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Abstract. A common objective in image analysis is dimensionality re-
duction. The most often used data-exploratory technique with this ob-
jective is principal component analysis. We propose a new method based
on the projection of the images as matrices after a Procrustes rotation
and show that it leads to a better reconstruction of images.
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1 Introduction

Exploratory image studies are generally aimed at data inspection and dimension-
ality reduction. One of the most popular approaches to reduce dimensionality
and derive useful compact representations for image data is Principal Compo-
nent Analysis (PCA). Kirby & Sirovich (1990) proposed using PCA to reduce
the dimensionality when representing human faces. Alternative approaches us-
ing Independent Component Analysis (ICA) for face representation have been
proposed by Barlett and Sejnowski (1997). In the last two decades, PCA has
been especially popular in the object recognition community, where it has suc-
cesfully been employed by Turk & Pentland (1991)and Valentin et. al (1996).
The problem we are interested in is as follows. We have a set of images which
represent similar objects, for instance, human faces, temporal images of the same
scene, objects in a process of quality control, and so on. Any particular image
(say the n− th image) is represented by a matrix Xn of I rows and J columns.
We assume that the sample contains the set of N images, X1, X2, ..., XN . Each
matrix consists of elements xij , with i = 1, ..., I and j = 1, ..., J , that represent
the pixel intensities extracted from digitized images. All the elements xij are
in the range between 0 and 255, where the value 0 represents black color, and
the value 255 white. Suppose that each matrix is transformed into a vector xn

by row (or column) concatenation. Therefore, we have a set of N vectors in a
high dimensional space, specifically, xn ∈ �d where d = I × J , n = 1, ..., N. For
convenience, the vectors are assumed to be normalized, so that xT

nxn = 1. Note
that this set of vectors can be represented by an N × d matrix X in which the
n− th row is equal to xn. When dealing with high-dimensional observations, lin-
ear mappings are often used to reduce dimensionality of the data by extracting
a small (compared to the original dimensionality of the data) number of linear
features. Among all linear, orthonormal transformations, principal component
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analysis is optimal in the sense that it minimizes, in mean square sense, the
errors in the reconstruction of the original signal xn from its low-dimensional
representation, x̂n. As is well known, PCA is based on finding directions of max-
imal variability. In this paper we propose an alternative way of projecting the
original data on a subspace of lower dimension. Instead of concatenating rows or
columns, we keep the structure of the matrix in the projection. The rest of the
paper is organized as follows. In the next section, we propose a new approach
which keeps the internal structure of the image and we show that this procedure
has important advantages compared to classical PCA. In section 3 we discuss
the problems of aligning and scaling images before the dimension reduction is
carried out, and introduce a generalized proscrustes rotation to solve this prob-
lem. Finally, we present the experimental results of the procedure when applied
to a human face data base.

2 An Alternative Approach Based on Matrix Projections

We are interested in a projection method which keep the matrix structure of the
image. Yang & Yang (2002) proposed the projection of the rows of the matrix
in the context of feature extraction. Here we follow a similar approach. Assume
without loss of generality that I > J . Then, given a a unit norm J × 1 vector,
we can project the rows of Xn on the a direction by,

wn = Xna (1)

We will call this I−dimensional projected vector wn the projected feature vector
of Xn. Suppose that we project all the images in this way and obtain a set of
vectors, wn, n = 1, ..., N. In order to find a good projection direction, let us
call Sr the I × I covariance matrix for these vectors representing the rows, (the
subindex r is due to the projection of the rows). This matrix is given by

Sr =
1
N

N∑

n=1

(wn − w) (wn − w)T , (2)

where w is the mean of the projected vectors. The two most often used measures
to describe scatter about the mean in multivariate data are the total variation,
given by the trace of the covariance matrix, and the generalized variance, given
by the determinant of this matrix. For simplicity let us find the direction a which
maximizes the total variation given by the trace of Sr. It follows that vector a
is the eigenvector linked to the largest eigenvalue of the matrix

Σc =
1
N

N∑

n=1

(
Xn − X

)T (
Xn − X

)
; Σc ∈ �J×J (3)

As we need more than one direction of projection to characterize the sample,
we compute the set of eigenvectors a1,a2, ...,ap, which constitute a basis for



328 Mónica Benito and Daniel Peña

�p from which the data can be estimated using a subspace of lower dimension,
p ≤ min {I, J}. It is easy to prove that the same criterion is obtained if we start
projecting the columns instead of the rows. Let Wn = [Xna1, ..., Xnap] = XnAp,
be the feature vectors obtained. We can use these data to predict the matrix Xn

by the multivariate regression model

Xn = Wnβn + εn (4)

where the matrix Xn is predicted from its feature vectors Wn using some param-
eters βn =

[
β1

n, ..., βJ
n

] ∈ �p×J , which depend on the image. The least squares
estimate is given by β̂n =

(
WT

n Wn

)−1
WT

n Xn and the prediction of the matrix
Xn with this model is

X̂n = HnXn (5)

where Hn = Wn

(
WT

n Wn

)−1
WT

n is the perpendicular projection operator onto
the column space of Wn .

