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Abstract

In this paper we analyze the structure and the forecasting performance of the dynamic factor
model. It is shown that the forecasts obtained by the factor model imply shrinkage pooling
terms, similar to the ones obtained from hierarchical Bayesian models that have been applied
successfully in the econometric literature. Thus, the results obtained in this paper provide an
additional justi.cation for these and other types of pooling procedures. The expected decrease
in MSE for using a factor model versus univariate ARIMA and shrinkage models are studied
for the one factor model. Monte Carlo simulations are presented to illustrate this result. A factor
model is also built to forecast GNP of European countries and it is shown that the factor model
can provide a substantial improvement in forecasts with respect to both univariate and shrinkage
univariate forecasts.
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1. Introduction

In this article, we address the important issue of forecasting a vector of time series
that has been generated by a set of dynamic common factors, possibly nonstationary.
Dynamic factor models have been studied by Geweke (1977), Geweke and Singleton
(1981), Engle and Watson (1981), Velu et al. (1986), Peña and Box (1987), Stock
and Watson (1988), Tiao and Tsay (1989), Engle and Kozicki (1993), Gonzalo and
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Granger (1995), Vahid and Engle (1997), Forni and Reichlin (1998) and Peña and
Poncela (2002), among others (see these articles for further references). When the fac-
tors are nonstationary, the problem is very related to forecasting by using cointegration
relationships (see Escribano and Peña, 1994).
The question of how the presence of common factors, or equivalently cointegration

relations, among a collection of variables aEects forecasting is ambiguous. Engle and
Yoo (1987) considered a bivariate model and found that taking into account the equi-
librium relations improved the long-run predictions, but not the short-run ones. Reinsel
and Ahn (1992) found that while overspecifying the number of unit roots led to worse
results in the short-run forecasts, underspecifying them led to worse long-run forecasts.
In the same line, Clements and Hendry (1995) found that overspecifying the number
of unit roots derives in worse results in forecasting. Lin and Tsay (1996) explored
simulated and real data and concluded that imposing the correct number of unit roots
improves the forecasting results for simulated data, while for the real data analyzed
in their article, imposing the number of unit roots suggested by the cointegration tests
did not necessarily lead to better results. ChristoEersen and Diebold (1998) found that
the presence of cointegration relations did not outperform the long run forecasts of
univariate models and similar empirical results for the UK demand for money were
found by GarcJKa-Ferrer and Novales (1998).
This paper has the following contributions. First, we show that the factor model fore-

casts incorporate a pooling term similar to the one derived from hierarchical Bayesian
models. This pooling term can be, in some particular cases, identical to the shrinkage
term proposed by GarcJKa-Ferrer et al. (1987). Thus the factor model provides a formal
justi.cation for univariate shrinkage forecast methods and allows to derive the optimal
shrinkage in each case. Second, we derive the expected gains, in the one factor case,
of the factor model forecasts with respect to univariate and shrinkage models. The
advantage of the factor model increases with the dimension of the time series vector
and with the strength of the dynamic relationship among the components. Third, we
show by Monte Carlo and a real example that in some cases we can obtain a sub-
stantial reduction in mean square forecast error from the factor model with respect to
alternative forecasting approaches.
The paper is organized as follows. In Section 2 we brieLy review the dynamic factor

model and the generation of forecasts from it. In Section 3 we analyze the structure of
the factor model forecasts and in Section 4 we study with more detail the one factor
case. In Section 5 the large sample comparison of the forecast performance of the one
factor model and the ARIMA and shrinkage pooled univariate models is presented.
In Section 6 these results are illustrated in a Monte Carlo study and in Section 7 by
forecasting the Gross National Product (GNP) of European countries. Finally, Section
8 presents the limitation of our work and some concluding remarks. The proofs of the
lemmas and theorems in the text are given in the appendix.

2. The factor model

Let yt be an m-dimensional vector of observed time series, generated by a set of
r non observed common factors. We assume that each component of the vector of
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observed series, yt , can be written as a linear combination of common factors plus
noise,

yt = P ft + �t ;

m× 1 m× r r × 1 m× 1;
(1)

where ft is the r-dimensional vector of common factors, P is the factor loading matrix,
and �t ∼ Nm(0;��), with �� = diag(	2

1 ; : : : ; 	
2
m) and 	2

j ¡∞ ∀j. We suppose that the
vector of common factors follows a VARIMA(p; d; q) model:

�(B) ft = �(B) at ;

r × r r × 1 r × r r × 1;
(2)

where �(B)= I−�1B−· · ·−�pBp and �(B)= I−�1B−· · ·−�qBq are polynomial
matrices r× r, B is the backshift operator, such that Byt =yt−1, the roots of |�(B)|=0
are on or outside the unit circle, the roots of |�(B)| = 0 are outside the unit circle
and at ∼ Nr(0;�a) is serially uncorrelated, E(ata′t−h) = 0; h �= 0. We assume that the
noises from the common factors and the observed series are also uncorrelated for all
lags, E(at�′t−h) = 0 ∀h.
The model as stated is not identi.ed, because for any r × r nonsingular matrix H

the observed series yt can be expressed in terms of a new set of factors and system
matrices. To solve this identi.cation problem, we can always choose either �a = I
or P′P = I, but it is easy to see that the model is not yet identi.ed under rotations.
Harvey (1989) imposes the additional condition that pij=0, for j¿ i, where P=[pij].
This condition is not restrictive, since the factor model can be rotated for a better
interpretation when needed (see Harvey (1989) for a brief discussion about it). In this
paper we will impose that �a= I; this restriction is enough to achieve identi.cation for
the one factor model and excludes the case where a common factor is just a constant,
which is not analyzed in this paper. We will add, when needed, the standard restriction
in static factor analysis, that is P′�−1

� P diagonal.
The model can be generalized to the case where the components in �t have dynamic

univariate stationary structure, see Peña and Poncela (2002), but this does not aEect
the conclusions derived in forecasting and complicates the algebra involved. Also, it
can be seen that the model is fairly general and includes the case where lagged factors
are present in Eq. (1).
Estimation and forecasting can be carried out by writting the model in state space

form as follows: the vector of observable time series yt , is given by the measurement
equation:

yt = P̃ zt + �t
m× 1 m× s s× 1 m× 1

(3)

and the state vector zt containing the factors, forecasted factors, lagged factors or error
terms (depending on the state space representation that is chosen) is driven by the
transition equation:

zt = G zt−1 + ut ;

s× 1 s× s s× 1 s× 1
(4)
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with E(ut) = 0; E(utu′t) = �u and E(utu′�) = 0 if t �= �. Both noises, �t and ut , are
also uncorrelated for all lags, E(�tu′�) = 0 for all t and �. Given information until time
t − 1, the well-known Kalman .lter equations give the forecast of the state vector,
zt|t−1 =Gzt−1|t−1, with associated covariance matrix,

Vt|t−1 =GVt−1|t−1G′ + �u (5)

and the forecast for the vector of time series is computed by ŷt|t−1 = P̃zt|t−1 with
covariance matrix

�t|t−1 = P̃Vt|t−1P̃
′
+ ��: (6)

When a new observation arrives, the state vector is updated by

zt|t = zt|t−1 + Vt|t−1P̃
′
�−1

t|t−1(yt − P̃zt|t−1) (7)

and its variance–covariance matrix by

Vt|t = Vt|t−1 − Vt|t−1P̃
′
�−1

t|t−1P̃Vt|t−1: (8)

3. The structure of factor model forecasts

In this section we derive a structural form for the predictions of the factor model that
shows the eEect of a pooling or shrinkage term in the predictions for each component
of the vector time series. Consider the factor model in state space form given by (3)
and (4). The h-steps ahead forecast of the state vector with observations up to time t
is obtained by zt+h|t =Ghzt|t , with mean square error (MSE) matrix

Vt+h|t =E(zt+h − zt+h|t)(zt+h − zt+h|t)′

=GhVt|t(G′)h +Gh−1�u(G′)h−1 + · · ·+G�uG′ + �u: (9)

The h steps ahead forecast for the observed series with origin in t is

ŷt+h|t = P̃Ghzt|t (10)

with MSE matrix

�t+h|t = E(yt+h − yt+h|t)(yt+h − yt+h|t)′ = P̃Vt+h|tP̃
′
+ ��: (11)

Using (7) in (10), we can write the forecast of the observed series as

ŷt+h|t = A1zt|t−1 + A2yt ; (12)

where

A1 = P̃Gh(I − Vt|t−1P̃
′
�−1

t|t−1P̃) (13)

and

A2 = P̃GhVt|t−1P̃
′
�−1

t|t−1: (14)

An equivalent expression of (12) can be obtained by using the well-known expression
for the inverse of the sum of two matrices (see, Rao, 1973, p. 33) in (6) for the
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inverse of �t|t−1 and plugging it into (14). This leads to

ŷt+h|t = A1zt|t−1 +Wt�−1
� yt ; (15)

where Wt = P̃NtP̃
′
is an m× m matrix and (see the appendix)

Nt =GhVt|t−1(Is − P̃′
�−1
� P̃Vt|t); (16)

an s× s matrix. Note that although if P̃
′
�−1
� P̃= P′�−1

� P is a diagonal matrix, by the
identi.cation restrictions, even though �u and G were diagonal Vt|t−1 and Vt|t do not
need to be diagonal. From (15) and since �� is a diagonal matrix, the jth component
of the forecast vector can be written as

ŷ j; t+h|t = (A1zt|t−1)j +
m∑
i=1

wji; t

	2
i

yi; t ;

where (x)j is the jth component of vector x and wji; t is the (j; i) element of Wt .
This equation shows that the forecast of each component of the series incorporates a
pooling term given by a weighted sum of all the observed series at time t with weights
proportional to the elements of the Wt matrix and inversely proportional to their noise
variances.

