(x dr) 
inf ~:.{g.o, ~o IV, ~} i,,f ./o N(~: IV, ~')log ~o>o ,o>o ~... N(x IYo, Go) & 

= 1log[l+ ( # S  ~ (a.r) 

~,>oi"r ~,:{;., (71 fro, (70} ~o>oinr ~N(:~Jt,.o ' (7~ l~ N{z I/~~ (7~ ~(J7 [ 7;.7 (7) & 

_ 1 [(ff m)) 2 (a.s) 

Since: for" all u; > ()~ w > log(1 -I-w): thi.~ implies that the 're.guir'e.d m i n i m u m  
is achieved by (3.7) an< rAtty fore, 

'~ [ (t' - /~~ ] (3.~) ~{t~o,  (t*, (7)} ~-to~ ] + ; 7  , 

z 2 ( f f - y ,o )2 / (7  2 b e t w e e n a ( x i t ,  o,(7 ) a r t d a ( x i t ~ , G  ). This generalize.s to 
a multivariate norvnal setting. 
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5 

1 

0 

1(~ 5 0 5 10 

Figure 6: Intrin~'ic discrepancy io~s~ 5~{z, n} of ~l~ving #o a.s a. proxy fur 1.~ g i~n  n 

The intrinsic discrvpaney loss function 5~{p.o, (p, cr)} is r~presented in 

po and p,, ) r  several vah~es 4 n. Notice that .for {z t >_ 1, the intrinsic 
discrepancy loss is concave, showin 9 a v e  W r~asonable decreasing mawinat  
toss, which is not present in conventional loss fi~,nctions. 

4 Intr ins ic  credible  regions 

Lowest posterior loss credible 'regions (Definit~ion 2.1.) depend both  on the 
toss function and on the prior distribution. It has been as'gued that,  in 
scientific inference, loss flmctions should be invariant under reparametriza- 
tion; this is ahvavs achieved by intrinsic loss fimctions (Definition 2.2), 
which measure the discrepancy between the models identified by the pa- 
raineters, rather thin1 the discrepancy between the parameters  themselves. 
It. has further been argued tha t  intrinsic loss functions should be required 
to be symmetr ic  and consistent with the use of sufficient statistics, The  in- 
trinsic discrepancy loss (Definition 3.3) Ineeks these requirement~s, m~d h ~  
many additional at tractive properties, notably its additivig~ under condi- 
tional independence. It  m W therefore be reasonable to propose the intrin- 
sic discrepancy loss as an appropriate  conventional loss for routine use in 
mathematical  statistics. 
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On the other hand, as already mentioned in the introduction, scientific 
conmnmication Wpicatly requires the t~se of some sort  objective prior, one 
which captures, in a well-defined sense, the notion of the prior having a 
minimal effect, relative to the data  in the final inference. This should be a 
conventionM prior to be used when a default specification, having a claim to 
being non-influential in the sense described above, is required. In the tong 
historical quest for these objective priors several requirements have emerged 
which may reasonably be requested as nece~sary properties of any proposed 
solution; this includes generality, consistency under reparametrization, con- 
sistency under marginalization, and consistent smnpting properties. Ref- 
erence analysis, introduced by Bernardo (1979b) and further developed 
Berger and Bernardo (1989, 1992a,b,c), appears to be the only available 
method to derive objective prior functions which satisfy all these desider- 
ata. For an introduction to reference analysis, see Bernardo and Rmndn 
(1!998); for a recent review of reference analysis, see Bernardo (2005b). 

The Bayes est imator which corresponds to the intrilksic discrepancy loss 
and the appropriate reference prior is the intr'insic estimator. Introduced by 
Bernardo and Ju&rez (200:3), this is a completely general objective Bayesian 
estimator, which is invariant under reparametrization. 

D e f i n i t i o n  4.1 ( I n t r i n s i c  e s t i m a t e ) .  Consider data x which consist of 
one observation .from 2k4 =~ {p(x 10, A), x C X,  0 C O, A ~ A}, and let 
5~{00, (0, A)} be the intrinsic discrepancy loss to be s~@r~d i f  Oo were used 

as a prvx?l ]or O. The intrinsic estimate of 0 

0'(~) argmind(0~l~), 
OiEO 

is that par~.meter value which rninirnizes ~he ~rj~renee posterior ezpec~ed 
intrinsic loss d(O~ I x) ,  where 

~(0,al~) ~ p(~I0,a)~(aI0)~(0), (4.2) 

,~r,~d ~( ), I o) ~( o ) is the joir,,t ~e/~r,~:e pr~Zor of (0, ~ ) ~w her,, 0 is the q,.~r~t~t:,j 
of inter'est. 

Moving from point estimation to r e , o n  estimation, intrinsic c.rvdibte 
rcqions are defined as the lowest posterior loss credible regions which cor- 
respond to the  ~Lse of the intrinsic discrepmlcy loss and the appropriate 
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reference prior. As one would expect, the intrinsic estimate is contained in 
all intrinsic credible regions. 

Def in i t ion  4.2 ( In t r ins ic  c red ib le  reg ion) .  Cor~,side'r data ce which con- 

'wer~ ~tsed as a prv:r.g for  O. An  intri~sic q-credible region is a sitbset 
Rq = Rq(x ,  O) Q 0 4 the parameter space O s'ueh that, 

'where ~t( O~ Ix), the r~y?rence #,,t~i~sic posterior ex:pected loss ]~o'm "~s#~j 0~, 
as a proz~q Jbr the val'~t.e 4 the parameter', is given b'q Eq~t~ztior~ (4ot). 

The analytical expression of the intrinsic discrepancy loss 5~(00, (0, A)} 
is often complicated and, hence, exact computation of its posterior expecta- 
tion, d(O~Ix ) Vpicatty requir~ numerical integration~ Although these days 
this is seldom a serious practical problem, it is both theoretically interesting 
and pragmatically usdul to derive appropriate asymptotic approximations. 
Attention to approximations will be limited here to on,dimensional  reg- 
ular models, but the results may be extended to both non-regular and 
multiparameter problems. 

Let data x { x l , . . . ,  x,~}, :cj E X, consist of a random sample of size rl, 
front a distribution p(xIO ) with one continuous parameter 0 ~ O �9 R. 
Under appropriate regula.rib; conditions, there exists a unique maximum 
likelihood estimator ()~,, ()~(x) whose sampling distribution is asymptot- 
ically normal with mean 0 and variance i l(O)/n., where i (O)is  Fisher's 
information function, 

i ( 0 )  = p(:~ I 0) ~ l o g p ( ~  I 0) ax. (4.a) 

Moreover, the function defined by the indefinite integral 

/ 0(0) v/i(O)dO (4.4) 

provides a variance stabilizing transformation. Indeed, it is easily veri- 
fied that, under the assumed conditions, the maxinmm likelihood estimate 
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~ ~ ( x )  is asymptotical ly normal  with mean  6 o(0) and variance 
1/n, mid tha t  the approximate  marginal  model  

is asymptotica.tly equivalent to the origina.1 model  p(x t0) H~21 p(xj  I0). 
It  follows tha t  d~ asymptoticalb~ behaves as location parameger and, hence, 
the  reference prior for 6 is the uniform prior 7r(6) =: 1. All this suggests 
tha t  ~(0) is. in a sei~se, a fairly na tura l  parmnetr izat ion for t.he m o d e l  

More generally, if g,. 0~(x) is an asyntptotically sumcient,  consis- 
tent  est imator  of 0 whose asymptot ic  sampling dis tr ibut ion is p((~ I0), the  
reference prior for 0 is (Bernardo and Smith,  1994, Section 5.4) 

p(C t0) (4.5) 
�9 ,, = o 

and. therefore, the reference prior of the  monotone  t ransformat ion defined 
by the indefinite integral , ( 0 )  = f 7c(0)dO is ?r(@ = rc(O)/]Or = 1, a 
uniform prior. 

The  re.f~.re.nee parametriza~ion of a probabili V model  is defined as tha t  
for which the reference prior is uniform.: 

Definition 4.3 (Reference parametrization). Let  cc = { x ~ , . . .  , z~ , }  be 
r..,dom from M {P(:': I0), �9 X, 0 �9 O} 

be an asymptotically suj~cient, consisten~ estimator of 0 whose asymptotic 
sampling distribution is p(O~ I0). A reference parametr izat ion .for model 2M 
is ~hen defined by the indefinite integral 

j ' t0 ) (4.6) 

When  the sample space 2C does not  depend  on 0 and the likelihood 
function p(x  t0) is twice differentiable as a funct ion of 0, the  sampling dis- 
t r ibut ion of nmximmn-l ikel ihood est imator  0 is often asymptot ical ly  normal  
with va.ria~ce i l(O)/n, where i(O) is Fisher's information function given by 
Equat ion  (4~3); see, e.g. , Schervish (1995, Section "/.3.5) for precise condi- 
tions. In this case, the reference parametr izat ion is given by Equat ion  (4A), 
and this may be used go obtain analytical approximations.  More generally, 
if a model  has an asymptotical ly sufficient, consistent est imator  of 0 whose 
sampling distr ibution is a~ymptotica.lly normal,  a reference para.metrization 
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may be used to obtain a simple asymptotic approximation to its intrinsic 
discrepancy loss 6~ (00,0), and to the corresponding reference posterior ex- 
pectation d(Ootx). This provides analytical asymptotic approximations to 
the required credible regions. 

T h e o r e m  4.1 ( A s y m p t o t i c  approx imat ions ) .  Let x { a h , . . . ,  x>} be 

be an asymptotically sujficient, consistent estimator of 0 whose sampling 
distmbution is asymptotically normal N({)~, I0, s(0)/v/rT)~. Then, 

({). The refe~rence prior" for 0 is ~r(O) .s 1(0), e reference par'ametriza- 
tion is 0(0) = f s-l(0)  dO, the .r'eferenee prior for r is rr(@ = 1, and 
the reference posterior 4 0 ,  in terms 4 the ir,,ver:se fanction 0(0), is 
~(01 x) ~ p{~ t0(40} Ioo(4,)/o4,t. 

(ii). The intrinsic discrepancy loss is 

5~(0o,0) ~ [4 (0o ) -~ (0 ) ]  "~ +o(1).  

The ezpected posterior loss is 
~l(Oolx) =: ~[d(x)+ {~,~(~) &(Oo)y ] + o(i), 
where p.,(x) and G~(x) are, respectively, the m e a n  and var'iancr of 
the rcj?r~nce posterior distribution 4 O, ~r(O l x ). 

(,i~O. Tf,,r ~ntr-Znsic ~sti.~.~to." 4 4> ~,~ ,~(~)  + o(1), ~nd the i.,t~'ins~,, csti- 
~ t o ~  of 0 is 0 ' (~)  = 0{~,o(~)} + o(i) 

(v). The intrinsic q-credible r~gion of ~ is th, e inter~val 
[oqoCx), ~qlCa~)] = [tea(x) ..~ ZqG&(ge) + o(1), 
where z v is the (q + 1)/2 normal quantile. 

The intrinsic q-crvdible region of 0 is the inter'val 
[OqO(X), Oql(X)] =: O{ [r iql(X)] } + o(1). 