3 Image Registration

When dealing with a set of homogeneous objects, as in the case of the human
face database, the different ilumination and facial expressions greatly increase
the difficulty of the reconstruction task. The sample can be seen as a set of shapes
with respect to a local 2D coordinates system. We can combine these different
local coordinate systems into a common system in order to have a normalized
sample of objects before they are analyzed by subspace techniques. This geomet-
ric transformation process is known as registration. Depending of the complexity
of the object, it may require two or more viewpoints, also called landmarks, to
register it appropiately. The most often used procedure in which the landmark
points are selected so that these landmarks have the same coordinates in all the
images is called Affine transformation. This can be solved easily by,

bi = Dai + s , i = 1, ..., d (6)

where d is the number of pixels, d = I × J and the vectors ai and bi belong
to �2, due the pixel’s spatial coordinates. Thus, for any pixel in the image, say
the i − th, this transformation maps the vector ai to bi. This approach has
two main limitations. The first one is that we can select only three points to
fix the object normalization. The second is that we are not keeping the relative
distances among the landmarks in the transformation. As an alternative, we
propose a new procedure to estimate the similarity transformation that avoids
these two liminations.

3.1 Procrustes Analysis

Procrustes analysis theory is a set of mathematical tools to directly estimate and
perform simulteneous similarity transformations among the objects landmarks
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up to their maximal agreement. Based on this idea, we can focus on a goodness
of fit measure used to compare N configurations of points. The basic procedure
is as follows. Let An be the r × 2 matrix of coordinates of r landmarks in the
n− th image, n = 1, ..., N. We wish to find simultaneous translations, rotations,
and scale factors of these N sets of points into positions of best fit with respect
to each other. The functional model of the transformation is stated as follows,

Ân = cnAnTn + 1tT
n , n = 1, ..., N (7)

where cn is the scale factor, Tn is 2× 2 orthogonal rotation matrix, tn is a 2× 1
traslation vector, and 1 is a 2 × 1 unit vector. According to Goodall (1991),
there is a matrix B, also called consensus matrix, which contains the true co-
ordinates of the r points defined in a mean and common coordinate system.
The N matched configurations are measured by means of the residual sum of
squares between each point of each configuration and the corresponding point
of the average configuration or common coordinate system. For this task, Gen-
eralized Orthogonal Procrustes Analysis (Gower, 1975) provides least-squares
correspondence of more than two point matrices. To obtain the initial centroid
C, we should define one of the coordinates matrices An as fixed, and sequently
link the others by means of the Extended Orthogonal Procrustes (EOP) algo-
rithm (Beinat and Crosilla, 2001). Defining C = 1

N

∑N
n=1 Ân, as the geometrical

centroid of the transformed matrices, the solution of the registration problem is
achieved by using the following minimum condition

N∑

n=1

tr

{[

Ân − C
]T [

Ân − C
]}

(8)

in an iterative computation scheme of centroid C until global convergence. Hence,
the final solution of the centroid corresponds to the least squares estimation B̂
and shows the final coordinates of r points in the maximal agreement with
respect to least squares objetive function. Finally, the unknown similarity trans-
formation parameters (Tn, tn, cn) , n = 1, ..., N , are then determined using the
procrustes algorithm procedure for fitting two given sets of points, An and B̂
(Schoenemann and Carroll, 1970).

4 Experiments

In the first example the method proposed in (5) for dimension reduction is com-
pared to the standard eigenface technique on a gray-level database. We compare
the dimensionality reduction performance when a frontal view face database is
used, showing that the new technique leads to a better result for the data an-
alyzed. In the second example we show that the proposed Procrustes analysis
works well for the image registration problem.

