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Abstract: A new cluster algorithm based on the SAR procedure proposed
by Peña and Tiao (2003) is presented. The method splits the data into more
homogeneous groups by putting together observations which have the same
sensitivity to the deletion of extreme points in the sample. As the sample
is always split by this method the second stage is to check if observations
outside each group can be recombined one by one into the groups by using
the distance implied by the model. The performance of this algorithm is
compared to some well known cluster methods.

1 Introduction

Finding groups in data is a key activity in many scientific fields. Gordon
(1999) is a good general reference. Classical Partition and Hierarchical algo-
rithms have been very useful in many problems but they have some four main
limitations. First, the criteria used are not affine equivariant and therefore
the results obtained depend on the changes of scale and/or rotation applied
to the data. Second, the usual heterogeneity measures based on the Euclidian
metric do not work well for highly correlated observations forming elliptical
clusters or when the clusters overlap. Third, we have to specify the number
of clusters or decide about the criteria for choosing them. Fourth, there is
no general procedure to deal with outliers. Some advances have been made
to solve these problems, see Cuesta-Albertos, Gordaliza and Matrán (1997),
Cuevas et al. (2000) and Tibshirani et al. (2001).

An alternative approach to cluster is to fit mixture models. This idea
has been explored both from the classic and Bayesian point of view. Ban-
field and Raftery (1993) and DasGupta and Raftery (1998) have proposed a
model-based approach to clustering which finds an initial solution by hier-
archical clustering and then assumes a mixture of normals model and uses
the EM algorithm to estimate the parameters. A clear advantage of fitting
normal mixtures is that the implied distance is the Mahalanobis distance,
which is affine equivariant. From the Bayesian point of view the parameters
of the mixture are estimated by Markov Chain Monte Carlo methods and
several procedures have been proposed to allow for an unknown number of
components in the mixture, see Richarson and Green (1997) and Stephens
(2000). A promising approach to cluster analysis, that can avoid the curse
of dimensionality, is projection pursuit, where low-dimensional projections of
the multivariate data are used to provide the most interesting views of the
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full-dimensional data. Peña and Prieto (2001) have proposed an algorithm
where the data is projected on the directions of maximum heterogeneity de-
fined as those directions in which the kurtosis coefficient of the projected
data is maximized or minimized. Then they used the spacings to search for
clusters on the univariate variables obtained by these projections.

Finally, Peña and Tiao (2003) propose the SAR (split and recombine) pro-
cedure for detecting heterogeneity in a sample with respect to a given model.
This procedure is general, affine equivariant, does not require to specify a
priori the number of clusters and it is well suited for finding the components
in a mixture of models. The idea of the procedure is first to split the sample
into more homogeneous groups and second recombine the observations one
by one in order to form homogeneous clusters. The SAR procedure has two
important properties, that are not shared by many of the most often used
cluster algorithms, (i) it does not require an initial starting point, (ii) each
homogeneous group is obtained independently from the others, so that each
group does not compete with the others to incorporate an observation. The
first property implies that the algorithm we propose can be used as a first
solution for any other cluster algorithm, the second, that the procedure may
work well even if the groups are not well separated. This paper analyzes the
application of the SAR procedure to cluster analysis and it is organized as
follows. Section 2 presents the main ideas of the procedure. Section 3 com-
pares it in a Monte Carlo study to Mclust (Model Based Cluster, Fraley and
Raftery, 1999), k-means, pam (Partition around medoids, Struyf, Hubert and
Rousseeuw, 1997) and Kpp (Kurtosis projection pursuit, Peña and Prieto,
2001).

