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A fast approach for dimensionality reductionwith imagedata
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Abstract

An important objective in image analysis is dimensionality reduction. The most often used data-exploratory technique with
this objective is principal component analysis, which performs a singular value decomposition on a data matrix of vectorized
images. When considering an array data or tensor instead of a matrix, the high-order generalization of PCA for computing
principal components offers multiple ways to decompose tensors orthogonally. As an alternative, we propose a new method
based on the projection of the images as matrices and show that it leads to a better reconstruction of images than previous
approaches.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Exploratory image studies generally aim at data inspec-
tion and dimensionality reduction. The algebra of matrices
has been employed successfully in the context of image
analysis. In particular, one of the most popular approaches
to reduce dimensionality and derive useful compact rep-
resentations for image data is principal component analy-
sis (PCA). In 1990 Ref.[1] proposed to use PCA to re-
duce the dimensionality when representing human faces.
In the last two decades, PCA has been very popular in
the object recognition community,[2–4]. The performance
of this method on aligned and scaled human faces is very
good, but it does not work well for non-aligned faces. In
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particular, when external factors, such as lighting, view-
point and expression, are permitted to modify facial im-
ages, more sophisticated mathematical approaches are
needed. A refinement of PCA for face representation is
independent component analysis (ICA), see Ref.[5]. It is
shown in Ref.[6] that a pre-processing step of the im-
age sample improves the PCA performance. PCA-based
algorithms take advantage of the functionality and sim-
plicity of matrix algebra. As was pointed out in Ref.[7],
the natural representation of a collection of images is a
three-dimensional array, or third-order tensor, rather than
a matrix of vectorized images. In addressing the problem
of dimensionality reduction with array data, the multilinear
algebra, the algebra of higher-order tensors, offers a pow-
erful mathematical framework for analyzing the multifactor
structure of images that can account explicitly for each
of the multiple factors inherent to image information. In
this sense Ref.[8] proposed a multilinear modeling tech-
nique employing a tensor extension of the conventional
matrix singular value decomposition (SVD), known as the
N-mode SVD. However, for high-dimension tensors one
can find computational problems because this approach
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involves solving large minimization problems and in such
circumstances the resulting matrices are often unfeasible to
compute because of its high dimensionality. Hence, we are
interested in finding a fast and feasible method to solve the
problem of dimensionality reduction with high reconstruc-
tion quality rates when dealing with such high-dimensional
data. In this paper, we propose an alternative method in
which the original data is projected on a subspace of lower
dimension keeping the internal structure of the matrices in
the projection. The problem we are interested in is as fol-
lows. We have a set of images which represent similar ob-
jects, for instance, human faces, temporal images of the same
scene, objects in a process of quality control, and so on. Any
particular image (say thenth image) is represented by a ma-
trix Xn of I rows andJ columns. We assume that the sample
contains the set ofN images,X1, X2, . . . , XN .Each matrix
consists of elementsxij , with i=1, . . . , I andj=1, . . . , J ,
that represent the pixel intensities extracted from digitized
images. All the elementsxij are in the range between 0 and
255, where the value 0 represents the black color, and the
value 255 the white color. For convenience, we normalize the
pixel intensities, soxij ∈ [0,1]. The rest of the paper is or-
ganized as follows. In the next section, we briefly introduce
the basic theory of the standard method used for dimension-
ality reduction based on principal components. In Section 3,
we explain the high-order generalization of PCA (N-mode
PCA) and the singular value decomposition (N-mode SVD)
of matrices for computing principal components. In Sec-
tion 4, we propose a new approach which keeps the internal
structure of the images. Finally, in Section 5 we report on
the experimental results using a human face database.