4. The prediction structure of the one factor model

The one factor model has special interest because many economic time series are
characterized by a common trend. For example, it can be considered that the GNP of
some countries of a certain area of inLuence are driven by the same common trend. It
has also been widely used in the business cycle analysis (see, for instance, Stock and
Watson (1991) and Diebold and Rudebusch (1996) among others). In this section we
analyze the structure of forecasts for the one factor model, .rst when the factor is a
common trend or a stationary AR(1) process, and second in the general case in which
the factor follows an ARIMA model. We will also see that for the case of the common
trend, this pooling term is permanent, while for a stationary ARMA(p; q) factor, the
pooling term is transitory.
Assume .rst the simplest one factor model

yt = Pft + �t (17)

with �t multivariate white noise with �� = diag(	2
1 ; : : : ; 	

2
m) and factor loading matrix

P= (p1; p2; : : : ; pm)′. The equation for the factor is

ft = �ft−1 + at (18)

with var(at) = 	2
a = 1 (by the identi.cation restriction), cov(�i; ta�) = 0 for all i; t and

� and |�|6 1. This speci.cation includes AR(1) stationary processes when |�|¡ 1,
as well as nonstationary ones when � = 1. The model is in state space form with
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P̃ = P; zt = ft; r = s = 1 and ut = at . Let us study in this case the h steps ahead
forecast of the observed series yt+h with information up to time t, given by (15).
By (13) the matrix A1 is given by A1 = P�h(1 − Vt|t−1P′�−1

t|t−1P), where Vt|t−1 is
the variance (scalar, in this case) of the factor at time t with information up to time
t − 1. Applying again the inverse lemma for the sum of two matrices (Rao, 1973) to
�−1

t|t−1 = (Vt|t−1PP
′ + ��)−1, A1 is given by

A1 = P
�h

ct

1
Vt|t−1

with ct=1=Vt|t−1+
∑m

i=1 p2
i =	

2
i . The second term in Eq. (15) is Wt�−1

� yt=NtPP′�−1
� yt

where Nt is now an scalar given by Nt = �h=ct . Substituting in (15) A1 and Wt�−1
� yt

by their expressions, the h steps ahead forecast with information up to time t is

ŷt+h|t = P
�h

ct

(
1

Vt|t−1
ft|t−1 +

m∑
i=1

p2
i

	2
i

(
yi; t

pi

))
(19)

and the jth component of the forecasted series is ŷ j; t+h|t=pj(�h=ct) ((1=Vt|t−1)ft|t−1+∑m
i=1(p

2
i =	

2
i )(yi; t =pi)). To understand the meaning of the previous equations, .rst notice

that 1=ct((1=Vt|t−1)ft|t−1 +
∑m

i=1(p
2
i =	

2
i )(yi; t =pi)) is the estimation of the factor with

information up to time t as a weighted mean. The .rst term is the estimation of the
factor at time t with the information up to time t− 1, and it has a weight proportional
to the precision of this estimation. The second term is the estimation of the factor
provided by the information contained in yt . To see this, note that by (17) at each
time t we have m new possible independent estimates of ft given by E(ft |yj; t)=yj; t=pj

with variances equal to 	2
j =p

2
j for each j=1; : : : ; m. The second term is a combination

of these estimates weighted by their precision.
Therefore we can conclude that the forecast of yt+h incorporates a pooling term which

is the weighted sum of all the series at time t standardized by their factor loadings,
with weights inversely proportional to the noise variances in the measurement equation
and directly proportional to the square of the factor loadings. The ratios p2

i =	
2
i will

appear throughout the article because, as we will see, they are of key importance in
comparing forecasts. Let us denote by

!i =
p2

i

	2
i
; i = 1; : : : ; m; (20)

the precision of the estimation of the factor from series yi. These ratios determine how
new information is incorporated into the forecasts. The greater !i is, the stronger is
the signal of the common information on the series and vice versa, the smaller it is,
the weaker is the common information signal in relation to the speci.c noise of each
series.
If the common factor is stationary |�|¡ 1, so that �h → 0 as h increases, the

forecast of the observed series and, in particular, the pooling term, decreases with
exponential decay, until its eEect disappears. This means that it is of a transitory
nature. In the nonstationary case, �h = 1, and as it was expected, the term has a
permanent eEect. Moreover, if the common factor aEects identically to all the series,
the factor loading matrix P is the m× 1 vector P = 1p= p(1; 1; : : : ; 1)′. The forecast
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of the observed series ŷt+h|t is ŷt+h|t = 1(p�h=ct)((1=Vt|t−1)ft|t−1 + p
∑m

i=1(1=	
2
i )yi; t)

with ct = 1=Vt|t−1 + p2∑m
i=1 1=	2

i . The forecast of each component of the time series
vector is the same for all of them. Of course, in the case of common trends �h = 1.
Note that in the particular case in which all the series have the same noise variance,
(thus 	2

1 = 	2
2 = · · ·= 	2

m = 	2) then ct = 1=Vt|t−1 + p2m=	2 and the optimal forecast

ŷ j; t+h|t = �h((1− wt)pft|t−1 + wt Ry t); (21)

where wt = p2m=	2ct and the forecast is obtained by shrinking the series towards
the common mean, where Ry t = 1=m

∑m
i=1 yi; t is the mean at time t of the m observed

variables. Note that we obtain a weighted average of the common mean and the forecast
generated from the estimation of the factors with information until t − 1. If the series
are random walks, we obtain a predictor with similar structure to the one used by
GarcJKa-Ferrer et al. (1987):

ỹ j; t+h = (1− ")ŷ j; t+h|t + "ŷ t(h); 0¡"¡ 1; (22)

where ỹ j; t+h, is the h steps ahead forecast of the jth component of yt at time t and
ŷ t(h) = 1=m

∑m
i=1 ỹ i; t+h|t = Ry t .

Let us consider the case in which the factor follows an ARIMA(p; d; q) process.
The state space form we adopt here is the one originally proposed by Akaike (1974).
Assume that the factor follows the ARMA process given by (2) for r=1. The dimension
of the state vector is s=max{p+ d; q+ 1}, the measurement equation (3) is now

yt =


p1 0 · · · 0

...
...

...

pm 0 · · · 0




ft

...

ft+s−1|t

+ �t

and the transition equation can be written as (4) with z′t=(ft; ft+1|t ; : : : ; ft+s−1|t); u′t=
at(1;  1;  2; : : : ;  s) where the  i are the coeScients obtained from ’(B) (B) = ’(B)∑∞

i=0  iBi = %(B) where ’(B) =∇d�(B) and

G =



0 1 1 · · · 0

0 0 1 · · · 0

...
...

...
...

0 0 0 · · · 1

−’r −’r−1 −’r−2 · · · −’1


with ’i = 0 if i¿p+ d. It is straightforward to show that the h steps ahead forecast
of the jth series in yt , h¡q is again

yj; t+h|t = (A1zt|t−1)j + n11pj

m∑
i=1

pi

	2
i
yi; t ;

where n11 is the element (1; 1) of Nt . As in the previous case, it is easily seen that the
pooling term reduces to the common mean of the observed series at time t when the
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common factor aEects all series in the same way (then pi = p ∀i = 1; : : : ; m) and the
noises of all the series have the same variance (then 	2

i =	2 ∀i=1; : : : ; m). Again, if the
noise variances of the observed series are diEerent, the pooling term is proportional to
the weighted mean

∑m
i=1 yi; t =	2

i . In the MA(q) case, Gh=0 for h¿q, for any q positive
integer, so the pooling term is zero for h¿q. For the AR(p), in the stationary case,
the pooling term vanishes when h → ∞. If the process is nonstationary, the pooling
term has a permanent eEect.

5. Comparison of univariate, pooled and factor model forecasts in the one factor
model

In this section we will use the following well-known result from prediction theory.
Let

ŷ(i)
t+h|t = E(yt+h|Iit)

be the optimal forecast with the MSE criterion of a random variable yt+h given the
set of information Iit , and let MSE(ŷ(i)

t+h|t) the mean square error of this forecast. It is
well known that if we consider two sets of information, I1t ; I2t such that I1t ⊆ I2t then

MSE(ŷ(1)
t+h|t)¿MSE(ŷ(2)

t+h|t):

Thus, the forecast of any component of the vector time series from the factor model,
that incorporates the past information of the other components, should be at least as
precise as the univariate forecast, that uses only past information of this component.
Also, when the pooled forecasts can be interpreted as the conditional expectation in-
cluding some joint information from the rest of the series they should be at least as
precise as the univariate forecasts. Of course this result is true if we know the parame-
ters of the model and compute the exact conditional expectations. In practice, when the
parameters are estimated from the data and the sample size is not large this increase
in precision may not be observed.
In this section we quantify the increase in forecast precision of the factor model

versus forecasting methods based on a smaller information set. First we obtain the
univariate ARIMA models implied by the factor model and compute their MSE of
prediction. Second, we compare the trace of the MSE of prediction of the factor model
with the sum of MSE of prediction of the univariate ARIMA models. Third we obtain
the expected gain of the pooled forecasts with respect to the univariate forecasts. Finally
we compute the expected gain of the factor model forecasts with respect to the pooled
forecasts.

