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abstract

This article shows that the relationship between kurtosis, persistence of shocks
to volatility, and first-order autocorrelation of squares is different in GARCH and
ARSV models. This difference can explain why, when these models are fitted to
the same series, the persistence estimated is usually higher in GARCH than in
ARSV models, and, why gaussian ARSV models seem to be adequate, whereas
GARCH models often require leptokurtic conditional distributions. We also show
that introducing the asymmetric response of volatility to positive and negative
returns does not change the conclusions. These results are illustrated with the
analysis of daily financial returns.
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Financial returns observed, for example, on a daily or weekly basis, are mainly

characterized by high kurtosis, small first-order autocorrelation of squares, and

slow decay of the autocorrelations of squares toward zero. These three character-

istics have been documented by a large number of authors [see, e.g., Liesenfeld
and Jung (2000) and Loudon, Watt, and Yadav (2000), among many others]. As an

illustration, Table 1 reports the sample moments for four series of daily financial
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returns. These series are returns of the exchange rates of the US dollar against the

Canadian dollar (US-CAN) and the Japanese yen (US-JAP) from January 1993

until October 2000, and of the Bombay Stock Market (BOMBAY) and the Standard

and Poor’s (S&P 500) indexes from January 1995 to October 2000 and from
November 1987 to December 1998, respectively.1 Before their analysis the series

were filtered to get rid of some weak dynamics in the conditional mean. Table 1

shows that the values of the first-order autocorrelation of squared returns are

rather small, ranging from 0.12 to 0.25. On the other hand, the kurtosis is always

greater than 3, with the smallest kurtosis corresponding to the US-CAN returns

(5.61) and the largest to the S&P 500 (9.64). These series are plotted in Figure 1,

together with a kernel estimate of their densities and their sample autocorrelation

functions of the squares. The series plots show volatility clustering, which often
characterizes high-frequency time series of returns. Also notice that the autocor-

relations of squares decay slowly toward zero, being significant for very long lags,

although their magnitudes are rather small.

A simple model able to generate these effects specifies the returns, yt, as

the product of two processes, yt¼ «tst, where «t is a serially independent and

identically distributed process with zero mean, unit variance, and finite fourth-

order moment, independent of the second process, st, which is known as volatility

in the financial literature. A wide spectrum of models have been proposed for st

and the most often used are the generalized autoregressive conditional hetero-

scedasticity (GARCH) model, introduced independently by Bollerslev (1986) and

1 The series were obtained from the web page http://pacific.commerce.ubc.ca/xr/ (Prof. Werner

Antweiler, University of British Columbia, Vancouver, Canada).

Table 1 Descriptive statistics of daily returns.

Series US-CAN US-JAP BOMBAY S & P 500

T 1963 1963 1262 2888

Mean 0.0084 �0.0077 0.0111 0.0575

S.D. 0.3094 0.7796 1.8471 0.9085

Skewness �0.1449* �0.5858* �0.1329 �0.6108*
Kurtosis 5.6080* 7.3970* 6.8799* 9.6405*

Autocorrelations of squared returns

r2(1) 0.1200* 0.2500* 0.1300* 0.1700*
r2(2) 0.0900* 0.1300* 0.1300* 0.0900*
r2(5) 0.1400* 0.1100* 0.1000* 0.1500*
r2(10) 0.0800* 0.0500* 0.0400* 0.0700*
Q2(20) 380* 377* 146* 497*

T: Sample size.

r2(t): Order t autocorrelation of squares y2
t .

Q2(20): Box-Ljung statistic for y2
t .

*Significant at the 5% level.
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Taylor (1986) generalizing the model proposed by Engle (1982), and the auto-

regressive stochastic volatility (ARSV) model, proposed by Taylor (1986).

Two characteristics are often observed when both GARCH and ARSV models

are fitted to the same series of returns. First, the persistence of volatility implied by
GARCH(1,1) models is usually higher than that implied by ARSV(1) models. For

example, Taylor (1994) found that, for daily deustche mark against the dollar

exchange rate returns, the persistence parameter estimated by the GARCH(1,1)

model was 0.97 while that estimated by the ARSV(1) model was 0.94. Similar

results have been found by Shephard (1996), Kim, Shephard, and Chib (1998),

Hafner and Herwartz (2000), and Anderson (2001). Second, the gaussianity

assumption for the innovations, «t, is adequate for ARSV(1) models, while the

noise of the GARCH(1,1) specification requires a distribution with fat tails.
For instance, Shephard (1996) finds that a Student-GARCH(1,1) model has a

similar diagnosis to the normal-ARSV(1). Ghysels, Harvey, Renault (1996), Kim,

Shephard, and Chib (1998) and Hafner and Herwartz (2000), among others, report

similar findings. Measuring the persistence of volatility correctly is important

because it is often estimated very close to one, which has implications for the

theoretical models used to value the price of financial stocks. On the other hand,

whether the distribution of «t is gaussian or has fat tails has implications mainly

for inference on the models fitted to represent the dynamic evolution of volatility
[see, e.g., Hall and Yao (2003)].

Figure 1 Financial time-series observed daily.
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In this article we show that, although both GARCH and ARSV models are able

to explain excess kurtosis and significant autocorrelations of squares with a slow

rate of decay, the relationship between the persistence of shocks to the volatility,

first-order autocorrelation of squares, and kurtosis implied by each of these

models is different. This difference could explain the empirical results previously

mentioned. The ARSV(1) model is more flexible than the GARCH(1,1) model to

simultaneously represent the values of these three coefficients usually observed in
real data.