2 The SAR procedure

Suppose we define a measure H(x,X) of the heterogeneity between an ob-
servation, x, and a set of data, X. We are going to use this measure to split
the sample iteratively into homogeneous groups and to recombine observa-
tions into the groups. We assume that the heterogeneity measure H(x, X)
is equivariant, that is invariant to linear transformations, and is coherent
with the assumed model. As the true structure of the data is unknown, we
start the process by assuming that the data is homogeneous, and have been
generated by a normal distribution, Np(µ,V). Then we propose a hetero-
geneity measure based on out of sample prediction as follows. The predictive
distribution for a new observation xf generated by a normal model using
a Jeffrey’s prior p(µ,V) ∝ |V|−(p+1)/2 is (see for instance, Box and Tiao,

1973) p(xf ,X) ∝
(
1 + Qf

n−p

)−n/2

, where Qf = n
n+1 (xf − x̄)′V̂−1(xf − x̄)

and x̄ is the sample mean and V̂ the sample covariance matrix, given by
V̂ = (X−1x̄)′(X−1x̄)/(n−p). Following Peña and Tiao (2003) we will use
as measure of heterogeneity of a data xi with respect to a group X(i) which
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does not contain this observation, the standardized predictive value given by

H(xi,X(i)) = −2 ln
{

p(xi|X(i))
p(x̂i(i)|X(i))

}
= (n− 1) ln

{
1 +

Qi(i)

(n− 1)− p

}
, (1)

where Qi(i) = n−1
n (xi − x̄(i))′V̂−1

(i) (xi − x̄(i)), and V̂(i) and x̄(i) are the co-
variance matrix and the mean computed using the sample X(i) without the
case ith. Note that H(xi,X(i)) is a monotonic function of the Mahalanobis
distance Qi(i), which is usually used to check the heterogeneity of a point xi

with respect to the sample X(i).
The splitting of the sample is made as follows. For each observation,

xi, we define the discriminator of this point as the observation which, when
deleted from the sample, makes the point xi as heterogeneous as possible
with the rest of the data. The discriminator of xi is the point xj if

xj = arg max
xk

H(xi,X(ik)) = arg max
xk

(xi − x̄(ik))′V̂−1
(ik)(xi − x̄(ik)),

where X(ik) is the sample without the cases ith and kth.
Each sample point must have a unique discriminator, but several sample

points may share the same discriminator. It can be proved (see Peña, Ro-
driguez and Tiao, 2004) that the discriminators are members of the convex
hull of the sample. That is, a discriminator must be an extreme point. An
intuitive procedure to split the sample into groups is to put together observa-
tions with share the same discriminators, as they are affected in the same way
to modifications of the sample by deleting some extreme values. It is obvious
that if two observations are identical they will have the same discriminator
and if they are close they also will have the same discriminator. The number
of points in the sample which share the same discriminator is called the order
of the discriminator. We consider as special points discriminators of order
larger than K, where K = f(p, n) and we will put them in a special group
of extreme observations. However, discriminators of order smaller than K
are considered as usual points and are assigned to the group defined by all
the observations that share a common discriminator. We need to define the
minimum size of a set of data to be considered as a group. We will say that
we have a group if we could compute the mean and covariance matrix of the
group and, therefore, the minimum group size must be n0 = p + h, where
h > 0, and p is the number of variables. Usually h = f(p, n) and in the
examples we have taken h = log(n − p). In the procedure which follows we
have considered as special points to those discriminators of order larger that
K, where K = p+h− 1. This value seems to work well in the simulations we
have made. Based on these considerations the sample is split as follows: 1)
Observations which have the same discriminator are put in the same group,
the discriminator is only included in the group if it has order smaller than
K; 2) Discriminators of order bigger that K are allocated to a specific group
of isolated points; 3) if two groups formed by the previous rules have any



4 Daniel Peña, Julio Rodŕıguez and George C. Tiao

observation in common the two groups are joined into one group. This three
rules split the sample into more homogeneous groups. Each group is now con-
sidered as a new sample and the three rules are applied again until splitting
further the sample will lead to isolated points because the groups obtained
are all of them of size smaller than the minimum group size n0. A group of
data is called basic group if when split will lead to subgroups of size smaller
than the minimum size, p + h.

