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Since the seminal article by Cook, the usual way to measure the influence of an observation in a statistical
model is to delete the observation from the sample and compute a convenient norm of the change in the
parameters or in the vector of forecasts. In this article we define a new way to measure the influence of
an observation based on how this observation is being influenced by the rest of the data. More precisely,
the new statistic we propose is defined as the squared norm of the vector of changes of the forecast of
one observation when each of the sample points are deleted one by one. We prove that this new statistic
has asymptotically a normal distribution and is able to detect a group of high leverage similar outliers that
will be undetected by Cook’s statistic. We show in several examples that the proposed statistic is useful
for detecting heterogeneity in regression models in large high-dimensional datasets.
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1. INTRODUCTION

The seminal article by Cook (1977) had a strong influence
on the study of outliers and model diagnostics. The books of
Belsley, Kuh, and Welsch (1980), Cook and Weisberg (1982),
Atkinson (1985), and Chatterjee and Hadi (1988) surveyed the
field with applications to linear regression and other models.
The study of influential observations has been extended to other
statistical models using similar ideas to the ones developed in
linear regression. (See Pregibon 1981 for logistic regression
models, Williams 1987 for generalized linear models, and Peña
1990 for time series models.)

Influence is usually defined by modifying the weights at-
tached to a point or group of points in the sample and look-
ing at the standardized change of the parameter vector or the
vector of forecasts. The point can be deleted, as proposed by
Cook (1977) and Belsley at al. (1980), or its weight can be de-
creased, as in the local influence analysis introduced by Cook
(1986). The local influence approach can also be used to intro-
duce perturbations in specific directions of interest in a sam-
ple. (See Brown and Lawrence 2000 and Suárez Rancel and
González Sierra 2001 for reviews of local influence in regres-
sion and many references, and Hartless, Booth, and Littell 2003
for recent results on this approach.) A related way to analyze in-
fluence by an extension of the influence curve methodology has
been proposed by Critchley, Atkinson, Lu, and Biazi (2001).

In this article we introduce a new way to analyze influence.
Instead of looking at how the deletion of a point or the introduc-
tion of same perturbation affects the parameters, the forecasts,
or the likelihood function, we look at how each point is influ-
enced by the others in the sample. That is, for each sample point
we measure the forecasted change when each other point in the
sample is deleted. In this way we measure the sensitivity of each
case to changes in the entire sample. We show that this type
of influence analysis complements the usual one and is able to
indicate features in the data, such as clusters of high-leverage
outliers, that are very difficult to detect by the usual influence
statistics. For instance, it is well known that univariate influen-
tial statistics fail when we have a group of high-leverage outliers

(see, e.g., Lawrance 1995 for a detailed analysis and Rousseeuw
and Leroy 1987 for several examples). We show that the pro-
posed statistic will indicate this type of situation. This statis-
tic complements the usual influence analysis, and, in particular,
a plot of a standard influence statistic, such as Cook’s distance,
and the proposed sensitivity statistic can be a useful diagnos-
tic tool in linear regression. The proposed statistic can also be
used together with any modification of Cook’s distance, such as
those proposed by Belsley et al. (1980), Atkinson (1981), and
Welsch (1982), among others. (See Cook, Peña, and Weisberg
1988 for a comparison of some of these modifications.)

The objective of this article is not to propose a procedure for
unmasking outliers or robust regression. Many procedures have
been developed to solve these problems. (See, e.g., Rousseeuw
1984, Atkinson 1994, and Peña and Yohai 1999 and the refer-
ences therein for outlier detection based on robust estimation,
and Justel and Peña 2001 for a Bayesian approach to these prob-
lems.) We do not claim that the simple statistic that we propose
will always be able to avoid masking; we do not suggest that
this statistic can provide the same information as some of the
computationally intensive methods. Our objective here is rather
to propose a new statistic, very simple to compute and with an
intuitive interpretation, that can be a useful tool in applied re-
gression analysis. In particular, it can be very effective in large
datasets in high dimension, where more sophisticated proce-
dures are difficult to apply because of their high computational
requirements.

The article is organized as follows. In the next section we
present the notation and define our proposed statistic. In Sec-
tion 3 we analyze some of its properties. In Section 4 we il-
lustrate the application of this statistic in four examples, and
in Section 5 we discuss the relationship between the proposed
statistic and other procedures. Finally, in Section 6 we comment
on the generalization of the proposed statistic to other statistical
models.
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2. A NEW STATISTIC FOR DIAGNOSTIC
ANALYSIS IN REGRESSION

Consider the regression model with intercept

yi = x′
iβ + ui,

where the ui are independent random variables that follow
a normal distribution with mean 0 and variance σ 2 and the
xi = (1, x2i, . . . , xpi)’s are numerical vectors in R

p. We denote
by X the n × p matrix of rank p whose ith row is x′

i; by β̂

the least squares estimate (LSE), given by β̂ = (X′X)−1X′y;
by ŷ = ( ŷ1, . . . , ŷn)

′ the vector of fitted values given by
ŷ = Xβ̂ = Hy, where H = X(X′X)−1X′ is the hat matrix; and
by e = (e1, . . . , en)

′ the vector of least squares residuals given
by

e = y − Xβ̂ = (I − H)y. (1)

The study of influential observations is standard practice in sta-
tistical models. The general idea of influence analysis is to in-
troduce small perturbations in the sample and see how these
perturbations affect the fitted model. The most common ap-
proach is to delete one data point and see how this deletion
affects the vector of parameters or the vector of forecasts.
Of course, other types of perturbations are possible (see, e.g.,
Cook 1986). Let us call β̂(i) the LSE when the ith data point

is deleted, and let ŷ(i) = Xβ̂(i) be the corresponding vector of
forecasts. Cook (1977) proposed measuring the influence of a
point by the squared norm of the vector of forecast changes
given by

Di = 1

ps2

∥
∥ŷ − ŷ(i)

∥
∥2

,

where s2 = e′e/(n − p). This statistic can also be written as

Di = r2
i hii

p(1 − hii)
, (2)

where hij is the ijth element of H and

r2
i = e2

i

s2(1 − hii)

is the internally Studentized residual. The expected value of Di

can be approximated for large n by

E(Di) � hii

p(1 − hii)
, (3)

and it will be very different for observations with different
leverages.