2. Principal component analysis

Suppose that each matrixXn, n = 1, . . . , N , is trans-
formed into a vectorxTn by row (or column) concatenation.
Therefore, we have a set ofN vectors in a high-dimensional
space, specifically,xTn ∈ Rd , whered=I×J, n=1, . . . , N .
For convenience, the vectors are assumed to be normalized,
so that

∑N
n=1 xn=0 andxTnxn=1. Note that this set of vec-

tors can be represented by anN × d matrixX in which the
nth row is equal toxTn . When dealing with high-dimensional
observations, linear mappings are often used to reduce di-
mensionality of the data by extracting a small (compared
to the original dimensionality of the data) number of lin-
ear features. Among all linear, orthonormal transformations,
principal component analysis is optimal in the sense that it
minimizes, in mean square sense, the errors in the recon-
struction of the original signalxn from its low-dimensional
representation,̂xn. The purpose of PCA is to findp (p <d)
standardized linear combinations of the original variables
Xu1, Xu2, . . . , Xup which are uncorrelated and have max-
imum variance. This procedure is illustrated inFig. 1. We
have observationsxn in R2 and the first principal com-
ponentu1 defines the direction where the variance of the

u1  

u2  

xn  

Fig. 1. Scatter plot in a bivariate gaussian sample, where u1 and
u2 are the two first directions of maximum variability.

projected points,zn= xTnu1, is maximum. The second prin-
cipal component must be orthogonal to the first one, and is
given byu2. In general, the principal components are given
by (see Ref.[9] for more details)

Z =XUp, (1)

whereUp is anN ×p matrix with columns vectorsui , i=
1, . . . , p, which are the eigenvectors linked to thepth largest
eigenvalues of the matrixXTX. The optimal prediction̂X
with a matrix of rankpof theXmatrix with the least-squares
criterion is based on the singular value decomposition of this
matrixX. Suppose that the rank ofX is r, r=min{N, d}. The
best reconstruction of this matrix usingp�r dimensions is
given by

X̂ =XUpU
T
p , (2)

and this implies that each vectorxn is predicted as

x̂n =
p∑
i=1

(xTnui )ui . (3)

Let

X = VrGrU
T
r (4)

be the singular value decomposition of the matrixX, where
Vr contains the eigenvectors ofXXT linked to non-null
eigenvalues,Ur contains those ofXTX andGr is a diagonal
matrix with the squared root of the non-null eigenvalues of
XTX. Then Eq. (2) can be also be written as

X̂ = VpGpU
T
p , (5)

whereVp andUp include p< r eigenvectors andGp is
diagonal and contains thep largest eigenvalues ofXTX.
Note that in order to predict theN images, which implies a
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total of IJN scalar predictions, we only need thep vectorsui
of dimensionIJ and thepscalar valueszi=(xTnui )=(vig1/2i )

for each image, which implies

pIJ + pN = IJN
( p
N

+ p

IJ

)
= IJNc1, (6)

wherec1 represents the factor of reduction. Ifp/IJ is small,
so thatc1 is small, the reduction of dimension required for
the reconstruction of the images can be very important. This
decomposition was used for image dimension reduction in
Ref. [2], and it often referred to as the eigenface method. It
is the most common approach for dimension reduction with
images.

3. High-order generalization of PCA

3.1. Multi-way models

We define multi-way data as data with elements arranged
as xijk..., i = 1, . . . , I ; j = 1, . . . , J ; k = 1, . . . , K; . . .
where the number of indices may vary. Each index is called
way or mode, and the number of levels in the mode is
called the dimension of that mode. The number of ways is
the geometrical dimension of the array. In particular, when
dealing with a sample ofN images with sizeI×J , we have
three indices and the data can be geometrically arranged
in a box of dimensionI × J × N , where indexi refers to
a row-mode, indexj refers to a column-mode and indexk
refers to a tube-mode. For expressing models using algebra
notation we can rearrange a multi-way array to a matrix.
This transformation is known as unfolding. For instance, the
I ×J ×N arrayX can be unfolded to anI ×JN matrixX.
When considering the case of three-way analysis, a de-

composition of the array is made into trilinear components.
In 1966 Tucker[10] developed a series of three-way models
called three-mode PCA. In the context of image data, when
analyzing a collection ofN images we are interested in re-
ducing the two first modes (i.e., the indexi and the index
j) leaving the third modek uncompressed. Generalizing the
singular value decomposition of a matrix we can write the
following model for a given imagek:

X̂k = AHkB
T; k = 1, . . . , N , (7)

whereAandBareI×J matrices with orthonormal columns,
so thatAAT = I andBBT = I (the subindexk is due the
observation in the sample), andHk is a squared matrix. Note
that the matricesA andB are the same for all the images,
whereas the matrixHk depends on the image. This model
can be seen as a weighted sum of outer products where
the weight of the outer product between theith component
from A and thejth component fromB for the kth image
is determined by the elementhijk . A particular case of the
three-way model assuming a model of rankD (D < I) in
the first mode andE (E <J) in the second mode, is the