Another stylized fact often observed in high-frequency financial returns is

the asymmetric response of s2
t to positive and negative changes in prices [see,

e.g., Campbell and Hentchel (1992) and Shephard (1996), among many others].

In this article we introduce this asymmetry in the GARCH model using the

specification proposed by Sentana (1995), known as the quadratic GARCH

(QGARCH) model, because its statistical properties are easy to derive. On the

other hand, we consider the asymmetric ARSV model proposed by Harvey and
Shephard (1996). Finally, we analyze the properties of the exponential GARCH

(EGARCH) model proposed by Nelson (1991). The latter model was the first

model proposed to represent the asymmetric response of volatility to positive

and negative returns, and it is especially interesting because it shares some

of its properties with the GARCH and ARSV models. Consequently the speci-

fication of the volatility in the EGARCH model can be considered to be

between the specifications assumed by the GARCH and ARSV models. We

show that introducing this asymmetry does not substantially change the
relationship between the three quantities of interest in any of these asymmetric

conditionally heteroscedastic models with respect to the corresponding sym-

metric models.

The article is organized as follows. In Section 1 we describe and compare the

main properties of the GARCH(1,1) and ARSV(1) models. The results of this

section are illustrated by means of several Monte Carlo experiments. In Section 2

we allow for asymmetric responses of volatility to positive and negative returns in

both models. Section 3 contains an empirical application where the main results
are illustrated with real data. Section 4 concludes the article.

1 PROPERTIES OF GARCH AND ARSV MODELS

1.1 The GARCH(1,1) Model

GARCH models are very popular for representing the dynamic evolution of the

volatility of financial returns and have been extensively analyzed in the literature

[see, e.g., Bollerslev, Engle, and Nelson (1994), Engle (1994), Bera and Higgins

(1995), Diebold and López (1995), and McAleer and Oxley (2003), among many

others]. If yt follows a GARCH(1,1) model, then the volatility is given by

s2
t ¼ v þ ay2

t�1 þ bs2
t�1, ð1Þ

where v, a, and b are parameters such that v> 0 and a, b� 0. These positivity

conditions are required to guarantee the existence of the conditional variance and
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to avoid degenerating the process yt. Furthermore, if p¼aþb< 1, yt has finite

unconditional variance given by v
1�p and it is covariance stationary. The quantity p

is usually considered to be a measure of the persistence of shocks to the volatility.

A GARCH(1,1) model can be stationary without having a finite fourth-order

moment. The condition for the existence of the fourth-order moment is given by

p2 þ a2ðk« � 1Þ< 1, ð2Þ

where k« is the kurtosis of «t [see, e.g., He and Teräsvirta (1999)]. If this condition is

satisfied, the kurtosis is given by

ky ¼ k« 1 � a2ðk« � 1Þ
1 � p2

� ��1

: ð3Þ

This equation shows that, as is well known, persistence and kurtosis are

highly tied up in GARCH models. Furthermore, Bai, Rusell, and Tiao (2003)

show that the overall kurtosis of yt can be decomposed into the kurtosis induced
by volatility clustering and the kurtosis induced by «t and that the contribution of

both components to the overall kurtosis is symmetric.

Figure 2 plots the area of possible values of a as a function of p defined by

Equation (2) for three alternative values of k«: 3, 5, and 9 corresponding to

gaussian, Student-7 (t7) and Student-5 (t5) errors, respectively. Notice that this

area is larger when «t is gaussian. In this case, if p> 0.58, the ARCH parameter, a,

Figure 2 Areas where ky is finite.
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should decrease as p increases. For example, if aþb¼ 0.95, the maximum value

of a is 0.22, while if aþb¼ 0.98, the maximum value of a is 0.14. On the other

hand, if the distribution of the innovations has fat tails, then the area of allowed

values of a is smaller than under conditional gaussianity. For example, if the

distribution of «t is a Student-7 distribution and p¼ 0.98, then the maximum

value of a is 0.10, while if «t is a Student-5, the maximum value of a is 0.07.

Consequently, if the persistence is high, as is often the case in real series of returns,
and the conditional distribution has fat tails, the GARCH model only has finite

kurtosis if the ARCH parameter is rather small.

It is important to notice that Equation (2) shows that, in GARCH(1,1) models,

the dynamics of the volatility are severely restricted to guarantee that the fourth-

order moment is finite. These dynamics appear in the autocorrelation function

(ACF) of the squares given by

r2ðhÞ ¼
að1 � p2 þ paÞ

1 � p2 þ a2 , h¼ 1

r2ð1Þph�1, h> 1

8><
>: ð4Þ

[see Bollerslev (1988)]. This ACF has the same pattern as an ARMA(1,1) process

with autoregressive parameter p. Therefore the autocorrelations of squares decay

exponentially to zero with parameter p, which can be considered as a measure of
the persistence of the volatility process. On the other hand, when a¼ 0, r2(1)¼ 0

and yt is conditionally homoscedastic, there is not dependence of squared returns.

If a 6¼ 0, then Equation (4) shows that, for a given persistence parameter, p, the

magnitude of r2(1) and, consequently, of successive autocorrelations, increases

with a. Consider, for example, p¼ 0.95, then for a¼ 0.05, 0.1, and 0.15, the corre-

sponding r2(1) are 0.07, 0.18, and 0.3, respectively. Therefore, for a given persis-

tence, a measures the dependence between squared observations and can be

interpreted as the parameter leading the volatility dynamics. Finally, for a given
value of a, the autocorrelations increase with the persistence. In the limit, if p¼ 1,

then r2(1)¼ 1. However, as we have seen before, once p< 1, and consequently,

yt is stationary, it is possible to have series with large persistence and small

autocorrelations of squares.