When the sample cannot be split further the recombining process is ap-
plied starting from any of the basic groups obtained. The recombining process
is the one suggested by Peña and Tiao (2003). Each group is enlarged by in-
corporating observations one by one. For a given group, we begin by testing
the observation outside the group which is the closest to the group in terms of
the measure H(yf , Xg), where yf is the observation outside the group formed
by data Xg. If H(yf , Xg) is smaller than some cut-off value, that is the 99th
percentile of the distribution of the statistic H(yf , Xg), this observation is
incorporated into the group and the process of testing the closest observation
to the group is repeated for the enlarged group. The enlarging process will
continue until either the threshold is crossed or the entire sample is included.
A similar idea of recombining points has been used for robust estimation (see
for instance, Atkinson, 1994). We may have one of the three possible cases.
First, the enlarging of all the basic groups leads to the same group which
include all the observations apart from some outliers. Then we have a homo-
geneous sample with some isolated outliers and the procedure ends. Second,
the enlarging of the basic groups leads to a partition of the sample into dis-
joint groups and we conclude we have some groups in the data and again
the procedure ends. Third, we obtain more than a possible solution because
the partition obtained is different when starting from different basic groups.
Then we have more than one possible solution and the final solutions found
are called possible data configurations, PDC. The selection among them is
made by a model selection criterion.

3 Monte Carlo results

The properties of the algorithm have been studied in a Monte Carlo exper-
iment, similar to the one used by Peña and Prieto (2001) to illustrate the
behavior of their cluster procedure. Sets of 10 × p × k random observations
in dimension p = 2, 4, 8 have been generated from a mixture of k = 2, 4
components of a multivariate distributions. In all data sets the number of
observations from each distribution has been determined randomly, but en-
suring that each cluster contains a minimum of p+1 observations. The mean
for each distribution is chosen at random from the multivariate normal dis-
tribution Np(0, fI). The factor f (see Table 1) is selected to be as small as
possible while ensuring that the probability of overlapping between groups is
roughly equal to 0.01. We generated data sets in six different scenarios.
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a) Mixture of k multivariate normal distributions. In each group the co-
variance matrix is generated as S = UDU′, from a random orthogonal
matrix U and a diagonal matrix D with entries generated from a uni-
form distribution (a1): [10−3, 5

√
p], so that the covariance matrices are

well conditioned, and (a2): [10−3, 10
√

p], so that the covariance matri-
ces are ill-conditioned.

b) Mixture of k multivariate uniform distributions with (b1) covariance gen-
erated as (a1) and (b2) covariance generated as (a2).

c) Mixture of k multivariate normal distributions generated as indicated
in scenario a1), but 10% of the data are outliers (c1): generated by
Np(0, fI) and (c2): for each cluster in the data, 10% of its observations
have been generated as a group of outliers at a distance 4χ2

p,0.99 in
a group along a random direction, and a single outlier along another
random direction.

To provide better understanding of the behavior of the new procedure, in
each table we compare the proposed method with Kpp, k-means, Mclust and
the pam algorithm. The Mclust algorithm has been run with the function
’EMclust’ with models EI, VI, EEE, VVV, EEV and VEV and number of
cluster between 1 to 8 and the final configuration is selected by the BIC
(see Fraley and Raftery, 1999, for a description of different models used in
the function ’EMclust’). The rule to select the number of clusters in the
algorithm pam is the maximum of the silhouette statistic for k = 1, . . . , 8
and in k-means the stopping rule used is the one proposed by Calinski and
Harabasz.

Table 1 gives the average percentage of observations which have been
labeled incorrectly in scenarios a1) and a2), obtained from 200 replications
for each value in the same data sets in all procedures. In scenario a1) the
SAR procedure has the best performance, and Kpp and Mclust are second
having a similar behavior. In the scenario a2) when the covariance matrix
is ill-conditioned, the SAR procedure is again the best followed by Kpp and
Mclust. This result is quite consistent as the SAR procedure is the best in
eight out of the twelve comparison included in the two scenarios of Table 1
and in the four cases in which it is not the best it is not far from the best
one. The k-means and pam show a poor result.

Table 2 shows the outcome for scenarios b1) and b2) where we analyze the
same structure that in scenarios a1) and a2) but now using mixtures of uni-
form distributions. Table 2 shows the percentages of mislabeled observations
for both scenarios b1) and b2). The behavior of the SAR procedure is again
the best as an average and the best in ten of the twelve cases. The second
best behavior corresponds to Kpp, that is better than Mclust in eleven out
of the twelve cases.