Tucker2 model[11], which generalizes Eq. (7). CallingX
to the arrayX arranged as anN × IJ matrix, we have

X̂ =H(A⊗ B)T, (8)

whereH is the arrayH=H1×H2×· · ·×HN arranged as an
N ×DE matrix. TheI ×D matrixA and theJ ×E matrix
B are the loading or component matrices for each mode, re-
spectively. This expression is equivalent to the above defined
in Eq. (7). The estimation of this model is achieved via an
alternating least-squares (ALS) algorithm which minimizes
the loss function (see Ref.[12])

min
A,B,Hk

N∑
k=1

‖Xk − AHkB
T‖2F (9)

for the unknown matricesA, B andHk , where‖.‖2F stands
for the Frobenious norm. Thus,

min
A,B,Hk

N∑
k=1

‖Xk − X̂k‖2F

= min
A,B,Hk

N∑
k=1

trace[(Xk − X̂k)
T(Xk − X̂k)]. (10)

Using the expression (8) this minimization problem is equiv-
alent to

min
A,B,H

‖X −H(A⊗ B)T‖2F . (11)

ALS consists of dividing the parameters into several sets in
which each set is estimated in a least-squares sense con-
ditionally on the remaining parameters. The estimation is
repeated iteratively until no change is observed in the pa-
rameter values or in the fit of the model to the data. Next,
we will explain an algorithm, the ALS algorithm, to solve
this problem.

3.2. ALS algorithm

Each subproblem in Eq. (9) can be solved easily given
the matricesA andB. From Eq. (7) the core matrixHk can
be found by

Ĥk = ATXkB; k = 1, . . . , N . (12)

From the definition ofHk and using Eq. (12) it follows that
X̂k can be expressed as follows:

X̂k = AATXkBB
T. (13)

For a givenB it follows that finding the optimalA is equal to
minimizing the norm of(Xk−AATM), whereM=XkBBT.
The problem we have to solve is

min
A

‖Xk − AATM‖2F
= min

A
[trace{(Xk − AATM)(Xk − AATM)T}];

k = 1, . . . , N . (14)
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Using the properties of the trace, the above expression is
equivalent to

min
A

[trace{XkXT
k } + trace{AATMMTAAT}

− 2trace{AATMXT
k }], (15)

and this is equivalent to minimizing

F = trace{AATMMTAAT} − 2trace{AATMXT
k }. (16)

Using thatMMT = MXT
k
and using the properties of the

trace, we have

F = trace{ATMXT
k A} − 2trace{ATMXT

k A}
= − trace{ATMXT

k A}, (17)

leading to the maximization problem

max
A

[trace{ATMXT
k A}] = max

A
[trace{ATMMTA}]. (18)

Hence the optimalA is the eigenvectors linked to theD
largest eigenvalues ofMMT. The algorithm now uses
this matrixA in Ref. [3] to obtain a new matrixB. This
is iterated until convergency. Each iteration solves an
eigenvalue–eigenvector problem of a dimension equal to
the number of components for the mode in question. Fi-
nally, the core matrixHk is estimated by Eq. (12) and the
unfoldedXk as defined in Eq. (13) obtaining the recon-
structed arraŷX. If the model has been fitted successfully,
the core arraŷH contains exact the same information as
X merely expressed using different coordinates. The ALS
algorithm for fitting the model is among the fastest of the
multi-way algorithms. However, for large problems the
fitting procedure requires increasing computational efforts.
To start the algorithm several kinds of initializations has

been proposed; Ref.[13] advocates for choosingBat random
and Ref.[14] suggests to chooseB from an SVD on the
J × I matrixXT

k
.

Assuming equal number of factors for the first and second
modes, i.e.,D = E = p, the reconstruction of the array
requires the matrixA, B andH, which leads a total ofIp+
Jp +Np2 parameters.