From Equations (3) and (4), it is possible to derive the following relationship

among ky, r2(1), and p:

r2ð1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðky � k«Þð1 � p2Þ

ðk« � 1Þky

s "
1 � p2 þ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðky � k«Þð1 � p2Þ

ðk« � 1Þky

s #

1 � p2 þ ðky � k«Þð1 � p2Þ
ðk« � 1Þky

: ð5Þ

Figure 3 represents this relationship for the same three alternative distributions of

«t considered before. This figure also plots a box that contains the values of the

kurtosis and first-order autocorrelations of squares usually encountered in empiri-

cal applications, that is, ky between 5 and 10 and r2(1) between 0.1 and 0.2. Figure 3

shows that the three surfaces are very bent toward high persistence. Therefore,
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for a given kurtosis, the first-order autocorrelation, r2(1), is smaller the larger the

persistence. On the other hand, given the persistence, this autocorrelation

increases with the kurtosis. Furthermore, it is important to point out that a

normal-GARCH(1,1) model is only able to represent the values of the kurtosis

and r2(1) within the box if the persistence is very close to one. Consequently, if the

series analyzed has simultaneously high kurtosis and low first-order autocorrela-

tion of squares, aþb could be estimated very close to one, even if the persistence of
shocks to volatility is not so high. Furthermore, even if the persistence of the

volatility is high, high kurtosis is associated with values of r2(1) larger than the

values often observed in practice [see also Teräsvirta (1996) and Bai, Russell, and

Tiao (2003)].

Assuming that the distribution of «t is a heavy-tailed distribution like, for

example, the Student’s t distribution, may improve the adequacy of the

GARCH(1,1) model to characterize the stylized facts observed in practice. This is

in agreement with Figure 3, which shows that GARCH(1,1) models with a condi-
tional Student’s t distribution are better at explaining simultaneously the three

Figure 3 Relationship between kurtosis, first-order autocorrelation of squared observations, and
persistence for GARCH(1,1) models.
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stylized facts observed in real-time series than the gaussian alternatives. For

example, consider aþb¼ 0.95 and ky¼ 10. In this case, if «t were gaussian or a

Student’s t distribution with 7 or 5 degrees of freedom, r2(1) would be 0.3831,

0.2037, or 0.0462, respectively. For aþb¼ 0.99 and ky¼ 10, if «t were gaussian

or a Student’s t distribution with 7 or 5 degrees of freedom, r2(1) would be 0.3185,

0.1543, or 0.0278, respectively. However, remember that in Student-GARCH

models with high persistence and high but finite kurtosis, the parameter a is
heavily restricted toward zero. Consequently the apparent advantage of introdu-

cing Student’s t innovations in GARCH models is limited.

1.2 The ARSV(1) Model

Alternatively, the volatility can be represented by ARSV models that assume that

st is a latent variable. Surveys on the properties of ARSV models are given by

Taylor (1994), Ghysels, Harvey, and Renault (1996), and Shephard (1996). In the

simplest case, the volatility follows an autoregressive process after being trans-

formed into logarithms. Therefore the model for volatilities, denoted ARSV(1), is

given by

logs2
t ¼ v þ f log s2

t�1 þ ht, ð6Þ

where ht is assumed to be a gaussian white noise process with zero mean and
variance s2

h, independent of «t. Andersen et al. (2003) show that the hypothesis of

lognormality for volatility is adequate to represent the distribution of daily rea-

lized volatilities of real series of intraday returns. The restriction jfj< 1 guarantees

the stationarity of yt. The kurtosis of yt is given by ky ¼ k«expðs2
hÞ, where

s2
h ¼ s2

h=ð1 � f2Þ. Notice that, in the ARSV(1) model, if k« is finite, the condition

for the existence of the kurtosis is the stationarity condition, that is jfj< 1. There-

fore, as far as the model is stationary, the dynamic evolution of the volatility is not

further restricted to guarantee the existence of the fourth-order moment. How-
ever, it is also important to notice that given the kurtosis of returns, the parameter

s2
h, that allows the volatility to evolve over time, should decrease as the auto-

regressive parameter, f increases. Therefore, if the kurtosis is constant, the model

approaches homoscedasticity as the persistence increases [see Harvey and Streibel

(1998)]. Finally, Bai, Russell, and Tiao (2003) show that, as in the GARCH(1,1)

model, the contribution to the overall kurtosis of the volatility clustering and of the

innovations is symmetric.