Instead of looking at the global effect on the vector of fore-
casts from the deletion of one observation, an alternative ap-
proach is to measure how the deletion of each sample point
affects the forecast of a specific observation. In this way we
measure how each sample point is being influenced by the rest
of the data. In the regression model, this can be done by consid-
ering the vectors

si = (

ŷi − ŷi(1), . . . , ŷi − ŷi(n)

)′; (4)

that is, we look at how sensitive the forecast of the ith obser-
vation is to the deletion of each observation in the sample. We

define the new statistic at the ith observation, Si, as the squared
norm of the standardized vector si, that is,

Si = s′
isi

pv̂ar( ŷi)
, (5)

and using the fact that

ŷi − ŷi( j) = hjiej

1 − hjj

and v̂ar( ŷi) = s2hii, this statistic can be written as

Si = 1

ps2hii

n
∑

j=1

h2
jie

2
j

(1 − hjj)2 . (6)

An alternative way to write Si, is as a linear combination of
the sample Cook’s distances. From (2) and (6), we have

Si =
n∑

j=1

ρ2
jiDj, (7)

where ρij = (h2
ij/hiihjj)

1/2 ≤ 1 is the correlation between fore-
casts ŷi and ŷj. Also, using the predictive residuals, ej( j) =
yj − β̂( j)xj = ej/(1 − hjj), we have that

Si = 1

ps2

n∑

j=1

wjie
2
j( j); (8)

that is, Si is a weighted combination of the predictive residuals.

3. PROPERTIES OF THE NEW STATISTIC

In this section we present three properties of the statistic Si.

The first property is that under the hypothesis of no outliers and
when all of the hii’s are small, the expected value of the statistic
is approximately equal to 1/p. In other words, in a sample with-
out outliers or high-leverage observations, all of the cases have
the same expected sensitivity with respect to the entire sample.
This is an important advantage over Cook’s statistic, which has
an expected value that depends heavily on the leverage of the
case. The second property is that for large sample sizes with
many predictors, the distribution of the Si statistic will be ap-
proximately normal. This again is an important difference from
Cook’s distance, which has a complicated asymptotical distri-
bution (see Muller and Mock 1997). This normal distribution
allows one to compute cutoff values for finding outliers. Third,
we prove that when the sample is contaminated by a group of
similar outliers with high leverage, the sensitivity statistic will
discriminate between the outliers and the good points.

Let us derive the first property. From (6),

E(Si) = 1

phii

n
∑

j=1

h2
ji

(1 − hjj)
E(r2

i ), (9)

and because r2
j /(n − p) is a beta variable with parameters 1/2

and (n − p − 1)/2 (see, e.g., Cook and Weisberg 1982, p. 19),
E(r2

j ) = 1, and calling h∗ = max1≤i≤n hii, we have that

E(Si) = 1

phii

n
∑

j=1

h2
ji

(1 − hjj)
≤ 1

p(1 − h∗)
= 1

p
+ h∗

p(1 − h∗)
.
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In contrast, as hjj ≥ n−1, we have

E(Si) = 1

phii

n
∑

j=1

h2
ji

(1 − hjj)
≥ 1

p(1 − n−1)
.

These results indicate that if h∗ is small, then the expected influ-
ence of all of the sample points is approximately 1/p. Thus we
can look for discordant observations by analyzing those points
that have values of the new statistic far from this value. It may
seem that the hypothesis that all of the hii’s are small is very
restrictive. However, when the sample contains a set of k simi-
lar high-leverage outliers, it can be proved (see Peña and Yohai
1995) that the maximum leverage of the outliers is 1/k.

For the second property, we assume no outliers and that
h∗ = max1≤i≤n hii < ch, for some c > 0, where h = ∑n

i=1 hii/n.

Then, letting n → ∞ and p → ∞ but p/n → 0, we show that
the asymptotic distribution of Si will be normal. This result
comes from (6), writing

Si =
n

∑

j=1

wij

(e2
j

s2

)

,

where

wij = h2
ji

phii(1 − hjj)2

and, from (1), the residuals ej are normal variables with covari-
ance matrix σ 2(I − H). Thus when n → ∞, hij → 0, and the
statistic Si is a weighted combination of chi-squared indepen-
dent variables with 1 degree of freedom. The coefficients wij
are positive, and we now show that wij/

∑
wij → 0. Because

wij ≤ hjj

p(1 − hjj)2
� 1

p
hjj(1 + 2hjj),

we have
wij

∑
wij

≤ hjj(1 + 2hjj)

p + 2
∑

h2
jj

≤ hjj(1 + 2hjj)

p
,

and as p → ∞, the relative weight of each chi-squared variable
will go to 0. Thus the distribution of the statistic under these
hypotheses will be asymptotically normal.