4.1 Example 1

We use a gray-level frontal view face database that comprises 114 full-face pic-
tures, 56 males and 58 females (N = 114). Each image is digitized in a gray-scale,
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with a resolution of 248×186, i.e. 248 rows and 186 columns (I = 248, J = 186).
We compare the reconstruction performance of the traditional method with the
new one when the number of singular values used (i.e. dimension of the subspace)
increase gradually. The quality of the reconstruction, as the efficiency of repre-
senting the data by the subspace, is measured by the mean square error (MSE).
In Figure 1 we plot the average reconstruction error (AMSE) for the training
sample when the number of estimated parameters k increase as a function of the
number of singular values used, p, in the reconstruction by the standard method
and the new one. For simplicity, we only consider p = 1, ..., 40. Figure 1 is a
3D graph, in which each point has three coordinates, (x, y, z) = (k, AMSE, p).
Thus, when the number of singular values are fixed, the x-axis represents the
amount of parameters needed to reconstruct the image, and the average mean
square error (AMSE) in the reconstruction is computed (y-axis). The upper
plotted points correspond to the singular values used by the standard method,
and the lower points are the ones used by the proposed method. This graph
demostrates that the quality of the reconstruction by the new procedure is bet-
ter than the traditional one. To visualize in more detail the performance of the
reconstruction by both methods, Figure 2 gradually shows the reconstruction of
one individual of the sample when the number of singular values is p = 5, 10, 20
and 50. Its reconstruction accuracy is measured by the MSE.

These figures clearly demostrate that when the dimensionality of the subspace
is the same, the new method always perform better than the standard eigenface
technique.

4.2 Example 2

In this example, we will show that the proposed image registration procedure is
more effective than the affine transformation. For this purpose, we will register
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Fig. 1. Comparision of the average mean square error between eigenface method (upper
points) and the proposed method (lower points) when the number of singular values
used increases from 1 to 40
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p=5,  MSE=628

p=10,  MSE=396

p=20,  MSE=303

p=50,  MSE=134

p=5,  MSE=277

p=10,  MSE=80

p=20,  MSE=26

p=50,  MSE=3

Fig. 2. Image Reconstruction by means of the standard method (left panels) and by
the new method (right panels) using p = 5, 10, 20 and 50 singular values

Fig. 3. Image Registration of one individual in the sample

the face database used in example 1 in order to work with normalized objects.
We choose as control points (landmarks) the coordinates associated to the left
and right eyes and the end point of the chin. As an illustration, Figure 3 shows
the solution of the registration problem for the 10 − th image in the sample.
The left panel in Figure 3 shows the original image. The middle panel shows
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the image registration by means of the affine transformation and the right panel
by means of the procrustes analysis. Notice that while in the middle panel the
classical affine transformation procedure deforms the original image, in the left
image the procrustes algorithm perfectly reproduces the image.

References

[Barlett and Sejnowski (1997)] Barlett, M.S. and Sejnowski, T.J. (1997). Independent
components of face images: a representation for face recognition. Proceedings of the
Fourth Annual Joint Symposium on Neural Computation, CA.

[Beinat and Crosilla (2001)] Beinat, A. and Crosilla, F. (2001). Generalized Procrustes
analysis for size and shape 3-D object reconstruction. Optical 3-D Measurements
TechniquesV, Viena, pp. 345-353.

[Christensen (1991)] Christensen, R. (1991). Linear Models for Multivariate, Time Se-
ries and Spatial Data. New York: Springer-Verlag.

[Goodall (1991)] Goodall, C. (1991). Procrustes methods in the statistical analysis of
shape. Journal Royal Statistical Society Series B, 53, pp.285-339

[Gower (1975)] Gower, J.C. (1975). Generalized Procrustes analysis. Psychometrika,
40, pp.33-51

[Kirby and Sirovich (1990)] Kirby, M. and Sirovich, L. (1990). Application of the
Karhunen-Loeve procedure for the characterization of human faces. IEEE Trans.
Pattern Anal. Machine Intell., 12, pp.103-108

[Krzanowski and Marriot (1994).] Krzanowski, W.J. and Marriot, F.H.C. (1994). Mul-
tivariate Analysis: Distributions, ordination and inference. UK: Edward Arnold.

[Mardia, Kent and Bibby (1992).] Mardia, K.V., Kent, J.T. and Bibby, J.M. (1992).
Multivariate Analysis. CA: Academic Press.

[Schoenemann and Carroll (1970)] Schoenemann, P.H. and Carroll, R. (1970). Fitting
one matrix to another under choice of a central dilation and a rigid motion. Psy-
chometrika, 35, pp.245-255

[Turk and Pentland (1999)] Turk,M. and Pentland, A. (1999). Face recognition using
Eigenfaces. Proceedings of the IEEE Conference in Computer Vision and Pattern
Recognition, pp.586-591.

[Valentin, Abdi and O’Toole (1996)] Valentin, D., Abdi, H. and O’Toole, A. (1996).
Principal Component and Neural Network Analysis of face images. Progress in
Mathematical Psycology.

[Yang and Yang (2002)] Yang, J. and Yang, J. (2002). From Image vector to matrix: a
straightforward image projection technique. Pattern Recognition, 35, pp.1997-1999


	1 Introduction
	2 An Alternative Approach Based on Matrix Projections
	3 Image Registration
	3.1 Procrustes Analysis

	4 Experiments
	4.1 Example 1
	4.2 Example 2

	References