Pro@ (i) is an immediate application of Equation (4.5), Definition 4.3 and 
standard probability calculus. (ii) Under the assumed conditions, the sam- 
piing distribution of ~,,(x) witl be. for sufficiently large n, approximately 
normal N(~,, Ir 1/vq7). Since the intri~Lsic discrepancy l~s  is invariant 
under marginaliza.tion (Theoreln 3.2), 6~(0o,0) = 64,, (r , <.,5 ) and, using 
Equation (3/;) of Example 3.3, 

7~ 
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(iii) Using the invariance of the intrinsic discrepancy loss under reparametri- 
zation, 

72. 
7 (4o - e)  ~ ~ ( ~ I ~ ) d e  

" [ E ( ~ -  ~,~): + (t,~ - 4,0):] " 

where 6o = 6(0~}). (iv) As a function of 6o, d(60 Ix) is minimised when 
6{} = ~6 and. hence this provides the intrinsic estimate of c.); t~  invari- 
ance, the intrinsic estimate of 0 is simply 0(#~), where 0(0) is the inverse 
function of .c,,)(0). (v) Since the expected intrinsic loss d(.,c.")0 Ix) is sytnirteg- 
tic around ]~,  all lowest posterior loss credible regions will be symmetric 
around/~o Hence, the intrinsic q-credible interval for 6 will be of the form 
Rq(X, ~)  = #6 • zq or4, with z~ t. chosen such that  

IL~/- zq cs~ 

Moreover, since &~(x) is asymptotically sufficient, and its sampling distri- 
bution is asymptotically normal, the rderence  posterior distribution of 6 
will also be asymptotically normal and, therefore, xq will approximately be 
the (q + 1)/2 quantile of the s tandard  normal distribut.ion. By invarimlce, 
the intrir~sic q-credible intervM for 0 will simply be given t)y inverse image 
of q-credible interval for d), R~(x, @) =: 0{Rq(X, if))}. [] 

The posterior moments /2O(x ) and cr2(x) of the reference parameter 
required in Theorem 4~t may often be obtained ana,iytically. If this is 
not the case, the delta method may be used go derive #6(x)  and cry(x) in 
terms of the ({5/picalty easier to obtain) reference posterior mean ~o (x) arid 
reference posterior variance ~rg (x) of t,he original parameter  0: 

~](~) e"{#o(~)} (4.7) #~(~) ~ ~ { # o ( ~ ) } +  7 
~ ( ~ )  ~ ~ ( ~ ) [ j { # ~ ( ~ ) } ] :  (4.8) 

(see e.g., Sci~ervish (1995~ Section 7.1.3) for precise conditions). The delta 
method yields a particularly simple approximation for the posterior vari- 
ance of the reference parameter.  Indeed, (rg ~ ,s(0,0/r~ and ~'(0) =: ,s(0); 
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2 m 1/n.  This provides much simpler (but hence, using Equation (4~8), G:~ 
tess precise) approximations than those in Theorem 4.1. 

C o r o l l a r y  4.1. Urtder the conditions of Theorem 4~1, simpler (less precise) 
approximations are given by: 

(i). d(Ool~) ~ 7 + 7 [ ~ ( ~ )  - ~'(00)] ~ 

where zq is the (q + 1)/2 quantile of the standard normal distribution. 

(iv). I f  l te(x ) is not analytically available, it may be approximated in terms 
of  the Jirst reJ~rence posterior moments  of O, ~to(x) and c*o(x), by 

As illustrated below, Corollary 4.1 m ~  actually provide reeLsonable approx- 
imations even with rather small sample sizes. 

E x a m p l e  4.1 ( C r e d i b l e  i n t e r v a l s  for  a b i n o m i a l  p a r a m e t e r  ( con t ln -  
u e d ) ) .  Consider again the problem considered in Ezamples 1ol, 2.1 and 3,2, 
and use the corresponding intrinsic discrepancy loss (Equation 3.5). The 
reference p ~ o ~  is ~(0)  = 0-1/~(1 0)-~/~, and the refe~nee poste~or is 

1 1 ~(0 I,,  n) Be(O IT + ~-,n - ~" + ~-). The ,~]~renee poste~-~o~ e~pected lo~,~ 
f rom using Oo father than 0 will be 

Z 1 

Simple numerical algorithms may be used to obtain the intrinsic estimate, 
namely the value of Oo which minimizes d{O~]r',n}, and intr{nsie credible 
intervals, that is the lowest posterior toss intervals with the ~quirvd poste- 
rior probability. 

The function d{Oo I r, n} is represented in the upper panel of Figure 7 
.for the case r 0 and n 10 discussed before. This is minimized by 
O* 0.031. which is therefore the intr~insie estimate; the result may be 
compared with the maximum-likelihood estimate 0 =: O, utterly useless in 
this ease. Similarly, for  r = 1 and n = 10 the intrinsic estimate is found 
to be O* = 0.123; by invamance, the intrinsic estimate of any one to one 
funct ion ~ ~.',(0) is simply ~.~(0"); thus the intrinsic estimate o]~ .~ay 0 s, is 
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Figure 7: Reference post  erior densit.}i, intrinsic es t ima te  an d intrin~b'ic 0.9 5-credible 

region for a. binc>miai pare.meter, giren n. = 10 and r = O. 

0 *2 = 0 .015;  this may  be compared with the corTesponding unbiased es t imate  

4 09, ',,,'hi~'h. i.~ {'r (.,"- 1)}/{~(m~- I)} and hence ze'r~ in thi.~ pa,'tic~la~" ~,a.~e, 
a rather" obtuse es t imat ion  for  the squar'e of the proportion of  something 

which has actually been observed one in ten t imes.  For" r 2, n 10 the 

int, rinsie es t imate is 0* = 0.218,  somewhere between the posterior  median  

(0,210) and t, he the posterior mean (0,227). 

Intr ins ic  e'r~.dible regions ar~ also easily f o u n d  numer~ieally. Thus,  for" 

'r 0 and n : 10, the 0.95 intrin~ic credible interval  f~r 0 is (0, 0.170) 

(shaded re, qion in Figure 7); in this case, this is also the H P D  interval. For 

r = 2 and r~ = 10 the 0.95 int, mnsic credible interval is (0.032, 0 .474) ,  v e r y  

close to (0.037, 0 .482) ,  the L P L  0.95-credible interval which corresponds to 

the "~-'1 1088 (.see Ezampfe  2 . t ) .  



3 4 4  J. M. Berv~ardo 

Since the reference prior for  this problem is ~(0) = O-U~(1 O) -U'2, a 
,~/~.~n,: parameter is +(O) j' ~(o) dO 2 ~,r(:si~,/~, .with #,,,,,e~,~e f.n('- 
tion 0(~) = sin2(c.;/2). Changing variables, the 'reference posterior qf the 
~ference parameter ~ is Eqaation (t .4), a distribution whose fi'r'~st moment.~ 
do not have a simple analytical expression. The use of Corollary 4.1 with 
the exact rqe'~nce posterior moments 4 O, #~ = (, '+ 1/2)/(n + 1) and 
~g = #~(1 ~,~)/(n + 2) leads, ~,,ith ~'(0) = 0-1/~(1 0)-~/~ and ~"(0) = 
k (20 1) 0-3/2(1 0) -3/2, to simple analytical apprvximations for" th, e in- 2 
trinsic estimates and the intrinsic credible rwions.  I'n particular i, with r 2 
and n = 10, fro = 0.227, ~r~ = 0.015, and the delta method yields Po ~ 0.967 
and O* O(tt,) ~ 0.216, quite (:lose to the ezact vahte 0.218. Moreover 
R;.95(O ) ~ 0{ (0.967 • 1.96 • 1/v/t-0) } = (0.030, 0.508), (dose to its ex- 
act value (0.032, 0.474). As one would ezc'pect the approximation is not that 
good in extreme cases, when either r = 0 or r = n. For instance, with r =  0 
,,nd r~. : 10, Co.roUar, 4.11 yield~ O* ~ 0.028 and R;.~,(O) ~ (0.020, 0213) ,  
compar'ed with the ecract values 0.031 and (0, 0.170) respectively. 

E x a m p l e  4.2 ( I n t r i n s i c  c r e d i b l e  i n t e r v a l  for t h e  n o r m a l  m e a n ) .  
Consider a random sample x { x l , . . .  ,:c~} from a normal distribution 
N(:,:I~,~), ,,r,,d l e t~  ~/~'S/r~, and," ~ rj(:~:j-z)~/r~ Ve the ,'o'rr~spond- 
i W mean and vamance. The reference prior when t~ is the pararneter" of 
interest is :r(#) 7r(cr I #)  = or-l, and the corresponding joint  reference poste- 
rior is 

(n+l)  )'~ 2 o- e~p[ 7 ( ~  + (~ #7)] .  (4.9) 

Thus, using Equation (3.9), the r~fer'enee posterior ezpeeted intrinsic loss 
from using #o as a proxy for  t t is 

As  one could expect, and may directly be verified by appropriate change 
of variables in Equation (4.t(),), this is a symrnetr'ic fanction of/~o - ~ .  
It follows that q-crrdible regions j o t  # must be centred at y. ltJo'reover~ 
the (marginal) reference poster~ior of p is Student St(#t:T , . , / x / n -  1, n - 1). 
Consequently, the intrinsic q-credible interval for the normal mean # is 

R$(m,]R) = ~ • t,~(n l) s /v /~  1 
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~m,~e,~ t~,(~ - 1) i~ the (q + 1)/2 q~ar, Xile of ,~ .~t~r,,d~d St'.,dent di~triV'.tion 
with n 1 degrees of freedom. A s  one co'uld expect in this example, this is 

also the HPD interval, and the frrq'uentist confidence interval of level 1 - q. 

, , , , . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , , , , 

4 ) 
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2 i ~ 1  
i i 
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o . . . . . . . . . . . . . . . . . . . . . . . . . . . .  L . . . . . . . . . . . . . . . . . . . . . . .  i -  . . . . . . . . . . . . . . . . . . . . . . .  X . . . . . . . . . . .  ~ _ o  . . . . .  

i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i 

0.5 1 1.5 2 2.5 3 3.5 4 
Figm'e 8: Expected irm'Tnsic loss from usfiN #; as a prox.y fbr a. normal mea.n, 

g i ~ n  n - 10 obserwtions, with ~ -  2.165 and s - 1.334. 

u i y ~  s de.~,,rit, es the t, eh~vio'.r 4 d(#o ]~) .~i',,en ~ 10 oV..e'~,,.tion.~, 
sim~Uated from N(x]2,  1) which yielded :g =: 2.165 and s = 1.334. The 

intr insic  es t imate  is obviously g (marked wi th  a solid dot) and the 0.95 
intr insic  credible inter'ual consists of  vat.ues (1.159, 3.171) whose intr insic  

posterior  expected toss is ,smaller than 2.151. 

5 F r e q u e n t i s t  c o v e r a g e  

As Example 4.2 illustrates, the frequentist coverage probabilities of the 
q-credible regiol~ which may be derived from objective posterior distribu- 
tions are sometimes identical to their posterior probabilit i~. This exact 

nmnerical agreement is however the exception, not the norm. Nevertheless, 
for large sample sizes, Bayesian credible intervals are always approximate 

confidence intervals. Although this is an asymptotic properW, it has been 
found that,  even for moderage samples~ the frequentist coverage of r~ferenee 

q-credible regions, i.e., credible regions based of the reference posterior dis- 
tribution, is usually very close to q. This mea.~s that, in ma w problems, 



3 4 6  7. M, Ber'mtr'do 

reference q-credible regions are also approximate frequentist confidence in- 
tervaE with significance level 1 - ~1~ thus, under repeated sampling front the 
same model, the proportion of reference (/-credible regions containing the 
true value of the  parameter  will be a.pproxima.tety q. 