An implication of this property is that we can search for out-
liers by finding observations with values of the Si statistic larger
than (Si − E(Si))/std(Si). Because the possible presence of out-
liers and high leverage points will affect the distribution of Si,

we propose using high-breakdown estimates for the parameters
of the distribution. Using the median and MAD (median of the
absolute deviations from the sample median), we propose con-
sidering as heterogeneous observations those that satisfy

|Si − med(S)| ≥ 4.5MAD(Si), (10)

where med(S) is the median of the Si values and MAD(Si) =
median |Si − med(S)|. For normal data, MAD(Si)/.645 is a ro-
bust estimate for the standard deviation, and the previous rule
is roughly equivalent to taking three standard deviations in the
normal case.

As an example, Figures 1(a) and 1(b) show the histograms
of Cook’s distance and Si for a sample of 1,000 observations
generated under the normal model with 20 predictors. It can
be seen that whereas the distribution of Cook’s distance is

very skewed, the distribution of Si is approximately normal.
Figure 1(c) shows a plot of both statistics, which we call the
C/S plot, and Figure 1(d) shows the individual Si values and
the cutoff limits defined in (10). It can be seen that these limits
seem appropriate for noncontaminated data.

The third property that we prove is that when the data con-
tain a group of high-leverage identical outliers, the sensitivity
statistics will identify them. We show that the new statistic Si

is expected to be smaller for the outliers than for the good
data points. We also show that Cook’s statistic is unable to
discriminate in this case. Suppose that we have a sample of
n points ( y1,x′

1), . . . , ( yn,x′
n) and let X′

0 = [x1, . . . ,xn], y′
0 =

[ y1, . . . , yn], β̂0 = (X′
0X0)

−1X′
0y0, and ui = yi −x′

iβ̂0. Suppose
now that this sample is contaminated by a group of k identical
high-leverage outliers ( ya,x′

a), and let ua = ya − x′
aβ̂0 be the

residual with respect to the true LSE and let ei = yi − x′
iβ̂T

be the residual in the total regression with n + k observations,
where β̂T = (X′

TXT)−1X′
TyT and X′

T = [X′
0xa1′

k], where 1k is
a vector of 1’s of dimension k ×1 and y′

T = [ y0, ya1′
k]. Let H =

XT (X′
TXT)−1X′

T be the projection matrix with elements hij for
the sample of n + k data, and let H0 = X0(X′

0X0)
−1X′

0 be the
projection matrix for the good data with elements h0

ij. We parti-
tion the matrix H as

H =
[

H11 H12
H21 H22

]

,

where H11 has dimension n × n and H22 has dimension k × k.
We show in the Appendix that

H11 = H0 − k

kh0
a + 1

h0
1a(h

0
1a)

′, (11)

where h0
a = x′

a(X
′
0X0)

−1xa and h0
1a = X0(X′

0X0)
−1xa. Also,

H12 = 1

kh0
a + 1

h0
1a1k

′ (12)

and

H22 = h0
a

kh0
a + 1

1k1k
′. (13)

The observed residuals, ei = yi − x′
iβ̂T , are related to the true

residuals, ui = yi − x′
iβ̂0, by

ei = ui − khiaua, i = 1, . . . ,n, (14)

and to the outlier points by

ea = ua

1 + kha
. (15)

Using (14), Cook’s statistic for the good points is given by

Di = (ui − khiaua)
2hii

ps2(1 − hii)2 ,

where s2 = ∑
e2

i /(n + k − p). For the outlier points using (13),
this statistic can be written as

Da = ua
2ha

ps2(1 + (k − 1)ha)2(1 + kha)
. (16)

Suppose now that we have high-leverage outliers, and let
h0

a → ∞. Then H12 → 0, which implies that hja → 0 for
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(a) (b)

(c) (d)

Figure 1. Influence Analysis of a Sample of 1,000 Observations With 20 Regressors and Linear Regression. (a) Histogram of Cook’s distances.
(b) Histogram of Si . (c) C/S plot. (d) Plot of Si versus case number.

j = 1, . . . ,n, and H22 → 1
k 1k1k

′, which implies that ha → k−1,

and

ρ2
ja = h2

ja

hjjha

will go to 0 for j = 1, . . . ,n, and to 1 for j = n + 1, . . . ,n + k.
Thus for the good observations, we have, from (7),

Si =
n

∑

j=1

ρ2
jiDj, i = 1, . . . ,n, (17)

whereas for the outliers,

Si = kDa, i = n + 1, . . . ,n + k. (18)

For the good points when h0
a → ∞, hja → 0 and, by (14),

ei → ui. Using the same argument as for computing E(Si), it
is easy to show that at the good points, the expected value of Si

will be 1/p. However, for the outliers from (15), when h0
a → ∞,

ea → 0, and Da → 0 and also Si → 0. Thus for high-leverage
outliers, the new statistics will be close to 0 for the outliers and
close to 1/p for the good observations. A similar result is ob-
tained if we let ua → ∞ and ‖xa‖ → ∞ but ua/‖xa‖ → c.

The foregoing results indicate that this statistic can be very
useful for identifying high-leverage outliers, which are usually
considered the most difficult type of heterogeneity to detect in
regression problems. Also, this statistic can be useful for iden-
tifying intermediate-leverage outliers that are not detected by

Cook’s distance. Suppose that we have a group of outliers with
h0

a ≥ max1≤i≤n hii; that is, they have true leverage larger than
the good points, but the true residual size, ua, is such that the
observed least squares residuals, ea, given by (15), are not close
to 0. Then the cross-leverage hia between the good points and
the outliers for (18) will still be small, and thus ρ2

ia also will
be small. Therefore, the new statistic for the outlier points will
accumulate Cook’s distances for all of them, and the value of
the Si statistic will be larger for the outliers than the value for
the good points.