4. An alternative approach based on matrix
projections

We are interested in a projection method which keeps the
matrix structure of the image. Here, we follow a similar
approach to Ref.[15], which proposed the projection of
the rows of the matrix in the context of feature extraction.
Assume without loss of generally thatI >J . Then, givena
a unit normJ × 1 vector, we can project the rows ofXn on
thea direction by

wn =Xna. (19)

wn  

w2  

w1  

Fig. 2. Scatter plot of the images projected in some directiona.

w1  

w2  

wn 

Fig. 3. Scatter plot of the images projected in another directiona.

We will call this I -dimensional projected vectorwn the pro-
jected feature vector ofXn. Suppose that we project all the
images in this way and obtain a set of vectors,wn, n =
1, . . . , N . The idea is to find a direction of projection in
such a way that these set of vectorswn are as separated as
possible from the rest. In essence, we try to find a direc-
tion a such that when projecting the rows of thenth image,
fTn1, f

T
n2, . . . , f

T
nI
, wherefT

ni
∈ RJ , i = 1, . . . , I , the vector

obtained,wn= [fn1a fn2a · · · fnIa], is as different as possi-
ble from the other vectorswk, k �= n. This is illustrated in
Figs. 2and3. Suppose, for instance, that we have images
with only two rows(I = 2), andwn ∈ R2, n = 1, . . . , N .
The projection direction which leads toFig. 2 provides
larger variability among the vectorswn than the one which
leads toFig. 3. We want to find a directiona which maxi-
mizes the sum of the variances of the components of these
vectors,wn.



2404 M. Benito, D. Peña / Pattern Recognition 38 (2005) 2400–2408

In order to find a good projection direction, let us callSr
to theI×I covariance matrix for these vectors representing
the rows (the subindexr is due the projection of the rows;
we will discuss later the projection of the columns). This
matrix is given by

Sr = 1

N

N∑
n=1

(wn − w)(wn − w)T, (20)

wherew is the mean of the projected images. The two most
often used measures to describe scatter about the mean in
multivariate data are the total variation, given by the trace of
the covariance matrix, and the generalized variance, given
by the determinant of this matrix. For simplicity let us find
the directionawhich maximizes the total variation given by
the trace ofSr . Then

max trace{Sr }

= max trace



1

N

N∑
n=1

(wn − w)(wn − w)T


 , (21)

and using the definition (19),

trace{Sr }=trace


1

N

N∑
n=1

(Xna−Xa)(Xna−Xa)T


, (22)

whereX= 1
N

∑N
n=1Xn denotes the mean image. Using the

properties of the trace operator,

max trace{Sr }

= max
1

N
×trace


aT


 N∑
n=1

(Xn−X)(Xn−X)T

 a


 ,

(23)

and it follows that the vectora is the eigenvector linked to
the largest eigenvalue of the matrix

�c = 1

N

N∑
n=1

(Xn −X)T(Xn −X); �c ∈ RJ×J . (24)

As we need more than one direction of projection to char-
acterize the sample, we compute the set of eigenvectors
a1,a2, . . . ,ap, which constitute a basis forRp from which
the data can be estimated using a subspace of lower dimen-
sion,p� min{I, J }.
Similarly, the same result is obtained if we start projecting

the columns instead of the rows. Givenb a unit normI × 1
vector, the projection of the columns ofXn on theb direction
is given by

zn =XT
nb, (25)

and thisJ -dimensional projected vectorzn is the projected
feature vector ofXn. The covariance matrix between the

projected vectorszn is defined by

Sc = 1

N

N∑
n=1

(zn − z)(zn − z)T, (26)

wherez is the average projected columns, and maximizing
the trace ofSc leads to finding the eigenvectors linked to
largest eigenvalues of the matrix

�r = 1

N

N∑
n=1

(Xn −X)(Xn −X)T; �r ∈ RI×I . (27)

Note that the trace ofSr and the trace ofSc are the same.

