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Abstract

We present a general result that allows us to combine data from two di6erent sources of
information in order to improve the e7ciency of predictors within the context of multiple time
series analysis. Such a result is derived from generalized least squares and is given as a combining
rule that takes into account the possibility of correlation between forecasts and bias in one of
them. We then specialize that result to situations in which the predictors are unbiased and
uncorrelated. Afterwards we propose measuring precision shares and testing for compatibility in
order for the combination to make sense. Several applications of the combining rule are presented
according to the nature of the linear constraints imposed by one of the data sources. When the
constraints are binding we consider the case of restricted forecasts with exact linear restrictions,
deterministic changes in the model structure and partial information on some variables. When
the constraints are stochastic we study forecast combinations that include expert judgments and
benchmarking. Thus, the connections among di6erent standard techniques are emphasized by
the combining rule and its companion compatibility test. An empirical example illustrates the
usefulness of this inferential procedure in practice. c© 2002 Elsevier Science B.V. All rights
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1. Introduction

Multiple time series models are some of the most widely used tools employed to
represent dynamic random phenomena. We assume that a k-dimensional vector of time
series Zt = (Z1t ; : : : ; Zkt)′ is observed for t = 1; : : : ; T , and we are interested in pre-
dicting a set of future values of the vector time series, say Z. To that end, a mul-
tivariate linear time series model is Grst built to provide a vector of forecasts. It
could be a vector auto-regressive and moving average (VARMA) model (see Tiao and
Box, 1981; LIutkepohl, 1991; Reinsel, 1993) a simultaneous equation model (see Judge
et al., 1980) or a state space model (see Aoki, 1990; Shumway and Sto6er, 2000).
We allow the forecasts generated from the model to have some unknown bias and
we shall suppose that the model as well as its parameters are given, thus we do not
touch upon such issues as model speciGcation or model estimation. In order to predict
Z we also assume that an additional source of information provides another vector of
forecasts, Y, for a set of linear combinations of the random vector Z. We want to take
this information into account in order to improve upon the original forecast vector.
The problem considered is very general and includes as particular cases many time

series problems, such as updating forecasts when new information is available, com-
bining forecasts, interpolation and missing value estimation, analysis of inJuential ob-
servations and outliers (including reallocation outliers), temporal disaggregation and
benchmarking time series. We shall derive a general solution to this problem and show
that it yields as special cases many interesting and, in many cases, well-known results.
The idea of combining estimators or predictors is not new and many well-established
methods rely on it, as we shall show in what follows. However, to the best of our
knowledge the combining rule that we present in the next section generalizes many
particular results that have appeared in the time series literature. Thus, the main goal
of this paper is to provide a unifying view of several apparently di6erent problems, in
terms of their corresponding solutions.
This paper is organized as follows. Section 2 introduces the notation and presents

the general rule applicable to a multiple time series for which a model provides the
minimum mean square error linear predictor (MMSELP) and some extra-model infor-
mation is assumed to be given by means of a stochastic linear constraint. These two
sources of information are exploited to form a combined optimal predictor by way
of generalized least squares (GLS). Such a predictor is then particularized to several
situations depending on whether bias can be reasonably assumed to be present or not,
and whether the two forecasts to be combined are uncorrelated or not. Some further
analytical tools here derived and related to the combining rule are: (i) a measure of
precision share attributable to each source of information and (ii) a test for compati-
bility of the predictors to be combined. These tools are particularly relevant to make
inferences in practical applications. In fact, they are useful to indicate how much is to
be gained by combining and to make sure that the combination makes sense from an
empirical point of view.
Section 3 shows how the combining rule can be applied when the constraint is

binding. Some problems that can be analyzed under this framework are restricted fore-
casting with or without incompatible sources of information, deterministic changes in
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the model structure and taking into account some partial information on some variables
of the time series vector. Section 4 considers the case of unbinding constraints that
includes forecast combination, intercept correction, inclusion of expert judgments and
conjectures into the forecasts, and benchmarking. In Section 5 we present some practi-
cal considerations about the e6ect of having used nonlinear transformations of variables
and how to deal with the problem of unknown covariance matrices that are required by
the combining rule. Section 6 presents an example of combining multivariate forecasts
for the components of a time series vector with univariate forecasts for the aggregate
of these components and shows that an important increase in precision can be obtained
from this combination. Section 7 concludes with some Gnal remarks.