More precisely, let data  x = { x l , . . . ,  x,,} colksist of r~ independent  ob- 
servations front the one parameter  model 34 = {p(:c ]O),z ~ X, 0 C @}, and 
let 0,,(~, P0) denote the ~t-quantile of the posterior p(0 Ix) ,x p(a: 10)p(0) 
which corresponds to the  prior p(0); thus, 

PrIO < O',(x,P~)'x ] ~{'o<%i~.z,o)iI)(O'x) d O _  , q" 

and. for any ti~ed data  x, R,~(x) = {0; 0 _< 0,~(x, p~)} is a left q-credible 
region for 0. For fixed 0, consider now Rq(X) as a function of x. S tandard  
asymptotic theory may be used to establish that ,  for any sufficiently regular 

pair {Po, 2M} of prior Po m~d model jr4, the cover'~zge probabili b, of R~(x) 
converges to q as r~. ~ .~. Specifically, for all sufficiently regular priors, 

Pr[O,,(x,po)>_OiOl=~" p(xlO)dx:q.O(r,.  1/2). 

In a pioneering paper~ \~.~lch and Peers (1963) established tha t  in the case 
of the one-parameter regular models %r continuo~s data  Jeffreys prior, 
which in this case is a,]~so the reference prior, ~r(O) ~ i(O) 1/2, is the on a 
prior which further  satisfies 

Hartigan (196(5) later showed tha t  the coverage probabilities of one-dinten- 
sional ~tvo-sided Bayesian posterior credible intervag satisfy this V p e  of ap- 
proximation to O(r1~-1) for ell su~cient ly  regular prior functions. Moreover, 
Hartigan (1983, p. 79) showed that  the result of \~:lch and Peers (1963) 
on one-sided posterior credible intervals m ~  be extended to o n , p a r a m e t e r  
models for discrete da ta  by using appropriate continuity corrections. 

This all memos tha t  reference priors are often p'rvbabi/it~l metchi~.g pri- 
ors, tha t  is, priors for which the  coverage probabilities of posterior credible 
intervals are asgmptoticalfg closer to their posterior probabilities than those 
derived fi'om any other prior; see Dat ta  and Sweeting (2005) for a. recent 
review on this topic. 
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Al though  the  results  descr ibed  above  only just i [y  an asymptotic approx-  
imate  f requent is t  in te rpre ta t ion  of reference credible regions, the  coverage 
probabi l i t ies  of reference q-credible regio~ks derived from relatively small 
samples are found  to be  relat ively close to their  poster ior  probabi l i ty  q. 
This  is now i l lus t ra ted  within the  b inomial  p a r a m e t e r  problem. 

E x a m p l e  5.1 (Frequentist  coverage of  b inomial  credible  regions) .  
Consider again the intrinsic credible inter:val8 Jot a binomial parameter 
of Example ([.1. The freq'uentist coverage of the intrinsic q-credible region 

* , @) there d@'ned is Rq (,-, r,,, 

C ~  r'rh(e))IO'rtl=: E (~) 0~'(1 0)" ~" 

Since r is discrvte, this cannot be a continuous fltnction of O. Indeed the 
f~w~,en~st (,o',,er(~g~. Cov{<~ I O, r~ } of the q-intr~r,,s~,~ ,~d'~bl~ r ~ o . ,  ~.~ bo'.nd 
to oscillate around its reference posterior probability q. It may be arg'ued 
however tha~ t~ayesian r~/e'rence pos~er~ior q-credible r~qions possibtg prw'ide 
the best available sohttion for this particular frequentist problem. 

0 95 

0.9 

0.85 

I [ CovlRo.95(O, 10)} 

' i  i 

r \ 
0 0.25 0.5 0.75 

0.95 

0,9 

0.85 

Figure 9: FrequentL~t covera.ge Cox.'{R,~ [ O, n} o[ binomia.l 0.95-intrin,sic credible 
regions with r~ = 10. 

For a numerical ilhzstration consider again the ease n = 10, so that 
r E {0, 1 , . . . ,  10}. Since there are only 11 diffe.rent possible values o] r, 
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Table 1: Intrinsic estima tes and intrinsic 0.95-credible intervals for the parameter  0 
of a binomial distribution Bi(r [ r~, 0), with n --- 10. 

r 

O 0.032 

1 0.124 

2 0.218 

3 0.314 

4 0.408 

5 0.500 

6 0.592 

7 0.686 

8 0.782 

9 0.876 

10 0.968 

(4*('r, *0) R,~(r, r~, e )  
(0.000, 0.171) 

(0.000, 0.331) 

(0.033, 0.474) 

(o.os2, o.~ss) 
(0.145, 0.686) 
(o.224, o.r76) 
(0.314, 0.855) 
(o.412, o.91s) 
(0.526, 0.967) 

(o.ssg, 1.ooo) 
(o.s2~, 1.ooo) 

there arc only 11 distinct intrinsic 0.95-credible intervals; those arc listed 

in Table t. I f  the trade value of 0 were, .say, 0.25, it would be contained 
in the intririsie eredible region R~('r, ri, 6)) if, arid only i3 r C {1,2, 3.. 4, 5}, 
and this would happen with prvbability 

5 

�9 * = 10} = ~ B i ( r l O  0.25, ~ =  10) o.~a4. Co~{Ro.~{0  0.25, n =  = = 

Vig,,,r~ ~ r~pr~,ent, th~ freq,~,eritist eo,~,~rage Cov{R~, I0, ~} a,  a f,~nction 
of 0 for" q = 0.95 arid rt = 10. It rnay be appreciated the prvportion 
C~ 1 O, n} of intrinsic 0.95-crvdtble inter'pals which may be expected to 

contain the t'rae vafae of O under tweeted sampling oscillates rather wildly 
around its po.ster.ior prvbability 0.95: with discontinuities at the points which 

de~rie the <:rediVle r<r Xat~irall> Cov{R~ i 0,-~} .will eo . . e~ je  to q for 
all 0 values a,s n ~ pc., but y e w  lawe n values would be necessa W for a 
good approximation, especially .for extreme values of(4. 

6 F u r t h e r  E x a m p l e s  

Tile canonical  b inomial  and  norma l  examples have sys temat ica l ly  been used 
above to itlustra,te the  i d e ~  presented.  In this final section a wider range 
of exmnples is presented.  
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6.1 E x p o n e n t i a l  d a t a  

Consider a r andom sample  x = { x l , . . . ,  x,,} from a t  exponential  distribu- 
tion Ex(x I0) = Oe -:~~ and let t = ~ j = l  xj .  

The  exponential  intrinsic discrepancy loss is 

5~(00,0) = n n fin[~;{0]00}, e~;(00 I0}1 

/0 ~ Ex(~ I 0 ~ ) 
.(0~ I% } = Ex(x l%)log Ex(:~, I0~) ~:k~ 

= g(0~10~), 

where g(x) is the tinlaj function, the positive distance 

g(x) = (x 1) logx,  

between log x and its tangent  at x = 1. Hence, 

5~(0o,0) ~5~(0o,0),  5:~(0o,0) { ~(0/0o)'~(0~ 
00 < 0 ,  
0 0 > 0 .  

(6.1) 

A related loss function, f{~r~,~r 2} = 9(cry~or'2), often referred to as the 
entropy lo.ss, was used by Brown (1968) (who a t t r ibu ted  this to C. Stein)a~ 
an alternative to the quadrat ic  loss in point  estima.tion of scale parameters .  

The  reference prior (which here is at~o Jeifreys prior) is ~r(0) 0 1 and 
the corresponding reference posterior is 7r(0Ix ) Ga(0 In, t. ) oc 0 ~ le '~ 
Hence, the posterior toss d(Oo Ix) f rom rising 00 as a proxy for 0 is 

d(Oo Ix) = d(Oo It, n) = n 5x(Oo,O)Ga(OIn,t)dO. 

Figure 1�9 describes the  behaviour of d(O, Ix)  given n = 12 observations, 
s imulated from Ex(xI2) ,  which yielded t~ 4.88. The  intrinsic estima.te 
is 2.364 (marked with a solid dot), and  the intrinsic 0.95-credible interval 
consists of the values (1.328, 4.198) whose posterior expected loss is smaller 
thm~ 1.954. 

A reference parameter for this problem is r f ~(0)d0 = logO, and 
its posterior mean may be analytically obtained as 

~, lo~ o Ga(O I",, ~) dO ~.:'~(~) - log ~ (6.2) 
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Figure 10: Expected intrinsic loss ti'om usiz~ O~) as ~ proxy fur ~he parameter  0 of 
e.l~ exl)onen~ial distribution, given r~ .... 12 observ~gion,.% u4gh ~ t / u  0.407. The 
intrinsic estimate is 0* 2.364, the intrinsic 0.95-credibie regio~i is (1.328, 4.198). 

where  :~?(-)is the  d i g a m m a  function.  Using Equa t ion  ((L2) in Corollary 4~1, 
wi th  t = 4.88 and  n = 12, yields #~ = 0.858. and  hence,  0* ~ exp[/~o] = 
2.357 very close to its exact  value 2.364, even though  the  sample  size, 
rt 12, is r a the r  small.  Moreover,  

/~;.~05 ~ (exp[/te - 1 -96 /v /~ ,  expl/ze + 1 -96 /v /~ )  (1.339, 4.151) 

qui te  close again to the  exact  intrixksic region (1.328, 4.198). 

In this problem, all reference poster ior  credible regions are e:t'act fre- 
quent i s t  confidence intervals. Indeed.  changing variables, the  reference 
poster ior  d is t r ibut ion of r = tO is Ga(T In, 1); on the  o ther  ha~id, the  
sampl ing  dis t r ibut ion of t, is Ga( t  t n, 0) and,  therefore,  the  sampl ing  distri- 
but ion  of ,s = f0  is Ga(s  In, 1). Thus,  the  reference posterior dis t r ibut ion 
of t 0, as a funct ion of 0, is precisely the  s ame  as the  sampling distr ibu- 
t ion of tO, as a funct ion  of t; consequently,  for any  region R( t )  �9 (9, 

Pr[0 ~ / ~ ( t )  ] t , ,~ , ] -  Pr[0 ~ R( t )  I 0 ,~  ]. 

6 . 2  U n i f o r m .  d a t a  

Consider  a r a n d o m  sample  x { : c l , . . . , x ~ }  from a uniform dis t r ibut ion 
u n ( x  I0) = 0 -1 , 0 _< :~ _< 0 .0  > 0. a l~d lot t = ma~{x l  , . . . ,  ~,,�9 }. Notk:o t h a t  
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this is not a regular problem, since the sample space, X = [0, 0], depends 
on the parameter  0. The  funct.ion 0 ~ is a sufficient, consistent estimator 

of 0, whose smnpling distribution is inverted Pareto. 

p(tlO)=Ip(t~Ir~,O 1)=r~.t'~ 10 '~, 0 < f < 0 .  

Using ((;.3) and (4.5), the reference prior is immediately found to be  

~(0) ~p(~t0)l~= 0 0-~; 

(6.3) 

notice that  in this non-regular problem JeflYeys rule is not applicable. The 

correspollding reference posterior is Pareto 

7r(Oix)=Pa(Oir~,t)=:r~t~ 0 (~+1). O>_t. 

The intrilxsic discrepancy toss for this model is 

~(00,0) ~ mi~@{0 I00}, ~:{00 t0}1 

{ r~(Oi IOi} = j ~  O]l logIOi/Oj]dcc : log[0//0j], 0j < 0i 
oc Oj > O~ 

Uen~:e, ~(00,0) ,~ ttog(0/00)t, and the posterior loss ~Z(00t~) fron~ us- 
ing 00 as a proxy for 0 is 

d(Oolm) =d(Oolf, rO=r,. Itog(O/Oo)tPa(Otr~.,t)dO. 