This statistic will not be useful in situations in which the out-
liers have low leverage. Suppose that case i in the sample cor-
responds to a single outlier due to some measurement error, so
that yi = true( yi) + c. Suppose that the leverage at this point is
small, that is, hii < p/n. Then if c is large, the point will appear
as a clear outlier, due to its large residual, and also as influen-
tial, leading to a large value of Di. However, because Di will
enter in the computation of the sensitivity statistic for all the
observations, the value of Si will not be very different from the
others. But if the leverage of the point is large (close to 1), then,
because the correlations ρ2

ij for j = 1, . . . ,n, j 	= i will be small,
case i will have large values of both Di and Si and will be sepa-
rated from the good points. This result generalizes in the same
way for groups; with low-leverage outliers, the values of the sta-
tistic Si at the outliers will not be much larger than for the rest
of observations, whereas for intermediate outliers, it will larger.
The group of low-leverage outliers will increase the variability
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Table 1. Four Sets of Data With the Same Values of Observations 1–27 and in 28–30: Sa, No Outliers; Sb, Three High-Leverage
Outliers; Sc , Three Intermediate-Leverage Outliers; Sd , Three Low-Leverage Outliers

x y Da Sa Sb Sc Sd

1 .3899 .0000 .0009 .4552 .5551 .5477 .8216
2 .0880 −.3179 .0069 .4893 .5601 .5352 .7536
3 −.6355 1.0950 .0364 .5327 .5628 .5318 .2308
4 −.5596 −1.8740 .1358 .5352 .5631 .5306 .2745
5 .4437 .4282 .0046 .4504 .5540 .5505 .8229
6 −.9499 .8956 .0345 .5139 .5603 .5391 .1311
7 .7812 .7310 .0293 .4291 .5449 .5702 .7961
8 .5690 .5779 .0123 .4408 .5510 .5575 .8184
9 −.8217 .0403 .0002 .5225 .5616 .5357 .1577

10 −.2656 .6771 .0095 .5286 .5630 .5290 .5059
11 −1.1878 .5689 .0171 .4984 .5571 .5460 .1152
12 −2.2023 −.2556 .0305 .4582 .5342 .5751 .1811
13 .9863 −.3775 .0309 .4216 .5379 .5827 .7678
14 −.5186 −.2959 .0055 .5360 .5632 .5300 .3014
15 .3274 −1.4751 .1179 .4613 .5563 .5447 .8169
16 .2341 −.2340 .0054 .4714 .5580 .5405 .8017
17 .0215 .1184 .0000 .4977 .5609 .5333 .7203
18 −1.0039 .3148 .0028 .5103 .5597 .5406 .1244
19 −.9471 1.4435 .0977 .5141 .5603 .5390 .1316
20 −.3744 −.3510 .0066 .5345 .5633 .5289 .4125
21 −1.1859 .6232 .0212 .4985 .5572 .5460 .1152
22 −1.0559 .7990 .0310 .5068 .5590 .5421 .1199
23 1.4725 .9409 .1325 .4129 .5168 .6089 .7027
24 .0557 −.9921 .0426 .4934 .5605 .5342 .7384
25 −1.2173 .2120 .0012 .4966 .5567 .5469 .1152
26 −.0412 .2379 .0004 .5056 .5615 .5318 .6823
27 −1.1283 −1.0078 .0834 .5021 .5580 .5442 .1163
28 (a = 1.02) (b, c, d = 20, 5, .5) (a = .72) (b, c, d = 5.0) .0384 .4207 .0160 .6567 .8220
29 (a = .75) (b, c, d = 20, 5, .5) (a = . 42) (b, c, d = 5.0) .0063 .4305 .0160 .6567 .8220
30 (a = −.44) (b, c, d = 20, 5, .5) (a = −.21) (b, c, d = 5.0) .0033 .5360 .0160 .6567 .8220

of the Si values, but it will not separate the outliers from the
good observations.

We illustrate the performance of the Si statistic in the fol-
lowing way. A simulated sample of size 30 of two indepen-
dent N(0,1) random variables, x and y, is generated, and this
is termed situation (a). Then three other datasets are built by
modifying the three last cases of this sample by introducing
three outliers of size y = 5 but with different leverages. Sit-
uation (b) corresponds to high leverage (x = 20), (c) corre-
sponds to intermediate leverage (x = 5), and (d) corresponds
to low leverage (x = .5). The data are given in Table 1. The four
values assigned to cases 28, 29, and 30 for the different situa-
tions are given in parentheses for both x (four different leverage
values considered) and y [the same outlier size, 5, for situa-
tions (b), (c), and (d)]. The table also provides the values of
the Si statistic in the four situations and the value of Cook’s
distance for the uncontaminated sample, situation (a). The val-
ues of Cook’s distance, Di, and the Si statistic, are also rep-
resented in the four situations in the top row of Figure 2. The
bottom row of the figure presents plots of Si versus case num-
ber, including the reference values, med(Si) + 4.5MAD(Si) and
max(0,med(Si) − 4.5MAD(Si)).

In (a), all of the values of the Si statistic are close to its mean
value of 1/2. In (b), the three outliers have very high leverage,
and therefore their residuals are close to 0. Then, as expected
by the third property, the values of the Si statistic for the out-
liers are close to 0, whereas for the good points they are close to
the mean value, .5. In case (c), Si is larger for the outliers than
for the good points, and both groups are again well separated.
Finally, in (d), the Si statistic has a very large variance and is
not informative, whereas Cook’s distance takes larger values at

the outliers than at the good points. This last situation is the
most favorable one for Cook’s distance, and a sequential dele-
tion strategy using this distance will lead to the identification of
the three outliers.