The ACF of squared observations, derived by Taylor (1986), is given by

r2ðtÞ ¼
expðs2

hftÞ � 1

k« expðs2
hÞ � 1

, t � 1: ð7Þ

If s2
h is small and/or f close to one, Taylor (1986) shows that the ACF in Equation (7)

can be approximated by

r2ðtÞ’
expðs2

hÞ � 1

k« expðs2
hÞ � 1

ft: ð8Þ
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The pattern of the approximated autocorrelations in Equation (8) is the same as for

the autocorrelations of an ARMA(1,1) model. Consequently, this approximation

has often been used to argue that the ACF of squares in GARCH(1,1) and ARSV(1)

models are similar. However, in general, the approximated autocorrelations are
larger than the true ones and, for small lags, t, their rate of decay is smaller than

the rate of decay of the autocorrelations in Equation (7). As an illustration, Figure 4

plots the true and approximated ACF of squares together with their rates of decay

for three alternative ARSV(1) models with parameters (f¼ 0.95, s2
h ¼ 0:1),

(f¼ 0.98, s2
h ¼ 0:05), and (f¼ 0.99, s2

h ¼ 0:05), respectively. This figure shows

that the use of the approximation could lead to a very distorting picture of

the shape of the true ACF. However, since aþb and f can be interpreted as

measures of persistence in GARCH(1,1) and ARSV(1) models, respectively, many
authors have compared their estimates [see, e.g., Taylor (1994) and Shephard

(1996)]. Following them and given that, as Figure 4 illustrates, the rate of

decay of the autocorrelations in Equation (7) tends for long lags to f, we also

consider this parameter as a measure of the persistence of shocks to volatility in

ARSV(1) models [see also Kim, Shephard, and Chio (1998) and Meyer and Yu

(2000)].

Figure 4 ACF of squared observations and rate of decay of such ACF for symmetric ARSV(1)
models with gaussian innovations.
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The relationship between kurtosis, persistence, and r2(1) for an ARSV(1)

model is given by

r2ð1Þ ¼
ky
k«

� �f

� 1

ky � 1
: ð9Þ

This relationship is plotted in Figure 5 for the normal-ARSV(1) model, together

with the corresponding relationship for the normal-GARCH(1,1) model. As in

Figure 3, the box plotted in Figure 5 contains the values of ky and r2(1) usually

encountered in empirical applications. Several conclusions can be drawn from this

figure. First, it is rather clear that ARSV(1) models are able to generate series with

simultaneously higher kurtosis and lower r2(1) than the GARCH(1,1) model for

a larger range of values of the persistence. Second, it is possible to observe that,
for the same kurtosis and persistence, the autocorrelations of squared observa-

tions implied by the normal-ARSV(1) model are smaller than the autocorrelations

of the normal-GARCH(1,1) model, except when the volatility approaches the

nonstationary region, where both autocorrelations are the same. Furthermore, in

ARSV(1) models, for a given kurtosis, the first-order autocorrelation of squares

increases with the persistence parameter f, while in GARCH(1,1) models the first-

order autocorrelation decreases with aþb. Consequently it could be expected

that, for a given series of returns with a given kurtosis, if the first-order

Figure 5 Relationship between kurtosis, first-order autocorrelation of squared observations, and
persistence for GARCH(1,1) and ARSV(1) models with Gaussian errors.

328 Journal of Financial Econometrics



autocorrelation of squares is small, the persistence estimated in ARSV(1) models

is usually lower than in GARCH(1,1) models; observe the values of ky and r2(1)

within the box usually observed in empirical applications. Therefore it is possible

to have ARSV(1) models with high kurtosis, low r2(1), and persistence far from

the nonstationary region, while in a normal-GARCH(1,1) model, the persistence

would be high because it is the only way to achieve both high kurtosis and

low r2(1).
Alternatively, as we mentioned before, the GARCH model can generate

higher kurtosis without increasing the first-order autocorrelation of squares by

having a conditional heavy-tailed distribution. For example, comparing the sur-

faces of the relationship between ky, r2(1) and persistence for the Student-

GARCH(1,1) model with 7 degrees of freedom and the normal-ARSV(1) models,

which appear in Figures 3 and 5, respectively, it is possible to observe that these

two models are able to generate series with values of the kurtosis and r2(1) within

the region defined by the box, where the typical values would be found. Therefore
both models may have similar fits when implemented to represent the dynamic

evolution of volatility of the same real-time series [see, e.g., Shephard (1996)].

However, remember that the restrictions on the a parameter of the Student-

GARCH model, needed to guarantee that the fourth-order moment is finite,

restrict severely the dynamic evolution of the volatility.

Summarizing, the ARSV(1) model does not force «t to have fat tails or f

to be close to one in order to allow simultaneously for high kurtosis and small

r2(1). Therefore, introducing the noise ht makes the ARSV(1) model more flexible
even when compared with GARCH(1,1) models with conditional fat-tailed

distributions.

1.3 Monte Carlo Simulation

In this section we illustrate with simulated data that when normal-GARCH

models are fitted to represent the evolution of volatility, the kurtosis and first-

order autocorrelation of squared returns implied by the estimated parameters

could be much larger than the corresponding population coefficients of the simu-

lated data. Furthermore, we also show that the persistence estimated by the

GARCH model is usually greater than the persistence of the underlying true

autocorrelations of squares. For this purpose, we generate 1000 replicates of size

T¼ 5000 by different normal-ARSV(1) models and fit a stationary normal-
GARCH(1,1) model to each of the simulated series. The parameters of the

ARSV(1) models considered appear in Table 2 along with the corresponding

population kurtosis and first-order autocorrelation of squares. These models

have been chosen to generate simulated series with properties similar to those

of real series of daily financial returns. Notice that, with the exception of the last

model, the coefficient of variation defined as
varðs2

t Þ
½Eðs2

t Þ�
2 ¼ expð s2

h

1�f2Þ � 1, always takes

values between 0.33 and 2.53; for example, Jackier, Polson, and Rossi (1994) report

several empirical studies where this coefficient is between 0.1 and 2. Finally, with
the exception of the last two models, there are always two models with the same
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kurtosis and different parameter f, and therefore different rates of decay of the

autocorrelations of squares toward zero. Table 2 reports the Monte Carlo means

and standard deviations of the QML estimates of the GARCH(1,1) parameters a,

b, and v, as well as the estimated persistence aþb. We also report the percen-

tage of series where the estimated GARCH parameters do not satisfy the condition

for the existence of the kurtosis. The mean of the implied kurtosis is computed

based on the estimates that satisfy the condition. Finally, the mean of the implied
r2(1) is shown in the last column.