Figure 11 describes the behaviour of d(Ool~, rz) given r~. = 12 observations, 
simulated from Un(x l2 ) ,  which yielded t 1.806. The intrinsic est imate 
is 1.913 (marked with a solid dot) and the 0.95 intrinsic credible intervai 
consists of the values (1.806, 2.318) whose posterior expected l ~ s  is smaller 
thml 2.096. 

A reference parameter  for this problem is r = f 7c(0) d0 = log0. and 
its posterior mean may be analytically obtained as 

l ~ =  logOPa(OIr~.,t)dO=(1/rQ+logf (6.4) 

For ~ 1.806 and ,1. 12 yields / ~  : 0.674 and 0* ~ e I~,'~ 1.963 not  too 
far from the exact value 1.913. Notice, however, tha~ Theorem 4.1 calmot 
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Figure 11 : Expec ted  intrinsic lo~ss from ~tsing Oo a.s a. proxy  fbr the parameter  0 of  

a. mfi form di~stribution, given r~ .... 12 ob~ervations, with f -- maxxj  1.806. The  

intrinsic es t imate  is O* = 1.913., the intrinsic 0.95-credible region is (1.806, 2.318). 

be  appl ied to t, his problem,  since nei ther  the  sampl ing  d i s t r ibu t ion  of the  
consis tent  es t imator  f, nor the  poster ior  d i s t r ibu t ion  of 0 are asympto t i ca l ly  
normal .  In fact, the  poster ior  var iance of 4) is (exactly)  l / n 2 ;  this is O ( n  -2)  
ra ther  than  O ( n - 1 ) ,  a~ ob ta ined  in regular  models .  

Once  again, all reference poster ior  credible regions in this p rob lem are 
exac~ f requent is t  confidence intervak~. Indeed,  changing variables,  the  ref- 
erence pos ter ior  d i s t r ibu t ion  of T O/ t  is Pare to ,  P a ( z  I n , 1); on the  other  
ha.nd, the  sampl ing  d i s t r ibu t ion  of t, is inverted Pa re to  Ip(~I n , 0 -3)  and, 
therefore,  the  sampl ing  d is t r ibut ion  of ,s 0/t, is a[~o Pa.(,s In, 1 ). Hence,  
the  reference poster ior  d i s t r ibu t ion  of 0/t, as a funct ion  of 0 is precisely the  
same as the  sampl ing d i s t r ibu t ion  of 0/t, as a funct ion  of t, and thus.  for 

any region R(t,) �9 @, Pr[0 ~ R( t )  It, n I = Pr[0 ~ R ( t )  IO, n 1. 

6.3  N o r m a l  m e a n  a n d  v a r i a n c e  

Consider  a. ra.ndom sa.mple x = { x l , . . .  x~,} from a normat  ctistribution 
N(z  t/~, (r), and  let 0 = (p, (r) be  the  (bivaria.te) quan t i ty  of interest .  Tile 
intrinsic d iscrepancy loss for this model  is 
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wi th  

where  9(x)  = (x 1) logx  is, again,  the  l inlog funct ion;  this yields 

6~{(#0, or0), (#, <r)} = 

T h e  n o r m a l  is a locat ion-scale  mode l  and,  thus  (Bernardo ,  200.5b), t he  ref- 
erence pr ior  is ~r(#, <r) =: <r -1. T h e  co r r e spond ing  (joint) ref'erence pos ter ior  
d i s t r ibu t ion ,  ~r(#, cr Ix) ,  is given in E q u a t i o n  (4~9). 

T h e  reference pos ter ior  expec ted  intr insic loss f rom us ing (#0, or0) as a 
proxy for (#, <r) is t h e n  

This  is a convex surface  wi th  a un ique  m i n i m u m  a t  the  intr insic  e s t ima te  

{ t , .* (x) ,v*(x)}  = arg rain d(#o,C;olX) = {~', cr*(,s,~,.)} (6.7) 
l~o CR,ao >() 

where  a* is of t he  form c~* (.s, n)  ~:,~ .s enid, hence,  i t  is an a ~ n e  equivsx'iant 
es t imator .  W i t h  r;. 2, cr*(:c3, x2) ~ (V~/2 ) Ix3  -:c2I; for m o d e r a t e  or large 
sample  sizes. 

( 
r~ 2 

Since intr insic e s t ima t ion  is invar ian t  u n d e r  r epa rame t r i za t ion ,  the  intr insic  
e s t ima to r  of t he  var iance is s imply  (c~*)2 ~ r~ . s 2 / ( n -  2), s t ightly larger thma 
bo th  the  role e s t ima to r  s 2, and  the  unb iased  e s t ima to r  nse / (n  1). 

Int r ins ic  credible  regions are ob ta ined  by p ro jec t ing  in to  the  (#0,~0)  
p lane  t he  in tersect ions  of the  surface  d(v0, a0 Ix)  wi th  hor izonta l  planes.  

F igure  :12 describes the  behav iour  of d(F.0, <r 0 I x)  given n = 25 observat ions ,  
s imu la t ed  f rom N ( z I 0  , 1), which yie lded :~< = 0.024 and  .s - .  1.077. T h e  
resu l t ing  surface  has a un ique  m i n i n m m  at  (#*, <r*) =: (0.024, 1.133), which 
is the  intr insic es t imate ;  not ice  t h a t  

/ : , *  2) 1.123. 
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Figure 12: Expected  intrinsic loss &ore using (ta~, or0) as a proxy  fbr the pa.ram- 

eters (p, a) of  a. normal distribution, given r~ = 25 observations, with Z = (}.(}24 
and s 1.077. 

Figure  13 r e p r ~ e n t s  the  c o r r ~ p o n d i n g  intrinsic e s t ima te  and  contours  of 
intrinsic q-credible regions, for q 0.50, 0.95 and  0.99. For instance,  R~.95 
(middle  contour  in the  figure} is the  se t  of {#0, or0} points  whose  intrinsic 
expec ted  toss is not  larger t h a t  0.134. 

Not, ice finally tha t  all reference poster ior  credible r e ~ o n s  in this p rob lem 
are, once more,  ezac t  f requent is t  confidence intervals. Indeed.  for all n, the  
joint  reference poster ior  d i s t r ibu t ion  of 

- -  ~ - -  ( 6 . 9 )  

as a funct ion of (1~, c~) is precisely ~he same  as its sampl ing  d i s t r ibu t ion  as 
a funct ion  of (~, s2). Thlls. for a~ly region R = R ( m , , % n )  �9 IR • ]R +, one 

must  have Pr[(~,., ~) ~ R I,~,,,,% ,,] = Pr[(#,  ~) ~ R I#, ~, ~,1. 
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Figure 13: Intrinsic estimate (solid dot) a, nd intrinsic q-credible regioT~s (q = 0.50, 

0.95 and 0.99) for the parameters (p, c7) of a r~orma.1 distributicm, g.iven n -- 25 

observations, with ~ = 0.024 and .~ = 1.077. 

D I S C U S S I O N  

George  Casella 
Depar~ment of  Statist~ic,v 

Uni'versity of Florida, USA 

1 Int, r o d u c t i o n  

T h e  vagaries of email  or iginal ly sent  Professor  Be rna rdo ' s  p a p e r  into L imbo  

ra the r  t h a n  Flor ida ,  and  because  of t ha t ,  n\y t ime  to p repa re  this discussion 
was l imited.  As a result ,  I dec ided  to concen t r a t e  on one  aspec t  of the  paper ,  

t h a t  having  to do wi th  d iscre te  intervaL~. 

F i ~ t ,  let me  say t h a t  Professor  B e r n a r d o  has, once again,  b ro u g h t  us a 

f u n d a m e n t a l l y  new way of app roach ing  a problem,  an approach  t h a t  is no t  

only e x t r e me ly  insightful,  b u t  also is likely to lead to even more  develop- 
ments  in objec t ive  Bayesian  analysis.  T h e  coupl ing of interval  cons t ruc t ion  
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with lowest posterior loss is a very intriguing concept, and the argument  
for using an intrinsic loss is compelling. 

There is one point about  loss flmctions that  I really like. Professor 
Bernardo notes tha t  a loss g{00, 0} should be measuring the distance be-. 
tween the mode}~s p(xtOo ) and p(xlO), not the distance between 00 and 0, 
which is often irrelevant to am inference. This is an excellent principle to 
foct~s on in any decision problem. R~u l t s  tha t  are not invariant to 1 1 
tra:~sformations can some t im~  be interesting in theoa5 but  they tend to 
be less :lseful in practice. 

2 C o n v i n c i n g  C o n f i d e n c e  I n t e r v a l s  

Professor Bernardo states tha t  in the binomial problem "Conventional f r~  
quentist theory fain to provide a convincing confidence intervar' (my ital- 
ics), and then comments on the limitations i m p ~ e d  by the discreteness of 

the problem. It  is not clear what  a "convincing" confidence interval is - 
it seem.s to me that  may confidence interval t ha t  maintains its guaranteed 
confidence level is convincing. It, is al~so unclear to me, and has been for a 
long time, why the fact that  the problem is discrete automatically b r i n ~  
about  criticism. 

The discreteness of the da ta  is a limitation. When we impose a contin- 
uous criterion, satisfying such a criterion will often require more than  the 

data  can provide. This is not a fault of any procedure, simply a limitation 
of the data. The fact tha t  in discrete problems a confidence interval cannot 
at tain ezact level q is not a cause for criticism. 

However. what  is a cause for criticism is the reliance on Bayesian in- 
tervals being approximate frequentist intervals. Although it is true tha t  in 

some cases the frequentist coverage may be of the order q + O(r~-: ), tha t  
O may be so big as to not be useful. 

3 B i n o m i a l  C o n f i d e n c e  I n t e r v a l s  

Now I would like to focus on Example 5. t (aLso note the companion Exam- 

pies t..1, 3.2, and 4..1.). Professor Bernardo is not  happy with the frequentist 
answer here (or anywhere, I dare say!} however, I claim that. in this case the 
be~t frequentist region provides a very acceptable Bayesian region, while 
the objective Bayesian region faik~ as a frequentist region. 
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First  of all, what is the :'best" frequentist  ax]swer? To me, it is the 
procedure of Blyth a~xd Still (1.983) (see also Cgsella., 1.986). This procedure 

works within the limitations of the discrete binomial problem to produce 
intervals tha t  are not only short, bu t  enjoy a number d other desirable 
properties, including equivariance. Figure 1 shows the Btyth-Still intervals 
along with the Bernardo intervals for the case n 10. 
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Figure t: For n - 10, billomJa.] il]tervaI,v of  Berila.rdo (da.shed) alld Blytt l-Sti l] 

(soil@. The  Berr~ardo interv~N are 9 5 ~  B~yesial~ credible ~ntervals, a.r~d the Bly th-  

Still intervals are 95% i'req~zerJtist irita'va.ls. 

It is interesting that  the intervals are so close, bu t  we notice that  the 
Blyth-Still intervals are a bit longer than the Bernardo intervals. Indeed, 
if we compare the procedures using tiie sum of the lengths as a measure 

of size, we find that  the sum of the lengths of the Blyth-Still interval,s 
is 5.20, while tha t  of the  Bernardo intervals is 4.53. However, one of the 
criteria tha t  the Btyth-Still  intervals satisfy is that,  among level q confidence 
intervals, they minimize the sum of the lengths. Therefore, we know that  
the Bernardo intervals cmmot maintain level q and. indeed, from Bernardo's 
Figure 9 we see that  this is indeed the case. Even though the Bernardo 
interva.ls are approximate frequentist intervak~, the approximation is really 



quite poor. The  nominal 95% interval can have coverage probability as low 
as 83% (reading off the graph) which is quite unacceptable. Moreover, the 
fluctuations in the coverage probability are quite large, ranging from a tow 
of 83% to a high of 10()~, 
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F~gm'e 2: For n = 10, coverage proba bilities of the 9 5 %  Bl, ytti-Stili i]~tervals. 

