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This article presents a new procedure for multifold predictive validation in time series. The procedure is based on the so-called “filtered
residuals,” in-sample prediction errors evaluated in such a way that they are similar to out-of-sample ones. The filtered residuals are obtained
from parameters estimated by eliminating from the estimation process the estimated innovations at the points to be predicted. Thus, instead
of using the deletion of observations to validate the predictions, as in classical cross-validation, the procedure is based on deletion of the
estimated innovations. It is proved that the filtered residuals are uncorrelated, up to terms of small order, with the in-sample innovations,
a property shared with the out-of-sample residuals. The parameters needed for computing the filtered residuals can be obtained by estimating
a model with innovational outliers at the points to be predicted. The proposed multifold predictive validation is asymptotically equivalent to
an efficient model selection procedure. Some Monte Carlo evidence of the performance of the procedure is presented, and the application
is illustrated in an example.
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1. INTRODUCTION

One of the best-known methods for assessing the predic-
tive ability of a model, or predictive validation, is by means
of out-of-sample prediction errors. These out-of-sample predic-
tion errors have been used in many problems, including selec-
tion among discriminant rules, estimation of the mean squared
prediction error (MSPE), and selection of time series models.
For independent data, a standard way to perform predictive val-
idation with out-of-sample forecasts is cross-validation (Stone
1974; Allen 1974). Cross-validation is usually applied by divid-
ing the data into two subsamples, the first used for model fitting
and the second used for model validation. Then new partitions
are selected, the process is repeated, and some criterion, such
as the minimum MSPE, is used to estimate the prediction error
of a given model (see, e.g., Burman 1989; Zhang 1993).

An important aspect in cross-validation is that the observa-
tions should alternate, or “cross,” their roles. Each data point
can then be used for estimating the parameters and for com-
puting out-of-sample forecasts. However, with time series, we
need to use the past to forecast the future, and this introduces
clear restrictions in how the data can be used (Burman, Chow,
and Nolan 1994). For this reason, prediction validation in time
series is usually made through split-sample validation, in which
the time series is divided in two subsamples, the first used for
estimation and the second used to compute out-of-sample pre-
diction errors (i.e., there is no “crossing”).

The split-sample validation can be made in several ways (see,
e.g., West 1996). The most popular scheme among practition-
ers is the so-called “rolling forecast,” in which the splitting
process is repeated, increasing recursively the estimation sub-
sample observation by observation and decreasing the valida-
tion subsample accordingly. Then an estimation of the expected
error criterion for a given horizon can be computed using the
available prediction errors at that horizon. The out-of-sample
prediction errors obtained by split-sample validation also have
important drawbacks. First, the parameters of the model and
the variance of the prediction error are both estimated with a
fraction of the data, inducing a larger variance of the estima-
tors. This added variance is called the “data-splitting variance.”
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Second, the results of the split-sample validation depend on the
initial partition, which is arbitrary. Third, the h-step-ahead pre-
diction errors of rolling forecast are computed from models es-
timated with different sample sizes, and thus they cannot be
compared easily.

When the objective of predictive validation is model selec-
tion, an alternative approach involves using model selection cri-
teria. For ARMA( p,q) models, many of these criteria are based
on minimization of functions of the form

G(p,q) = ln σ̂ 2
p,q + (p + q)g(n), (1)

where p = 0,1, . . . ,p∗, q = 0,1, . . . ,q∗, with p∗ and q∗ as
some predetermined upper bounds, and σ̂ 2

p,q is the maximum
likelihood (ML) estimate of the residual variance of the fit-
ted ARMA( p,q) model in a sample of size n. The penalty
factor g(n) is such that g(n) → 0 when n → ∞. If g(n) =
ln(n)/n, then (1) becomes the Bayes information criterion
(BIC) (Schwartz 1978); if g(n) = 2/n, then we obtain the
Akaike information criterion (AIC) (Akaike 1974), which is
asymptotically equivalent to the final prediction error criterion
(FPE) (Akaike 1969); and if g(n) = c ln(ln n)/n, then (1) is the
Hannan and Quinn (1979) criterion (HQ). Some of these crite-
ria have been generalized for h-step-ahead forecasting.

Model selection criteria are related to cross-validation and
split-sample validation; in all cases we are assessing the
prediction performance of the model in out-of-sample fore-
casting. Furthermore, Stone (1977), Rissanen (1986), Stoica,
Eykhoff, Jansen, and Söderstrom (1986), and Kavalieris (1989)
have shown the asymptotic equivalence between some cross-
validation schemes and the AIC in selecting the order of an au-
toregression. Kavalieris (1989) has also shown the asymptotic
equivalence between the rolling forecast and the BIC. Although
asymptotically related, cross-validation and split-sample vali-
dation use information differently than model selection criteria.
Cross-validation and split-sample validation are based on out-
of-sample prediction errors, whereas model selection is based
on some correction of the in-sample prediction errors. The in-
sample prediction errors have the drawback of using the infor-
mation twice, for estimating the parameters of the predictor and
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for computing the prediction errors. This data reuse decreases
the possibility of detecting misspecifications and tends to se-
lect overparameterized predictors with lower values of resid-
ual variance, a problem analyzed by many authors (see, e.g.,
Efron 1986) and sometimes called “data-snooping bias” (White
2000). Thus some correction of the estimated in-sample vari-
ance is needed for model selection, as indicated by (1).

This article proposes an alternative multifold predictive vali-
dation procedure to evaluate the h-step-ahead prediction errors
of a time series model. The procedure is based on the so-called
“filtered residuals,” which are in-sample prediction errors eval-
uated in such a way that they are similar to out-of-sample ones.
This is obtained by eliminating from the estimation process the
estimated innovations at the points to be predicted. It can be
proved that with this proposal, the asymptotic covariance of the
prediction and the innovation of the predicted point has order of
magnitude O(n−2), compared to O(n−1) with classical residu-
als. Therefore, the data-snooping bias of traditional in-sample
residuals is clearly diminished. When the prediction horizon
and the number of initial values needed for the estimation are
small compared to n, we can obtain almost as many prediction
errors as the sample size, thus avoiding the data-splitting vari-
ance of the traditional out-of-sample prediction errors. Conse-
quently, the estimated error variance does not suffer the loss
of efficiency of rolling forecast or other split-sample validation
procedures in time series. The estimated prediction error vari-
ance obtained with the filtered residuals is then very similar to
the one obtained if we could compute n out-of-sample predic-
tion errors. We show that the filtered residuals can be easily
computed from a model that treats the points to be predicted as
innovational outliers.

The rest of the article is organized as follows. In Section 2 we
introduce the notation. In Section 3 we define the filtered resid-
uals and prove that they are uncorrelated, up to terms of small
order, with the in-sample innovations, a property shared with
the out-of-sample prediction errors. We also prove that choos-
ing among models by using the minimum mean squared filtered
residuals (MSFRs) is equivalent to an efficient model selection
procedure. In Section 4 we present a Monte Carlo study of the
performance of the MSFR and illustrate the procedure with an
application to real data. We give some final remarks in Section 5
and provide mathematical details and proofs of theorems in the
Appendixes.