5.1. Univariate ARIMA forecasts from the factor model

The univariate series generated by the one factor model with AR(1) dynamics verify

yj; t − �yj; t−1 = pjat + �j; t − ��j; t−1 (23)

and they will follow the ARMA(1; 1) model

yj; t − �yj; t−1 = vj; t − %jvj; t−1: (24)
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In order to obtain the MA parameter implied by this representation, let var(vj; t) = 	̃2
j ,

then equating moments in the MA part in both sides and using de.nition (20) %j must
satisfy (see proof of the auxiliary lemma, Part 1, in the appendix)

%2j �− %j(!j + 1 + �2) + �= 0: (25)

The invertible solution of (25) is given by

%j =
!j + 1 + �2 −√(!j + 1 + �2)2 − 4�2

2�
: (26)

Note .rst that sign(%j) = sign(�). Also, if !j = 0, then %j = �. This will happen if
p2

j = 0. In this case the series is not aEected by the factor and it will follow a white
noise process. Since the generation of the series does not participate to the common
information, the series should be dropped from the joint analysis. In what follows, and
to simplify the exposition, we will eliminate this case by assuming, without loss of
generality, that !j �= 0. Then we have that

|%j|6 !j + 1 + �2 − (!j + 1− �2)
2|�| = |�| (27)

and the absolute value of the MA parameter is always smaller than this of the AR
parameter. On the other hand, if !j → ∞, (the signal from the common information
is really strong compared to the noise), %j → 0 and the univariate series will be
AR(1) as it is the common factor. Finally, note that if �¿ 0; d%j=d!j ¡ 0 and if
�¡ 0; d%j=d!j ¿ 0, so %j always decreases in magnitude with !j, the intensity of the
common information. From (25), it is also straightforward to show that the diEerence
between the AR and MA parameters is given by

�− %j =
!j%j

1− %j�
=

p2
j %j

	2
j (1− %j�)

: (28)

Lemma 1. Let U be the sum of MSE of the h steps ahead prediction of the univariate
ARIMA models obtained from the one factor model in (17) and (18). Then

U =
m∑

j=1

(
	2
j +

p2
j %j

�(1− �%j)
+

p2
j (�− %j)

(1− %j�)�

h−1∑
i=0

�2i

)
: (29)

Proof. The proof is given in the appendix.

The sum of prediction MSE depends on the number of series m, the factor loadings
pj, which measure the eEect of the factor on the series, the AR parameter �, which
gives the dynamics of the common factor and, of course, the forecast horizon h. If the
factor is nonstationary, �=1, the univariate models are IMA(1; 1), and using (28) we
have

U =
m∑

j=1

	2
j (2− %j + !jh)
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and when the horizon of prediction goes to ∞, the sum as well as the average
of prediction MSE also goes to ∞. On the other hand if the factor is stationary,
|�|¡ 1, the univariate models are ARMA(1; 1) and the sum of prediction MSE can be
written as

U =
m∑

j=1

	2
j

(
1 +

!j

�(1− �%j)

(
%j +

1− �2h

1− �2 (�− %j)
))

and if the prediction horizon goes to ∞, the average prediction MSE converges to

lim
h→∞

1
m
U = 	2

M +
1

1− �2p
2
M ;

where p2
M =

∑m
j=1 p2

j =m is the average square factor loading, and 	2
M =

∑m
j=1 	

2
j =m.

This equation shows that this limit is the sum of the average univariate measurement
error plus the average induced eEect by the factor model.

5.2. Comparison between univariate and factor model forecasts

Let ,u−f = U − F , where F = tr(�t+h|t). The increase in precision of the factor
model with respect to the univariate ARIMA forecasts is provided by the following
theorem.

Theorem 2. For the one factor model given by (17) and (18), with !j �= 0, let ,u−f=
U −F be the increase in precision of the factor model with respect to the univariate
forecasts. For the nonstationary case

,u−f =
m∑

j=1

p2
j


√

!2
j + 4!j − !j

2!j
− 2

m R! +
√

m2 R!2 + 4m R!

¿ 0; (30)

where R!=1=m
∑m

j=1 !j. Moreover, ,u−f is strictly positive if m¿ 1. For the station-
ary case, ,u−f becomes

,u−f = �2(h−1)
m∑

j=1

p2
j

(√
(!j + 1− �2)2 + 4!j�2 − (!j + 1− �2)

2!j

+
1− �2

m R!
− 2

m R! + �2 − 1 +
√

(m R! + �2 − 1)2 + 4m R!

)
¿ 0: (31)

Note that ,u−f → 0 if h → ∞.

Proof. The proof is given in the appendix.

Some comments on this theorem are in order. First note that in both cases the
advantage of the factor model increases with the common information: the larger the
sum of the factor loadings and the larger the number of series with nonzero factor
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loadings, the larger the reduction in MSE. Second, the diEerence decreases with the
ratios !j which give us the precision at which new information enters into the factor
model. It is easy to see that in both cases if m = 1 ,u−f = 0, that is, in the trivial
case of a simple time series the diEerence is zero. Third in the stationary case the
diEerence increases with �, as expected and when h → ∞, ,u−f → 0 and there is no
diEerence between both models. Finally the diEerence will be in general greater in the
nonstationary case.
Note that ChristoEersen and Diebold (1998) found that there is no precision gain

in the medium and long run forecasts in considering the cointegration relations with
respect to the ARIMA univariate models. A reason for their result could be that they
did not take into account the number of series that satisfy the long run or cointegration
relation. In this analysis, we have found that the number of series is a key factor for the
forecasting improvement when explicitly modelling the common trends of the series.
The theorem provides an estimate of the expected decrease in MSE provided for the

factor model when we have a large sample and, therefore, using consistent estimates
for the parameters, we can assume that the parameter values are approximately known.
For instance, consider a large sample generated by the simplest common random walk
factor, and assume that p2

j =1; 	2
a = 	2

j =1 ∀j=1; : : : ; m. Then %j =0:38 ∀j=1; : : : ; m,
and the relative decrease in MSE of the factor model with respect to the univariate
models for the one step ahead prediction error is

,u−f

U
=

0:5
√
3− 0:5− 2(m+

√
m2 + 4m)−1

2 + 0:38=(1− 0:38)
;

which is equal to 0.06 for m = 4 and goes to 0.14 when m → ∞. These numbers
provide some indication of the advantages that we can obtain from the factor model
with respect to the univariate forecasts.

5.3. Comparison of pooled and univariate forecasts

Empirically, GarcJKa-Ferrer et al. (1987) showed that the univariate forecast of a
collection of variables can be improved by introducing a pooling term. In this section,
we analyze when we can guarantee that there will be an increase in precision of the
pooled forecasts with respect to the univariate ARIMA forecasts when the series are
driven by a common factor. Then, we compute the increase in precision in this case.
Suppose that we forecast a vector of time series by using the pooling model (22)

and extend this model for the extreme cases " = 0 and 1. Note that for " = 0, this
forecast collapses to the univariate ARIMA forecasts and for "= 1, we are using the
mean of the univariate forecasts for all the series. The forecast error of the pooling
predictions is yj; t+h − ỹ j; t+h = yj; t+h − ŷ j; t+h|t + "(ŷ j; t+h|t − ŷ t(h)) and its prediction
MSE

MSE(yj; t+h − ỹ j; t+h) =MSE(yj; t+h − ŷ j; t+h|t) + "2E(ŷ j; t+h|t − ŷ t(h))2

+ 2"E[(yj; t+h − ŷ j; t+h|t)(ŷ j; t+h|t − ŷ t(h))]: (32)

The .rst term of the right-hand side in (32) is the prediction MSE of the univariate
ARIMA forecasts and it is given by (A.5) in the appendix. The second term measures
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how far is an univariate forecast from the mean of the univariate forecasts. From (A.3)
in the appendix, and substituting yj; t by its expression as a function of the common
factor

ŷ j; t+h|t − ŷ t(h) =�hyj; t − �h−1%jvj; t − (�h Ry t − �h−1% Rvt)

=�h((pj − Rp)ft + (�j; t − R�t))− �h−1(%jvj; t − % Rvt): (33)

If, for instance, the common factor is a random walk, its variance E(f2
t ) grows linearly

with t. It can be easily checked that the term E[(yj; t+h − ŷ j; t+h|t)(ŷ j; t+h|t − ŷ t(h))] in
(32) is bounded. Therefore, to guarantee that the pooled forecasts can provide a smaller
MSE than the univariate forecasts, the factor loadings must be equal, so (pj − Rp) = 0.
Note that this is in agreement with the results of Section 4 in which we showed that
when pj =p ∀j=1; : : : ; m the conditional expectation of the factor model incorporates
in all the components the same pooling term with the same weight. For that reason,
from now on we will assume this condition. Then, we have the following:

Theorem 3. For the one factor model, given by (17) and (18) with pj=p ∀j=1; : : : ; m,
let us call P=

∑m
j=1 MSE(yj; t+h−ỹ j; t+h) to the sum of MSE predictions of the pooled

forecasts, and U to the sum of MSE of the ARIMA univariate models. The change in
precision of the pooled forecasts with respect to the univariate forecasts, ,u−p=U−P,
is given by

,u−p =U − 2"
�2(h−1)

m

m∑
j=1

(�− %j)	2
j

m∑
i=1; i �=j

�− %i

1− %i%j

+
"2�2(h−1)

m2

m∑
j=1

m∑
i �=j

[(m− 1)	2
j + 	2

i ]
(�− %i)(�− %j)

1− %i%j

+p2
m∑

k �=i; j

(
1

1− %i%k
− 1

1− %i%j

) :

If additionally 	2
j = 	2; ∀j=1; : : : ; m the increase in precision of the pooled forecasts

with respect to the univariate forecasts is given by

,u−p = "(2− ")(m− 1)�2(h−1)	2 (�− %)2

1− % 2 ¿ 0: (34)

Proof. The proof is given in the appendix.