The frequentist intervals, although not convincing to Professor Berna.r- 
do, do a fine job of controlling the coverage probability within the  con- 
straints of a discrete problem. As an illustration, compare Berllardo's Fig- 
ure 9 with Figure 2, showing the coverage probability of the Blyth-Still 
95% interval. Although there is fluctuation in the probabilities, the?, are 
above 95~, making a true confidence intervM, and the range of proba.bil- 
ities ranges only from 95% to 100%, displaying nmch less variability than 
the Bernardo intervals. 

Finally, lets look at  how the  Blyth-Still intervals fare as Bayesian cred- 
ible regions. Usillg the reference prior, we can produce Table 1. There  we 
see tha t  the 5, are, indeed, 95~ credible interval~. Although the credible 
probabilities are not exactly 95% for each value of r. the?; are uniformly 
greater than r, vaD-ing in the range .951 .989. 



Intrinsic C~edible Re]ions 359 

Table 1: Credib~ proba.bflitiesofthe95~ B~th-St~iconfidence mterwa,is 

r 0 1 2 3 4 5 
Prob .989 .979 .971 .959 .964 .951 

r 6 7 8 9 10 
Prob .964 .959 .971 .979 .989 

Wha t  to conclude from all of this? As a long-time ffequentist,  it is 
supremely gratifying to see the wide development of objective Bayesian 
inference, which is defined by Professor Bernardo as a statistical analysis 
that  only depends on the model  and the observed data. Wi th  one: more 
small step, we might include the sample space m~d then objective B~es i ans  
will atta.in the ultima.te objective goal of being frequentists[ 

But,  on a more serious note, we see that  in "'objective'; inference, there 
ix a. desire to have a. procedure perform well on Ba.yesia.n (post-data.) mid fre- 
quentist  (pr~data)  criteria. Wha t  my illustration was supposed to demon- 
strata is that  one can construct  an a~:ceptable obj active BayeMan procedure 
not jus t  by start ing from a. Bayesian derivation and then checking frequen- 
tist properties, but  also by start ing from a frequentist  derivation a~td then 
checking B~,esian properties. 

E d w a r d  1:. G e o r g e  
DeparCment of  Statistics 

University of Pennsylvania, USA 

Let me begin by congratulating Professor Bernardo on a deep method- 
ological contribution that  is based on important  recent foundational con- 
sidera.tioi~s. I nmst adnfit tha t  I was skeptical when I began to read this 
paper, thinking that  this would simply be a new recipe for credible regions 
with little in the  way of compelling j~stification. Much to in?,- surprise, 
the proposed approach has both  a compelling motivation and turIrs out, at  

least in sortie cases, to doveta.il nicely with frequentist  procedures tha.t a.re 
routinely used. Going further, I would recommend the~se intriirsic credible 
regions as the new defa.ult in the absence of reliable prior informa.tion. 

As [ understand it, the general goal of the objective Bayes approach is to 
devise default Bayesian procedures tha t  require minimal, if any, subjective 
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input. Towa,r4s this end, the basic problem in this paper is to come up with 
an objective Bayesian methodolog); %r the construction of credible regions 

for an unknown paraxneter function value O(w). 

At the heart  of the  objective Bayesiml approach is the choice of prior, 
and in this regard, a key development has been the defautt reference prior 
approach put  forward by Professor Bernardo and his collaborators. The~e 
at tract ive reference priors are an essential ingredient for the proposed con- 
struction of intrinsic credible regions in so far as they are used to obtain the 
rderence  posterior. However, the central issue tackled in this paper is how 
to extract from the reference posterior a unique set of values which are in a 
meaningful sense %losest" to O'(w). As Professor Bernardo correctly points 
out, HPD regions are unappea.ling because of a lack of repara.metrization 
invariance, and posterior quantile regions may easily exclude seixs of highest 
posterior concentration. 

Instead. Professor Bernardo proposes using a Lowest Posterior Loss 
(LPL) reg%n, effectively a neighborhood of the mininmm posterior ex- 
pected loss estimate. [ umch prefer such am approach becat~se it treat,s the 
region estimation problem as an extension of the decision theoretic treat- 
ment of the point estimation problem. Although a companion coverage 
report  of (1 - @ %  probabiliV, frequentist or Bayesian, is valuable, [ think 
it has incorrectly been given too much primacy as a construction criterion. 
I believe a practitioner is best served by a region containing point  estimates 
that  are superior to point estimates outside the region, which is precisely 
what  LPL is about .  I don' t  think it is wise to sacrifice this p roperV simply 
to gain a more accurate coverage estimate. 

Having settled on LPL, the  problem becomes one of choosing a loss 
function that  is essentially objective. For this purpose, Professor Bernardo 
argues convincingly that  attention must be restricted to the so-called in- 
trinsic losses, losses tha t  are parametrization invarimlt mid so depend only 
on discrepancies between models. I agree. Further, divergence measures 
are natural  candidates for such losses. Especially at tractive is the KL di- 
vergence which as Professor Bernardo notes is invariant under sample space 
trai~sformation, see also George and McCulloch (1993). However, the lack 
of symmetry  of the KL divergence is problematic for the construction of 
LPL regions. By proposing instead to use the  intrinsic discrepancy toss. 
Professor Bernardo gets to "have his cake and eat it too". Tile intrinsic 
discrepancy essentially symmetrizes the KL divergence without  relinquish- 
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ing many of its wonderflfl fea.tures. And I much prefer this symmetrizat ion 
to the s tandard  alternative approach of a weighted sum of the  two directed 

KL divergences. 

The examples in Section :3 nicely illustrate how intri~Lsic discrepm~cies 
between distributions can depend drama.tically upon different regions in 
the parameter  space. Indeed. Example &t shows how clearly the intrin- 
sic discrepancy reveals regions of asymptotic  equivalence and nonequiva~ 
lence between t, he binonfial and Poisson models. To me, this highlights the 
need to avoid arbi t rary loss functions for the construction of LPL regions. 
Further investigation into other potential  uses of the intrinsic discrepancy 
seems to be a fertile new research direction. 

Thus, Professor Bernardo arrives at  his definition of an intrinsic credi- 
ble region namely an LPL region based on intrinsic discrepancy loss and 
the appropriat.e reference prior very reasonable a~ld well motivas But  
I then was astonished to see what  came next. Applied to several important  
examples, namely the normal mean, the exponential, the uniform, a~ld the 
normal mean and variance, the intrinsic credible regions are all also exact 
frequentist  confidence intervals. These intrinsic credible regions the?, not 
only contain a best  set  of point  estimates, bu t  their coverage can be  con- 
veyed in an objectively meaningful way. I suspect  that, further investigation 
of this agreement may shed valuable new light on the always fascinating 
interface between Bay~ ian  and frequentist methoc~s. I wonder if Professor 
Bernardo can pinpoint  the essential reason behind this matching property 
of intrinsic credible regions in these cases, and if he has any sense of how 
broadly it will it occur? 

The frequentists coverage properties of the  intril~sic credible regions for 
the discrete binomial distribution are not  as nice, bu t  this is fundamental ly 
a general problem of all interval estimation reports for discrete distribu- 
tions, see Brown et al. (2001). My sense is tha t  a different %;pe of report  
is needed in such cases, for example, see Geyer m~d Meeden (2005). In any 
case, the asymptotic  agreement with frequentist coverage is reassuring. 

It is clear tha t  when reliable prior subject ive information is unavail- 
able, a Bayesian allalysis must  turn to non-subjective considerations. For 
this purpose Professor Bernardo has made wonderful use of the invariance 
properties of information theoretic measures. It is interesting that  such 
invariance is typically lac:king in fully subjective Bay~iazi methods.  
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In closing, [ mlLst apologize to Professor Bernardo for being so positive 
abou t  his paper, as it hardly gives him al\vthing to argue about  in his 
rejoinder. But  that  is the price for having such a good idea. 

J a v i e r  G i r d n  
Department of Statistics 

Univer,~ity of ltldlaga, 5~ain 
El ia s  M o r e n o  

Department of Statistics 
Univer'~sity of Granada, 5~ain 

The advm~ta.ge of a. uni(ying a.pproach to the basic inference probtenL% 
as the one carried out  by Professor Bernardo in this and previous papers on 
intrinsic estimation and testing, (see Bernardo, 2001) is Mwavs welcomed 
and. in this respect, we cmmot help bu t  congratulate Professor Bernardo 
for his proposal. 

Highest posterior densib~ regions (HPD's)  are, as Professor Bernardo 
correctly asserts in his paper, a tool we employ to summarize a given p ~ -  
terior densiW 7r(01 x). Sometimes the mode, mem~ and s tandard  deviation 
are also reported. 

A natural  question to be answered before giving credit to the mtr#~s~c 
c.r~dible rwions proposed in the paper is the following: do we need to replace 
HPD's  with another region? Professor Bernardo asserts tha t  HPD's  are 

not coher'cnt in the sense d not  being invariant under reparametrization. 
Therefore, the consequence for him is tha t  a different region is needed. But,  
not so fast! 

Given a one-to-one differentiabte transformation a 9(0) the posterior 
density of c~ is 

~v(c~ I x ) 7c(g-i(c~) I x)IJ], (1) 

where tJl s tands for the  determinant  of the Jacobian of the  inverse map- 
ping. Then, HPD's  for the parameter  ~ are obtained from the posterior 
distribution 7r(o~ Ix ). Wha t  is wrong with this? 

Professor Bernardo claims that  the  HPD's  are not  coherent because the 
q-HPD for a does not  coincide with the g-transformation of the q-HPD 
for 0. This is obviously due to the fact tha t  the Jacobian in Equat ion (1) 
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is not constant  unless g be linear. We do not  think this co her~rt.~ notion 
to be of such a fundmnental natur% and we find such a requirement rather 
artificial. 

In fact, q-HPD re~ons are a good summary  of the posterior density and 
they are defined in the  same spirit as the likelihood sets notion. These sets 
have been proved to enjoy very nice properties (Cano et al.~ 1987; Piccinato, 
1984; \Vassennan, 1989). 

Bu t  intrinsic credible regions rely more on the properties of the intrinsic 
l~ s  discrepancy than on the %rm of the posterior. Thus, the  computat ion 
of intrilL~ic credible regions appears eL~ a somewhat  contrived artifact to 
assure coherence, i.e. invari&nce, rather  than a meaa~s to show off nice 
characteristics of the posterior density %r a given parametrization. Fur- 
ther, the metric or scale of the expected ilgrinsic toss is in units of infornm- 
tion 5' .  while intrinsic credible regions are measured in a probabilistic scale 
~1~ c:olzsequentty, in order to compute  intrii~sic credible regions the expected 
intrinsic loss has to be  calibrated in terms of the probabilistic content q. 