2. A general combining rule

Our main concern is to predict a k-variate random vector of multiple time series
Z=(Z′

T+1; : : : ;Z
′
T+H )

′ where H¿ 1 is the forecast horizon. On the one hand we shall
assume that a model has been built that provides the forecast vector ẐX based on a set
of information X . Usually X includes only past values of the time series vector, but
it may also include predetermined values of other exogenous variables, intervention
e6ects and so on. We assume that the forecasts are in general correlated and may
have some unknown linear deterministic e6ects that we call bias. This structure can be
written as

ẐX = Lb+ Z+ e; (2.1)

where L is a kH × g known matrix, with g6 kH , b is a g× 1 unknown vector of bias
parameters and e=(e′T+1; : : : ; e

′
T+H )

′ is a zero-mean random error vector with elements
et =(e1t ; : : : ; ekt)′ and known covariance matrix Var(e|X )=�e. Thus, we allow for the
possibility of bias in the prediction of Z by means of ẐX . In fact, from (2.1) we know
that E(Z|X )= ẐX −Lb. If the bias is constant for all ZT+j, for j=1; : : : ; H , then g=k
and L = (Ik ; : : : ; Ik), with Ik the k-dimensional identity matrix. This bias may result
from the use of a poor or defective information set X , an incorrect model or errors of
measurement. The forecasts are in general correlated and the matrix �e, that depends
on the model used, includes both the autocovariances and crosscovariances among the
components of the error vector.
On the other hand, we suppose that we also have access to an M -dimensional vector

of forecasts, Y, coming from an extra-model source of information. This vector is
related to some known linear combinations of the future variables of interests, CZ.
Thus, Y may correspond to:

(1) Forecasts generated by another model with di6erent data frequency. For instance,
suppose that the time series {Zt} corresponds to monthly data and we want to
predict H = 12 months ahead. We also have an aggregate forecast for the vector
of time series coming from a multivariate model built from yearly data. Then
Y=(Y1; : : : ; Yk)′ has the yearly predictions for each component and this additional
information corresponds to the sum of the monthly values. In this case M = k.
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(2) Forecasts coming from another model with di6erent level of aggregation over
the variables. For instance, let the elements of the time series vector Zt be the
components of a price index for which a univariate time series model exists.
Calling YT+i to the univariate forecast for the price index at period T + i, the
vector Y=(YT+1; : : : ; YT+H )′ provides additional information on the weighted sum
of the components for the whole forecasting horizon. Here M = H .

(3) More complicated situations in which both types of aggregate information may be
available, at least for some horizons and=or for some components. In particular
we may have deterministic restrictions that the predictor must fulGll for some
particular aggregation scheme over the components and=or over time.

These situations can be modelled by assuming that a vector Y=(Y′
1; : : : ;Y

′
A)

′ is avail-
able, where Yj = (Y1j; : : : ; Ybj)′ for j = 1; : : : ; A, with b6 k and M = bA. This vector
is related to Z by way of a set of stochastic (or unbinding) linear restrictions that can
be expressed as

Y = CZ+ u; (2.2)

where C is a known M × kH matrix of rank M , with M6 kH , and u=(u′1; : : : ; u
′
A)

′ is
a random error vector with uj = (u1j; : : : ; ubj)′ for j = 1; : : : ; A, and known covariance
matrix Var(u|X ) = �u. In general the forecasts will be correlated and we let the two
models share some common information by allowing for nonzero crosscorrelations
between predictors. However, in what follows we shall assume that E(u|X ) = 0, so
that the stochastic restrictions implied by (2.2) are unbiased. A more general setting
would include E(u|X ) = � �= 0 which could be interpreted as bias in the restrictions,
but this may lead to an identiGcation problem (see Remark 6 below). Besides, in the
problems considered here Y is usually obtained from a reliable source of information,
so that we can safely assume that � = 0. This is in contrast with the problem of
parameter estimation in which the extra-model information (also called outside or prior
information) is many times just an analyst’s guess that should be tested empirically
(see Judge et al., 1980, Chapter 3).
Within this framework we want to obtain the BLUE (Best linear unbiased estimator)

of the bias parameter b and the MMSELP of Z using all the available information.
These are obtained by the following general result which is proved in Appendix A by
applying GLS.
General Combining Rule (GCR): Let us suppose that the random vectors Z, ẐX and

Y are related by means of (2.1) and (2.2) with the following assumptions: E(Z) = 0,
E(e|X )= 0, Var(e|X )=�e, E(ẐX e′|X )=0, E(u|X )= 0, Var(u|X )=�u, E(ẐX u′|X )=
0 and E(eu′|X ) = �eu. If ẐX , Y, �e, �u and �eu are known and all the inverse
matrices involved exist, then the BLUE of b, b̂, and MMSELP of Z, E(Z|ẐX ;Y), as
well as their covariance matrices �b = Var( b̂), �bZ = Cov[ b̂; E(Z|ẐX ;Y) − Z] and
�Z =Var[E(Z|ẐX ;Y)− Z], are given by

b̂=−�bL′C′�−1
d (Y − C ẐX ); (2.3)