The theorem shows that we can only guarantee that we can obtain reductions in the
prediction MSE of the pooled forecasts with respect to the ARIMA univariate forecasts
if all the series behave equally. If pj=p and 	2

j =	2 ∀j=1; : : : ; m, the MA parameters
%j given by (26) are equal for all the univariate ARMA(1,1) processes and the last
term in ,u−p disappears since the diEerences 1=(1 − %i%k) − 1=(1 − %i%j) = 0 for all
i; j; k. Then, the diEerence of prediction MSE between the ARIMA univariate model
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and the pooled forecasts is always positive (as it is shown by 34) and the prediction
MSE using pooled forecasts reaches its minimum for "=1, giving the highest possible
weight to the pooling term. In this case, the best predictor is the mean of the univariate
ARIMA forecasts ỹ j; t+h = 1=m

∑m
i=1 ŷ i; t+h|t . From (34) we can also conclude that for

this restrictive case, the diEerence of prediction MSE between the ARIMA univariate
model and the pooled forecasts increases with the number of series, with the value
of the AR parameter and with the weight given to the pooling term. The diEerence
between both models gets smaller as the precision ! decreases, then % → �, the
second term in (34) vanishes and the univariate series tend to behave as white noise
and nothing is gain, in terms of precision, from using a linear combination of them.
So, in order to obtain an increase in precision with the pooled forecasts with respect

to the univariate ARIMA forecasts, the factor loadings and the errors variances of each
individual series should be very close. Nevertheless, our limited experience with Monte
Carlo simulations reveals that the condition of equal noise variances for the observed
series is not so important, while the condition of equal factor loadings is crucial for
obtaining these results in practice. This will be con.rmed through some simulations in
the next section.

5.4. Pooled versus one factor model forecasts

The increase in precision of the pooled forecasts is only guaranteed if the series
come from similar processes. In this later case (the most favorable for the pooling
technique), the following theorem provides the increase in precision of the factor model
with respect to the pooled forecasts.

Theorem 4. For the one factor model given by (17) and (18), with !j = ! ∀j =
1; : : : ; m; !j �= 0, let ,p−f =P−F =

∑m
j=1(MSE(yj; t+h− ỹ j; t+h))− tr(�t+h|t) be the in-

crease in precision of the factor model with respect to the univariate pooled forecasts.
For the nonstationary case

,p−f¿,u−f − (m− 1)	2 1− %
1 + %

(35)

= p2

1
2

(√
1 +

4
!
− 1

)
m%+ 1
1 + %

− 2

! +
√

!2 + 4 !
m

¿ 0: (36)

,p−f is strictly positive if m¿ 1. For the stationary case, ,p−f becomes

,p−f¿,u−f − (m− 1)�2(h−1) p2(�− %)%
(1− % 2)(1− �%)

(37)

= p2m
(

%
�(1− �%)

0 − 1
Vm!�2 +

1− % 2

�2m!

)
�2h; (38)

where 0 = 1− ((m− 1)=m)((�− %)=�(1− % 2)). Note that ,p−f → 0 if h → ∞.
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Proof. The proof is given in the appendix.

Two equivalent expressions ((35) and (36) for the nonstationary case and (37) and
(38) for the stationary one) have been given in the theorem for the lower bound
of the increase in forecasting precision from using the factor model rather than the
univariate pooled forecasts. Eqs. (35) and (37) show that for the trivial case of one
series there is no diEerence between the univariate and pooled forecasts. In this case
,p−f=,u−f=0. Expressions (36) and (38) are useful to study the dependence of the
results on the parameters. The ¿ signs comes from the fact that under the hypothesis
of the theorem, the best pooled forecasts, in terms of prediction MSE, are given for
" = 1, using as pooled forecasts the means of the univariate forecasts. For any other
value of ", 06 "6 1, the increase in forecast precision when using the factor model
will be greater if m¿ 1. In both cases, the stationary and nonstationary ones, the
equality holds for "= 1. A few other remarks are in order.
First note that in both cases the advantage of the factor model increases with the

number of series m and the common information through the square of the factor
loading p. Second, in the nonstationary case the advantages of the pooling forecasts
decrease if ! decrease and in the limit case when ! → 0; % → �=1; ,p−f → ,u−f and
the pooled forecasts do not show any advantages over the univariate ARIMA forecasts.
Notice that in this case the univariate series will behave as white noise and there is no
improvement in terms of the prediction MSE with the pooled forecasts with respect to
the ARIMA univariate forecasts. Third, in the stationary case the diEerence increases
with �, as expected and when h → ∞; ,p−f → 0 and there is no diEerence between
both models. Fourth, notice also that in this case, the .rst term is always positive
since % and � are of the same sign and 0 is always positive (since |%|6 |�| and
(�−%)=�(1−% 2)=((1−%)=�)=(1−% 2)=((1−%)=�)=(1−|%|)(1+|%|)¡ 1=(1+|%|)¡ 1).
As it was previously pointed out, this is the best result we can obtain for pooled

forecasts, when series behave in a similar way giving the highest weight to the pooled
term. In any other case, the advantages of the factor model over the pooled forecasts
should be greater. This will be con.rmed in the next section through some simulation
results.

6. Some simulation results

The previous analysis has been obtained by assuming that the parameters are known.
To check these results in the usual case in which the parameters are estimated from the
sample, we have carried out three Monte Carlo experiments. In the three experiments
we compare the forecasts generated by .ve diEerent models. First, we .tted an ARI(3,1)
for each of the series as an approximation to the true univariate model, ARIMA(0,1,1),
and computed the univariate forecasts. Then we computed pooled forecasts using (22)
and the three values of "; ("=0:25; 0:50 and 0.75), which were used by GarcJKa-Ferrer
et al. (1987). Finally, we have estimated the factor model through the EM algorithm via
the Kalman .lter. For all these models we made forecasts h=1; : : : ; 20 steps ahead and
computed the prediction MSE for horizons 1, 5, 10 and 20. We made 1000 replications.
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Table 1
Comparison of RMSE of prediction for the univariate ARIMA, pooled and factor models

Horiz. ! UNIV " = 0:25 " = 0:50 " = 0:75 FACT

h = 1 0.1 1.1877 1.1466 1.1165 1.0984 1.1097
h = 5 0.1 1.3515 1.3114 1.2817 1.2633 1.2638
h = 10 0.1 1.5089 1.4745 1.4499 1.4355 1.4380
h = 20 0.1 1.8066 1.7768 1.7552 1.7421 1.7406

h = 1 1 1.6567 1.6066 1.5701 1.5481 1.5337
h = 5 1 2.5751 2.5420 2.5181 2.5034 2.4977
h = 10 1 3.3195 3.2942 3.2760 3.2650 3.2668
h = 20 1 4.5538 4.5362 4.5239 4.5168 4.5164

h = 1 10 3.5331 3.4892 3.4581 3.4403 3.4566
h = 5 10 7.3283 7.3056 7.2892 7.2793 7.2650
h = 10 10 9.8499 9.8328 9.8206 9.8133 9.8297
h = 20 10 14.2844 14.2722 14.2633 14.2578 14.2339

Data consist of 4 time series generated by a common random walk for three diEerent values of !=0:1; 1; 10.

The sample size for each of the simulated series was 124 observations. The .rst 104
observations were used to estimate the model and the last 20 were reserved to compute
the forecasts.
In the .rst experiment we assume the most favorable situation for shrinking fore-

casts: a common nonstationary factor (common trend) for m = 4 observed series,
P = p(1; 1; 1; 1)′;E(�t) = 0; var(�t) = I4; E(at) = 0 and var(at) = 	2

a = 1. We have
used three diEerent values of p (1;

√
10 and

√
0:1). In this case !j = ! ∀j = 1; : : : ; m

and ! = p2. Notice that this is the same as keeping p= 1 in all cases and letting the
noise variance of the factor to vary according to 	2

a = 1; 10; 0:1.
Table 1 shows the root mean square error (RMSE) of prediction for ! = 0:1; 1 and

10. Each model is characterized by a single value of !, which indicates that all the
series behave in a similar way within a model. The .rst column shows the horizon
of prediction; the second one shows the precision of generation of each series, !; and
columns third to seventh show the RMSE obtained for the univariate ARI(3,1), for the
pooling technique with the three values of " previously indicated, and for the factor
model.
Note that for !=1 the factor model improves the univariate forecasts by (1:6567−

1:5337)=1:6567=0:0742 for h=1, by (3:3195−3:2668)=3:3195=0:0159 for h=10 and
by (4:5538− 4:5164)=4:5538 = 0:0082 for h= 20. The best forecasts from the pooling
method correspond to " = 0:75 and the gains with respect to the univariate forecasts
is, for one step ahead, (1:6567− 1:5481)=1:6567 = 0:0656 similar to the one from the
factor model. We see that the pooling forecast with "= 0:75 performs very similar to
the factor model for all horizons.
In the second experiment we allow diEerent precisions !i. First we take var(�t) =

diag(0:12; 0:52; 12; 32) and set the other parameters as in the .rst experiment. Second,
we additionally change P=(1; 0:5; 0:2; 0:05)′. The results of this second experiment are
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Table 2
Comparison of RMSE of prediction for the univariate ARIMA, pooled and factor models