2. IN–SAMPLE, OUT–OF–SAMPLE, AND
INTERPOLATED PREDICTION ERRORS

Let zt follow an ARMAX model with known exogenous vari-
ables xi,t, i = 1, . . . , k, following the equation

φ(B)zt =
k∑

i=1

ηi(B)xi,t + θ(B)at, (2)

where φ(B) = 1 − ∑p
j=1 φjB j, ηi(B) = ηi0 − ∑si

j=1 ηijB j, and

θ(B) = 1 − ∑q
j=1 θjB j. We assume that the random variables at

are iid with mean 0 and variance σ 2 and that the roots of
φ(B) = 0, ηi(B) = 0, and θ(B) = 0 are outside the unit cir-
cle. Let λ = (φ1, . . . , φp, η10, . . . , ηksk , θ1, . . . , θq)

′ be the m×1
vector of structural parameters, with m = p + k + ∑

si + q.

Suppose that an observed time series Zn = (z1, . . . , zn)
′ is rep-

resented by model (2). Let us denote the h-step-ahead fore-
cast from origin t by ẑt+h ≡ ẑt+h(Zt, λ) = E(zt+h|Zt, λ), where
the parameter vector λ is assumed known, Zt = (z1, . . . , zt)

′,
r ≤ t ≤ n − h, and z1, . . . , zr is a set of initial values. Let
us also define the population h-step ahead prediction error
as et+h = zt+h − ẑt+h. When λ is unknown, prediction errors
can be defined in various ways. If λ̂n = F(Zn) is some es-
timate of the parameters using the whole span of data, then
the in-sample h-step-ahead forecast is ẑin

t+h ≡ ẑt+h(Zt, λ̂n) =
E(zt+h|Zt, λ̂n), and the classical residuals, or in-sample one-
step-ahead prediction errors, are given by ât+1 = zt+1 − ẑin

t+1,

r ≤ t ≤ n − 1. Similarly, the h residuals, or in-sample h-step-
ahead prediction errors, are êin

t+h = zt+h − ẑin
t+h, r ≤ t ≤ n − h,

with ât+1 = êin
t+1. By averaging the available in-sample predic-

tion errors, we obtain an estimate of the in-sample MSPE as

V̂ in(h) =
∑n−h

t=r (êin
t+h)

2

n − h − r + 1
. (3)

The out-of-sample prediction errors are based on the forecasts
ẑout

t+h ≡ ẑt+h(Zt, λ̂m) = E(zt+h|Zt, λ̂m), where λ̂m = F(Zm),

m ≤ t is some estimate of the parameters using a set of ob-
servations Zm previous to zt+1 and are defined by êout

t+h =
zt+h − ẑout

t+h(Zt, λ̂m), r ≤ t ≤ n − h. In this article we assume
that m = t and that all of the data up to zt are included in the es-
timation of the parameters. This prediction procedure is known
as rolling forecast (see, e.g., West 1996, for alternative schemes
for obtaining out-of-sample prediction errors). Let nh be the
size of the initial estimation subsample. Then an estimate of the
out-of-sample h-step-ahead MSPE is

V̂out(h) =
∑n−h

t=nh
(êout

t+h)
2

n − h − nh + 1
. (4)

One advantage of êout
t+h over êin

t+h is that the former is free
from the information in the observations to be predicted,
zt+1, . . . , zt+h. Another way to estimate the parameters with-
out the effect of a block of observations is to assume that these
observations are missing. Peña (1990) showed that the para-
meters obtained under this hypothesis are, for a large sample
size, the same as those computed assuming additive outliers at
these positions. The model that treats the block of observations
zT+1, . . . , zT+h as missing is

φ(B)

(
zt −

h∑

j=1

wjD
(T+j)
t

)
=

k∑

i=1

ηi(B)xi,t + θ(B)at, (5)

where D(t0)
t = 1 if t = t0 and D(t0)

t = 0 otherwise, and wj,

j = 1, . . . ,h, are the parameters corresponding to the variables

D(T+j)
t . Let λ̂

int
n be the estimated parameter vector λ in (5).

The interpolated prediction errors are then given by êint
t+h =

zt+h − ẑ int
t+h, r ≤ t ≤ n − h, with ẑ int

t+h ≡ ẑt+h(Zt, λ̂
int
n ). The esti-

mator of the h-step-ahead MSPE using these errors is

V̂ int(h) =
∑n−h

t=r (êint
t+h)

2

n − h − r + 1
. (6)

These prediction errors for h = 1 were used by Peña (1990)
for building influence measures in time series. They are closely
related to the conditional residuals (Haslett 1999) derived for
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linear models with general covariance structure. It is important
to note that, apart from the pure MA(h) case, the influence
of the block of deleted observations is not completely dis-
carded in these residuals, because the effect of the innovations
aT+1, . . . ,aT+h will be included in future observations when
zT+k, k > h is correlated with the deleted observations.

3. FILTERED RESIDUALS

3.1 Definition

In this section we introduce a new type of prediction error in
an ARMAX model that has some advantages with respect to the
in-sample and out-of-sample prediction errors. Let Zn be a vec-
tor of time series data following (2). To build intuition, consider
first the AR(1) case, zt = φzt−1 + at, with |φ| < 1 and at white
noise. Our interest is in evaluating the ability of this predictor
to forecast future observations zt , t > n, using the prediction
errors computed in the sample Zn. Let zT+h, 1 ≤ (T + h) ≤ n
be an in-sample point to be predicted to estimate eT+h. The
out-of-sample approach to estimate eT+h with information ZT

would first obtain the estimator φ̂T = ∑T
2 ztzt−1/

∑T
2 z2

t−1, then

compute the predictor ẑ out
T+h = ẑT+h(ZT , φ̂T) = φ̂h

TzT , and fi-

nally obtain the estimated error êout
T+h = zT+h − φ̂h

TzT = eT+h +
(φh − φ̂h

T)zT . Note that the first and second terms are indepen-
dent, because eT+h = aT+h + φaT+h−1 + · · · + φh−1aT+1 and
the innovations aT+1, . . . ,aT+h are not included in the estima-
tor φ̂h

T . If we set, for example, h = 1, then it can be verified that
E(êout

T+1)
2 ≈ σ 2(1+(T −1)−1). Because the MSPE of a new ob-

servation is E(ên+1)
2 ≈ σ 2(1 + (n − 1)−1), it can be concluded

that the out-of-sample approach leads to an overestimation of
this MSPE. To obtain the large-sample bias of V̂out(1) as esti-
mator of E(ên+1)

2 we have that

E
[
V̂out(1)

] ≈ σ 2
(

1 +
∑n−1

t=n1
1/(t − 1)

n − n1

)
> σ 2

(
1 + 1

n − 2

)
,

and the asymptotic bias of V̂out(1) is positive. To better under-
stand this bias, this expression can be approximated for large
values of n − n1 by

E
[
V̂out(1)

] ≈ σ 2
(

1 + log(n) − log(n1)

n − n1

)
.