Looking at the results reported in Table 2, it is possible to conclude that, as

expected from the previous results, the persistence implied by the estimated

GARCH(1,1) models is larger than the actual persistence of the series, especially

for the series with higher kurtosis [see also Hafner and Herwartz (2000) for a

similar result]. For example, in the ARSV(1) model with f¼ 0.94 and s2
h ¼ 0:14,

the average estimated persistence is âa þ b̂b ¼ 0:985 and in the model with f¼ 0.98

and s2
h ¼ 0:05, the Monte Carlo mean of âa þ b̂b is 0.996.

Even more interesting is to observe the large number of series for which

the corresponding GARCH(1,1) estimates do not satisfy the condition for the

existence of kurtosis. In several cases the percentage is actually 100. This

implies that, although the simulated series have perfectly defined finite kurto-

sis, looking at the estimated GARCH parameters, it seems that the fourth-order

moment does not exist. For example, consider the ARSV model with para-

meters f¼ 0.9856 and s2
h ¼ 0:0344, which is highly plausible from an empirical

point of view. In this case, although the kurtosis of the simulated series is
seven, when the GARCH model is fitted to these series, the estimated para-

meters are such that it seems that the kurtosis is not finite for any of the series.

This suggests that it is possible that the empirical conclusion often obtained,

that the kurtosis of financial returns is not defined, could be a consequence of

the rigidity of the GARCH model used to represent the dynamic evolution of

volatility and not that the kurtosis of financial returns is not really defined [see,

e.g., Jondeau and Rockinger (2003) and the references therein]. Furthermore,

notice that, in most of the cases where the kurtosis exists, the kurtosis implied
by the estimated GARCH parameters is clearly over the actual values. Conse-

quently it seems clear that the GARCH model has serious difficulties represent-

ing the values of the kurtosis usually observed in daily financial returns.

Finally, notice that when comparing models with the same kurtosis, the per-

centage of series where the estimated GARCH parameters do not satisfy the

condition for the existence of the fourth-order moment is larger, the larger the

parameter f that measures the persistence.

Finally, Table 2 shows that the mean of the r2(1) coefficients implied by the
GARCH estimates is always larger than the theoretical one.

2 PROPERTIES OF ASYMMETRIC MODELS

As we mentioned in the introduction, it is not unusual to find series of returns

characterized by the asymmetric response of volatility to positive and negative
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returns. In this section we analyze whether introducing this asymmetry

changes the relationship between kurtosis, autocorrelation of squares, and

persistence found in GARCH and ARSV models. There are a large number of

asymmetric conditional heteroscedastic models proposed in the literature; see

Henstchel (1995) and Duan (1997) for two models that embody many of the

most popular specifications. In this section we consider the simplest specifica-

tions directly related with the GARCH(1,1) and ARSV(1) models analyzed
before. In particular, we consider the QGARCH model proposed by Sentana

(1995), the EGARCH model of Nelson (1991), and the asymmetric ARSV model

proposed by Harvey and Shephard (1996).

2.1 QGARCH(1,1)

If yt follows a QGARCH(1,1) model, then the volatility is given by

s2
t ¼ v þ ay2

t�1 þ bs2
t�1 þ gyt�1, ð10Þ

where the positivity of s2
t is guaranteed if v, a, b> 0 and g2� 4av. The process is

covariance stationary if p< 1 [see He and Teräsvirta (1999)]. Notice that the

covariance stationarity of yt does not depend on the parameter g that measures

the asymmetry.

Sentana (1995) shows that the properties of the GARCH(1,1) and

QGARCH(1,1) models are very similar. In fact, both have the same unconditional

mean and variance equal to zero and s2
y ¼ v

1�p, respectively. Furthermore, in both
models the odd moments are zero, the series yt is uncorrelated, and the cross-

correlations between y2
t and yt�h are zero for all h except for h¼1. In this case,

covðy2
t , yt�1� ¼ gs2

y in the QGARCH(1,1) model and zero in the GARCH(1,1)

model. Using the results of He and Teräsvirta (1999), it is possible to derive the

following expression of the kurtosis of yt,

ky ¼ k« 1 � a2ðk« � 1Þ
1 � p2

� ��1

þ k«

A

1 � a2ðk« � 1Þ � p2
ð11Þ

where A*¼ (g/sy)2 and k« is the kurtosis of «t. Notice that the kurtosis of yt in the

QGARCH models is always larger than in the corresponding symmetric GARCH
model in Equation (3). However, this increase is small because, typically, in real-

time series, g is small relative to s2
y, and consequently A* is rather small.

The ACF of y2
t is given by

r2ðtÞ ¼
2að1 � p2 þ apÞ þ Aðk«a þ bÞ

2ð1 � p2 þ a2Þ þ k«A , t ¼ 1

pt�1r2ð1Þ, t >1

8><
>: : ð12Þ

This ACF decays at the same rate as in the GARCH(1,1) model. Therefore,

once more the persistence can be measured by p. Furthermore, if, as mentioned

before, A* is rather small, the autocorrelation of order one is almost the same in

both models.