Horiz. p UNIV " = 0:25 " = 0:50 " = 0:75 FACT

h = 1 E 2.1451 2.0675 2.0103 1.9752 1.9502
h = 5 E 2.9308 2.8749 2.8344 2.8100 2.7799
h = 10 E 3.5882 3.5410 3.5066 3.4855 3.4585
h = 20 E 4.7594 4.7251 4.7007 4.6862 4.6653

h = 1 D 1.8987 1.9819 2.3761 2.9595 1.7206
h = 5 D 2.2157 2.2681 2.6030 3.1310 2.0569
h = 10 D 2.5147 2.5373 2.8198 3.2962 2.3537
h = 20 D 3.1215 3.1366 3.3663 3.7716 2.9916

Data consist of 4 time series generated by a common random walk factor with diEerent values of the
noise variances (rows 2–5) and with diEerent factor loadings and noise variances of the observed series
(rows 6–9).

given in Table 2. The .rst part of the table indicates the results for the .rst simulation
in which the factor loadings are equal, and this is indicated by the E in the second
column. The second part of the table shows the result when the loadings are diEerent,
and this is indicated by D in the second column. The rest of the table has the same
structure as Table 1.
The results of Table 2 show that when the series have diEerent factor loadings and

noise variances (rows 6–9 of the table), the pooling forecast are no longer success-
ful. The best results are obtained when the pooling is the smallest, " = 0:25, and as
" increases the behavior of the pooling method worsens. However, when the factor
loadings are equal, the results (rows 2–5) are qualitative similar to the ones of Table
1, and the models rank in the same way.
The third experiment was designed to check if the previous results can be general-

ized to the case of several factors. We assume r = 3 common factors and m = 8 ob-
served series. Three models are considered and in all of them the factor loading matrix
is P= [p1:p2:p3], where p2 = (0; 1; 1;−1;−1; 0; 0; 0)′ and p3 = (0; 0; 0; 1;−1; 1;−1; 0)′;
E(�t)=0; the dynamics of the common factors are given by Eq. (2) with �1= diag(1;
0:7; 0:3); �j=0; j ¿ 1 and �i=0 for all i; E(at)=0 and var(at)=I3. The .rst model,
Model I, has p1=(1; 1; 1; 1; 1; 1; 1; 1)′ and var(�t)=I8. The second model, Model II, has
also p1=(1; 1; 1; 1; 1; 1; 1; 1)′ but now var(�t)= diag(0:012; 0:052; 0:12; 0:52; 1; 1:52; 32; 52).
The third model, Model III, has diEerent factor loadings associated to the common
nonstationary factor, p1 = (1;−1; 1;−1; 1;−1; 1;−1)′ and var(�t) = diag(0:012;
0:052; 0:12; 0:52; 1; 1:52; 32; 52).
The results are presented in Table 3. Note that for Model I, in which the common

trend aEects in the same way to all the components the results are similar to the one
factor model. The factor model improves the univariate forecasts by 0.083 for h=1, by
0.0451 for h=10 and by 0.0270 for h=20. The best forecasts from the pooling method
correspond to "=0:75 and the gains with respect to the univariate forecasts is, for one
step ahead, 0.0617 similar to the one from the factor model. The same qualitative results
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Table 3
Comparison of RMSE of prediction for the univariate ARIMA, pooled and factor models

Horiz. Model UNIV " = 0:25 " = 0:50 " = 0:75 FACT

h = 1 I 1.9783 1.8883 1.8466 1.8563 1.8141
h = 5 I 3.0446 2.9447 2.8745 2.8363 2.8475
h = 10 I 3.8830 3.7965 3.7355 3.6951 3.7080
h = 20 I 5.0103 4.9426 4.8933 4.8631 4.8751

h = 1 II 2.9434 2.8169 2.7424 2.7240 2.6720
h = 5 II 3.7244 3.5906 3.4963 3.4449 3.4768
h = 10 II 4.4711 4.3478 4.2580 4.2039 4.2355
h = 20 II 5.4835 5.3799 5.3040 5.2571 5.2958

h = 1 III 2.9424 8.7517 16.6965 24.8033 2.6330
h = 5 III 3.7175 9.0849 16.8978 24.9564 3.4178
h = 10 III 4.4546 9.3108 19.9656 24.9652 4.1606
h = 20 III 5.5538 9.6196 16.9859 24.8757 5.2774

Data consist of 8 time series generated by 3 common factors.

are obtained from Model II, con.rming the results of the second experiment. However,
for model III, the results from the pooled forecasts greatly deteriorates, as expected.
Recall from the results of Section 5.3, Eq. (33) that there is an unbounded term in the
expression of the MSE of the pooled forecasts, when there is a nonstationary common
factor with diEerent values of the factor loadings for each of the series associated to it.

7. An example: forecasting GNP

The data we considered are annual observations of the real GNP, from 1949 to 1997,
for some European OECD countries. An extended data base, from 1948 to 1986, was
analyzed by GarcJKa-Ferrer et al. (1987), who considered several alternatives to forecast
the output growth rates de.ned as gt = ln(Ot=Ot−1), where Ot is real GNP, for several
OECD countries. Forecasts were compared by the root mean-square error of prediction
for one step ahead forecasts. The problem was further studied by Zellner and Hong
(1989), Mittnik (1990), Zellner et al. (1991), Min and Zellner (1993), Li and Dorfman
(1996), Zellner and Min (1998) and GarcJKa-Ferrer and Poncela (2002).
A factor model with a common trend and a common stationary factor was built for

this European group of countries that includes Belgium, France, Italy, the Netherlands
and Spain. A graph of the logs of real GNP of these countries is shown in Fig. 1.
The diSculty in forecasting this data set is associated to the presence of several

turning points. We will show that the prediction MSE decreases in a dynamic factor
model with respect to an ARIMA univariate model and pooled forecasts, when in-
creasing the number of countries considered. Each of the models was estimated with
data from 1949 to 1980, then we generated one step ahead forecasts. We reestimated
the models adding one observation at the time and made new forecasts. Finally, we
compute the RMSE of prediction for each country.
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Fig. 1. Logs of real GNP of Belgium, France, Holland, Italy and Spain.

In order to achieve a systematic procedure for our comparison, (see, for instance,
GarcJKa-Ferrer et al., 1987, among others), we .tted and AR(3) model for each
growth rate,

git = 00i + 01igit−1 + 02igit−2 + 03igit−3 + �it : (39)
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Table 4
RMSE of prediction for each country for a factor model built by using 5, 4, 3 and 2 series

m BEL SPA FRA HOL ITA Mean Median

5 1.27 1.52 1.20 1.96 1.48 1.49 1.48
4 1.45 1.57 1.31 1.90 1.56 1.51
3 1.75 1.51 1.40 1.56 1.51
2 1.82 2.55 2.18 2.18

Then, we built a factor model. Applying the results in Peña and Poncela (2002), we
found a common trend plus a common AR(1) stationary factor. Let yt=(y1; t ; : : : ; ym; t)′;
yi; t=log(Oi; t); i=1; : : : ; m; t=1; : : : ; T , the factor model could be written as yt=Pf t+nt ,
where ft is the r-dimensional vector of common factors, P is the factor loading matrix,
and nt is the vector of speci*c components. In our case, f ′t = [T ′

t

...f′
2; t], where Tt is a

common trend and f2; t , is an AR(1) stationary common factor,[
Tt

f2; t

]
=

[
1 0

0 �

][
Tt−1

f2; t−1

]
+

[
a1; t

a2; t

]
; (40)

where at = (a1; t a2; t)′ ∼ N2(0;�a) is serially uncorrelated, E(ata′t−h) = 0; h �= 0. After
extracting the common dynamic structure, we .tted an univariate AR(3) for each of
the speci.c components in order to capture the remaining dynamic structure

nit = 30i + 31init−1 + 32init−2 + 33init−3 + eit : (41)

The sequence of vectors et = (e1; t ; : : : ; em; t)′ are normally distributed, have zero mean
and diagonal covariance matrix �e. We assume that the noises from the common factors
and speci.c components are also uncorrelated for all lags, E(ate′t−h) = 0 ∀h.

We repeated the process discarding one country at the time. The series were discarded
in Spanish alphabetical order (Spain starts with ESP in Spanish). The results are shown
in Table 4. The .rst column has the number of series considered in each of the factor
models. Columns 2–6 have the RMSE of prediction for each of the countries with
each of the factor models and columns 6 and 7 show the mean and median of the
RMSE of prediction of each model.
It is clear that the mean and median of the RMSE of prediction decreases with the

number of series. By using 5 series the mean RMSE decreases 31.65% with respect to
the case in which only 2 series are used. Pooled forecasts were also built for values
of " equal to 0:25; 0:50 and 0.75. Table 5 shows a comparison of the factor model,
the ARI(3,1) model and the pooled forecasts. It is clearly seen in Table 5 that the best
forecasting results are achieved through the factor model. Also, when we increase the
value of ", from 0.25 to 0.75, giving greater weight to the pooling term the mean and,
therefore, the sum of RMSE of predictions slightly decreases. The ARI(3,1) model
gives the overall worse results.
Finally, we want to check the inLuence of the number of series m in the forecasting

performance of the diEerent models and if these models rank in a similar way when we
decrease the number of series. In order to do so, we will repeat Table 5, discarding one



310 D. Peña, P. Poncela / Journal of Econometrics 119 (2004) 291–321

Table 5
RMSE of prediction for each country for the factor model (FM) with .ve series, pooled forecasts (P) for
three values of ", 0.75, 0.50 and 0.25 and univariate ARI(3,1) model