4.1. Prediction by multivariate regression

LetWn be the feature vectors obtained as the solution of
Eq. (21),

Wn = [Xna1, . . . , Xnap] =XnAp; Wn ∈ RI×p. (28)

We can use these data to predict the matrixXn by the mul-
tivariate regression model

Xn =Wn�n + �n, (29)

where the matrixXn is predicted from its feature vectorsWn
using some parameters�n = [�1n, . . . , �Jn ] ∈ Rp×J , which
depend on the image. The least-squares estimate is given by
�̂n=(WT

n Wn)
−1WT

n Xn and the prediction of the matrixXn
with this model is

X̂n =Wn�̂n. (30)

The reconstruction of each image withIJ numbers requires
the matrixWn, with dimensionIp plus the vector�n of
dimensionpJ leading to

N(Ip + pJ)= IJN
(p
J

+ p

I

)
= IJNc2, (31)

and we see that if bothI andJ are large with relation top the
reduction in the dimension of the problem can be important.
Alternatively, we can take into account the array structure

of the data to reconstruct all the samples using a common
matrix � in the regression model. LetX be theI × J × N

array of images andW be theI × p ×N array of features
defined in Eq. (28). Thus, the following regression model is
stated, which reduce the number of parameters to estimate



X1
X2
. . .

XN


 =



W1
W2
. . .

WN


 � + �, (32)

or similarly,

X =W� + �, (33)
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whereX is the unfoldedIN × J array X andW is the
unfoldedIN × p arrayW . The least-squares estimation of
this model is given by

�̂ = (WTW)−1WTX. (34)

Finally, each matrixXn is reconstructed using its feature
vectorsWn and the matrix of parameters� ∈ Rp×J ,

X̂n =Wn�̂; n= 1, . . . , N , (35)

leading toNIp + pJ parameters. Although using a com-
mon matrix� will decrease the goodness, the number of
parameters is reduced considerably.
Similarly, the same result is obtained if we start project-

ing the columns instead of the rows in Eq. (19). Suppose
that the projection has been done using the columns ofX
instead of the rows. Then, the feature matrixZn has di-
mensionJ × p and the perpendicular projection operator
Gn = Zn(Z

T
nZn)

−1ZTn is used to reconstruct each image.
Let r=max{I, J }. We suggest to use the projection by rows
whenr=I and alternatively, project the columns whenr=J .
This criterion is based on the idea that we want to use as
much information as possible to reconstruct the images, so
we are interested in a feature matrix which has the highest
dimension.

5. Experiments

To illustrate the method proposed in Eq. (35) we compare
the proposed method with the standard eigenface technique
and the N-way PCA. The data will be a frontal view face
database.
As we stated earlier, when dealing with a set of homo-

geneous objects, image formation depends on scene geom-
etry, viewpoint and illumination conditions, which greatly
increase the difficulty of the reconstruction task. Since the
image sample can be seen as a set of shapes with respect to
a local 2D coordinate system, we can combine these differ-
ent local coordinate systems into a common system in order
to have a normalized sample of objects before they are an-
alyzed by subspace techniques. This geometric transforma-
tion process is known as registration. In the next paragraph,
we propose a registration method based on the Procrustes
analysis theory as a prior step to the dimensionality reduc-
tion task.

5.1. Image registration

Depending on the complexity of the object it may require
two or more viewpoints (or landmarks) to register it appro-
priately. Procrustes analysis theory is a set of mathematical
tools to directly estimate and perform simultaneous similar-
ity transformations among the object landmarks up to their
maximal agreement. Based on this idea, we can focus on a
goodness of fit measure used to compareN configurations
of points. The basic procedure is as follows. LetAn be the

r×2 matrix of coordinates ofr landmarks in thenth image,
n = 1, . . . , N . We wish to find simultaneous translations,
rotations and scale factors of theseN sets of points into po-
sitions of best fit with respect to each other. The functional
model of the transformation is stated as follows:

Ân = cnAnTn + 1tTn ; n= 1, . . . , N , (36)

wherecn is the scale factor,Tn is 2× 2 orthogonal rotation
matrix, tn is a 2× 1 translation vector, and1 is a 2× 1
unit vector. TheNmatched configurations are measured by
means of the residual sum of squares between each point of
each configuration and the corresponding point of the av-
erage configuration or common coordinate system. For this
task, generalized orthogonal procrustes analysis (see Ref.
[16]) provides least-squares correspondence of more than
two point matrices. According to Ref.[17] there is a ma-
trix B, also called consensus matrix, which contains the true
coordinates of ther points defined in a mean and com-
mon coordinate system. The solution of the problem can
be thought as the search of the unknown optimal matrixB.
DefiningC as the geometrical centroid of the transformed
matricesÂ1, . . . , ÂN , the solution of the registration prob-
lem is achieved by using the following minimum condition:

N∑
n=1

trace{(Ân − C)T(Ân − C)} (37)

in an iterative computation scheme of centroidC. Hence,
the final solution of the centroid corresponds to the least-
squares estimation̂B and shows the final coordinates of
r points in the maximal agreement with respect to least-
squares objective function. Finally, the unknown similarity
transformation parameters(Tn, tn, cn), n = 1, . . . , N , are
determined using the extended orthogonal procrustes (EOP)
procedure for fitting two given set of points,An andB̂ (see
Ref. [18]).