Au: Please

check

change of

‘‘five

pointed

star’’ to ‘‘*’’
okay.
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Using Equations (11) and (12) and after some tedious algebra, it is possible to

derive the following relationship between kurtosis, persistence, and r2(1) in a

QGARCH(1,1) model:

r2ð1Þ ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðky � k«Þð1 � p2Þ � k«A

ðk« � 1Þky

s "
1 � p2 þ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðky � k«Þð1 � p2Þ � k«A

ðk« � 1Þky

s #

2

"
1 � p2 þ ðky � k«Þð1 � p2Þ � k«A

ðk« � 1Þky

#
þ k«A

þ
A

"
p þ ðk« � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðky � k«Þð1 � p2Þ � k«A

ðk« � 1Þky

s #

2

"
1 � p2 þ ðky � k«Þð1 � p2Þ � k«A

ðk« � 1Þky

#
þ k«A

:

Figure 6 plots this relationship for a normal-QGARCH(1,1) model when

aþb¼ 0.9 and A*¼ 0 and A*¼ 0.1 and when aþb¼ 0.99 for both values of A*.
As expected, this figure illustrates that, in usual cases in which the kurtosis

takes values between 5 and 10, introducing asymmetry in a GARCH(1,1) model

does not have any significant effect on the relationship between the three

quantities of interest, apart from imposing more restrictions on the parameters
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Figure 6 Relationship between kurtosis, first-order autocorrelation of squared observations, and
persistence for asymmetric QGARCH(1,1) models.
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in order to guarantee that the kurtosis is finite. For example, if aþb¼ 0.99 and

A*¼ 0.1, the kurtosis implied by the QGARCH model is always greater than 17.

2.2 EGARCH(1,0)

The EGARCH model was proposed by Nelson (1991) to overcome some of the

limitations of the GARCH models. In particular, he points out that the constraints
to guarantee the positivity of the conditional variance restrict the dynamics of the

volatility and are not always satisfied in empirical applications. Furthermore, the

definition of persistence could be rather confusing because shocks to volatility

may persist in one norm and die out in another. Finally, the GARCH(1,1) model

does not represent the asymmetric response of volatility. The specification of the

volatility in the EGARCH model can be considered in between the GARCH and

ARSV specifications in the sense that it has a unique disturbance, as in the

GARCH model, but the logarithmic transformation of the volatility is modeled,
as in the ARSV model.

The volatility of the simplest EGARCH(1,0) model is given by

log s2
t ¼ v þ b log s2

t�1 þ a½j«t�1j � Eðj«t�1jÞ� þ g«t�1, ð14Þ

where g is the parameter that measures the asymmetry. The model is stationary if

jbj< 1. The unconditional variance, kurtosis, and autocorrelations of squares can

be derived using the results in Nelson (1991) and are given, respectively, by

s2
y ¼ exp

v

1 � b

 �Y1
i¼1

Eðexpðbi�1gÞÞ, ð15Þ

ky ¼ k«

Y1
i¼1

Eðexpð2bi�1gÞÞ
½Eðexpðbi�1gÞÞ�2

, ð16Þ

and

r2ðtÞ ¼
Eð«2

t�1expðbt�1gÞÞP1P2 � P3

k«P4 � P3
, ð17Þ

where g¼a½j«t�1j �Eðj«t�1jÞ� þg«t�1, P1¼
Qt

i¼1Eðexpðbi�1gÞÞ, P2¼
Q1

i¼1 Eðexpðð1þ
btÞbi�1gÞÞ, P3 ¼

Q1
i¼1½Eðexpð2bi�1gÞÞ�2, and P4 ¼

Q1
i¼1 Eðexpð2bi�1gÞÞ. Nelson

(1991) has evaluated the expectations involved in Equations (15)--(17) for different

distributions of «t. In particular, if «t is gaussian, then

E½expfbgg� ¼ fFðbc1Þexpf0:5b2c2
1g þFðbc2Þexpf0:5b2c2

2ggexpf�bað2=pÞ1=2g

E½«2
t�1expðbgÞ� ¼ 2

ffiffiffiffi
2

p

r
exp �

ffiffiffiffi
2

p

r
ab

( )
expf0:25c2

1b2gDð�3Þð�bc1Þ

þ expf0:25c2
2b2gDð�3Þð�bc2Þ,

where c1¼aþg, c2¼a�g, D(q) is the parabolic cylinder function and F(•) is the
standard normal cumulative distribution function. He Teräsvirta, and Malmsten

(2002) compute the moments of EGARCH models in more general settings.
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As an illustration, Figure 7 represents the ACF in Equation (17) together with

its rate of decay for three selected EGARCH models with parameters {a¼ 0.47,

b¼ 0.98, g ¼ 0}, {a¼ 0.47, b¼ 0.95, g ¼ 0.2}, and {a¼ 0.2, b¼ 0.95, g ¼�0.15},

respectively. It is interesting to observe that the rate of decay of the autocorrela-
tions is not b, but depends on the other parameters of the model, a and g. Finally,

notice the similarity in the patterns of the rates of decay of the autocorrelations of

squares in ARSV and EGARCH models; compare Figures 4 and 7.