E(Z|ẐX ;Y) = (ẐX − L b̂) + AZ [Y − C(ẐX − L b̂)]; (2.4)
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�b = (L′C′�−1
d CL)−1; (2.5)

�bZ =−�bL′(IkH − AZC)′ (2.6)

and

�Z = �e − AZ(C�e − �′
eu) + (IkH − AZC)L�bL′(IkH − AZC)′; (2.7)

where

�d =Var(u − Ce|X ) = �u − C�eu − �′
euC

′ + C�eC′ (2.8)

and

AZ = (�eC′ − �eu)�−1
d : (2.9)

Remark 1. We assume that; without the historical information X ; the vector Z has
expectation zero. This implies no loss of generality because a deterministic known
mean can always be subtracted before the analysis. However; given the historical data
we have E(Z|X ) = ẐX − Lb.

Remark 2. In Appendix A we show that not only is b̂ unbiased for b; but E(Z|ẐX ;Y)
is also an unbiased predictor of Z; in the sense that E[E(Z|ẐX ;Y)−Z|X ]=0; whereas
ẐX is biased if b �=0.

Remark 3. There are many other ways of expressing (2.3)–(2.9). We chose these
particular expressions since they allow us to see the e6ect of making �u = 0 directly.
A way of interpreting the previous rule is as saying that; before combining ẐX and
Y to forecast Z; we should Grst correct for bias ẐX ; using to that end the optimal
estimator b̂. Let us also notice that if Y = C ẐX ; then b̂ = 0 and E(Z|ẐX ;Y) = ẐX ;
so that no additional information is provided by Y to improve the optimality of ẐX

as predictor of Z.

Remark 4. Eq. (2.4) indicates that the optimal forecast is a weighted average of
both forecasts; with weights proportional to their precision (see Peña; 1997; for many
examples of this rule). To see this; let us assume Grst that �eu =0. Then we have that
E(Z|ẐX ;Y) is the sum of �eC′(�u+C�eC′)−1Y and [I−�eC′(�u+C�eC′)−1C](ẐX −
L b̂). So that the two unbiased predictors of CZ and Z; namely Y and ẐX − L b̂; are
weighted according to their precision. When �eu �=0 the same rule applies; but now the
covariance matrix of each forecast is corrected from the common information contained
in �eu.

Remark 5. Guerrero and Peña (2000) obtained a particular result of this rule for com-
bining forecasts and linear restrictions in univariate time series; which corresponds to
the particular case k = 1; b= 0; �eu = 0 and �u = 0.
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Remark 6. To appreciate the convenience of assuming that the restrictions are unbiased;
consider a simple univariate situation in which L=(1; : : : ; 1) and C=(0; : : : ; 0; 1). Then
(2.1) and (2.2) become ẐX;T+h=b+ZT+h+eT+h for h=1; : : : ; H and Y =ZT+H +u; so
that the GCR yields b̂= ẐX;T+H −Y and E(Z|ẐX ;Y)= ẐX −Lb̂. These results are also
obtained by noting that Y=( ẐX;T+H−b−eT+H )+u so that b= ẐX;T+H−Y+(u−eT+H ).
Thus if we make u − eT+H = 0 we get b̂ as before; in such a way that this plug-in
procedure works well in this case. Now let us consider bias in the restriction; i.e.
Y=f+ZT+H+u. Then the plug-in procedure leads us to Y=f+( ẐX;T+H−b−eT+H )+u
and b−f= ẐX;T+H − Y + (u− eT+H ) so that b−f can be estimated by ẐX;T+H − Y ;
but it is impossible to identify the e6ects of b and f separately.

2.1. Some particularly important simpler combining rules

Let us start by considering a combining rule that comes out from the assumption that
b= 0. In fact, most of the examples that we consider in the following sections assume
that ẐX is a (conditionally) unbiased forecast for Z. Even if some bias is deemed to
be present, the combination procedures employed in practice involve debiasing as a
Grst step and then combining the forecast from di6erent sources. Let us recall that this
kind of intuition is justiGed by the GCR, where the bias parameter vector is jointly
estimated with Z. Thus, we now assume in Grst place that the potential causes of
bias have been avoided and that the remaining bias has been removed previously to
attempting the linear combination of ẐX and Y. When that happens we get as a result
(2.4) and (2.7) to (2.9) with L replaced by the matrix 0. Then such equations can be
equivalently expressed as (see Appendix B)

E(Z|ẐX ;Y) = �Z(�−1
e + �f�−1

u|e�
′
eu�

−1
e )ẐX − �Z�f�−1

u|eY (2.10)

with

�Z = (�−1
e + �f�−1

u|e�
′
f)