If we write n1 as n1 = αn, 0 < α < 1, then the large-sample
bias of V̂out(1) can be written as

Bias
[
V̂out(1)

] ≈ σ 2

n

(− logα

1 − α
− 1

)
,

which reveals that the positive bias will tend to increase expo-
nentially as we reduce α, the portion of the sample used for esti-
mation. If, on the other hand, we increase α, then the subsample
n(1 −α) used for the evaluation of forecasts will be smaller, in-
creasing the variability of V̂out(1). This is the difficult trade-off
when using V̂out.

In contrast, the in-sample approach would first use an es-
timate φ̂n based on the n observations, then build ẑin

T+h =
ẑT+h(ZT , φ̂n) = φ̂h

nzT , and finally compute êin
T+h = zT+h −

φ̂h
nzT = eT+h + (φh − φ̂h

n)zT . The first and second terms are
correlated, because φ̂n already contains, implicitly, the val-
ues aT+1, . . . ,aT+h. After some algebra, it can be verified that

E(êin
T+1)

2 ≈ σ 2(1− (n−1)−1). The large-sample bias of V̂ in(1)

as estimator of E(ên+1)
2 is Bias[V̂ in(1)] = −2σ 2(n−1)−1, and

it can be concluded that the in-sample approach underestimates
the MSPE.

We could alternatively estimate the prediction error eT+h by
using an estimate that (a) does not include the information pro-
vided by aT+1, . . . ,aT+h, as in the case of êout

T+h, to avoid the
bias of the in-sample residuals, but (b) does include the infor-
mation provided by aT+h+1, . . . ,an, as in êin

T+h, to improve the
accuracy of the estimation. That is, instead of deleting obser-
vations to estimate the parameter, we would delete only the
new information included in the observations to be predicted.
Note that this is the idea behind cross-validation for indepen-
dent data, because then deleting observations is equivalent to
deleting the new information. However, for dependent data they
are not equivalent, because the new information is just that
which cannot be predicted from the past values of the time
series. To avoid the new information, the parameter could be
estimated by using a new time series of filtered values yt that
does not include the information provided by aT+1, . . . ,aT+h.

To delete these innovations, we would first estimate the pa-
rameter as in the in-sample approach and compute êin

t+1 =
zt+1 − φ̂nzt = ât+1, t ≥ T + h. Then we would use these resid-
uals to build the filtered series yt, as follows: For t = 1, . . . ,T ,
we have that yt = zt; for t = T + 1, . . . ,T + h, we ignore the
innovations and assume that aT+1 = · · · = aT+h = 0 and then
yT+j = φ̂ jzT ; and for t > T + h, the series yt again takes into
account the observed contemporaneous innovations, and then
yt = φ̂nyt−1 + ât . A simpler procedure for disregarding the in-
formation provided by aT+1, . . . ,aT+h,which is faster to com-
pute and can be interpreted as an iteration of the previous idea,
is to assume that the innovations at these points are contami-
nated by outliers, which is equivalent to assuming innovative
outliers at these positions. For instance, for the AR(1) model,
this will imply estimating the model

zt = φzt−1 +
h∑

l=1

wlD
(T+l)
t + at,

which assumes innovative outliers at positions T + 1, . . . ,

T + h. It is well known (see, e.g., Chang, Tiao, and Chen
1988) that in this model ŵl = zt+l − φ̂filzt+l−1 and φ̂fil =∑

A ztzt−1/
∑

A z2
t , where A is the set (2, . . . ,T,T + h +

1, . . . ,n). Thus in this model, âT+l = 0, l = 1, . . . ,h. Note that
the information about aT+l is not completely eliminated in the
estimation of the parameter φ̂fil, because âT+l is only an estima-
tion of the true innovation. However, as we prove in Theorem 1
in the next section, the prediction error êfil

T+h = zT+h − (φ̂fil)hzT

has a similar behavior to the h-step-ahead out-of-sample predic-
tion error. For instance, for h = 1, we have êfil

T+1 = aT+1 + (φ −
φ̂fil)zT , and because we show that E{(φ̂filzT)aT+1} = O(n−2),
we have that E(êfil

T+1)
2 ≈ σ 2(1 + (n − 2)−1), and these fil-

tered errors have an MSPE very close to the true one esti-
mated with the complete sample, E(ên+1)

2. Also, E[V̂fil(1)] ≈
σ 2(1 + (n − 2)−1), and then the large-sample bias as estimator
of E(ên+1)

2 is Bias[V̂fil(1)] = σ 2[(n − 2)(n − 1)]−1, which is
of lower order of magnitude than its competitors. Theorem 2 in
Section 3.3 extends this result to a more general situation.
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In the general case, estimation of the parameters down-
weighting the information contained in the innovations aT+1,

. . . ,aT+h can be obtained by the model

φ(B)zt =
k∑

i=1

ηi(B)xi,t + θ(B)

(
at +

h∑

l=1

wlD
(T+l)
t

)
, (7)

where the D(T+l)
t are dummy variables as defined in (5) and

wl, l = 1, . . . ,h, are the parameters corresponding to these vari-
ables, D(T+l)

t . Let us denote λ̂fil
n = [(φ̂fil

n )′, (η̂fil
n )′, (θ̂fil

n )′]′ as the
parameter vector of ML or least squares (LS) estimates of λ

using the model (7). Then, following Mann and Wald (1943),
λ̂fil

n
p→λ. The estimates λ̂fil

n depend on T and h, but for sim-
plicity we do not considered this in the notation. Let ẑfil

T+h =
ẑT+h(ZT , λ̂fil

n ) be the prediction of zT+h from zT using the esti-
mated model

φ̂fil
n (B)zt =

k∑

i=1

η̂fil
ni (B)xi,t + θ̂fil

n (B)ât,

and let êfil
T+h = zT+h − ẑfil

T+h be the corresponding filtered resid-
ual. After estimating model (7) for T = r, . . . ,n − h, we have
n − h − r + 1 h-step-ahead filtered residuals. The average of
these squared residuals is the MSFR, which will lead to the fol-
lowing estimate of the h-step-ahead MSPE:

V̂fil(h) =
∑n−h

t=r (êfil
t+h)

2

n − h − r + 1
. (8)

The relationship between filtered residual and innovative out-
liers makes computation of the MSFR straightforward. For
h = 1, the computations are the same as in the standard proce-
dure of checking for innovative outliers, and the estimation of w
directly provides the value of the filtered residual. For h > 1, we
just need to introduce a patch of h innovative outliers and use
the estimated parameters to compute the h-step-ahead forecast.
A Matlab program to compute the MSFR in a general ARMAX
model can be downloaded from the authors’ website.

3.2 Filtered Residuals as Out-Of-Sample
Prediction Errors

The predictor ẑin
T+h, r < (T + h) ≤ n verifies E(ẑin

T+h ×
aT+l) 	= 0, l = 1, . . . ,h, because of the influence of the innova-
tions aT+l in the estimation, whereas the out-of-sample predic-
tor verifies E(ẑ out

T+haT+l) = 0. The predictor ẑ fil
T+h is based on

the estimator λ̂fil
n , which explicitly sets âT+l = 0, l = 1, . . . ,h.