We can summarize the analysis as follows. In a good sample
without outliers or high leverage points, the sensitivity of all the
points, as measured by the statistic Si, will be the same, 1/p. If
we have a group of high-leverage outliers, then the forecasts of
these points will not change by deleting any point in the sample,
and therefore, the sensitivity of these points will be very small.
For a group of intermediate-leverage outliers, this means that
the residuals at the outliers are not close to 0, the effect on the
forecasts of the outliers after deleting an outlier point will be
large, and therefore the sensitivity of the outliers will be larger
than for the good points. Finally, if we have low-leverage out-
liers, then the forecasts of all of the points will be affected by
deleting them, and the global effect is to increase the sensitiv-
ity of all the points in the sample. One could think of using the
variance of Si to identify the last situation, but this would not
be very useful, because these low-leverage outliers are easily
identified because of their large residuals.

4. EXAMPLES

We illustrate the performance of the proposed statistic with
four examples. We have chosen two simple regression and two
multiple regression examples and two real data examples and
two simulated examples, so that we know the solution. Three
of the four examples that we present have been extensively an-
alyzed in the robust regression and diagnostic literature. In the
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Figure 2. Plots of Cook’s Distance versus the Proposed Statistic (top row) and Plots of Si versus Case Four Situations (bottom row):
(a) No Outliers, (b) Three High-Leverage Outliers; (c) Three Intermediate-Leverage Outliers; (d) Three Low-Leverage Outliers.

first example we present a situation in which we have a group
of moderate outliers, and we illustrate it with the well-known
Hertzsprung–Rusell diagram (HRD) data from Rousseeuw and
Leroy (1987). In the second example we present a strong mask-
ing case using a simulated dataset proposed by Rousseeuw
(1984). The third example illustrates the usefulness of the sta-
tistic in the well-known Boston Housing data from Belsley et al.
(1980), which has been analyzed by many authors to compare
robust and diagnostic methods. Finally, the fourth example is a
simulated dataset with 2,000 cases and 20 variables and is pre-
sented to illustrate the advantages of the proposed statistic in
routine analysis of high-dimensional datasets.

Example 1. Figure 3 shows the data for the HRD dataset.
This data corresponds to the star cluster CYG OB1, which con-
sists of 47 stars in the direction of Cygnus. The variable x is
the logarithm of the effective temperature at the surface of the
star, and y is the logarithm of its light intensity. These data were
given by Rousseeuw and Leroy (1987) and have been analyzed
by many authors as an interesting masking problem. In Figure 3
we observe that four data points (11, 20, 30, and 34) are clearly
outliers and another two observations (7 and 14) seem to be
far away from the main regression line. As we have p = 2, the
approximate expected value for Si is .5. Figure 4 shows an influ-
ence analysis of this dataset. The histogram of the Cook’s dis-
tances will not indicate any observation as influential because of
the masking effect. The histogram of the sensitivity statistic is
more informative, because it shows a group of six observations
separated from the others. The plot of Cook’s distance versus Si

clearly indicates the six outliers. The good points have a value
of Si around .52, close to the expected value, whereas the six
outliers have a value of Si close to 1. The plot separates the two

groups of data clearly. Finally, the comparison of the values
of Si with the cutoff defined in the previous section indicates
that these six observations are outliers.

Example 2. Figure 5 shows a plot of the two groups’ regres-
sion lines generated by Rousseeuw (1984). These data again
have been analyzed by many authors and recently by Critchely
et al. (2001), who presented them as a very challenging and
difficult dataset. Figure 6 shows the influence analysis. Cook’s
distance does not show any indication of heterogeneity. The
histogram of Si clearly shows two groups of data. The larger
group of 30 points has all of the values in the interval [.53, .59],

Figure 3. The HRD Dataset.
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(a) (b)

(c) (d)

Figure 4. Influence Analysis of the HRD Data. (a) Histogram of Cook’s distances. (b) Histogram of Si . (c) C/S plot. (d) Plot of Si versus case
number.

whereas the group of 20 outliers has the values in the interval
[.28, .30]. This is also shown in the C/S plot, where the group of
outliers have large leverage and low influence, because the av-
erage value of the Cook statistic in the 20-point group is .0108,
half of the value of this statistic in the 30-point group (.0218).
Then, according to the analysis in Section 3, this group is ex-
pected to have a small value for Si and will be separated from
the good data. Finally, the comparison of the Si statistic with
the cutoff values again very clearly indicates the two groups.

Figure 5. Data From Rousseeuw (1984).

Example 3. As a third example, we use the Boston Housing
dataset, which consists of 506 observations on 14 variables and
is available at http://lib.stat.cmu.edu. This dataset was given by
Belsley et al. (1980) and has been considered by a number of
authors for regression diagnostics and robust regression. Again,
this is considered a difficult example (see Belsley et al. 1980).
We have used the same regression as used by Belsley et al.
(see also Alexander and Grimshaw 1996 for another analysis
of these data), treating as dependent variables the logarithms of
the median value of owner-occupied homes and as explanatory
variables the 13 variables defined in Table 2.