Though for on ,d imens iona l  parameters when the expected intrinsic 
loss is p~seudoconvex and the posterior density is unimodal  HPD's  and in- 
trinsic credible re~ons are intervas contours in more than one dimension, 
obtained from the expected intrinsic: loss may be very different from the 
ones obtained from the posterior density: whatever the parametrization, 
specially in higher dimensions. This might be very disturbing, m~d it is the  

(sometimes very high) price one ha.s to pay to preserve invariance; for this 
reason, we believe tha t  credible regions should capture the properties of the 
posterior densi~, not those of the expected intrinsic loss. \'~.~ note tha t  the 
above comments apply to any other loss function we would consider appro- 
priate for the estimation problem, eL~ the differences between the contours 
of the posterior risk and the posterior density ca.n be  very substantial.  

One point of some concern is the fact that,  as shown in the binomial 
Exmnple 4.t and the uniform example in Section G.I~ the reference pos- 
terior expected intrinsic toss displayed in Figures 7 and 11, respectively, 
though they are convex they are not increasing. This memks that  %r very 
small values of q the intriI~sic credible intervas do not contain values in 
a small neighborhood of O, thus ruling out a. set of' points with highest 
posterior densiW; furthermore, this problem also holds for any monotonic 

trm~sformation of the parameter  0. 
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It might be argued that  intrinsic credible region,s do only make sense for 
the usual large values of q, say 0.95 and 0.99, bu t  from a formal s tandpoint  
the behavior of the intrinsic credible regions should be consistent whatever 
the value of q. 

On the other hand. as the  two statistical problems of testing a sharp 
hypothesis of the form H0 : 0 O0 and computing a credible region in the 
parameter  space f l  bo th  use the reference posterior expected intrinsic loss 
in a similar way, it is apparent  that  there exists a duality between the two 
problems in the  same sei~se as in the classical approach and in the Bayesian 
one advocated by Lindley (1970, pp. 56-69). In fac% to reject the null 
Hu : 0 : 00 is equivalent to see if the reference posterior expected intrinsic 
lc~s d(Oo t x) is greater that  some suitable positive value ~*, where ~* is the 
expected ut i l iV of accepting the null hypothesis when it is true. This is 
obviously equivalent to rejecting the null whenever O0 does not belong to 
the credible region R~ for some q which depencfs on d* defined by 

= {0;d(oI ) < a*}. 

In some sense the computat ion of <~*, which is carried out  conditioning 
on the null hypotheMs, resembles that  of computing a p-value in frequentist 
testing. 

Thus, from Bernardo's approach, intril~sic testing of sharp null hypoth- 
esis and intrinsic credible regions are equivalent procedures as there is a one 
to one mapping between 6* 's and q's. Further. this mapping depends en- 
tirely on the reference posterior expected intrinsic toss, thus differing front 
Lindley's approa.ch to significance testing. 

While this approach has many advantages - - t h e  most important  one 
being that  no new prior bu t  the reference prior is to be used for estimation 
and testing and, in some sense, provides a Bayesian simple mechanism for 
significance testing from a statistical viewpoint , the issue of practical 
significance seeuLs to be  missing in this approach as we believe that  point 
or interval estimation is quite a different statistical problem than that  of 
testing sharp nulls, and this in turn means that  llsing a prior different from 
the rderence  one which may take into account the sharp null to be tested 
make, se~se in this setting. 



Intrinsic C~edible Reqions 365 

D a n i e l  P e f i a  
Departament~o de Estadistica 

Univer'~vidad Ca,rlos III  de Madrid, Spair~ 

This article presents an objective way to obtain confidence intervals %r 
a parameter.  In Bayesian ilderence this problem h~s not received much at- 
tention and the Bayesian li terature usually has stressed that  the posterior 
probabili ty for the parameter  incorporates all the information about  it and 
from this posterior probabitibr it is straightforward to obtain a q-credible 
interval, that  is, a region oil the suppor t  of the  random variable with has 
a probabili~; equat to q. Among all the infinite regions that  can be built  a 
natural  criterion is tha t  values inside the interval must  have higher proba- 
bill V than values outside, but  in order to apply this rule it is well known, see 
for ii~stance Lindley (1.970, p. 35), tha t  we have to decide which parameter  
is to be  used, e~s this rule is not  invm'iant under o n , t o - o n e  trax]sformations 
of the parameter.  

In this article an objective solution is proposed to solve this anfl>igxfit.y. 
The procedure is to use a reference prior and a reference loss flmction and 

one key contribution in this paper  is the use of the intrinsic discrepancy 
toss, introduced by Bernardo and Rueda  (2002) for hypothesis te~sting. The 
author has to be  congratulated for proposing a clear mid objective way to 
solve this ambiguiV in building credible regions. 

The intrinsic discrepancy is defined a~ the minimmn of ~;(p,~ IPl ) and 
Ip ) where 

is the Kullback-Leibler informagion in favor of pl against p2. This measure 
is invariant under reparametrization and aNo with respect to one to one 
trm~sformations of the variable. It is also additive for independent  observa- 
tions. These properties are shared with the divergence ~:.(p~ I P1)+ r,'.(pl ]P2), 
introduced by Kullblack and Leibter. However it has the advantage over 
the later that  it is well defined when one of the two measures of informa- 
tion is infinite. To avoid this problem, Kullback (196g) assumed that  the 
two probabi l iV measures were absolutely continuo~s with respect to each 
other, so that  the  two inte~'als could exist. The  intri~sic discrepancy does 
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not need this constrain and therefore it has a wider applicability. However, 
in the application considered in this paper~ building credible regions, it is 
to be expected tha t  the two probability measures tLsed verit~y Kullback con- 
ditions, that  is they are absolutely continuous with respect to each other, 

and therefore this property m w  not be crucial. Assuming tha t  in most 
cases both discrepancies can be used, which are the advantages for build- 

ing credible regio~ of the intrinsic discrepancy with respect, to the s tandard 
Kullblack Leibler divergence?, how different the results would be of using 
one iI1stea.d of the other? 

The derivation of intrinsic c:redible regions m w  be complicated and niay 
require numerical integration and thus an interesting contribution from the 

point of view of applications is Theorem 4~1, where simple asymptotic ap- 
proximations are obtained. This result will facilitate the use of the p r~  
sented theory in practice. 

My final comments on this interesting mid though-provoking paper are 
on three directions. First, it would be useful to have a better understanding 
of the advantages of the proposed approach over the s tandard  HPD regions. 
Suppose that  I have a HPD region for 0. \'~,%uld it be possible to compute 
a measure of the ma~ximum lc~s tha t  we may have if we trmlsla.te this HPD 
for 0 to build a credible interval for a o n ,  to-one transformation of the 
parameter  ~)? From my point of view in order to convince people to use 
these ideas is important  to provide some bounds of the advantages tha t  we 
may obtain with respect to conventional methods. 

Second. how this ideas can be extended for building prediction credi- 
ble region,s for future values of the observed random variable of int, erest? 
As in the Bayesian approach parameters are random variables, I suppme 
the extension is straightforward but  it would be interesting to have some 
commen% on this topic. 

Third, how these ideas can be extended for dependent observations 
e~s, for instance, time series or spatial data? When the da ta  have some 
dependency structure prediction of the observed random variable is usuMly 
the key problem, and an approach to develop prediction intervals which 
does not depend on the parametriza.tion could be very appealing. For time 
series a popular measure of information is the mutual  information or relative 
entropy (Joe, 1989) given by 

J' j' f(:~'Y) &d> K(z ,  g) = f ( z ,  .g)log f(:c)f(.v) 
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which is nonnegative and it is zero only if the two variables are independent.  
This measure has been used to build a test  of independence (Robinson, 

1991), identifying lags in the relationship in nonlinear time series model- 
ing (Granger and Lin, 1994) or building measures of general dependency 
among vector random variables (Pefia and van der Linde, 2005), among oth- 
ers applicatiol~s. Taking pl(:c) = f(x ,  y) and p,z(x) = f ( x ) f ( y )  the intrinsic 
discrepancy between dependency and independency of the two random vari- 
ables x and y can be defined aald this idea n fight be used for credible re~ons 
and t~ypothesis testing in time series. It  would be interesting to explore this 
possibility. 

Finally I would like to congratulate the author for a very interesting 
piece of research. 

J u d i t h  R o u s s e a u  a n d  C h r i s t i a n  P. R o b e r t  
CEREMADE, Universit~ Paris Dauphine 

and CREST, INSEE, France 

In this paper, Professor Bernardo presents a unified and s t ruc tured  ob- 
jective approach to (decisional) statistical inference, based on information 
theoretic ideas he has lzsed previously to define reference priors. He fo- 
cusses here on the estimation of credible regions, keeping those values of 
the parmlmter that  are the least costly rather than the most  probable, as 
in HPD regions. This is an interesting and novel approa~:h to ml efficient 

construction of credible regions when lacking a decision-theoretic b~sis. As 
noted in Caselia et al. (1993, 1994) (see a.~so Robert ,  2001, Section 5.5.3, 
for a review), the classical decision-theoretic approaches to credible regions 

are quite behind their counterpart  for point estimation and testing and in- 
corporating loss perspectives in credible sets was then suggested in Rober t  
and Casella (1994). 

1 O n  i n v a r i a n c e "  l ink  w i t h  H P D  r e g i o n s  

A possible drawback of HPD regions, in particular in objective contexts, 
is their lack of invariance under reparameterization as was pointed out  1)37 
Professor Bernm'do. Obviously, HPD regions are defined in terms of a 
volum~under-fixed-coverage loss and they do nfinimize the volume among 
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q-credible region,s. The  tack of invariance hence stems from the lack of in- 
variance in the definition of the  volume, which is based on the Lebesgue 
measure for the considered parametrization 0. Therefore, simply consider- 
ing a different ts,~pe of volume based on an invariant measure would result 
in an HPD region tha t  is invarimit under reparameterization. A natural  
invaria.nt measure in this setup is Jeffreys' measure, due to its geometric 
and information interpreta.tions (among others). The resulting HPD region 
is thus constructed as the r e ,  on C that  minimizes 

/ i  ~ ) d O  , u.c. P~[CIX ] >_ q. (1) 

This region also corresponds to the tra.nsform of the  (usual) HPD region 
constructed ~sing the rderence  parametrization as defined by Professor 
Bernardo. 

Note that,  in the above construction, there is absolutely no need in 
having the prior be Jeffreys prior and this construction could be used in 
(partially) informative setups. It is also in ter~t ing  to note that,  in regular 
cases, the  above HPD region is asymptotical ly equivalent to the intrinsic 
credible region of Professor Bernardo. Which of both  approaches is the 
most appealing is probably a question of taste or depends on how they will 
be used. 

Oil a more philosophical basis, we think that  invarimice is less com- 
pelling an argannent for (credible) regions than for point  estimations. In- 
deed, while it is difficult to selt to a customer that  the estimator of h,(O) is 
not necessarily tile transform h(0) of the estimator O of 0, the transform 
of a crebibte region does remain a credible regioI1, even though it is not 
always the optimal region. Moreover, invariance under reparameterization 
should be weighted against shape poor modifications. Indeed. if we inipose 
that  the  credible region Ci, on h(O) is the t ransform by h of the credible 
region C;d on 0, we get exposed to strange shapes for less regular function,s 
h! For instmlce, if the transform h is not monotonic (but stitl on , to -one) ,  
it is possible to obtain the trmisform of a credible interval as a collection of 
several disjoint intervals, always a puzzling feature[ Connexi W (and maybe  
to some extent convexits;) should be part  of the constraints on a credible 
region. 
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2 A s y m p t o t i c  c o v e r a g e  : m a t c h i n g  p r o p e r t i e s  

Under regutariV properties, the HPD region defined by (1) is a second order 
matching region for any smooth prior ~r, in the sense tha t  its frequentist 
coverage is equal to its posterior coverage to the order O(n-1) .  Third order 
coverage does not  necessarily apply for Jeffreys' prior, though (see Dat ta  
and Mukeijee, 2004 or l~ousseau, 1997). As Bernardo's intrinsic credible 
region is asymptotically equivalent to the HPD region defined by (1) there 
is a chance that. second order matching is satisfied, which would explain the 
good small sample properties mentioned in the paper. In particular, the 
per turbat ion due to using the intril~sic toss, compared to using the posterior 
density, is of order O(n-1) ,  so second order asymptotics should be the same 
between (1) and the intrinsic credible region. 