Because âT+l are only estimates of the true innovations, their
effect cannot be completely removed. However, we can prove
that the influence of these innovations aT+l, l = 1, . . . ,h, in
ẑ fil

T+h is noticeably reduced. The following theorem shows that
the covariance between the filtered predictor and the future
innovations, E(ẑ fil

T+haT+l), l = 1, . . . ,h, is of a lower order
of magnitude than with the classical in-sample predictor. The
proof is given in Appendix B.

Theorem 1. Let zt follow the ARMAX model (2). Let ẑin
T+h be

the h-step-ahead predictor of zT+h, where r < (T + h) ≤ n, and
let ẑfil

T+h be the filtered predictor. Then, for l = 1, . . . ,h,

(a) E{ẑin
T+haT+l} = O(n−1)

and

(b) E{ẑfil
T+haT+l} = O(n−2).

This result then proves that the filtered residuals have similar
properties to the out-of-sample prediction errors.

3.3 Estimation of the Out-Of-Sample MSPE With
the Filtered Residuals and Efficient Model Selection

Let us denote by Vpop(h) = E[(zn+h − ẑn+h)
2|Zn, λ̂n] the out-

of-sample h-step-ahead MSPE from predicting zn+h with the
ARMAX model (2) with parameter vector λ estimated with
a root-n–consistent method using the whole sample Zn. Esti-
mation of Vpop(h) is a rather challenging issue, because even
an asymptotic approximation of a properly specified model is
a nonlinear function of the parameter vector λ that changes
with the horizon (see, e.g., Baillie 1980; Fuller and Hasza
1981; Yamamoto 1981; Kunitomo and Yamamoto 1985). In the
ARMA model at h = 1, the asymptotic Vpop(1) is

Vpop(1) = σ 2
(

1 + k

n

)
+ O(n−3/2), (9)

where k is the number of estimated parameters. Expression (9)
is the basis of the FPE criterion; it is easy to handle because it
needs only the estimation of σ 2. However, at larger horizons,
Vpop(h) depends on the dynamic of the model. For instance, in
the case of a correctly specified AR( p) of mean 0, the asymp-
totic MSPE is (Fuller and Hasza 1981)

Vpop(h) = σ 2
h−1∑

i=0

(e′
pBiep)

2

+ σ 2

n

h−1∑

j=0

h−1∑

s=0

(e′
pB jep)(e′

pBsep)

× trace(Bh−1−j�zBh−1−s�−1
z ),

+ O(n−3/2), (10)

where �z = E[(zt, zt−1)
′(ztzt−1)], ep = (1,0, . . . ,0)′ with di-

mension p × 1 and

B =
(

φ1 φ2 · · · φp−1 φp

Ip−1 0

)
,

where Ip is the identity matrix of size p and 0 is a vector of 0’s
of appropriate dimension. This expression requires the true pa-
rameter values B, σ 2, and �z. An estimator of Vpop in this
AR( p) case may be obtained from (10) by ignoring the remain-
der term and replacing B, σ 2, and �z by their estimators B̂, σ̂ 2,
and �̂z. Then a plug-in estimator is

V̂plug(h) = σ̂ 2
h−1∑

i=0

(e′
pB̂iep)

2

+ σ̂ 2

n

h−1∑

j=0

h−1∑

s=0

(e′
pB̂

j
ep)(e′

pB̂sep)

× trace(B̂h−1−j�̂zB̂h−1−s�̂
−1
z ). (11)

In more general models, the estimator V̂plug(h) requires compu-
tation of an even more complex function (see, e.g., the appendix
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in Baillie 1980). Despite the difficulty in estimating Vpop(h), its
computation would provide very useful information for a vari-
ety of purposes, including extending the FPE criterion for h > 1
in a general ARMAX situation, building asymptotic confidence
intervals, and assessing the predictability at horizon h ≥ 1 of a
series using R2-like measures (see, e.g., Pierce 1979; Granger
and Newbold 1986, p. 310; Diebold and Kilian 2001).

From the result in Theorem 1, the estimator V̂fil(h), defined
in (8) can be used as an estimate of Vpop(h), without dismissing
the possibility of using alternative loss functions. The MSFR is
much easier to compute than V̂plug(h), because no theoretical
formulae are required, and has a very low bias, as shown in the
following theorem.

Theorem 2. Let the conditions of Theorem 1 hold. Then

E[V̂fil(h)] = Vpop(h) + O(n−3/2). (12)

It is worth remarking that Theorem 2 relies on the ability of
filtered residuals to mimic out-of-sample prediction errors, as
shown in Theorem 1. A corollary of Theorem 2 is that, because
V̂fil(h) is asymptotically equivalent to Vpop(h), minimizing the
MSFR is asymptotically equivalent to selecting the most effi-
cient predictor, at horizon h, among a set of competing models.

From Theorem 2 and expression (9), it can be seen that
minimizing the MSFR is asymptotically equivalent to the FPE
criterion for h = 1. Note also that the MSFR is, for pure
autoregressive processes and h = 1, closely related to the
cross-validation scheme described Stone (1974), Allen (1974),
and Stoica et al. (1986). For instance, for pure autoregressive
processes V̂fil(1) is equivalent to the PRESS criteria (Allen
1974). The use of the MSFR for model selection, then can be
interpreted as the generalization of the PRESS criteria to h-step
prediction with ARMAX models.

4. EMPIRICAL COMPARISON

4.1 Preliminaries

In this section we illustrate the performance of the proposed
procedure in finite samples using both a Monte Carlo experi-
ment and some real data. We first compare the empirical bias
and mean squared error (MSE) of alternative estimators of
the population out-of-sample h-step-ahead MSPE (Vpop(h)).
This experiment will allow to check how the asymptotic re-
sults of Theorem 2 apply in finite samples, comparing the bias
of V̂fil(h) with in-sample and out-of-sample approaches. The
empirical results will also allow us to compare the precision
of the alternative approaches, computing the MSE of the es-
timators, and showing the high inefficiency of the frequently
used split-sample validation procedures. We use both univari-
ate and ARMAX models in the comparison. It is important to
find reliable predictive validation procedures in ARMAX mod-
els, because there is a higher risk of misspecification, falling
into spurious relationships between the variables. We also in-
clude in the simulation a nonlinear ARMAX model, which can
illustrate the behavior of the proposed procedure when the un-
derline process does not belong to the ARMAX family.

In a second part of the experiment, we also evaluate the
relative performance of the alternative estimators as validation
criteria for model selection for a prediction horizon h of inter-
est. We also include in the comparison popular criteria, such as

AIC, BIC, HQ (with c = 3), and FPE. The alternative informa-
tion criteria, as well as V̂fil(h), have been built using asymptotic
arguments, so it is useful to compare them in small and moder-
ate samples. Finally, we illustrate some application of the pro-
posed procedure with real data. To this aim, we have chosen a
dataset that is easily available in the literature as the gas furnace
data of Box and Jenkins (1976, p. 381).