A final simulation study has been conducted (see Table 3) to determine
the behavior of the methods in the presence of outliers. Scenarios c1) and
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a1) Covariance matrices well conditioned
p k f SAR Kpp k-means Mclust pam
2 2 55 1.65 7.33 45.35 16.73 34.98

4 140 1.29 0.95 24.90 1.54 1.86
4 2 14 4.83 9.90 47.15 12.38 32.11

4 20 5.58 9.39 27.20 6.75 10.76
8 2 12 15.43 13.13 43.29 12.28 55.61

4 18 7.52 12.58 15.81 3.75 14.42
Average 6.05 8.88 33.95 8.90 24.96

a2) Covariance matrices ill-conditioned
p k f SAR Kpp k-means Mclust pam
2 2 55 1.58 9.38 46.38 14.23 33.95

4 140 1.00 0.61 25.14 0.60 1.83
4 2 14 0.99 4.96 48.54 11.64 32.89

4 20 1.39 5.07 30.99 6.55 5.38
8 2 12 0.64 5.19 44.83 0.66 50.94

4 18 0.87 6.01 22.92 4.36 11.01
Average 1.08 5.20 36.47 6.34 22.66

Table 1: Percentages of mislabeled observations for the SAR, the Kpp, the
k-means, the Mclust and the pam procedures. Normal observations with: (a1)
covariance matrices well conditioned, (a2) covariance matrices ill-conditioned.
The best method in each case is indicated in boldface.

c2) contain 10% of data contaminated by first, a non concentrate contamina-
tion, and second, a concentrated contamination defined in scenario c). The
criterion to obtain the mislabeled observation is based only in the 90% of
observations not contaminated. Table 3 shows the percentage of mislabeled
observations for the scenarios c1) and c2). The maximum number of clusters
k have been increase to ten in the algorithms k-means, Mclust and pam so
that the concentrated contamination can be considered as isolated clusters.
In the scenario c1) the best methods, as an average, are, with very small
difference, the pam algorithm and the SAR procedure. However, for concen-
trated contamination, scenario c2), the SAR procedure is again clearly the
best followed by Kpp. As a summary of this Monte Carlo study we may
conclude that the SAR procedure has the smallest error classification rate in
22 out of the 36 situations considered and the best average number of misla-
beled observations in 5 scenarios out of the six considered. The only scenario
in which the SAR is not the best is in scenario c1) but the difference with
respect to the best method, pam , is very small: misclassification percentage
of 6.4% versus 6.32% for pam. The Kpp is the second best in five out of the
six scenarios. Ordering the methods for average classification errors in all the
scenarios from better to worse, the order would be: SAR, Kpp, Mclust, pam
and k-means.
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b1) Covariance matrices well conditioned
p k f SAR Kpp k-means Mclust pam
2 2 55 0.45 11.53 51.40 21.08 44.75

4 140 0.58 0.38 29.25 0.84 1.16
4 2 14 0.85 4.81 51.71 12.48 51.41

4 20 1.58 4.33 33.15 9.11 7.68
8 2 12 6.24 5.45 41.83 7.38 60.80

4 18 2.33 4.93 20.07 5.58 16.93
Average 2.00 5.24 37.90 9.41 30.46

b2) Covariance matrices ill-conditioned
p k f SAR Kpp k-means Mclust pam
2 2 55 1.55 11.78 48.65 20.53 41.95

4 140 0.56 0.99 34.30 1.75 2.06
4 2 14 0.79 4.06 53.23 6.00 46.45

4 20 0.38 3.13 34.39 7.54 7.28
8 2 12 0.34 5.76 45.96 0.00 62.13

4 18 0.46 4.21 27.32 4.74 12.61
Average 0.68 4.99 40.64 6.76 28.75

Table 2: Percentages of mislabeled observations for the SAR, the Kpp,
the k-means, the Mclust and the pam procedures. Uniform observations
with: (b1) covariance matrices well conditioned, (b2) covariance matrices
ill-conditioned.
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