Given that it is rather difficult to find the expression that relates the kurtosis,

persistence, and autocorrelation of order one of squares in an EGARCH(1,0)

model, Figure 8 plots the function that relates the kurtosis and r2(1) for different

parameter values. This figure shows that this relationship is rather similar in

GARCH and EGARCH models. For a given kurtosis, the r2(1) coefficient is
smaller, the larger is the persistence parameter, b. Although the introduction

of the asymmetry parameter allows us to generate series with a larger range of

possible values of the kurtosis and autocorrelations of squares, the values of

r2(1) corresponding to values of the kurtosis usually observed in real-time series

are even higher than in the corresponding GARCH models.

Figure 7 ACF of squared observations and rate of decay for EGARCH(1,0) models with gaussian
innovations.
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2.3 Asymmetric ARSV(1)

As far as we know, the only asymmetric ARSV model proposed in the literature at
the moment is from Harvey and Shephard (1996), who introduce the asymmetry

through correlation between the noises «t and ht. Therefore the volatility of

the asymmetric ARSV(1), A-ARSV(1), model is given by Equation (6) with

corr(«t, ht)¼d. Harvey and Shephard (1996) show that, in this case, the kurtosis

of yt is the same as in the symmetric case. The ACF of squared observations,

derived by Taylor (1994), is given by

r2ðtÞ ¼
ð1 þ d2s2

hÞexpðs2
hftÞ � 1

k« expðs2
hÞ � 1

, t � 1: ð18Þ

As an illustration, Figure 9 plots the ACF of squares and its rate of decay for

three alternative A-ARSV(1) models with parameters ðf ¼ 0:95, s2
h ¼ 0:1Þ,

ðf ¼ 0:98, s2
h ¼ 0:05Þ, and ðf ¼ 0:99, s2

h ¼ 0:05Þ, respectively, and for d¼ 0.1 and

0.9. It is interesting to observe that, as in the symmetric ARSV model, the rate of

decay is less than f for the smaller lags, but instead of converging to f, it converges

Figure 8 Relationship between kurtosis and first-order autocorrelation of squared observations
for different values of the persistence for asymmetric EGARCH(1,0) models.
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to one in the presence of correlation between the level and volatility noises, «t and

ht, respectively. However, in practice, notice that the autocorrelations of large

order are indistinguishable from zero.

From Equation (18), it is straightforward to find r2(1) as a function of f and ky,

as follows

r2ð1Þ ¼

h
1 þ d2ð1 � f2Þlog

�
ky
k«

�i�
ky
k«

�f

� 1

ky � 1
: ð19Þ

Figure 10 represents this relationship for normal-A-ARSV(1) models for two

different values of the asymmetry parameter, d¼ 0.2 and d¼ 0.9. It is possible to

observe that, for a given value of the kurtosis, the autocorrelation of order one of

squares, r2(1), is larger, the larger the correlation between the noises.
Therefore, if as expected in empirical applications, the magnitude of the

asymmetry parameter is rather small, the relationship between persistence, kur-

tosis, and autocorrelations of squares is similar to the one derived for the sym-

metric ARSV(1) model. Introducing the asymmetric response of volatility to

positive and negative returns does not change the main conclusions obtained in

the previous section.

Figure 9 ACF of squared observations and rate of decay for asymmetric ARSV(1) models.
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3 EMPIRICAL APPLICATION

In this section we illustrate the previous results by fitting GARCH(1,1),

EGARCH(0,1), and ARSV(1) models to the four series of daily financial returns

described in the introduction. The parameters of the EGARCH model have

been estimated by maximum likelihood (ML) assuming conditional normality of
the innovations, while those of the GARCH(1,1) model have been estimated

assuming both a conditional normal and a Student’s t distribution.2 Finally, the

ARSV model has been estimated using the method proposed by Sandman

and Koopman (1998).3 For each of the series, the kurtosis, persistence, and auto-

correlations of squares implied by the corresponding estimated parameters are

compared.

Table 3 reports the ML estimates of the parameters together with their

asymptotic standard errors. Looking, for example, at the results for the US-JAP
series, we conclude that the parameters that allow the volatility to evolve over

time, a in the GARCH-type model and sh
2 in the ARSV model, are always

2 The estimates of the GARCH and EGARCH models were obtained using the Eviews 3.1 program.
3 The program used to estimate the ARSV parameters is sv�mcl.ox and it is available at http://www.

econ.vu.nl/koopman/sv/.

Figure 10 Relationship between kurtosis, first-order autocorrelation of squared observations,
and persistence for asymmetric ARSV(1) models.
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Table 3 Estimated models for the daily returns.

GARCH GARCH-t EGARCH ARSV

US-CAN

v̂v ¼ 0.0011 v̂v ¼ 0.0010 v̂v ¼ �0.1040 ŝs2
 ¼ 0.0775

(0.001) (0.001) (0.012) (0.009)

âa ¼ 0.0442 âa ¼ 0.0497 âa ¼ 0.1010 ŝs2
h ¼ 0.0219

(0.005) (0.009) (0.011) (0.008)

b̂b ¼ 0.9449 b̂b ¼ 0.9418 b̂b ¼ 0.9890 f̂f ¼ 0.9718

(0.006) (0.011) (0.003) (0.011)

n̂n ¼ 6.1275 ĝg ¼ 0.0140

(0.008)

Implied persistence âa þ b̂b ¼ 0.9891 âa þ b̂b ¼ 0.9915 b̂b ¼ 0.9890 f̂f ¼ 0.9718