Four types of prediction errors are considered in the com-
parison. The first are the in-sample prediction errors, êin

t+h, ob-
tained from LS estimation of the predictor ẑin

t+h, and from them
we compute two estimators of Vpop(h), the average of squared
prediction errors, V̂ in(h), and the average corrected by degrees
of freedom, V̂ inc(h). For instance, for an AR( p), they are com-
puted by

V̂ in(h) =
∑n−h

t=p (êin
t+h)

2

n − h − p + 1
(13)

and

V̂ inc(h) =
∑n−h

t=p (êin
t+h)

2

n − h − 2p + 1
. (14)

The second type of prediction errors considered are out-of-
sample prediction errors obtained using the rolling forecast. To
compute these, the estimation subsample increases recursively,
and the model is reestimated by LS including all data prior to
the forecast origin. We compute two estimates of Vpop(h), one
from êo50

t+h, where the initial estimation subsample has size [.5n]
and [·] denotes the integer part, and one from êo75

t+h, where the
initial estimation subsample has size [.75n]. The goal of includ-
ing both prediction errors is to compare the effect of different
initial subsamples. In both cases, the MSPE is estimated by
averaging the available squared prediction errors, and the es-
timates are denoted by V̂o50(h) and V̂o75(h). In the case of an
AR( p), they are given by

V̂o50(h) =
∑n−h

t=[.5n](êo50
t+h)

2

n − h − [.5n] + 1
(15a)

and

V̂o75(h) =
∑n−h

t=[.75n](êo75
t+h)

2

n − h − [.75n]+ 1
. (15b)

The third and fourth types of prediction errors considered are
the interpolated prediction errors êint

T+h and the proposed filtered
residuals êfil

T+h, which are also obtained using LS estimation.
The corresponding MSPEs are estimated with (6) and (8), and
we denote them by V̂ int(h) and V̂fil(h).

We performed two experiments. In the first experiment, the
true data-generating process (DGP) is the AR(3): (1 − 2B)(1 −
.5B)(1 − .7B)zt = at, with at ∼ N(0,1). In each simulated se-
ries, we fitted AR( p) models of order p = 1,2, . . . ,6. In the sec-
ond experiment, the DGP is the model is yt = .9yt−1 + .7x1t +
.2x1t−1 + γ x1tx1t−1 + at with γ = 0 (linear ARX case) and
γ = .1 (nonlinear case). The independent variable x1t is a se-
quence of iid random variables with distribution x1t ∼ N(0,1).
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In each replication of this model, we fit the following alternative
linear models:

M1 : yt = c + αyt−1 + β1x1t + β2x1t−1 + at,

M2 : yt = c + αyt−1 + β1x1t + at,

M3 : yt = c + αyt−1 + β1x1t + β2x1t−1 + β3x2t + at,

M4 : yt = c + αyt−1 + β1x1t + β2x1t−1 + β3x2t + β4x3t + at,

and

M5 : yt = c +
5∑

i=1

φpyt−p + at,

where x2t and x3t are independent of x1t but are also iid and
N(0,1).

For each Monte Carlo replication, we generated 200 + n + 5
data values and dropped the first 200 data values to ensure sta-
tionary initial conditions. Of the remaining n + 5 data points,
we used the first n to estimate the parameters of each model
and considered the last five observations as future observations.
We considered two sample sizes, n = 25 and 100. In the first ex-
periment, the prediction horizon is h = 1,3, and in the second
experiment it is h = 1,3,5. For each experiment, model, and
sample of size n, we computed the statistics V̂ in(h), V̂ inc(h),

V̂o50(h), V̂o75(h), V̂ int(h), and V̂fil(h), as well as the AIC, BIC,
HQ, and FPE. For h = 1, we used the AIC, BIC, and HQ as
in (1), with V̂ in(1) as the ML estimator of σ 2. The FPE uses
V̂ inc(1) as an unbiased estimate of σ 2. We also used those crite-
ria at h > 1 using (1) but replacing V̂ in(1) by V̂ in(h) and V̂ inc(1)

by V̂ inc(h). By this, we intend not to propose new definitions
of those criteria for h-step-ahead forecasting (see Hurvich and
Tsai 1997 for generalizations of AIC along these lines), but
rather to use them as simple approximate criteria for compar-
ison purposes. We used remaining five observations to compute
the population out-of-sample MSPE, Vpop(h).

We ran each experiment twice. The first run was designed for
estimation of the population MSPE for each model, Vpop(h);
the second, for comparing different estimates of this MSPE. In
the first run, we made 100,000 replications. In each replication
we used the n observations to estimate the competing AR( p)
models in the first experiment and the models M1–M5 in the
second experiment. With each estimated model, we predicted
the observations n + 1 to n + 5. Then we used the five future
observations to estimate the population out-of-sample MSPE by
averaging the squared prediction errors. In this way we obtained
the empirical MSPE for each model, reported in Tables 1 and 2
denoted by Vpop(h). The figures in bold type correspond to the
model with the lowest MSPE. In the second run, we gener-
ated 5,000 replications and obtained, in each replication, the es-
timates V̂ in(h), V̂ inc(h), V̂o50(h), V̂o75(h), V̂ int(h), and V̂fil(h).
By comparing these estimates with Vpop(h), we can evalu-
ate their bias, [V̂(h) − Vpop(h)], and MSE [V̂(h) − Vpop(h)]2,
as estimators of Vpop(h) by averaging these values over the
5,000 replications.

The results regarding bias and MSE of these statistics are
also reported in Tables 1 and 2. We use all these estima-
tors of Vpop(h), together with AIC, BIC, HQ, and FPE, as
model selection criteria and compute the proportion of times
that each model has been selected by each criterion within the

5,000 replications. We summarize the conclusions of the exper-
iments in the following sections. For the sake of clarity, and
because HQ has similar performance to BIC in these experi-
ments, we do not report their results. For the same reason, and
to ease comparisons, in the second experiment we do not report
the results on V̂ int(h) and of sample size n = 25, because they
are qualitatively similar to those of the first experiment.

4.2 Bias and Mean Squared Error of
the Competing Estimators

Table 1 gives the empirical bias of the alternative estima-
tors of Vpop(h) in the first experiment. As expected, V̂ in(h)

has a large negative bias, followed by V̂ int(h) and V̂ inc(h). The
negative bias grows with p. This is the aforementioned data-
snooping bias, which will favor the selection of overparameter-
ized models. In contrast, the estimators based on out-of-sample
residuals V̂o50(h) and V̂o75(h) tend to have positive bias, espe-
cially in small samples. This positive bias grows with p and is
due to the smaller sample size used in estimation of the para-
meters. This effect is part of the aforementioned data-splitting
variance of the split-sample validation methods, which will fa-
vor the selection of smaller models. The bias of the proposed
V̂fil(h) is in general very low: it is the smallest for n = 25, and
similar to V̂o75(h) but larger than V̂o50(h) for n = 100.