Investing further the  higher order matching properties of this credible 
region would be worthwhile though. Regarding the  discrete cake, how- 
ever, thing~ are more complicated than wimt was mentioned by- Professor 
Bernardo since there is usually no matching to orders higher than O ( n -  ~/2) 
or sometimes o(n 1/2) for higher dimensional cakes. Whether  rderence  
posterior q-credible region,s provide the best available solution for this par- 
ticutar problem, is somehow doubtful as there are many criteria which could 
reasonably be considered for comparing credible regions or their approxi- 
mations in the discrete case, see Brown et al. (2002). 

3 C o m p u t a t i o n s  

Adopting this approach to credible set coxkstruction obviously makes life 
harder than computing HPD regiol~s: while HPD regioi~s do simply re- 
quire the  derivation of a posterior level 2 for the set {0 : 7r(Olx ) > 6} 
to have coverage q, an intrinsic credible set involves the intrinsic loss--  
not easily computed outside exponential families--, the posterior intrinsic 
toss--possibly integrated over a large dintensional spac .~-,  the posterior 
coverage of the corresponding region and a.t last the bound on d(OIz ) t.ha.t 
garantees q coverage. In large dimensional se%in~ or outside exponential 
frameworks, the tasks simply seems too formidable to be contemplated, es- 
pecially given tha t  s tandard numerical features like convexification cannot 
be taken for granted since the credible region is not necessarily convex or 
even connected. 
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R e j o i n d e r  by J. M. B e r n a r d o  

I ant mc~t gratehi1 to the editors for inviting so many fine statisticim~s to 
comment on this paper,  and to the discussants for their kind remarks and 
thought-provoking comments. I will t ry to provide a personalized mLswer 
to each of them. 

1 C a s e l l a  

I am obviously flattered by the opening paragraphs of Professor Casetla's 
comment,  and I am glad to read that  he appreciates the importance of rE 
quiring that  statisticai procedures should be invariant under reparametriza- 

tion. 

Given his mainly frequentist standpoint,  it is not  surprising that  he 
finds convincing a confidence interval even if this cannot, exactly obtain 
a required level. He claims that  this is a consequence of the limitation 
imposed by the discreteness of the da ta  m~d, mathematically, this is cer- 
tainty true. My point, however, is that,  since the parameter  is continuous, 
one should expect  to be  able to provide region estimates for the parameter  
in a continuo~.~s manner, and this obviously requires a Bayesian approach. 
It may be arNled tha t  what  scientists need is a set  of parameter  values 
which, given the available data, ma~- be expected to be close to the true 

value; the  average properties under sampling of the procedure are certainly 
worth investigating but,  I believe, they should not be the overwhelming 
consideration. 

We should all be grateful to Professor Casella for the detailed com- 
parison between the solution to interval estimation of a binomial param- 

eter proposed in the paper  and that  of Blyth-Stitl ( that  Professor Casella. 
considers the best  frequentist, m~swer), for this provides a nice exmnpte 
where the practical implications of foundational  i s su~  may usefully be dis- 
cussed. I should first mention an important  foundational  dilference: while 
the Bayesian approach provides general procedures, which may be applied 
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without inodification to any particular example, good frequentist proce- 
dures often require a great deal of ingenuity to taylor the procedure to 
the specific nee& of the  example ("adhockeries" in de Finetti, 1970, ter- 
minology); this is clearly demonstra ted by the long histo W of frequentist 
confidence intervals ill the binonfiat case. 

The practical differences between the two solutiol~s compared mirror 
their very different foundational basis. Indeed, if one takes the frequentist 
view tha t  the criterion is to have at fe~.st 95 ~ coverage with a minimunl 
leng• then Blyth-Stitl solution does a very good job and, as one could 
expect, this produces longer intervals than the  Bwesian solution, with pos- 
terior probabiliW larger than 0.95. If, on the  other hand, one takes the 
Bwesian view that  the  criterion is to have precisely 0.95 posterior proba- 
biliW, one has shorter int.ervas with an averz~ge 95~ coverage. Professor 
Casella finds a particular 83~ coverage unacceptable from a. frequentist 
viewpoint if 95% was the desired level; I similarly find unacceptable from 
a Bayesian viewpoint a posterior probabilib: 0.989 if 0.95 wa~ required. 
I m.tspect that  the two m e t h o &  would give very close ~ , m e ~ e a l  answers 
if either the Bayesian procedure were set to a credible level equal to the 
ave'r'~ie confidence level reached by the  frequentist procedure or, alterna- 
tively, if the frequentist procedure were set t,o a confidence level equal to 
the mir~,irr, wm~ coverage at tained by the Bayesian procedure. 

The main difference however, is not  numerical but  foundational; it does 
not~ tie with t.he numerical differences (in many other examples, as ilh~s- 
t rated in the paper, the numbers are precisely equal) but with their inter- 
pretation. The  main point, I believe, is whether  a scientist is best served t)y 
a given interval est imate and the  knowledge, 1,hat had he obtained the data  
he had no~, the resulting intervals would have contained the t rue  value 
95% of the time, or by a (possibly different) interval and the knowledge 
the he is entitled to a 0.95 measure of uncertaints.% in a (0, 1) scale, that  
this p~zrtie'~tlav interval contains the t rue value. I firmly believe tha t  most 
scientists, if given the choice, would prefer the second scenario. 

Tha t  said, I must  applaud Professor Casella's suggestion tha t  frequen- 
tist statisticians should check the Bayesian properties of their proposals. 
As this paper illustrates, good Bayesian and frequentist solutions are of- 
ten mmiericalty very close, and both paradigms (and their fertile interfa~:e) 
should make part  of" any decent, education in mathematical  statistics. 
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2 George 

I must warmly thank Professor George for his excellent review of the  moti- 
vation and contents of the paper.  As he states in tile last paragraph of iris 
comment~ it hardly leaves me anything to argue about! 

Professor George wonders abou t  the  essent, ial reasons behind the match- 
ing properties of intrinsic credible regions. The  set of examples I have cho- 
sen to include possibly has an over-representation of exact matching cases. 
Indeed, except for the binomial case (where, as in any problem with dis- 
crete data, exact matching is impossible)~ all the other examples show exact 

matching in the sense that  the  frequentist coverage of q-credible regions is 
exactly q for any smn.ple size. In all these exmnples, this is due to tile 
existence of a pivotal quant i ty  whc~e sampling distribution as a function 
of the da ta  is precisely the same as its rderence  posterior distr ibution as a 
function of the parameters. I suspect  the existence of such a pivotal qum~- 
tity is t,he basic condition for exact matching to exist; related pioneering 
papers are Lindley (1958) and Barnard (1980). Whether  or not the refer- 
ence posterior of the pivotal qumtti ty (whenever this exists) is ahvays the 
same as its sa.mptillg distr ibution is an interesting open problem. I would 
think that  this is probably true (under appropriate regularity conditions) in 
one-dimensional problel~s, bu t  I doub t  that  such a result would generalize 
to multivariate settings. More work is certainly needed in tha t  direction. 

A superficial reading of the exact matching properties may however lead 
to think that, when pivotal quantities do exist, intrinsic credible regions give 
the same numerical result than conventional frequentist confidence sets, 
bu t  this is certainly not the case. Indeed, q-credible regions may well have 
exact q-coverage and yet  be numerically very different from the common 
frequentist  (/-confidence sets. For instance, the conventional q-confidence 
interval for the normal variance when the mean is unknown, based on a 
probabitib7 centred interval on the X,~2-1 distribution of the pivotal quanti ty 
7t,S2/O "2 , is 

q' LQ ,. (1) 

where Q,,{p} is the p-quantile of a X~2 1 distribution. Oil the other hand, ex- 
tending the results in (Bernardo, 2005@ to region estimation, the q-intril~sic 
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credible region is the set R~ of the u~y values such tha t  

,s 2 ) d o  -2 Vu~ d(cr~ t n, < 

where ~r(a 2 In, .~2), the  reference posterior of u 2, is an inverted gamma  
Ig(~r~ I (n 1)/2, as2/2) ,  

1./(~ (~r~r~ ~2(~_ir1_ 1)dr, (2) 

and 6(0) = 9(0 ) i f  0 < 1, 6(0) = 9(0 -1) if0 > 1, withgCx) = (m 1) togx. 
Using the results in Theorem 4.1., this may approxim.ated by 

I{( R 7 e x p  tog{--7- I =,, 

where 4o (') is the digarn.ma function, and  : q  is the s t andard  normal  quanti le 
of order (1 + q)/2.  Using Stirling to approximate  the po lygamma fimctions 
this further reduces to 

�9 I { ( '  R<s ~ exp ~ + tog �9 - . (4) 

With  a s imulated sample of size n : 20 f rom a N(ccl0 , 1) distribution, 
which yielded N 0.069 and .~'~ 0.889, the  conventional 0.95-confidence 
set for ~r ~ is C0.95 = (0.5376, 1.9828), while the exact, intrinsic interval 
is /~..~5 (0.5109, 1.8739), the  approximat ion (3) yields (0.5104, 1.8840), 
and (4) gives (0.5102, 1.8812). Ks one would expect, the  differences between 
confidence sets and credible regions increase as the saxnple size decreases. 
To show an extreme case, with only two observations, x i  - 1  and :c2 1, 
the  0.95-confidence set is C0.95 = (0.398, 2037), while the intrinsic iliterval is 
the  far bet ter  centred R~.95 = (0.004, 509); even in this extreme case the ap- 
proximation (3) is  useful, yielding (0.092,554), while ( 4 ) g i v ~  (0.108,274). 
Again, the dual  behaviour of the  pivotal q u a n t i ~  n.s 2,/u 2 gl~a.rantees in this 
example tha t  the coverage probabili ty of a Bayesian credible intervai/~q,  
and reference p ~ t e r i o r  probabili  V of a frequentist  confidence interval Cq 
are bo th  exac@ q, whatever the  sample size. 

3 Girdn and Moreno 

Professors Girdn aad Moreno question the  use of the  emotionally charged 
adjective "incoherent" to refer to the  tack of invariance under  one-.to-one 
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reparmnetrization shown 1)3; HPD intervaLs~ which was the terminology I 
used in the first draft of this paper. They are probably right, and I have 
replaced this by simply "non-invariantY is tile final version. Tha t  sa.id~ 
I still believe invariance under (irrelevant) one-to-one reparametrization 
should be a requirement for <~ny statistical procedure, an in particular, this 
should be a property of appropriate region estimators. 

Professors Gir6n and Moreno suggest tha t  the use of an invariant loss 
function n my be  a contrived artifact to acltieve invariance rather than a 
means to show the properties of the posterior. I d isa~ee.  They seem to 
miss the  point tha t  any feature of the posterior which is not inveaiant under 
reparmnetrization is cornpletely illusory, since the parmnetrization is arbi- 
i ra  W. Points with relatively large posterior densi%, in one parametriza.tion 
may welt correspond to points with relatively low posterior dmLsity in mi- 
ottmr. The  need for invariant interval regioi~s steins from the fact tha t  the 
main objective of a region estimate, which is to give tile scientist a set of 
values of the parameter  of interest which (given the available data) could 
reasonably be expected to be close to the true value, 'rWa#e.s invarimme. 
Would muone  be happy to repor t  a set of, say, credible speed va lu~  for a 
remote galaxy given available measurements to a group of scientists work- 
ing in speed units, and a differen~ set. to another group working in a log 
scale? 