Model BEL SPA FRA HOL ITA Mean Median

FM 1.27 1.52 1.20 1.96 1.48 1.49 1.48
P, " = 0:75 1.86 1.69 1.64 1.79 1.82 1.76 1.79
P, " = 0:50 1.88 1.62 1.63 1.77 1.93 1.77 1.77
P, " = 0:25 1.90 1.57 1.63 1.77 2.06 1.79 1.77
ARI(3,1) 1.92 1.54 1.64 1.77 2.22 1.82 1.77

Table 6
RMSE of prediction for each country for the factor model (FM) with four series, pooled forecasts (P) for
three values of ", 0.75, 0.50 and 0.25 and univariate ARI(3,1) model

Model BEL SPA FRA HOL Mean Median

FM 1.45 1.57 1.31 1.90 1.56 1.51
P, " = 0:75 1.79 1.66 1.59 1.72 1.69 1.69
P, " = 0:50 1.83 1.61 1.60 1.73 1.69 1.67
P, " = 0:25 1.87 1.55 1.62 1.75 1.70 1.69
ARI(3,1) 1.92 1.54 1.64 1.77 1.72 1.71

Table 7
RMSE of prediction for each country for the factor model (FM) with three series, pooled forecasts (P) for
three values of ", 0.75, 0.50 and 0.25 and univariate ARI(3,1) model

Model BEL SPA FRA Mean Median

FM 1.75 1.51 1.40 1.56 1.51
P, " = 0:75 1.80 1.67 1.60 1.69 1.67
P, " = 0:50 1.83 1.61 1.60 1.68 1.61
P, " = 0:25 1.88 1.57 1.62 1.69 1.62
ARI(3,1) 1.92 1.54 1.64 1.70 1.64

series at the time. The series are discarded in Spanish alphabetical order. The results
are shown in Tables 6–8.
For all the cases but the last one, the factor model outperforms the remaining uni-

variate models and the diEerent models rank in a similar way as in the case of m= 5
series. Only in the last case, when there are only two series, the behavior of the factor
model deteriorates and all the univariate models provide very similar results and better
than the factor model.
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Table 8
RMSE of prediction for each country for the factor model (FM) with two series, pooled forecasts (P) for
three values of ", 0.75, 0.50 and 0.25 and univariate ARI(3,1) model

Model BEL SPA Mean Median

FM 1.82 2.55 2.18 2.18
P, " = 0:75 1.82 1.65 1.74 1.74
P, " = 0:50 1.85 1.60 1.73 1.73
P, " = 0:25 1.88 1.57 1.73 1.73
ARI(3,1) 1.92 1.54 1.73 1.73

8. Conclusions

We have shown that the forecasting equations for each component of a vector of
time series that follows a factor model incorporate a pooling term of a weighted sum
of all the variables observed in t. In particular, for the one factor model and under
some very restrictive assumptions we can obtain as the pooling term the sample mean
of the observed series.
For the AR(1) one factor model and assuming that the parameters are known, we

have shown that the gain in precision, in terms of the prediction MSE, of the factor
model with respect to univariate ARIMA and pooled forecasts depends on the common
information and increases with the number of time series and the sum of the relative
sizes of the factor loadings. Thus, we have that when the parameters are known and
under some restrictive assumptions (equal factor loadings and equal noise variance for
the observed series)

MSEu ¿MSEp ¿MSEf ; (42)

where MSEf is the trace of MSE of predictions of the factor model, and MSEu and
MSEp are the sum of MSE of prediction of the univariate ARIMA models and pooled
forecasts. If there exists a common nonstationary factor with diEerent loadings asso-
ciated to it, the expression for MSEp is unbounded and the pooled forecasts can be
worse than the univariate forecasts, although MSEu and MSEp always remain bigger
than MSEf (if we discard the estimation error). This was con.rmed by Monte Carlo
experiments. Our limited Monte Carlo experience reveals that the result MSEu ¿MSEp

depends much more on the hypothesis of equal factor loadings than on the one of
equal noise variances.
A limited Monte Carlo experiment seems to reveal that we can broadly draw the same

conclusions for the multifactor model. The larger the common information, the larger
the advantages of the factor model with respect to the univariate forecasts. The advan-
tages of pooling forecast with respect to univariate forecast can be important if there
is a main factor with similar eEects on all the series, but this advantage may disappear
if the loading coeScients of the main factor are very diEerent for the diEerent series.
This result is not surprising because then a common pooling term will be unable to
approximate the conditional expectation for each component given the past information
for all of them.
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Appendix

Proof of (16). Starting from (14) and using (6) we have that

A2 = P̃GhVt|t−1P̃
′
(�−1
� − �−1

� P̃(P̃
′
�−1
� P̃+ V−1

t|t−1)
−1)P̃

′
�−1
� )

and calling A2 = P̃NtP̃
′
�−1
� , we can write Nt = GhVt|t−1(Is − P̃

′
�−1
� P̃(P̃

′
�−1
� P̃ +

V−1
t|t−1)

−1) and computing again the inverse of (P̃
′
�−1
� P̃+V

−1
t|t−1), we obtain (16).

Proof of Lemma 1. We .rst proof the following auxiliary lemma that characterizes the
noise processes involved and will be used in the proof of other results of Section 5
as well.

Auxiliary lemma. For the one factor model given by (17) and (18), and for vi; t de*ned
in Eq. (24), if (i) E(atvj;0) = 0 and (ii) E(�j; tvi;0) = 0 ∀j; i = 1; : : : ; m, then

1. Var(vj; t) = 	̃2
j = 	2

j + p2
j =(1− �%j) ∀j = 1; : : : ; m,

2. E(atvj;�) = 0 ∀j = 1; : : : ; m ∀�¡ t,
3. E(atvj; t) = pj ∀j; i = 1; : : : ; m; j �= i,
4. E(�j; tvj; t) = 	2

j ∀j = 1; : : : ; m,
5. E(�j; tvj; t+h) =−%h−1

j (�− %j)	2
j ∀j = 1; : : : ; m ∀h¿ 0,

6. E(�j; tvi; �) = 0 ∀j; i = 1; : : : ; m; j �= i ∀� integer,
7. Cov(vj; t ; vi; t) = 	̃ji = pipj=(1− %j%i) ∀j; i = 1; : : : ; m; i �= j and
8. Cov(vj; t+h; vi; t) = %h

jpipj=(1− %j%i) ∀j; i = 1; : : : ; m; i �= j ∀h¿ 0.

Proof of the auxiliary lemma. 1. By (23) and (24)

pjat + �j; t − ��j; t−1 = vj; t − %jvj; t−1 (A.1)

and equating variances in both sides

	̃j
2 + %2j 	̃j

2 = p2
j + 	2

j + �2	2
j (A.2)

and for the equality of the .rst-order autocovariances, %j	̃j
2=�	2

j . From both equations

we obtain that %j must satisfy (26), also solving for 	̃j
2 then 	̃j

2=p2
j+(1+(�−%j)�)	2

j .

Introducing (28) in the last equation 	̃j
2=	2

j+(1+�%j=(1−�%j))p2
j=	2

j+p2
j =(1−�%j).

2. To show that E(atvj;�)=0, we solve for vj;� in (A.1) and by backward substitution
we get that E(atvj;�) = % �E(atvj;0) = 0, by hypothesis (i).

3. We solve for vj;� in (A.1) and introduce it in E(atvj; t)=E(at(pjat+�j; t−��j; t−1+
%jvj; t−1)) = pj ∀j = 1; : : : ; m.
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4. E(�j; tvj; t) = E(�j; t(pjat + �j; t − ��j; t−1 + %jvj; t−1)) = 	2
j ∀j = 1; : : : ; m.

5. Applying (A.1) in time j + h and by backward substitution vj; t+h h times,
E(�j; tvj; t+h) =−%h−1

j (�− %j)	2
j ∀j; i = 1; : : : ; m; j �= i ∀j = 1; : : : ; m ∀h¿ 0.

6. To show E(�j; tvi; �) = 0 ∀j; i = 1; : : : ; m; j �= i ∀� integer, is immediately from
backward substitution of vi;� � times from (A.1) and applying hypothesis (ii).
7. From (A.1) 	̃ji=E(vj; t ; vi; t)=E[(pjat+�j; t−��j; t−1+%jvj; t−1)(piat+�i; t−��i; t−1+

%ivi; t−1)] =pjpi + %j%i	̃ji. Solving for 	̃ji, we get 	̃ji =pipj=(1− %j%i) ∀j; i=1; : : : ; m;
j �= i.
8. Applying recursively (A.1) h times and from Parts 2 and 6 of this lemma,

E(vj; t+h; vi; t)=E[(pjat+h+�j; t+h−��j; t+h−1+%jvj; t+h−1)vi; t]=%jE(vj; t+h−1vi; t)=%h
jE(vj; tvi; t)

=%h
j (pipj=(1− %j%i)):

We proceed now to prove Lemma 1. The forecast of the observed series h steps
ahead is given by

ŷ j; t+h|t = �hyj; t − �h−1%jvj; t (A.3)

and the true value in t + h can be written as yj; t+h = �hyj; t + vj; t+h +
∑h−1

i=1 �i−1(�−
%j)vj; t+h−i − �h−1%jvj; t , so the forecast error is

yj; t+h − ŷ j; t+h|t = vj; t+h +
h−1∑
i=1

�i−1(�− %j)vj; t+h−i (A.4)

and the prediction MSE

MSEj =MSE(yj; t+h − ŷ j; t+h|t) = 	̃j
2

(
1 + (�− %j)2

h−1∑
i=1

�2(i−1)