5.2. Example

We use a gray-level frontal view face database that com-
prises 114 full-face pictures, 56 males and 58 females(N =
114). Each image is digitized in a gray scale, with a resolu-
tion of 248×186, i.e. 248 rows and 186 columns(I =248,
J = 186). We choose as control points (landmarks) to reg-
ister the images the coordinates associated with the left and
right eyes and the end point of the chin. Thus, each image
Xn has associated a coordinate matrixAn, n= 1, . . . ,114,
whereAn ∈ R3×2. We compare the reconstruction perfor-
mance of the traditional method called eigenface (PCA) and
the three-way PCA with the new one when the dimension
of the subspace increases gradually. The quality of the re-
construction is measured by the mean squared error (MSE).
In Fig. 4, we plot the average reconstruction error (AMSE)

for the training sample when the dimensionality of the sub-
space in the projection increases as a function of the number
of singular values used,p. For simplicity, we only consider
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Fig. 4. Comparison of the average mean square error between the
eigenface method (dash line), three-way PCA (solid line) and the
proposed method (start points) when the number of singular values
increases from 1 to 50.

Fig. 5. Image reconstruction by means of the standard method (left panel), the three-way PCA (middle panel) and by the new method (right
panel) usingp = 5 singular values.

Fig. 6. Image reconstruction by means of the standard method (left panel), the three-way PCA (middle panel) and by the new method (right
panel) usingp = 10 singular values.

p = 1, . . . ,50. The dash line correspond to the singular
values used by the standard method, the solid line is used by
the three-way PCA and the line with start points corresponds
to the new method. This graph shows that the quality of the
reconstruction by the new procedure is better than by the
others (Fig.4).
To see in more detail the performance of the reconstruc-

tion by the three methods,Figs. 5–8show gradually the re-
construction of one individual in the sample when the num-
ber of singular values increases,p = 5,10,20 and 50. The
reconstruction accuracy is measured by the MSE.
These figures clearly show that when the dimensionality

of the subspace is the same, the new method performs better
than the others. In order to further analyze these results, we
compare the distances between pairs of reconstructed images
in Rp (low-dimensional subspace) with the corresponding
distances in the original high-dimensional space.Table 1
shows the average L1-norm between original and projected
images, given by

‖� − �̂‖1 =
m∑
i=1

|�i − �̂i |, (38)
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Fig. 7. Image reconstruction by means of the standard method (left panel), the three-way PCA (middle panel) and by the new method (right
panel) usingp = 20 singular values.

Fig. 8. Image reconstruction by means of the standard method (left panel), the three-way PCA (middle panel) and by the new method (right
panel) usingp = 50 singular values.

Table 1
Average L1-norm between pairs of original and reconstructed im-
ages when the subspace increases from 5 to 50

p ‖� − �̂
Pca‖1 ‖� − �̂

3Pca‖1 ‖� − �̂
New‖1

5 14.99 10.94 4.92
10 9.86 6.19 2.24
20 5.74 2.19 0.75
30 3.68 1.01 0.36
50 1.52 0.35 0.10

when the dimensionality of the subspace increases from 5
to 50. In this equationm = N(N − 1)/2 is the total num-
ber of pairs from theN elements,�i is the Euclidean dis-
tance between the elements in theith pair in the sample,
i=1, . . . , m, and̂�i is the estimated distance by some recon-
struction method. The distances between the reconstructed
ith pair by the standard PCA, the three-way PCA and the

new method are denoted bŷ�
Pca
i , �̂

3Pca
i and̂�

New
i , respec-

tively.

It can be observed that the proposed method gives an im-
portant improvement in comparison to the others in repli-
cating the original distances between images. This property
is important in applications where the analysis is based on
distances between objects, as in multidimensional scaling or
discriminant analysis applications.
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