−1; (2.11)

where �u|e = �u − �′
eu�

−1
e �eu and �f = �−1

e �eu − C′.
According to (2.4), to obtain E(Z|ẐX ;Y) we should start with the forecast ẐX and

adjust it towards Y by weighting the discrepancy Y−C ẐX between the two forecasts.
We also notice that CE(Z|ẐX ;Y)=Y when �u=0 (hence �eu=0 and �u|e=0) or when
C ẐX =Y. The former case is particularly interesting because then (2.2) imposes a set
of linearly independent restrictions on the prediction of Z. With regard to (2.7), we
notice that �e is equal to �Z plus a positive semideGnite matrix. Therefore, the linear
combination always improves the e7ciency of the estimation when �eu =0. However,
when �eu �=0, it turns out that �Z can sometimes get larger than �e.
It should also be stressed that in practice, expressions (2.4) and (2.7) are preferable

than (2.10) and (2.11) since less matrix inversions are required and the matrices to be
inverted are of lower dimension. Moreover, let us notice that when L=0, (2.1) yields
the (conditionally) unbiased predictor E(Z|X ) = ẐX , with precision �−1

e , while (2.2)
also produces the unbiased predictor E(Z|Y)=(C′�−1

u C)−1C′�−1
u Y which is correlated

with ẐX if �eu �=0. However, we can obtain another predictor uncorrelated with ẐX



V.M. Guerrero, D. Peña / Journal of Statistical Planning and Inference 116 (2003) 249–276 255

by using the information included in Y that has no linear relationship with ẐX . This
additional information is the di6erence between Y and E(Y|ẐX ) = �′

eu�
−1
e ẐX . Let us

call Ŷ = Y − E(Y|ẐX ) to the residual vector of the regression of Y on ẐX , whose
precision is given by �−1

u|e . In order to compute the predictor of Z derived from Ŷ we
note that (see Appendix C)

E(Z|X; Ŷ) =−(�f�−1
u|e�

′
f)

−1�f�−1
u|e (Y − �′

eu�
−1
e ẐX ): (2.12)

Thus (2.10) can be interpreted as the combination of two unbiased and uncorrelated
predictors of Z, namely E(Z|X ) and E(Z|X; Ŷ), with corresponding weighting matrices
�Z�−1

e and �Z(�f�−1
u|e�

′
f)

−1. Also since

Var[E(Z|X; Ŷ)− Z] = (�f�−1
u|e�

′
f)

−1 (2.13)

then (2.11) can be interpreted as saying that the precision of E(Z|ẐX ;Y) is the sum of
the precisions associated with the two uncorrelated forecasts. This fact will be exploited
below to derive a measure of precision share attributable to each uncorrelated source
of information. It is also interesting to realize that �b does not enter the formula for
E(Z|ẐX ;Y) in (2.4), therefore when b is assumed known, ẐX − Lb in (2.4) plays the
role of ẐX , as if L= 0. However, by assuming b known, when in fact it is estimated
from the data, we would underestimate �b, as can be seen in (2.7) if we incorrectly
assume L= 0.
A further combining rule that plays an important role in applications is obtained by

assuming, in addition to unbiasedness, that the sources of information are uncorrelated.
In that situation we have L= 0 and �eu = 0: Then

E(Z|ẐX ;Y) = ẐX + AZ(Y − C ẐX ) = �Z�−1
e ẐX + �ZC′�−1

u Y (2.14)

with

�Z = (IkH − AZC)�e = (�−1
e + C′�−1

u C)−1; (2.15)

where AZ is given by (2.9) with �eu = 0. In this case E(Z|ẐX ;Y) is given again
by a linear combination of two unbiased and uncorrelated predictors, namely ẐX

and (C′�−1
u C)−1C′�−1

u Y. The corresponding weighting matrices are now �Z�−1
e and

�Z(C′�−1
u C), and the precision of E(Z|ẐX ;Y) is the sum of the precision matrices

of those two forecasts. Then, as �u → 0 the additional information provided by Y
becomes more precise and the combined estimator gets closer to fulGll exactly the
linear restrictions, thus the precision share attributable to Y should be expected to get
larger. Below we derive a measure of precision shares that allow us to see this fact
more clearly.
The GCR keeps a strong resemblance with two well-known methods of estimation.

The Grst one, called mixed estimation, was proposed by Theil and Goldberger (1961)
(see also Theil, 1974). Those authors were interested in Gxed parameter estimation
rather than in random vector prediction, but their arguments and derivations are similar
to those supporting our combining rule. Besides, the ideas expressed by Theil (1963)
led us to compatibility testing and to measuring precision shares. The other closely
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related method is Bayesian estimation, in which some prior beliefs are expressed
through model (2.2) in order to improve both the forecast accuracy and e7ciency
of ẐX . An important feature of Bayesian estimation is that simultaneous inference
can be made on both parameters and random variables, for instance on �e and Z, by
assuming appropriate prior distributions. Similarly, it is worth mentioning the works
of Harvey and his collaborators (e.g. Harvey and Stock, 1993; or Harvey and Chung,
2000) who have advocated the use of structural time series models. Those models to-
gether with Kalman Gltering can be used to get a solution to the forecast combination
problem, that can be recursively implemented.