)

=

(
	2
j +

p2
j

1− �%j

)(
1 + (�− %j)2

h−1∑
i=1

�2(i−1)

)
; (A.5)

where the last equality is obtained replacing 	̃j
2 by its expression given in the auxiliary

lemma, Part 1. Then, the sum of MSE for all the series, U =
∑m

j=1(MSE)j, will be

U =
m∑

j=1

(
	2
j +

p2
j

1− �%j

)(
1 + (�− %j)2

h−1∑
i=1

�2(i−1)

)
and using (28) and after some straightforward algebra we .nally have

U =
m∑

j=1

(
	2
j +

p2
j %j

�(1− �%j)
+

�− %j

(1− %j�)�
p2

j

h−1∑
i=0

�2i

)
: (A.6)

Proof of Theorem 2. For the one factor model, substituting (9) in (11), with �u = 1
by the identi.cation restriction and G = �, we obtain that the trace of the MSE of
predictions matrix is

tr(�t+h|t) =
m∑

j=1

p2
j

(
Vt|t�2h +

h−1∑
i=0

�2i

)
+

m∑
j=1

	2
j : (A.7)
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The diEerence between (29) and (A.7), after some straightforward algebra, is

,u−f =
m∑

j=1

p2
j

(
%j

�(1− �%j)
− Vt|t�2h

)
−

m∑
j=1

(
p2

j
%j(1− �2)
(1− %j�)�

h−1∑
i=0

�2i

)
; (A.8)

that can be written, both for |�|= 1 as well as for |�|¡ 1 as

,u−f =
m∑

j=1

p2
j

(
%j

�(1− �%j)
− Vt|t

)
�2h: (A.9)

To compute ,u−f, .rst notice that the model written in state space form is a detectable
and stabilisable system. Therefore, it reaches a steady state for any initial condition V1|0
of the Kalman .lter (see, for instance, Harvey, 1989, p. 119). Pre- and post-multiplying
�−1

t|t−1 by P′ and P and from (6) and using again the lemma for the inverse of the sum
of two matrices (Rao, 1973), P′�−1

t|t−1P=m R!=(1 +m R!Vt|t−1). Now, from (8), Vt|t can
be written as Vt|t = Vt|t−1=(1 +m R!Vt|t−1). Substituting Vt−1|t−1 as given by (8) in (5)
and assuming that the .lter has already reached the steady state, Vt|t−1 =Vt−1|t−2 =V ,
we obtain the algebraic Riccatti equation

m R!V 2 − (m R! + �2 − 1)V − 1 = 0 (A.10)

and the steady state of Vt|t , denoted by Ṽ , is

Ṽ =
V

1 + m R!V
=

1
Vm R!�2 − 1− �2

m R!�2 ; (A.11)

which introduced in (A.9) gives

,u−f = �2(h−1)
m∑

j=1

p2
j

(
�%j

(1− �%j)
− 1

Vm R!
+

1− �2

m R!

)
: (A.12)

Also inserting the positive solution of (A.10) in (A.12) and using (28) and (26), we
obtain (31). Note that in (31) the .rst term is positive because (!j +1+�2)2− 4�2 =
(!j +1−�2)2 +4!j�2. To prove that ,u−f in (31) is always positive, .rst notice that
in the stationary case (1− �2)=m R!¿ 0. Then it is suScient to prove that(√

(!j + 1− �2)2 + 4!j�2 − (!j + 1− �2)
)

×
(
m R! + �2 − 1 +

√
(m R! + �2 − 1)2 + 4m R!

)
− 4!j ¿ 0:

Calling A =
√
(m R! + �2 − 1)2 + 4m R! and B =

√
(!j + 1− �2)2 + 4!j, and noting

that B−(!j+1−�2)¿ 0, m R!¿!j and A¿B if m¿ 1, this expression can be written
as (B− (!j + 1−�2))((m R!+�2 − 1) + A)− 4!j ¿ (B− (!j + 1−�2))(B+ (!j + 1−
�2))− 4!j = (!j − (1− �2))2¿ 0, and the result is proved.
To obtain (30), just insert � = 1 in (31), and to prove now that this diEerence is

strictly positive for m¿ 1, we just have to prove that in this case(√
!2
j + 4!j − !j

)(
m R! +

√
m2 R!2 + 4m R!

)
− 4!j ¿ 0:
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Calling A=
√

m2 R!2 + 4m R! and B=
√

!2
j + 4!j, and noting that B− !j ¿ 0; m R!¿!j

and A¿B, this expression can be written as (B−!j)(m R!+A)−4!j ¿ (B−!j)(B+!j)−
4!j = 0, and the result is proved. It is easy to check that if m= 1 then ,u−f = 0.

Proof of Theorem 3. We .rst prove three auxiliary lemmas and corollaries.

Lemma 5. For the one factor model given by (17) and (18), with pj=p ∀j=1; : : : ; m.
Let R%vt=(1=m)

∑m
i=1 %ivi; t ; Rvt=(1=m)

∑m
i=1 vi; t and R�t=(1=m)

∑m
i=1 �i; t for all t=1; : : : ; T .

Then

(i) �(�j; t − R�t)− (%jvj; t − R%vt) = (�j; t+1 − R�t+1)− (vj; t+1 − Rvt+1),
(ii) E(�j; t+1 − R�t+1)2 = ((m− 1)=m)2	2

j + (1=m2)
∑m

i=1; i �=j 	
2
i ,

(iii) E(vj; t+1− Rvt+1)2=(1=m2)
∑m

i �=j [(m−1)	2
j +	2

i ][1+((�−%i)(�−%j))=(1−%i%j)]+
(p2=m2)

∑m
i �=j

∑m
k �=i; j(1=(1− %i%k)− 1=(1− %i%j)), and

(iv) E[(�j; t+1 − R�t+1)(vj; t+1 − Rvt+1)] = ((m− 1)=m)2	2
j + (1=m2)

∑m
i=1; i �=j 	

2
i .

Proof. (i) From (A.1),

��j; t − %vj; t = pat+1 + �j; t+1 − vj; t+1; (A.13)

applying this equation for j = 1; : : : ; m, summing up and dividing by m, we get that

� R�t − R%vt = pat+1 + R�t+1 − Rvt+1; (A.14)

where R�t=(1=m)
∑m

i=1 �i; t and Rvt=(1=m)
∑m

i=1 vi; t and R%vt=(1=m)
∑m

i=1 %ivi; t . Subtracting
(A.14) from (A.13) we get the desired result.
(ii) Since �� is diagonal E(�j; t+1− R�t+1)2=E((m−1)=m �j; t+1−(1=m)

∑m
i=1; i �=j �i; t+1)2=

((m− 1)=m)2	2
j + (1=m2)

∑m
i=1; i �=j 	2

i .
(iii) E(vj; t+1 − Rvt+1)2 = E(((m − 1)=m)vj; t+1 − (1=m)

∑m
i=1; i �=j vi; t+1)2; expanding the

square

E(vj; t+1 − Rvt+1)2 =
(
m− 1
m

)2
E(v2j; t+1) +

1
m2 E

 2∑
i=1; i �=j

vi; t+1

2

− 2
m− 1
m2 E

vj; t+1

m∑
i=1; i �=j

vi; t+1


=
(
m− 1
m

)2
	̃2
j +

1
m2

m∑
i=1; i �=j

	̃2
i +

1
m2

m∑
i=1; i �=j

m∑
k=1; k �=i; j

	̃ik

− 2
m− 1
m2

m∑
i=1; i �=j

	̃ij :
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By the auxiliary lemma, Parts 1 and 7, and rearranging terms

E(vj; t+1 − Rvt+1)2 =
(
m− 1
m

)2(
	2
j +

p2

1− �%j

)
+

1
m2

m∑
i=1; i �=j

(
	2
i +

p2

1− �%i

)

+
p2

m2

m∑
i=1; i �=j

m∑
k=1; k �=i; j

1
1− %i%k

− 2
m− 1
m2

m∑
i=1; i �=j

1
1− %i%j

=
1
m2

m∑
i=1; i �=j

[(m− 1)	2
j + 	2

i ]

+
p2

m2

m∑
i=1; i �=j

m∑
k=1; k �=i; j

(
1

1− %i%k
− 1

1− %i%j

)

+
p2

m2

m∑
i=1; i �=j

[
(m− 1)

(
1

1− �%j
− 1

1− %i%j

)

+
(

1
1− �%i

− 1
1− %i%j

)]
:

Finally, after some straight forward algebra and taking into account (28)

E(vj; t+1 − Rvt+1)2 =
1
m2

m∑
i=1; i �=j

[(m− 1)	2
j + 	2

i ]
[
1 +

(�− %i)(�− %j)
1− %i%j

]

+
p2

m2

m∑
i=1; i �=j

m∑
k=1; k �=i; j

(
1

1− %i%k
− 1

1− %i%j

)
:

(iv) Taking into account, the auxiliary lemma, Part 6, E[(�j; t+1− R�t+1)(vj; t+1− Rvt+1)]=
E(�j; t+1vj; t+1 − R�t+1vj; t+1 − �j; t+1 Rvt+1 + R�t+1 Rvt+1)= 	2

j − 	2
j =m− 	2

j =m+(1=m2)
∑m

i=1 	
2
i =

((m− 1)=m)2	2
j + (1=m2)

∑m
i=1; i �=j 	

2
i .