Figure 7 shows the influence analysis of this dataset. In this
example, neither the histograms nor the C/S plot are able to
show the heterogeneity in the data. However, a comparison
of the values of Si to the cutoff values indicates 45 points
as outliers. These 45 points correspond to observations in the
range 366–480, as indicated in Figure 7(d). From Belsley et al.
(1980), we obtain that cases 357–488 correspond to Boston,
whereas the rest correspond to the suburbs. Also, the 45 points
indicated by statistic Si as outliers all correspond to some cen-
tral districts of Boston, including Downtown, which suggests
that the relation among the variables could be different in these
districts than in the rest of the sample. To check this hypothesis,
we fitted two regression lines, one to the sample of 461 points
and the other to the 45 outliers. Deleting variables that are not
significant, we obtain the two regression lines indicated in Ta-
ble 3, which presents the regression coefficient estimates with
the whole sample and the corresponding estimates when the
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(a) (b)

(c) (d)

Figure 6. Influence Analysis of the Rousseeuw Two Regression Lines Data. (a) Histogram of Cook’s distances. (b) Histogram of Si . (c) C/S plot.
(d) Plot of Si versus case number.

model is fitted to each of the two groups. It can be seen that
the effects of the variables are very different between the two
groups of data. In fact, in the second group, only five vari-
ables are significant. Note the large reduction in residual sum
of squares RSE when fitting different regression equations in
the two groups.

Example 4. In this example we analyze the performance of
the statistic in a relatively large dataset in high dimension. We
consider a heterogeneous sample that is a mixture of two regres-
sions with omitted categorical variable generated by the model

y = β0 + β ′
1x + β2z + u,

where the x’s have dimension 20 and are independent random
drawings from a uniform distribution and u ∼ N(0,1). The
sample size is 2,000, and the first 1,600 cases are generated

for the first regression with z = 0, and the last 400 cases are
generated for the second regression with z = 1. The parameter
values have been chosen so that the standard diagnosis of the
regressing model does not show any evidence of heterogeneity.
We have chosen β0 = 1, β ′

1 = 1′
20 = (1, . . . ,1), and β2 = −100,

and in the first regression the range of the explanatory variables
is (0,10), so that x|(z = 0) ∼ [U(0,10)]20, whereas for the sec-
ond the range is (9,10), so that x|(z = 1) ∼ [U(9,10)]20. This
data has also been used in Peña, Rodriguez, and Tiao (2003).

Figure 8 shows the histogram of the residuals and the plots
of residuals versus fitted values in a regression model fitted
to the sample of 2,000 observations. No indication of hetero-
geneity is found. Figure 9 shows the influence analysis. Again,
Cook’s distance does not demonstrate any sign of heterogene-
ity, whereas the Si statistic clearly indicates the two groups of
data.

Table 2. Explanatory Variables for the Boston Housing Data

Name Description

crim Per capita crime rate by town
zn Proportion of residential land zoned for lots over 25,000 sq. ft.
indus Proportion of nonretail business acres per town
chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
noxsq Nitric oxide concentration (parts per 10 million) squared
rm Average number of rooms per dwelling squared
age Proportion of owner-occupied units built prior to 1940
dis Log of weighted distances to five Boston employment centres
rad Log of index of accessibility to radial highways
tax Full-value property-tax rate per $10,000
ptratio Pupil-teacher ratio by town
b (Bk − .63)2, where Bk is the proportion of blacks by town
lstat Log of the proportion of lower status of the population
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(a) (b)

(c) (d)

Figure 7. Influence Analysis of the Boston Housing Data. (a) Histogram of Cook’s distances. (b) Histogram of Si . (c) C/S plot. (d) Plot of Si
versus case number.

5. COMPARISON WITH OTHER APPROACHES

It is interesting to see the relationship of our statistic to other
ways of looking at influence and dealing with masking. Cook
(1986) proposed a procedure for the assessment of the influence
on a vector of parameters θ of a minor perturbation in a statis-
tical model. This approach is very flexible and can be used to
see the effect of small perturbations that normally would not
be detected by the deletion of one observation. Cook suggested
that one introduce an n×p vector w of case weights and use the
likelihood displacement (L(θ̂) − L(θ̂w)), where θ̂ is the maxi-

mum likelihood estimator (MLE) of θ̂ and θ̂w is the MLE when
the case-weight w is introduced. Then he showed that the direc-
tions of greatest local change in the likelihood displacement for
the linear regression model are given by the eigenvectors linked
to the largest eigenvalues of the curvature matrix L = EHE,

where E is the vector of residuals. (See Hartless et al. 2003 for
a recent contribution in this area proposing another eigenvalue
analysis, and Suárez Rancel and González Sierra 2001 for a
review of this approach in regression.) These eigenvalue analy-
ses are related to the analysis of Peña and Yohai (1995), who
showed that the global influence matrix that they introduced

Table 3. Regression Coefficients and RSEs in the Whole Sample and in the Two Groups Found
by the SAR Procedure

All sample Group 1 Group 2

Name Value Std. error Value Std. error Value Std. error

(intercept) 11.4655 .1544 10.4797 .1420 13.3855 .4535
crim −.0119 .0012 −.0205 .0040 −.0088 .0024
zn .0001 .0005
indus .0002 .0024
chas .0914 .0332 .0401 .0271
noxsq −.6380 .1131 −.2871 .0939 −2.7108 .8180
rm .0063 .0013 .0149 .0013 −.0069 .0047
age .0001 .0005 −.0012 .0004
dis −.1913 .0334 −.1273 .0253 −.7906 .2491
rad .0957 .0191 .0894 .0153
tax −.0004 .0001 −.0004 .0001
ptratio −.0311 .0050 −.0288 .0038
b .3637 .1031 .7241 .1042
lstat −.3712 .0250 −.2020 .0237 −.6609 .0802
RSE 16.378 9.2210 2.8298
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(a)