2.2. Measuring precision shares and testing for compatibility

The idea of measuring precision shares consists of obtaining a scalar index taking
values between zero and one, to quantify the precision share of each uncorrelated
source of information in the precision of the combined predictor. In order for such a
measure to be sensible, we should Grst ask ourselves whether the observations to be
combined are compatible with each other. In particular let us notice that when bias is
present, ẐX and Y provide incompatible data, therefore bias should be avoided or else
debiasing should be carried out before combining. When b can be assumed known and
�b = 0, then Ẑ

∗
X = ẐX − Lb plays the role of ẐX . Nevertheless, we should be aware

that a statistical test of compatibility between ẐX and Y can be performed as indicated
below, thus providing empirical evidence on the adequacy of the combining procedure.
Let us recall that (2.11) shows that the precision of the combined forecast is the

sum of the precisions associated with two uncorrelated predictors. Thus, we can apply
the original idea of Theil (1963) to obtain measures of precision share attributable to
each (uncorrelated) source of information. Those measures are expressed as

Prec[ẐX |E(Z|ẐX ;Y)] = (kH)−1 tr(�−1
e �Z) (2.16)

and

Prec[Y − �′
eu�

−1
e ẐX |E(Z|ẐX ;Y)] = 1− Prec[ẐX |E(Z|ẐX;Y)]

= (kH)−1 tr[(�−1
Z − �−1

e )�Z ]; (2.17)

where �Z is given either by (2.7) with L=0 or by (2.15), depending on whether �eu is
di6erent from the zero matrix or not. These measures take on values between zero and
one, add up to unity and are invariant under nonsingular linear transformations of the
variables. Expression (2.16) is to be read as the precision of E(Z|ẐX ;Y) attributable
to ẐX and it can be interpreted as the proportion of MSE of E(Z|ẐX ;Y) relative to
that of ẐX . In (2.17) we appreciate that the precision share measures also the relative
reduction in MSE attributable to using Y in addition to ẐX . These interpretations are
symmetrical with respect to the roles of ẐX and Y when such vectors are uncorrelated.
We now focus on the implicit assumption behind the idea of combining data from

di6erent sources, which is that they provide compatible evidence about the random vec-
tor Z. Of course, there may be subject matter considerations pointing in that direction,
but in practice it may be a good idea to verify such an assumption empirically. To
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that end we assume a normal distribution for e and u and consider the two conditional
means E(Z|X ) and E(Z|Y) which are Gxed once X and Y are given. Those conditional
means are the population characteristics we are interested in. Then we postulate as null
hypothesis

H0: E(CZ|X )− E(CZ|Y) = 0: (2.18)

Let us now recall that E(CZ|X ) = C ẐX and E(CZ|Y) = Y are both assumed to be
unbiased for CZ, with Cov(C ẐX − CZ) = C�eC′, E[(C ẐX − CZ)(Y− CZ)] = C�eu

and Cov(Y − CZ) = �u. Then, on the null hypothesis, the di6erence of estimation
errors d = Y − C ẐX , has an M -dimensional normal distribution with E(d|X ) = 0 and
Cov(d|X ) = �d given by (2.8). Hence, we obtain the test statistic

K = d′�−1
d d ∼ �2M (2.19)

and, given Ẑ and Y, we may calculate the compatibility test statistic

Kcalc = (Y − C ẐX )′�−1
d (Y − C ẐX ): (2.20)

A similar statistic was proposed by Guerrero (1989) in a univariate setting and Theil
(1974) was led to an equivalent result from a di6erent argument.
Another relevant statistical test may be carried out when bias is allowed to occur.