Lemma 6. For the one factor model given by (17) and (18), with pj=p ∀j=1; : : : ; m,
then E(ŷ j; t+h|t− ŷ t(h))2=�2(h−1)=m2(

∑m
i �=j [(m−1)	2

j +	2
i ](�−%i)(�−%j)=(1−%i%j)+

p2∑m
i �=j

∑m
k �=i; j(1=(1− %i%k)− 1=(1− %i%j))). If additionally 	2

j =	2 ∀j=1; : : : ; m, the
previous expression reduces to E(ŷ j; t+h|t − ŷ t(h))2 = �2(h−1)((m− 1)=m)	2

j ((�− %)2=
(1− % 2)).

Proof. First, we will calculate the diEerence between the univariate forecast and the
mean of the univariate forecasts. From (33), and since pj = p ∀j = 1; : : : ; m

ŷ j; t+h|t − ŷ t(h) =�h(�j; t − R�t)− �h−1(%jvj; t − R%vt)

=�h−1(�j; t+1 − R�t+1 − (vj; t+1 − Rvt+1)); (A.15)
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where the last equality comes from Part (i) of Lemma 5. Take the expectation of the
square of this expression

E(ŷ j; t+h|t − ŷ t(h))2 =�2(h−1)[E(�j; t+1 − R�t+1)2 + E(vj; t+1 − Rvt+1)2

− 2E(�j; t+1 − R�t+1)(vj; t+1 − Rvt+1)]:

Parts (ii)–(iv) of Lemma 5 allows to write

E(ŷ j; t+h|t − ŷ t(h))2 =
�2(h−1)

m2

 m∑
i �=j

[(m− 1)	2
j + 	2

i ]
(�− %i)(�− %j)

1− %i%j

+p2
m∑
i �=j

m∑
k �=i; j

(
1

1− %i%k
− 1

1− %i%j

) : (A.16)

If additionally 	2
j = 	2 ∀j = 1; : : : ; m, then %j = % ∀j = 1; : : : ; m, and (A.16) reduces to

E(ŷ j; t+h|t − ŷ t(h))2 = �2(h−1)((m− 1)=m)	2
j ((�− %)2=1− % 2).

Lemma 7. For the one factor model given by (17) and (18), with pj=p ∀j=1; : : : ; m,
then

(a) E[(vj; t+�(�j; t − R�t)] =−((m− 1)=m)%�−1
j (�− %j)	2

j ; ∀�¿ 0,
(b) E[(vj; t+�(vj; t − Rvt)] =−(1=m)%�−1

j (�− %j)(1− �%j)	2
j
∑m

i=1; i �=j(1=(1− %i%j)) and
(c) E[vj; t+�(ŷ j; t+h|t − ŷ t(h))] = −�h−1(1=m)%�−1

j (� − %j)	2
j
∑m

i=1; i �=j((� − %i)=(1 −
%i%j)) ∀�¿ 0, where Ret = 1=m

∑m
i=1 Rei; t and Rvt = (1=m)

∑m
i=1 vi; t .

Proof. To prove (a), applying Parts 5 and 6 of the auxiliary lemma

E[(vj; t+�(�j; t − R�t)] = E

m− 1
m

vj; t+��j; t − 1
m
vj; t+�

m∑
i=1; i �=j

�i; t


=E

(
m− 1
m

vj; t+��j; t

)
=−m− 1

m
%�−1
j (�− %j)	2

j ;

we get the desired result.
To proof (b), after some straightforward algebra and applying Part 8 of the auxiliary

lemma

E[(vj; t+�(vj; t − Rvt)] = E

m− 1
m

vj; t+�vj; t − 1
m
vj; t+�

m∑
i=1; i �=j

vi; t


=− 1

m

m∑
i=1; i �=j

E(vj; t+�vi; t) =− 1
m
%�
j

m∑
i=1; i �=j

p2

1− %i%j

=− 1
m
%�−1
j (�− %j)(1− �%j)	2

j

m∑
i=1; i �=j

1
1− %i%j

;

where the last equality is obtained using (28).
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From (A.15), taking into account (a) and (b), and after some straightforward algebra

E[vj; t+�(ŷ j; t+h|t − ŷ t(h))] =�h−1(E(vj; t+�(�j; t+1− R�t+1))−E(vj; t+�(vj; t+1 − Rvt+1)))

=−�h−1 1
m
%�−2
j (�− %j)	2

j

×
m− 1− (1− �%j)

m∑
i=1; i �=j

1
1− %i%j


=−�h−1 1

m
%�−1
j (�− %j)	2

j

m∑
i=1; i �=j

�− %i

1− %i%j
:

Now the proof of the theorem is structured in two parts. First, from Lemma 7 we
will show that E[(yj; t+h − ŷ j; t+h|t)(ŷ j; t+h|t − ŷ t(h))]¡ 0; ∀h¿ 0 and will give its
expression. And second, we will show that the pooling forecasts methods produces a
prediction MSE smaller than the one obtained with the ARIMA univariate forecasts.
(i) Proof of E[(yj; t+h− ŷ j; t+h|t)(ŷ j; t+h|t − ŷ t(h))]¡ 0; ∀h¿ 0. From (A.4) and Part

(c) of Lemma 7 and after some straightforward algebra,

E[(yj; t+h − ŷ j; t+h|t)(ŷ j; t+h|t − ŷt(h))]

=E

[(
vj; t+h +

h−1∑
k=1

�k−1(�− %j)vj; t+h−k

)
(ŷ j; t+h|t − ŷ t(h))

]

=− �h−1 1
m

(�− %j)	2
j

m∑
i=1; i �=j

�− %i

1− %i%j

(
%h−1
j +

h−1∑
k=1

%h−k−1
j �k−1(�− %j)

)

=− �2(h−1) 1
m

(�− %j)	2
j

m∑
i=1; i �=j

�− %i

1− %i%j
; (A.17)

which is negative as we have expected, since by (27) |%j|6 |�| ∀j = 1; : : : ; m.
Finally the expression of the MSE of prediction when we use pooled forecasts is

obtained substituting (A.16) and (A.17) in (32),

MSE(yj; t+h − ỹ j; t+h) =MSE(yj; t+h − ŷ j; t+h|t) + "2E(ŷ j; t+h|t − ŷ t(h))2

+ 2"E((yj; t+h − ŷ j; t+h|t)(ŷ j; t+h|t − ŷ t))

=MSE(yj; t+h − ŷ j; t+h|t)

− 2"
�2(h−1)

m
(�− %j)	2

j

m∑
i=1; i �=j

�− %i

1− %i%j
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+
"2�2(h−1)

m2

m∑
i �=j

(
[(m− 1)	2

j + 	2
i ]

(�− %i)(�− %j)
1− %i%j

+p2
m∑

k �=i; j

(
1

1− %i%k
− 1

1− %i%j

) :

The previous expression can be bigger than the MSE for the univariate forecasts
depending on the values of the 	2

j ; j = 1; : : : ; m. If we additionally assume that
	2
j = 	2; j = 1; : : : ; m the previous expression reduces to

MSE(yj; t+h − ỹ j; t+h) =MSE(yj; t+h − ŷ j; t+h|t)

− "(2− ")
m− 1
m

�2(h−1)	2 (�− %)2

1− % 2 :

Since " is between 0 and 1 and the last term of the previous equality is always
subtracting, the MSE of prediction obtained with pooling forecasts is always smaller
than the one obtained only from the ARIMA univariate forecasts, since we always add
a negative amount to this last one. Summing up for all j = 1; : : : ; m we .nally have
(34).

Proof of Theorem 4. First, notice that ,p−f =P−F=P−U +U −F=,u−f −,u−p,
where ,u−f and ,u−p have been given in Theorems 2 and 3, respectively. Second,
notice from Theorem 3 that the expression given for ,u−p reaches its maximum for
"=1. Therefore, it suSces to prove that ,p−f¿ 0, for "=1, since for any other case
the diEerence will be greater. Consider now the nonstationary case, we can write for
�= 1,

,p−f = ,u−f − (m− 1)	2 1− %
1 + %

(A.18)

and from (26) and since �2 = 1

1− %=

√
!2 + 4! − !

2
:

Substituting ,u−f in (A.18) and after some straightforward algebra, we get (35). It is
easy to check that for m= 1 ⇒ ,p−f = 0. In (35) and for a given !, the .rst term is
always positive (recall that % is positive since it has the same sign as �) and increases
with m, whereas the second term decreases with m. In fact as m → ∞ the .rst term
diverges to ∞ while the second term converges to 1=!.

In the stationary case, |�|¡ 1, and from (34) and (28), for " = 1, ,p−f can be
written as

,p−f = ,u−f − (m− 1)�2(h−1) p2(�− %)%
(1− % 2)(1− �%)

and taking into account (A.12) from the appendix and since !j = ! and pj = p ∀j =
1; : : : ; m

,p−f = p2m
(

%
�(1− �%)

0 − 1
Vm!�2 +

1− �2

�2m!

)
�2h;
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where 0=1− ((m− 1)=m)((�− %)=�(1− % 2)). When h → ∞, �2h → 0 and ,p−f →
0. To see the behavior of ,p−f with m, notice that the inside parenthesis, which is
multiplied by m, of the previous equation is given by

�2 − 1− ! +
√

(! + 1 + �2)2 − 4�2

2!
0 +

1− �2

m!

− 2

m! + �2 − 1 +
√

(m! − 1 + �2)2 + 4m!
: (A.19)

When m increases, 0 converges to a constant, so the .rst term in (A.19) also converges
to a constant. The second term decreases when m! increases, while the third one
decreases with 2m!.
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