(b)

Figure 8. Plot of Residuals versus Fitted Values (a) and a Histogram of the Residuals (b) in the Two-Regression Simulated Example.

was a generalization of the L local influence matrix by using
the standardized residuals instead of the matrix of least squares

residuals. For low-leverage outliers, both matrices will be simi-
lar and will have similar eigenvalues, but for high-leverage out-

(a) (b)

(c) (d)

Figure 9. Influence Analysis of the Two Regression Simulated Data. (a) Histogram of Cook’s distance. (b) Histogram of Si . (c) C/S plot. (d) Plot
of Si versus case number.
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liers the directions of local influence may be very different from
those recommended by Peña and Yohai (1995) for outlier detec-
tion. The ideas presented in this article can be used to suggest
new ways to apply the local influence approach by exploring
the effect of perturbations involving all of the observations in
the sample.

The statistic that we propose can also be used as a start-
ing point to build robust estimation procedures for regression.
These procedures find estimates defined by

β̂ = arg min
β∈A

S
(

e1(β) · · ·en(β)
)

, (19)

where A = {β(1), . . . ,β(N)} is a finite set. For instance,
Rousseeuw (1984) proposed obtaining the elements of A by
choosing at random N subsamples of p different data points, but
this number increases exponentially with p, and thus the method
based on random subsampling can be applied only when p is
not very large. Atkinson (1994) proposed a fast method for de-
tecting multiple outliers using a simple forward search from
random starting points. Instead of drawing N basic subsamples,
Atkinson suggested drawing h < N random subsamples and
using LSEs to fit subsets of size p,p + 1, . . . ,n, from each sub-
sample. Then outliers are identified as the points having large
residuals from the fit that minimizes the least median of squares
criterion. This procedure requires that at least one of the h sub-
samples does not contain a high-leverage outlier, and will not
be very effective when the number of variables p is large. Peña
and Yohai (1999) proposed a procedure to build fast, powerful,
robust estimates and identify outliers that uses an eigenvalue
analysis of a sensitivity matrix built using ideas similar to the
ones used here to build the statistic introduced in this article.

The main advantage of our proposed statistic is for routine
analysis of large datasets in high dimension. In this situation,
we have shown that a comparison of the Si statistic with the
cutoff values is able to identify groups of outliers in large high-
dimensional datasets. This is a great advantage over alterna-
tive procedures based on graphical representations with no clear
limits to identify outlying values, which will not be very useful
for large datasets. Also, this is an advantage over robust estima-
tion methods, which can be computationally very demanding
and even unfeasible in some large datasets. As we have shown
in Examples 3 and 4, the simple statistic that we propose will
work very well in these situations with a trivial computational
cost.

6. SENSITIVITY IN OTHER PROBLEMS

Our ideas can be easily generalized for more general mod-
els. Suppose that y1, . . . , yn are independent random variables,
where yi has a probability density function fi( y, θ, σ ), θ ∈ R

p,
and σ ∈ R is a nuisance parameter. This general setup includes
linear and nonlinear regression and generalized linear models.
For instance, in linear regression, fi usually is a normal density
with mean x′

iθ and variance σ 2, where xi ∈ R
p. In nonlinear

regression, fi is a normal density with mean g(x′
i, θ) and vari-

ance σ 2. In generalized linear models,

fi( y, θ, σ ) = exp
{

( yh(x′
iθ) − b(x′

iθ))/a(σ ) + c( y, σ )
};

that is, fi( y, θ, σ ) belongs to an exponential family with para-
meters h(x′

iθ) and σ .

Let θ̂ and σ̂ be the MLEs of θ and σ , and let θ̂ (i) be the MLE
of θ when observation i is deleted. Let ŷi be the forecast of yi

based on the minimization of some loss function, and let ŷi( j) be
the forecast based on the same loss function when observation j
is deleted from the sample. The influence of the ith observation
is measured by the standardized forecast change

Di = ( ŷi − ŷi(i))
2

s2( ŷi)
,

where s2( ŷi) is an estimate of the variance of the forecast. The
complementary Si statistic,

Si =
∑n

j=1( ŷi − ŷi( j))
2

s2( ŷi)
,

measures how the point is affected by each of the other sam-
ple points. Further research is needed on the properties of this
generalization for the different models.
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APPENDIX: RELATION AMONG TRUE AND
OBSERVED RESIDUALS IN THE

CONTAMINATED SAMPLE

The projection matrix H is given by H = [X′
0,x′

a1k]′(X′
0X0 +

kxax′
a)

−1[X′
0,x′

a1k] and using the Woodbury–Sherman–
Morrison equation for the inverse of X′

0X0 + kxax′
a (see, e.g.,

Cook and Weisberg 1982, p. 136), we have that

H11 = H0 − X0(X′
0X0)

−1xax′
a(X

′
0X0)

−1X0
k

kh0
a + 1

,

where H0 = X0(X′
0X0)

−1X′
0 and h0

a = x′
a(X

′
0X0)

−1xa. Because
h0

1a = X0(X′
0X0)

−1xa, we obtain (11). Also

H12 = X0(X′
0X0)

−1xa1k
′

− X0(X′
0X0)

−1xax′
a(X

′
0X0)

−1xa1k
′ k

kh0
a + 1

,

and this leads to (12). In the same way, we have that

H22 = 1kx′
a(X

′
0X0)

−1xa1′
k

− 1kx′
a(X

′
0X0)

−1xax′
a(X

′
0X0)

−1xa1′
k1k1′

k
k

kh0
a + 1

,

and (13) is obtained. The parameters of both regressions are
related by

β̂T = β̂0 + (X′
0X0)

−1xa
k

kh0
a + 1

ua,
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and thus the observed residuals ei = yi − x′
iβ̂T are related to the

true residuals ui = yi − x′
iβ̂0 by

ei = yi − x′
iβ̂0 − x′

i(X
′
0X0)

−1xa
k

kh0
a + 1

ua, (A.1)

which can be written as

ei = ui − h0
iak

kh0
a + 1

ua, (A.2)

and, using (12), (14) and (15) are obtained.