The importance of the bias can be better appreciated by not-
ing that the differences between the true Vpop(h) of the models
under consideration are often smaller than the bias of the esti-
mators. It is thus essential to use estimates with very low bias.
For instance, in Table 1 with n = 100 and h = 1, the most ef-
ficient model is the AR(2), with Vpop(1) = 1.01, and the least
efficient is the AR(6), with Vpop(1) = 1.05. The difference be-
tween the variance of both predictors is .04. However, if we
use the estimate V̂ in(h) to compare these models, then the av-
erage value that we will obtain for the Vpop(1) of the AR(2)
will be 1.01 plus the bias (i.e., 1.01 − .046 = .964), whereas
for the AR(6), it will be 1.05 − .129 = .921 < .964. Therefore,
the AR(6) will be chosen. Also, by using V̂ inc(h), we would
erroneously conclude that both models are equally accurate.
However, if we use the proposed V̂fil(h), then we will obtain
1.01 − .005 = 1.005 for the AR(2) and 1.05 + .001 = 1.051,
clearly showing the advantage of the efficient predictor.

Table 2 shows the bias in the second experiment. The conclu-
sions that we draw are similar to those of the first experiment
in both the linear (γ = 0) and the nonlinear cases (γ = .1). The
in-sample procedures V̂ in(h) and V̂ inc(h) have a large negative
bias that increases with the size of the model. The bias is es-
pecially important in M5, where we fit an AR(5). The out-of-
sample procedures V̂o50(h) and V̂o75(h) have positive bias, with
V̂o50(h) showing in general a lower performance, especially in
the nonlinear case. The bias of the proposed V̂fil(h) is the small-
est of all the estimators compared.

Regarding the MSE, the results of the first experiment in
Table 1 show that the out-of-sample estimates V̂o50(h) and
V̂o75(h) have a very large MSE. This is also a consequence of
the data-splitting variance and comes from the smaller num-
ber of prediction errors êout

t+h that are used to build V̂o50(h) and

V̂o75(h). When the sample size is small, n = 25, the estimator
with minimum MSE is V̂ inc(h). Although the bias of this esti-
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mator is relatively large, its variance is the smallest because it
includes the largest number of prediction errors, and this effect
is very important for small sample size. When the sample size
increases, n = 100, the bias become more important, and V̂fil(h)

has similar or better performance than V̂ inc(h). The same con-
clusions can be obtained from the transfer function experiment
in Table 2 in both the linear and the nonlinear cases (γ = .1);
the MSE is highly related to the number of prediction errors
used in the estimator of Vpop(h).

4.3 Comparison of Model Selection Criteria

Tables 1 and 2 also show the empirical performance of al-
ternative model selection criteria for the first and second ex-
periments. They report the proportion of times that each model
was selected for each criterion. Thus the sum of the entries for
each estimator for p = 1, . . . ,6 in Table 1 and for M1, . . . ,M5
in Table 2 must add up to 1. The row corresponding with the
minimum Vpop(h) is in boldface.

We can summarize the conclusions as follows:

1. The in-sample procedures V̂ inc(h) and V̂ int(h) show a
strong tendency to choose a high-order p in the first ex-
periment and a clearly overparameterized model in the
second experiment (models M3 and M4). This result is
consistent with the reported bias of these estimators.

2. In the contrast, the out-of-sample procedures V̂o50(h) and
V̂o75(h) have a tendency toward smaller predictors, irre-
spective of their efficiency, in agreement with the reported
bias of these estimators. The large MSE of V̂o75(h) is also
reflected in these tables as a lower capacity to discriminate
between competing predictors; it can be seen that in both
experiments, V̂o75(h) has a tendency toward a uniformity
in the probability of selecting the best predictor.

3. As can be expected, the BIC also has a tendency toward
underfitting.

4. The tables show a high similarity between AIC, FPE, and
the proposed V̂fil(h) at h = 100.

In summary, V̂fil(h) seems to be a good estimator of Vpop(h)

in finite samples. It clearly surpasses the traditional predictive
validation criteria consisting on splitting the sample into an esti-
mation subsample and a prediction one. Because V̂fil(h) is just a
sampling average of a function of the filtered prediction errors,
it can be implemented using a different loss functions than the
quadratic one, that is, the mean absolute deviation. This possi-
bility gives V̂fil(h) greater flexibility than its competitors.

4.4 An Example: Modeling the Gas Furnace Data

Box and Jenkins (1976, p. 381) built a transfer function
model for the proportion of output CO2 ( yt) as a function of
the nonstochastic feed rate of methane (xt) in a gas furnace. The
data correspond to 296 readings at 9-second intervals. A general
transfer function for these data using the Box–Jenkins notation
would be

yt = (ω0 − ω1B − · · · − ωsBs)

1 − δ1B − · · · − δrBr
xt−b

+ 1 − θ1B − · · · − θqBq

1 − φ1B − · · · − φpBp
at. (16)

Using their methodology, Box and Jenkins fitted the model
b = 3, s = 2, r = 1,q = 0,p = 2. We denote this model by R1.
Our purpose is to use the proposed predictive validation proce-
dure to analyze the prediction performance of both R1 and some
other alternative models, which can be considered as small de-
partures from R1. The goal is to complement the identification
procedure with an additional criterion based explicitly on fore-
casting performance. This table reports the value of V̂fil(h) for
h = 1,3,7 and, for comparison purposes, the respective values
using V̂o50(h). The table also shows the traditional AIC and
BIC. For brevity, we report only the results of four alternative
models (R2–R5) based on (16). The orders that are different
from R1 are in bold type. We have also highlighted the cells
that minimize the respective criterion. The estimation has been
made with the nag routines g13bef and g13bjf as implemented
in Matlab.

Table 3 shows that, according to the AIC and BIC, the pre-
ferred model would be R1. However, V̂fil(h) shows that whereas
R1 is the best predictor at h = 1, the predictions generated by
R3 are more efficient at h = 3,5. It can be seen that the less-
efficient criterion V̂o50(h) also selects R1 at h = 1,3, but at
longer horizons, it selects different models than V̂fil(h). Table 3
also reports the results for comparing two univariate models
for the output yt, denoted by U1 and U2. Using the AIC and
BIC, we would use and AR(4). However, V̂fil(h) would select
an AR(3) for h = 5.