The null hypothesis of unbiasedness is H0: b= 0, for which the following test statistic
is derived from the normality of b̂

�= b̂
′
�−1

b b̂ ∼ �2g; (2.21)

where �b is given by (2.5). Thus, given ẐX and Y, we obtain the calculated statistic

�calc = (Y − C ẐX )′�−1
d CL�bL′C′�−1

d (Y − C ẐX ): (2.22)

When the null hypothesis is not rejected by the data, we reach the conclusion that both
sources of information are compatible with each other in terms of unbiasedness. The
alternative hypothesis in this case is just that ẐX is biased. The test based on K is far
more general, since its alternative hypothesis is open to such possibilities as: (i) change
in the deterministic structure of the model producing ẐX (perhaps due to the presence
of constant bias b); (ii) change in the stochastic structure of the corresponding model;
(iii) change in the parameter values. These cases have been considered in some detail
for univariate time series by Guerrero (1990, 1991). Furthermore, let us notice that
�u = 0 is allowed by both Kcalc and �calc. If such were the case, (2.20) would also
consider as alternative hypothesis the possibility of having �u �=0, while (2.22) will
lead to bias as the only possible explanation.
When either Kcalc or �calc leads to rejection of its corresponding null hypothesis,

we should also be able to carry out individual or partial tests. This can be done, for
m= 1; : : : ; M , with the aid of

Km;calc=(Ym−Cm ẐX )′(�u;m−Cm�eu−�′
euC

′
m+Cm�eC′

m)
−1(Ym−Cm ẐX ) (2.23)

by selecting Ym, Cm and �u;m appropriately. The calculated value should be compared
with a Chi-square distribution with k degrees of freedom. In a similar fashion, for each
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i = 1; : : : ; k, we could use the statistic

�i = b̂
2
i �

−1
b; i ∼ �21 (2.24)

to test H0: bi = 0, where �−1
b; i is the ith element in the diagonal of �−1

b .

3. Linear combination with binding constraints

This section is concerned with estimating a vector of multiple time series when the
additional information imposes binding constraints, i.e. when �u = 0. For univariate
time series without bias, that is k = 1 and b= 0, this problem was already considered
by Guerrero and Peña (2000). In that work we showed that such univariate time series
problems as missing data estimation, restricted forecasting with binding constraints,
analysis of inJuential observations and outliers, including reallocation outliers, and
temporal disaggregation, can be studied within this common framework. Here we could
generalize to the multivariate case the solution to all the univariate problems considered
in that paper. As this generalization is straightforward, we only present brieJy two
extensions not considered previously.

3.1. Deterministic changes in the model structure

We now address the situation in which b �= 0, indicating essentially that E(Z|X )
and Y are incompatible. For this case one possibility is to have constant bias in the
forecasts provided by E(Z|X ), so that L = (Ik ; : : : ; Ik) and b is k × 1 in model (2.1).
A more general approach assumes that

L= (�1; : : : ; �H ) with �h = diag( 1h; : : : ;  kh) for h= 1; : : : ; H: (3.1)

Then the following cases, proposed by Tsay (1988) in a di6erent context, may also be
considered appropriate here.

(i) Pulse e:ect. Let �h = Ik for a particular h value and �j = 0 for j �= h, so that
 ih=1 and  ij =0 for i=1; : : : ; k. In this case b=(b1; : : : ; bk)′ measures the e6ect
to occur at the time point T + h that renders E(Z|X ) and Y incompatible. Notice
that h may be speciGed on the basis of subject matter considerations or from the
data themselves, by using the testing procedure suggested below.

(ii) Level change. This is the case of constant bias previously considered, for which
�h = Ik (that is  ih = 1, i = 1; : : : ; k) for h= 1; : : : ; H .

(iii) Linear trend. The speciGcation of L is now given by �h = hIk , so that  ih = h
for h = 1; : : : ; H . In this case the e6ect accumulates linearly during the forecast
horizon, with slope bi for i = 1; : : : ; k.

(iv) Transient e:ect. We now assume an initial e6ect bi that dies out exponentially
with known rate of decay 0¡ i1 ¡ 1, for i = 1; : : : ; k. Then we have �h = �h−1

1
for h= 1; : : : ; H , so that  ih =  h−1

i1 for h= 1; : : : ; H .
(v) Gradual level change. This situation corresponds to an increasing e6ect with initial

impact bi which tends gradually to a new permanent level. Here �h =
∑h−1

j=0 "j

with "=diag(#1; : : : ; #k) where 0¡#i ¡ 1, for i=1; : : : ; k, are known. The elements
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of �h are now  ih = (1− #hi )=(1− #i) for h= 1; : : : ; H and bi=(1− #i) is the new
permanent level, for i = 1; : : : ; k.

A further possibility is to specify the matrix L in such a way that a di6erent case
is chosen for each variable of Z. The basic point is that the analyst should be able
to postulate a particular form of change in deterministic structure based on subject
matter knowledge of the phenomenon under study. In a similar fashion as Tsay (1988)
proposed to use likelihood ratio tests to distinguish among di6erent types of changes
in univariate time series, we also suggest validating empirically the speciGcation of L.
This can be done by using the test statistic (2.22). Thus, for each di6erent speciGcation
of L we should calculate its corresponding test statistic. That is, we should calculate
�PE (for pulse e6ect), �LC (level change), �LT (linear trend), �TE (transient e6ect)
and �GC (gradual change). The maximum value of those calculated statistics provides
empirical evidence that its corresponding e6ect is the most likely deterministic change
that has to occur on the series {Zt} in order to attain the restriction imposed by Y.