[Received September 2002. Revised July 2004.]

REFERENCES

Alexander, W. P., and Grimshaw, S. D. (1996), “Treed Regression,” Journal of
Computational and Graphical Statistics, 5, 156–175.

Atkinson, A. C. (1981), “Two Graphical Displays for Outlying and Influence
Observations in Regression,” Biometrika, 68, 13–20.

(1985), Plots, Transformations and Regression, Oxford, U.K.: Claren-
don Press.

(1994), “Fast Very Robust Methods for the Detection of Multiple Out-
liers,” Journal of the American Statistical Association, 89, 1329–1339.

Belsley, D. A., Kuh, E., and Welsch, R. E. (1980), Regression Diagnostics:
Identifying Influential Data and Sources of Collinearity, New York: Wiley.

Brown, G. C., and Lawrence, A. J. (2000), “Theory and Illustration of Regres-
sion Influence Diagnostics,” Communications in Statistics, Part A—Theory
and Methods, 29, 2079–2107.

Chatterjee, S., and Hadi, A. S. (1988), Sensitivity Analysis in Linear Regression,
New York: Wiley.

Cook, R. D. (1977), “Detection of Influential Observations in Linear Regres-
sion,” Technometrics, 19, 15–18.

(1986), “Assessment of Local Influence” (with discussion), Journal of
the Royal Statistical Society, Ser. B, 48, 133–169.

Cook, R. D., Peña, D., and Weisberg, S. (1988), “The Likelihood Displacement:
A Unifying Principle for Influence,” Communications in Statistics, Part A—
Theory and Methods, 17, 623–640.

Cook, R. D., and Weisberg, S. (1982), Residuals and Influence in Regression,
New York: Chapman & Hall.

Critchely, F., Atkinson, R. A., Lu, G., and Biazi, E. (2001), “Influence Analy-
sis Based on the Case Sensitivity Function,” Journal of the Royal Statistical
Society, Ser. B, 63, 307–323.

Hartless, G., Booth, J. G., and Littell, R. C. (2003), “Local Influence of Predic-
tors in Multiple Linear Regression,” Technometrics, 45, 326–332.

Hawkins, D. M., Bradu, D., and Kass, G. V. (1984), “Location of Several Out-
liers in Multiple Regression Data Using Elemental Sets,” Technometrics, 26,
197–208.

Justel, A., and Peña, D. (2001), “Bayesian Unmasking in Linear Models,” Com-
putational Statistics and Data Analysis, 36, 69–94.

Lawrance, A. J. (1995), “Deletion Influence and Masking in Regression,” Jour-
nal of Royal Statistical Society, Ser. B, 57, 181–189.

Muller, E. K., and Mok, M. C. (1997), “The Distribution of Cook’s D Sta-
tistics,” Communications in Statistics, Part A—Theory and Methods, 26,
525–546.

Pregibon, D. (1981), “Logistic Regression Diagnostics,” The Annals of Statis-
tics, 9, 705–724.

Peña, D. (1990), “Influential Observations in Time Series,” Journal of Business
& Economic Statistics, 8, 235–241.

Peña, D., Rodriguez, J., and Tiao, G. C. (2003), “Identifying Mixtures of Re-
gression Equations by the SAR Procedure,” in Bayesian Statistics 7, eds.
J. M. Bernardo, et al., New York: Oxford University Press, pp. 327–347.

Peña, D., and Yohai, V. J. (1995), “The Detection of Influential Subsets in Lin-
ear Regression Using an Influence Matrix,” Journal of the Royal Statistical
Society, Ser. B, 57, 145–156.

(1999), “A Fast Procedure for Robust Estimation and Diagnostics in
Large Regression Problems,” Journal of the American Statistical Associa-
tion, 94, 434–445.

Rousseeuw, P. J. (1984), “Least Median of Squares Regression,” Journal of the
American Statistical Association, 9, 871–880.

Rousseeuw, P. J., and Leroy, A. M. (1987), Robust Regression and Outlier De-
tection, New York: Wiley.

Suárez Rancel, M., and González Sierra, M. A. (2001), “Regression Diagnostic
Using Local Influence: A Review,” Communication in Statistics, Part A—
Theory and Methods, 30, 799–813.

Welsch, R. E. (1982), “Influence Functions and Regression Diagnosis,” in Mod-
ern Data Analysis, eds. R. L. Launer and A. F. Siegel, New York: Academic
Press.

Williams, D. A. (1987), “Generalized Linear Model Diagnostics Using the De-
viance and Single Case Deletions,” Applied Statistics, 36, 181–191.

TECHNOMETRICS, FEBRUARY 2005, VOL. 47, NO. 1

http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=1061-8600()5L.156[aid=3076816]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=1061-8600()5L.156[aid=3076816]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=0040-1706()19L.15[aid=259435]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=0040-1706()45L.326[aid=6408405]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=0167-9473()36L.69[aid=6408404]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=0167-9473()36L.69[aid=6408404]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=0361-0926()30L.799[aid=6408400]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=0361-0926()30L.799[aid=6408400]