From the results of the article, we can then use V̂fil(h) as ac-
curate estimates of the MSPE of the transfer function. [Note
that V̂o50(h) supplies very inflated estimates of MSPE.] We
can use the estimates of MSPE for many purposes apart from
model comparison. For instance, to build unconditional asymp-
totic prediction intervals. We can also obtain measures of the
advantages of the transfer function with respect to the univariate
model for different prediction horizons. By comparing V̂fil(h)

of R1 and U2 at h = 1, we can see that the transfer function

Table 3. Comparison of Alternative Transfer Funtions for the Gas Furnace Data

Orders V̂ fil (h) V̂ o50(h)
Model b s r p q AIC BIC h = 1 h = 3 h = 5 h = 1 h = 3 h = 5

R1 3 2 1 2 0 −838.9 −813.0 .0622 .433 .607 .105 .796 1.348
R2 3 2 2 2 0 −836.9 −807.4 .0627 .437 .610 .106 .798 1.348
R3 2 1 3 2 0 −837.3 −807.7 .0625 .428 .605 .106 .823 1.398
R4 3 2 1 3 0 −837.4 −807.9 .0637 .439 .677 .107 .800 1.352
R5 3 2 1 1 1 −801.4 −775.5 .0707 .490 .713 .121 .803 1.277

U1 0 0 0 3 0 −630.1 −615.4 .1215 1.917 5.705 .164 2.237 5.965
U2 0 0 0 4 0 −642.0 −623.6 .1174 1.906 5.717 .159 2.269 5.943
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allows a reduction of 47% in the one-step-ahead MSPE with
respect to the univariate model. Also, by comparing V̂fil(h) of
R3 and U1 at h = 5, the reduction in MSPE increases to 89%.
Therefore, the transfer function for the gas furnace data is a
much more useful tool at longer horizons than at h = 1.

5. CONCLUDING REMARKS

The identification of an ARMAX model is usually made after
some amount of data mining, and hence the risk of building
overidentified models is not negligible. The consequences in
prediction of such overidentification are well documented. It is
then not surprising that forecasters make extensive use of split-
sample validation procedures to complement their analysis. The
use of the filtered residuals defined in this article can then be a
valuable alternative for performing such validation.

The proposed predictive validation procedure is simple to
compute and provides a straightforward way to estimate the
h-step-ahead prediction error of competing predictors. Its com-
putation requires a similar effort as for the standard procedures
of checking for outliers, and it can be implemented in a simi-
lar way. This predictive validation approach has clear intuitive
appeal. Because the innovations of the h observations used to
produce the h-step-ahead filtered prediction error are almost
uncorrelated with the estimated predictor, it is closely related
to a multifold (h-fold) cross-validation procedure. This makes
the proposed predictive validation an effective tool to avoid the
detection of spurious relationships.

APPENDIX A: PREVIOUS RESULTS

Let zt follow the ARMAX model (2). For convenience, we express
this model in VARX(1) form as

Yt = AYt−1 + Xt+1 + Ut, (A.1)

where Yt, Xt+1, and Ut are the following m × 1 vectors, with m =
p + k + ∑

si + q, Ut = [at, 0′
m−q−1, at, 0′

q−1], Yt = [zt, zt−1, . . . ,

zt−p+1, x1,t+1, . . . , x1,t+1−s1, . . . , xk,t+1−sk ,at, . . . ,at−q+1]′, and

Xt+1 = [0′
p, x1,t+1, 0′

s1
, x2,t+1, 0′

s2
, . . . , xk,t+1, 0′

sk
,0′

q]′, where 0p

is a vector of 0’s of dimension p, and A is the m × m block matrix:

A =





B C1 C2 · · · Ck D
0 E1 0 · · · 0 0
0 0 E2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · Ek 0
0 0 0 · · · 0 G





,

where 0 is a matrix with 0’s of appropriate dimension; B is p × p; Ci,

i = 1, . . . , k, is p × (si + 1); D is p × q; Ei, i = 1, . . . , k, is (si + 1) ×
(si + 1); and G is q × q. These matrices have the following structure:

B =
[

φ1 φ2 · · · φp−1 φp
Ip−1 0

]
,

Ci =
[

ηi,0 −ηi,1 · · · −ηi,si

0

]
,

Ei =
[

0 0
Isi 0

]
,

where In is the identity matrix of size n and G has the same structure
as Ei. The matrix D has the same structure as Ci, but with the elements
[−θ1 − θ2 · · · − θq] in the first row. Because the first element of Xt is

null, and using (A.1) recursively, we can express the observation zT+h
as (see Baillie 1980)

zT+h = α(h)′YT +
h−1∑

l=1

α(l)′XT+h+1−l +
h−1∑

l=0

α(l)′UT+h−l, (A.2)

where α(l)′ = [α1(l), . . . , αm(l)]′ = c′Al, with c = (1,0, . . . ,0)′ and
dimension (m × 1). From the structure of A and Ut, it can be ver-
ified that α(l)′UT+h−l = ψlaT+h−l, where ψ(B) = (1 + ψ1B +
ψ2B2 + · · ·) is obtained from φ(B)ψ(B) = θ(B). Let α̂(l) be the es-
timation of α(l) obtained from ML estimation of model (2), based
on the whole span of available data. Then the estimated predictor is
ẑin
T+h = α̂(h)′YT + ∑h−1

l=1 α̂(l)′XT+h+1−l, and the prediction error of
this estimated predictor is

êin
T+h =

h−1∑

l=0

ψlaT+h−l + [α(h) − α̂(h)]′YT

+
h−1∑

l=1

[α(l) − α̂(l)]′XT+h+1−l

=
h−1∑

l=0

ψlaT+h−l +
m∑

i=1

[α̂i(h) − αi(h)]Y(i)
T

+
h−1∑

l=1

m∑

i=1

[αi(l) − α̂i(l)]X(i)
T+h+1−l, (A.3)

where Y(i)
t and X(i)

t are the ith row of the vectors Yt and Xt , and
αi(l ) is the ith element of α(l ). To evaluate E(ẑin

T+heT+h), we first
prove the following lemma.

Lemma A.1. Let zt follow model (2). Let λj be an element of the

parameter vector λ and let λ̂j be the ML or LS estimator. Then

E(ẑin
T+heT+h) = O

(
max

{
E
[
(λ̂j − λj)Y

(i)
T aT+h−l

]};
j, i = 1, . . . ,m; l = 1, . . . ,h; ). (A.4)

Proof. Let us denote by λ̇ any vector of values in a closed region
� of parameter points satisfying assumption (A.2) and containing λ in
its interior. We can then write

ȧt = φ̇(B)θ̇(B)−1zt −
k∑

j=1

η̇j(B)θ̇(B)−1xj,t. (A.5)

If the innovations sequence {at} is normally distributed, then the log-
likelihood function is

log L̇ = const − n

2
log σ̇ 2 − 1

2σ̇ 2

n∑

t=1

ȧ2
t . (A.6)

Because our interest is in the structural parameters λ, we use the con-
centrated likelihood on σ 2, with the ML estimation of this parameter
being σ̂ 2 = n−1 ∑

â2
t . Therefore, manipulation of the log-likelihood

is based only on the last term in (A.6). Hence the proof will also be
applicable to LS estimation without using the normality assumption.
From (A.3), we can write

E(ẑin
T+heT+h) =

h−1∑

l=0

ψlE
{[α̂(h) − α(h)]′YT aT+h−l

}

+
h−1∑

l=0

h−1∑

k=1

ψlE
{[α(k) − α̂(k)]′XT+h+1−kaT+h−l

}
.
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By using a Taylor expansion on α̂(h) around their true values, we ob-
tain