3.2. Partial information on some variables

In practice, data are produced with di6erent time delays, therefore a model including
several variables may present a “ragged edge” for forecasting purposes. This means that
observations on some variables are already available for the forecast horizon. Wallis
(1986) presented a review of the solutions to this problem and derived the optimal
forecast based on the normality assumption. Even though he considered the particular
case of static forecasts, his solution can be easily generalized to the dynamic forecast
situation. In fact he assumed that, in our notation, Zt can be partitioned as Zt =
(Z′

1t ;Z
′
2t)

′ where Z1t is an M -vector containing the variables for which observations
are already available at time t=T+1, while the (k−M)-vector Z2t has observations up
to time T . Accordingly, the white noise vector of the multivariate time series model,
{at}, and its variance-covariance matrix are partitioned as

at =

(
a1t

a2t

)
and �a =

(
�1 �12

�′
12 �2

)
: (3.2)

In this context we can apply the GCR in its form (2.14) and (2.15) with �e = �a,
�u = 0, Y = CZT+1 and C = (IM ; 0). Then we obtain(

E(Z1;T+1|ẐX ;Y)

E(Z2;T+1|ẐX ;Y)

)
=

(
Y

ẐX; (2;T+1) + �′
12�

−1
1 (Y − ẐX; (1;T+1))

)
(3.3)

with

�Z =

(
0 0

0 �2 − �
′
12�

−1
1 �12

)
: (3.4)

These results were derived by Wallis (1986). Other works related to this problem are
those of Sandee et al. (1984) and Matthews et al. (1994). In the present situation the
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compatibility test would serve basically to validate the partial information. Let us also
notice that (3.3) and (3.4) are applicable when the partial information is on endogenous
variables. Nevertheless, when the partial information is only on exogenous variables,
the restricted forecasting technique can be used as well. The distinction being now that
only the model that dictates the behavior of the exogenous variables is employed.

4. Use of unbinding constraints

Several important problems involve the use of extra-model information of the form
(2.2) with �u �=0. Here we contemplate some of those situations.

4.1. Forecast combination

Combining forecasts can be deemed as an attempt at using the best features of al-
ternative models for the same variables. That explains why forecasts from large econo-
metric models, usually good for medium and long range forecasting, are combined with
short-term forecasts from time series models. The problem of Gnding the best com-
bining weights for the di6erent forecasts to be combined has been approached from
many di6erent perspectives. Here we consider the solution obtained by applying the
GCR. Thus, on the one hand a time series model produces a forecast of Z as E(Z|X )
where X = (Z′

1; : : : ;Z
′
T )

′ is the historical record of {Zt}. On the other, an alternative
model produces a forecast of CZ given by Y, in such a way that (2.2) applies with
Var(u|X ) = �u. We might assume that the errors in these models are correlated with
each other, so that �eu �=0. However, most authors that have written about this topic
either have assumed a priori that �eu =0 (e.g. Greene et al., 1986; Pankratz, 1989) or
have advised us against the use of an estimated �eu, unless we are sure of its reliability
(see Newbold and Granger (1974) or Trabelsi and Hillmer (1989)). In this section we
make �eu = 0.
Once �e, �u, E(Z|X ) and Y are known, we can estimate both the bias vector

and Z= (Z′
T+1; : : : ;Z

′
T+H )

′ via the GCR. Nevertheless, in most applications the model
forecasts are assumed to be unbiased, or else debiasing is carried out before combining,
so that expressions (2.14) and (2.15) are usually applied. In fact, Doan et al. (1984)
proposed an algorithm that essentially computes ẐX as in (2.14), similarly Greene et al.
(1986) and Pankratz (1989) derived (2.14) and (2.15) in the multivariate case. Whereas
Trabelsi and Hillmer (1989) and Guerrero (1989) also derived them and illustrated
their use in the univariate case. It should be noticed that forecasts at di6erent levels
of aggregation (say monthly and quarterly) are allowed in the combination.
Let us now consider the situation in which J¿ 1 alternative models are available

besides the original one that produces ẐX . These alternative models yield

Yj = CjZ+ uj for j = 1; : : : ; J (4.1)

with Cj a known full rank matrix of dimension Mj × kH . Here we assume that
E(uj|X )= 0, Var(uj|X )=�u;j, E(uiu′j|X )= 0 for i �= j and E(uja′|X )= 0. Then (2.14)
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and (2.15) can be extended by Induction to obtain the following combined forecast,
given Y1; : : : ;YJ and ẐX