Implied ky 3.6595 19.6207 3.6190 4.4480

Implied r2(1) 0.1223 0.1696 0.1176 0.1352

US-JAP

v̂v ¼ 0.0130 v̂v ¼ 0.0057 v̂v ¼ �0.1430 ŝs2
 ¼ 0.4217

(0.002) (0.003) (0.012) (0.039)

âa ¼ 0.0559 âa ¼ 0.0400 âa ¼ 0.1620 ŝs2
h ¼ 0.1024

(0.006) (0.009) (0.013) (0.036)

b̂b ¼ 0.9230 b̂b ¼ 0.9498 b̂b ¼ 0.9610 f̂f ¼ 0.9165

(0.007) (0.012) (0.005) (0.027)

n̂n ¼ 4.7460 ĝg ¼ �0.0400

(0.007)

Implied persistence âa þ b̂b ¼ 0.9789 âa þ b̂b ¼ 0.9898 b̂b ¼ 0.9610 f̂f ¼ 0.9165

Implied ky 3.5281 53.0184 3.5237 5.6888

Implied r2(1) 0.1202 0.1094 0.1344 0.1701

BOMBAY

v̂v ¼ 0.0702 v̂v ¼ 0.2663 v̂v ¼ �0.0320 ŝs2
 ¼ 2.1302

(0.011) (0.106) (0.011) (0.226)

âa ¼ 0.0434 âa ¼ 0.1317 âa ¼ 0.1500 ŝs2
h ¼ 0.2513

(0.006) (0.034) (0.016) (0.075)

b̂b ¼ 0.9369 b̂b ¼ 0.7993 b̂b ¼ 0.9360 f̂f ¼ 0.8499

(0.006) (0.054) (0.009) (0.041)

n̂n ¼ 4.0764 ĝg ¼ �0.0510

(0.011)

Implied persistence âa þ b̂b ¼ 0.9803 âa þ b̂b ¼ 0.9386 b̂b ¼ 0.9360 f̂f ¼ 0.8499

Implied ky 3.3207 3.3061 7.4160

Implied r2(1) 0.0866 0.2238 0.1064 0.1805

S & P 500

v̂v¼ 0.0042 v̂v ¼ 0.0026 v̂v ¼ �0.0670 ŝs2
 ¼ 0.6001

(0.001) (0.001) (0.007) (0.087)

âa¼ 0.0326 âa ¼ 0.0360 âa ¼ 0.0860 ŝs2
h ¼ 0.0276

(0.003) (0.002) (0.009) (0.008)

continued
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significant. Furthermore, the asymmetry parameter in the EGARCH model is also

significant. The estimate of the persistence is smaller when the ARSV is fitted

(0.92) than with the GARCH-type model which is closer to 1. On the other hand,
the kurtosis implied by the normal-GARCH and EGARCH models are very

similar (around 3.52), while that implied by the ARSV model (5.69) is closer to

the sample kurtosis of 5.60. However, notice that the kurtosis implied by the

Student-GARCH model, 53.02, is obviously too high to represent the empirical

kurtosis. Finally, the implied first-order autocorrelation of squares is higher in the

ARSV model than in the GARCH-type model. Notice that the properties implied

by the EGARCH estimates are clearly closer to the properties of the GARCH

model than to the properties of the ARSV models. The results and conclusions
for the other three series are similar.

A very common diagnostic for heteroscedastic time-series models is based on

the properties of the standardized observations. For the US-JAP series, the sample

kurtosis of the observations standardized using the ARSV estimated volatilities is

3.19, while if the observations are standardized by the normal-GARCH or the

EGARCH estimates of st, their kurtosis is approximately 6. Therefore it seems that

the normal-GARCH(1,1) and EGARCH models are not adequate to represent the

values of the kurtosis often observed in real data, while the assumption of normal-
ity in the ARSV model seems more adequate. Finally, the kurtosis of the standar-

dized observations in the Student-GARCH model is 6.21, which is in agreement

with a Student’s t distribution with 5 degrees of freedom.

4 CONCLUSION

In this article we show that the relationship between the persistence of shocks to

volatility, the first-order autocorrelation of squared observations, and the kurtosis

implied by GARCH and ARSV models is rather different. In order to have

simultaneously high kurtosis and low first-order autocorrelation of squares, the

GARCH model is forced to have a persistence close to the nonstationary region

and/or leptokurtic conditional distributions. Alternatively, the range of values of
the parameters of the ARSV model that can generate series with small autocorre-

lations and high kurtosis is larger than for the GARCH model. On top of that, the

Table 3 (continued)

GARCH GARCH-t EGARCH ARSV

b̂b¼ 0.9619 b̂b ¼ 0.9637 b̂b ¼ 0.9890 f̂f ¼ 0.9781

(0.003) (0.002) (0.001) (0.007)

n̂n ¼ 4.4786 ĝg ¼�0.0460

(0.006)

Implied persistence âa þ b̂b ¼ 0.9945 âa þ b̂b ¼ 0.9997 b̂b ¼ 0.9 f̂f ¼ 0.9781

Implied ky 3.7210 3.8644 5.6730

Implied r2(1) 0.1176 0.6948 0.1335 0.1851
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restrictions to guarantee the existence of the fourth-order moment in GARCH

models severely restrict the allowed dynamic dependence of the volatility, while

they are not as severe in ARSV models. Finally, we show that incorporating the

asymmetric response of volatility to positive and negative shocks does not change

the main conclusions obtained for the symmetric models.
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