I have chosen to define the low posterior toss regions in terms of cred- 
ible regions to facilitate comparison with conventional interval estimates. 
However, there is no need to specify the threshold level 6* indirectly, in 
probabilit3; terms, as implied 173, a posterior probabil i ty content. Indeed. 5'  
nmy directly be specified in terms of the maximum expected toss one is 
prepared to suffer. If the intri~>ic discrepancy loss is used, this simply 
means to exclude from the region est imate those parameter  values which 

label models leading to expected tog-likelihood ratios against them larger 
than 5 ' .  As Professors Gir6n and Moreno correctly point  out  this is closely 
related to precise hypothesis testing and, in hypothesis t~ t ing ,  it leads to 
a different (and I would claim better} solution than the conventional Ba~,es 
factor approach. There is no space here however to disctLss this important  
issue, and the interested reader is referred to Bernardo and lqateda (2002) 
and Bernardo (2005b). 

Professors Gir6n and Moreno find disturbing the fact tha t  the contours 
obtained from LDL reg%ns m W be very different, specially in higher di- 
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mel~sions, from those of HPD regioi~s. It is difficult to argue without  any 
specific exa.mple in mind, but  what  I would definitely find disturbing is to 
include in a region est imate parameter  va lu~  with large expected losses. 
The crucial difference between focusing attention on probabili ty densib, 
rather than expected toss is well illustrated by one of their final comments. 
The show concern on the fact, illustrated by Example .i.]., tha t  high density 
parameter  values, such as zero in a binomial situation when no successes 
have been observed, ina:v be excluded from an intrinsic credible interval 
with an small credible level. Thus, in the rl. 10, v 0 cruse discussed 
in the paper, the 0.50-intrinsic credible interva.1 is (0.006, 0.070), and this 
excludes the parameter  values close to 0, although the posterior density 
of 0 is monotonically decreasing from. 0. Notice, however, that  very few 
statisticians would consider the point  e~timator 0 = 0, which is bo th  the 
maximum likelihood est imate and the posterior mode in this case, any- 
thing bu t  useless: thus, most would use some sort of correction to obtain 
an strictly positive point  est imate of 0 and, indeed, the intrinsic point  es- 
t imate in this case (see Example %]) is 0* = 0.031. It is then natural  to 
expect that  if an small set of 9ood estimates of 0 is desired, these should 

concentrate in a small neighbourhood of the optimal choice, which is 0 ' .  
The importa~lt point to notice is tha t  values around 0* have a lower ez- 
pected toss than the more likely values around zero. In practice, this meeals 
that,  after observing r 0 successes in n trials, if one were to act as if the 
true model  were Bi(r I 0, n) it. would be safer to act as if g were close to 
0 ' ,  the intrinsic estimate, than to aet as if 0 were close to 0, the posterior 
mode. This is, I believe, an eminently sensible conclusion. 

4 P e f i a  

Professor Pefia wonders whether  the results would be  very difl'erent if, in 
those cruses where both  directed divergences are finite, the  conventional 
symmetric  logarithmic divergence (already suggested by Jeffreys) 

were ~sed instead of the intrinsic loss in Definition &l; I would expect the 

two solutions in that case to be pret ty  similar. However, as illustrated 
by the mJform, data  exmnple d Section s  there are many interesting 
problems where one d the directed divergences is infinite, and I believe one 
should strive for theories which are as generally applicable as possible. As 
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illustrated [kS; the Poisson approximation to the Binomial (see Example 3.1.), 
the intrinsic discrepancy may be applied to important statistical problems 

where Jeffreys divergence cannot. 

As stated, Definition &2 may be applied to any %;pe of data, includ- 
ing those with depende~t~ obsel~'ations. Indeed, p(~ I 0, A) stands for the 
joint distribution of the observed data x (although in all the examples con- 
sidered x has been assumed to be a random sample from some underlying 
distribution). If Professor Pefia~ a. known expert in dependent data, decided 
to try out a particular example with dependent observatio~s, we would all 
be grateful. 

Professor Pe/ia makes the interesting suggestion of providing a measure 
of the expected loss from using a HPD region instead of the optimal LDL 
region. The posterior expected loss from using any particular value 0~ as 
a p r o ~  for the unknown value of the parameter is given by d(O~ Ix), in 
Equation (4. t). Thus, an upper bound of the expected loss increase from 
using a region estimate R~(x, O) rather thin1 the optimal region R* (x, O) 
would be the (necessarily positive) quantity 

zx(R,,)= sup a(0 l ) sup 
O~CHq OiC.H ~ 

Simple approximations to A(Rq) should be available from the results of 
Theorem 4_A. A possible use of A(Rq) would be to check the passible losses 
associated to the use of HPD regions in alternative parametrizations. It 
follows from Theorem &;* that under regularity conditions, the best choice 
would be the reference pm'ametrization since, in that case, intrinsic credible 
regions are approximate (and often exact) HPD regions. 

Derivation of credible sets for prediction is certainly a natural extension 
of the proposed theory. This is not directly contemplated in Definition 4.2 
but, as Professor Pefia suggest,s, the main ideas may be indeed applied. In 
a prediction situation, the toss from using a predict, ire densi V i%.(') as a 
function of the value x eventually observed may be argued to be of the form 

v c R ,  

for, under regularity conditions, the logarithmic scoring rule is the only 
proper local scoring rule (Bernardo, 1979a). The best possible predictive 
density is obviously the actual model p(x I0). Hence, as a function of 0, 
the loss suffered from predicting a particular value x0 would be of the form 

e{z0,0}--: alogp(x010')+b,  a > 0 .  bclR.  



Intrin,~ic G%dible Re;(]ion.~ 377 

To set an origin for the loss scale, let Xo be some good estimate of x given 0, 
say the mean, the  mode or the median of p(z I0), which is arbitrarily given 

zero loss. In this case, e{Xo, 0} = a logp(xo I 0) + b = 0. and solving for b 
yields b a l o g p ( x o t O ) .  Hence, as a function of 0, the  loss suffered from 
predicting a Iv  other value x0 would be  

e(~0, 0} = ~log p(~o I 0) 

The corresponding reference posterior expected loss. 

t(x0 I~) = ./; e(:ro, o}  ~ ( o t ~ ) d O ,  (~) 

is invariant under both  one-to-one reparametrization and one-to-one traals- 
forma.tion of the observable x. I would suggest tha t  a function of the 
form (5) is mi appropriate  loss function for prediction. Using the expected 
t~ s  (6) in Definition 2.1, the corresponding lower posterior toss (LPL) q- 
credible predictive region would be a subset  R,t(x , X)  of X such that  

Flq 

For example, in the exponential example of Section 6.1, with the conditional 
mea~l xo E[z 10] 0 1 used to set tile origin of the loss scale, the rderence 
posterior expected toss (6) is easily found to be d(zo It, n) :co rt/ t  - 1, 
where t is the sum of the observations. Since this is an increasing function of 
x0, the LPL q-credible predictive interval would be of the form Rq (0, a), 

where a =  a(q , t , n )  is such that  ]ii~p(xIt, n) dx = q, and p(:clt ,  n ) is the 
reference posterior predictive density, 

p(:,: I t,, ~,,) r(~, + 1) t, ''~ 
r(~,) ( t+x) , , '  ~ > 0 .  

Analytical integration and some algebra yields the q-predictive interval 

R,, = (o, I(1 q)-l / , ,  llt). 

For the  numerical illustration coi~sidered in Section (%;1. where n = 12 and 
t - 4.88, the L P L  0.95-credible predictive interval (which in this cruse is 
also H P D ) i s  R 0 . 9 5 ( x , X ) =  (0, 1.384). 
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In his final comment,  Professor Pefia. refers the the relative entropy, 
that  is the directed logarithmic divergence of the product  d the marginals 

from the joint distribution, as a sensible measure of dependence. This is a 
particular case (Bernardo, 2005b) of the  intrinsic dependency, 

rain [~ ~p(cc, y)log p(x)p(y)P(x'Y) dydx, ~ ./~.p(x)p(y)log p(x)p(y)p(x,y) d y d x  1 

which reduces to the relative entropy (the first integral above) under reg- 
ularity conditions, bu t  may be seen to behave bet ter  in non-reNlla.r cases. 
Professor Pefia suggests the use of a dependency measure as the basis for a 
prediction loss function. This is an interesting idea, well worth exploring. 

5 R o u s s e a u  a n d  Robert ,  

Professors Rousseau and Rober t  describe a solution to illvariant region es- 
t imation that,  when applicable, is simple and elegant. As they point  out, 
this is the  usual HPD region obtained using the reference parametrization 
and thus, their p r o p ~ a l  is asymptotical ly equivalent to ours. Notice, how- 
ever, tha t  there are mm~y important  non-regulaa" problems where Jefl'reys 
prior does not exist and hence, their method could not be llsed. 

They correctly point  out  tha t  there is no need in their coi~struction to 
use Jeffreys' as a formal prior and that  their construction could be used in 
(pax'tially) informative setups. " ~  note in passing that  this is also the case 
with intrinsic credible regioas: as s ta ted in Definition 2.1, q-credible lowest 
posterior toss regions may be found conditional to a posterior probabil iV q 
obtained from any desired prior. Indeed. their construction may be t'ormaily 
seen a particular case or lowest posterior loss regions where the  (invarimxt) 
l~ s  function is taken to be the volume based on JeflYeys' measure. 

Professors Rousseau and 1Robert argue that  in region estimation invari- 
ance should be weighted agaizxst shape poor  modifications, and suggest 
that  connexity should be par t  of the cox~straints on a credible region. I 
disagree. For ii~stance, a non-connected region might be the only sensible 
option if, say, the posterior distr ibution is strongly bimodal. The  pm'ficula.r 
parametrization of the  problem is irrelevant and thus, as a basic founda- 
tiona.1 point, the procedure should be independent  of the parametrization. 
It is certainly true that  connected, convex regions may be easier to under- 
s tand but,  precisely because the procedure is invariant under reparametriza- 
tion, one is free to choose that  parm~letrization where the required regions 
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took better. This will often be the reference parametrization where, as 
mentioned above, intrinsic regions wilt be nearly HPD. 

Professors Rousseau and Robert re%r to the matching properties of 
both their suggestion and the (asymptotically equivalent) intrinsic regiol~s. 
While it is certainly nice to know that, asymptotically, the expected pro- 
portion of q-credible regions containing the true value is q, I believe that 
too much emphasis on numerical coincidence with confidence regions is 
misplaced. Indeed, there is a large class of problems (Gleser a id  Hwang, 
1987), which includes for instance the region estimation of the ratio of nor- 
mat means, where frequentist confidence regions may be both useless and 
misleading, and therefore, one: does not want to approximate these. 

I certainly share Professom Rousseau and Robert concern with compu- 
tational issues: this is why I invested some effort in deriving approximate 
solutions. However, I believe that one should derive what the optimal 
procedure should be, and then try,- to find clever ways to obtain either nu- 
merical solutions or analytical approximations to the optima.t procedure, 
rather than using a simple alternative (say a quadratic loss) just because 
it it easier to compute, even if it may be shown to be less than appropriate 
for the problem considered. 
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