E
{[α̂(h) − α(h)]′YTaT+h−l

}

=
m∑

i=1

m∑

j=1

∂αi(h)

∂λj
E
[
(λ̂j − λj)Y

(i)
T aT+h−l

]
(A.7a)

+
m∑

i=1

m∑

j=1

m∑

r=1

1

2

∂αi(h)

∂λj ∂λr

(A.7b)
× E

[
(λ̂j − λj)(λ̂r − λr)Y

(i)
T aT+h−l

] + R∗
Y ,

where R∗
Y = o(max{E[(λ̂j −λj)(λ̂r −λr)Y

(i)
T aT+h−l]}). To analyze the

order of magnitude of the first term in (A.7b) we have, applying the
properties of the log-likelihood function log L (see, e.g., Pierce 1971;
Tanaka 1984),

O
{
E
[
(λ̂j − λj)(λ̂r − λr)Y

(i)
T aT+h−l

]}

= O

{
1

n2
E

[(
∂ log L

∂λj

)(
∂ log L

∂λr

)
Y(i)

T aT+h−l

]}
. (A.8)

The term inside the expectation operator in (A.8) is a scalar obtained
by the sum of products of combinations of random variables. It can be
shown that except for a fixed number of terms that depends on the
orders p,q, s1, . . . , sk and the horizon h, and not on n, the terms have
null expectation. Then

O

{
1

n2
E

[(
∂ log L

∂λj

)(
∂ log L

∂λr

)
Y(i)

T aT+h−l

]}
= O(n−2), (A.9)

and thus E{[α̂(h) − α(h)]′YT aT+h−l} = O(max{E[(λ̂j − λj) ×
Y(i)

T aT+h−l]}). Using the same arguments, it also holds that E{[α(k)−
α̂(k)]′XT+h+1−kaT+h−l} = O(max{E[(λ̂j − λj)Y

(i)
T aT+h−l]}). Then

E(ẑin
T+heT+h) = O(maxj,i,l{E[(λ̂j − λj)Y

(i)
T aT+h−l]}), and the lemma

is proved.

APPENDIX B: PROOF OF THEOREM 1

B.1 Proof of Part (a)

By Lemma A.1 and using a Taylor series expansion of the log-
likelihood function to approximate (λ̂j − λj), we obtain

E(ẑin
T+heT+h) = O

{
max
i,j,l

E

(
1

n

∂ log L

∂λj
Y(i)

T aT+h−l

)}
.

For the sake of brevity, here we show only the elements corresponding
to the parameters φ. It can be verified that the results hold for all of the
elements λj. The first derivative is

1

n

∂ log L

∂φi
= − 1

2σ 2

n∑

t=1

2at
∂at

∂φj
=

∑n
t=1 atut−i

nσ 2
, i = 1, . . . ,p.

Then n−1σ−2∑n
t=1E(atut−jyT+1−iaT+h−l) = n−1σ−2E(a2

T+h−l)×
E(uT+h−l−jyT+1−i) = O(n−1). Therefore, E(ẑin

T+heT+h) =
O{maxj,i,l E[(λ̂j − λj)Y

(i)
T aT+h−l]} = O(n−1), and the proof is com-

pleted. Because we are taking derivatives with respect to the structural
parameters, and using the concentrated likelihood on σ 2, it can be
verified that the results are also extended to LS estimation where the
normality assumption is not needed.

B.2 Proof of Part (b)

Following similar arguments as those in previous sections, we have

E(ẑfil
T+heT+h) = O

{
max
j,i,l

E
[
(λ̂fil

j − λj)Y
(i)
T aT+h−l

]}
, (B.1)

where λ̂fil maximizes the log-likelihood function log L̇fil = −(n/2) ×
log σ̇ 2 − (2σ̇ 2)−1 ∑

t 	=T+1,...,T+h ȧ2
t (or, equivalently, minimizes the

LS
∑

t 	=T+1,...,T+h ȧ2
t ). Now the new log-likelihood will show some

differences in the derivatives. As before, and for the sake of brevity,
we show the results for the parameters φ. The new derivatives are

1

n

∂ log Lfil

∂φi
= − 1

2σ 2

n∑

t=1
t 	=T+1,...,T+h

2at
∂at

∂φj
=

∑
t 	=T+1,...,T+h atut−i

nσ 2
.

Because the difference between log L and log Lfil is in a finite number
of terms in the sum of squared residuals, Lfil still has the same as-
ymptotic properties. However, and contrary to the classical in-sample
predictor, it can be shown that

∑

t 	=T+1,...,T+h

E
(
atut−jY

(i)
T aT+h−l

) = 0,

because of the omission of the innovations aT+1, . . . ,aT+h. Similar
results can be verified for the remaining parameters. Therefore, we
should analyze terms of smaller order of magnitude. These terms are
analyzed in (A.8). By (A.9), we then have that

O
{

max
j,i,l

E
[
(λ̂fil

j − λj)Y
(i)
T aT+h−l

]} = O(n−2), (B.2)

and the proof is completed.

APPENDIX C: PROOF OF THEOREM 2

Using similar arguments as those of Baillie (1980) and Kunitomo
and Yamamoto (1985), we obtain

Vpop(h) = σ 2
h−1∑

l=0

ψ2
l

+ σ 2

n

[
trace{�α(h)�Y } +

h−1∑

l=1

trace{�α(l)�X}

+ 2
h−1∑

l=1

trace{�α(h, l)�XY(h + 1 − l)}
]

+ O(n−3/2),

where we denote E{[α(h) − α̂(h)][α(h) − α̂(h)]′} = n−1σ 2�α(h) +
O(n−3/2), E(YnY′

n) = �Y , �X = E(XnX′
n),E{[α(h) − α̂(h)][α(l) −

α̂(l)′} = n−1σ 2�α(h, l) + O(n−3/2), and �XY(h + 1 − l) =
E(Xn+h+1−lY′

n). In contrast, taking expectations to (êfil
t+h)2 and using

(B.2), we obtain

E
[
(êfil

t+h)
2]

= σ 2
h−1∑

l=0

ψ2
l + E

{[α(h) − α̂fil(h)]′YtY′
t[α(h) − α̂fil(h)]}

+
h−1∑

l=1

E
{[α(l) − α̂fil(l)]′Xt+h+1−lX

′
t+h+1−l[α(l) − α̂fil(l)]}

+ 2
h−1∑

l=1

E
{[α(l) − α̂fil(l)]′Xt+h+1−lY

′
t[α(h) − α̂fil(h)]}

+ o(n−2).



146 Journal of the American Statistical Association, March 2005

Because the asymptotic properties of α̂fil are the same as α̂, it holds
that

E
[
V̂fil(h)

]

= σ 2
h−1∑

l=0

ψ2
l + σ 2

n

[
trace{�α(h)�Y } +

h−1∑

l=1

trace{�α(l)�X}

+ 2
h−1∑

l=1

trace{�α(h, l)�XY(h + 1 − l)}
]

+ O(n−3/2),

and the proof is completed.

[Received March 2003. Revised April 2004.]
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