E(Z|ẐX ;Y1; : : : ;YJ ) = �Z;J�−1
e ẐX + �Z;J

J∑
j=1

C′
j�

−1
u; jYj (4.2)

with

�Z;J =

�−1
e +

J∑
j=1

C′
j�

−1
u; j Cj

−1

: (4.3)

Furthermore, E(Z|ẐX ;Y1; : : : ;YJ ) and �Z;J can be computed recursively for j=1; : : : ; J ,
as follows:

E(Z|ẐX ;Y1; : : : ;Yj) = E(Z|ẐX ;Y1; : : : ;Yj−1)

+Aj[Yj − CjE(Z|ẐX ;Y1; : : : ;Yj−1)] (4.4)

with E(Z|ẐX ;Y0) = ẐX and

�Z;j = (IkH − AjCj)�Z;j−1 with �Z;0 = �e; (4.5)

where

Aj = �Z;j−1C′
j(Cj�Z;j−1C′

j + �−1
u; j ): (4.6)

In this situation, it is interesting to measure the precision due to each of the forecasts
involved in the combination. Thus, as in (2.16) we now obtain

Prec[ẐX |E(Z|ẐX ;Y1; : : : ;YJ )] = (kH)−1 tr(�−1
Z;0�Z;J ) (4.7)

and, for j = 1; : : : ; J .

Prec[Yj|E(Z|ẐX ;Y1; : : : ;YJ )] = (kH)−1 tr[�−1
Z;0(�Z;j−1 − �Z;j)] (4.8)

so that the cumulative precision share becomes

Prec[Y1; : : : ;Yj|E(Z|ẐX ;Y1; : : : ;YJ )] =
j∑

i=1

Prec[Yi|E(Z|ẐX ;Y1; : : : ;YJ )]

= (kH)−1 tr[�−1
Z;0(�Z;0 − �Z;j)]: (4.9)

It is also important to test for compatibility between the alternative forecasts. To
that end, recursive tests can be carried out by means of a statistic similar in nature to
(2.20), that is, for j = 1; : : : ; J we get

Kcalc; j = [Yj − CjE(Z|ẐX ;Y1; : : : ;Yj−1)]′(Cj�z;j−1C′
j + �u;j)−1

×[Yj − CjE(Z|ẐX ;Y1; : : : ;Yj−1)]; (4.10)

which should be compared with a Chi-square distribution with Mj degrees of freedom.
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4.2. Intercept corrections

Forecasting practitioners are used to apply judgmental procedures in order to improve
the accuracy of model-based forecasts. One such procedure, advocated in particular by
Clements and Hendry (1999), is called intercept correction. It amounts to including
a bias-correction term in the model-based forecasts in order to take into account the
possibility of a level change occurring in the most recent part of the time series under
study or during the forecast horizon. In this case no additional information exists,
except for the knowledge that the level change may a6ect the forecasts.
This situation may lead the analyst to consider the fact that the forecasts obtained

from a model for the di6erenced series vector {Zt − Zt−1} are robust against level
changes. Thus, a set of forecasts for the di6erenced series provides the vector of
additional information Y as well as its corresponding variance-covariance matrix of
forecast errors �u. These are the inputs required for the GCR in order to robustify
the original forecasts ẐX against the presence of constant bias due to a potential level
change, where the design matrix is given by L= (Ik ; : : : ; Ik) and b is k × 1. Of course,
an extension of this argument leads to consider a model for the twice di6erenced series
{Zt − 2Zt−1 + Zt−2} in order to prevent against bias in the forecasts due to a trend
change (what Clements and Hendry consider as a growth-rate change). In that case,
the design matrix is speciGed as in Section 3 for a linear trend, when a deterministic
change is feared to occur.
It should be stressed that testing for compatibility between the model-based forecasts

and the additional information in this context serves to assign statistical signiGcance
to the intercept correction. While the estimated bias parameter b̂ yields the required
intercept correction, whose signiGcance depends heavily on the type of design matrix
employed.

4.3. Combining forecasts with expert judgments or conjectures

In the case of forecast combination we assumed that �u was known, since in fact
it could be estimated from the corresponding model that produced Y. We now as-
sume that the vector of additional information comes from expert judgments. In such
a case, �u should also be obtained from the same source of information providing
Y. For instance, in the empirical example provided by Pankratz (1989), some outside
information about one variable in a trivariate time series model was available. Then, a
range of error values for the outside data was established from a historical record. An
estimate of the standard deviation for those errors was obtained by assuming that the
observed range is equivalent to ±3 standard deviation limits. Similarly, Guerrero and
Berumen (1998) were concerned with using outside information in a study aimed at
forecasting electricity consumption in a univariate setting. They obtained future con-
sumption expectations from electricity consumers through a survey. Those expectations
were originally obtained in qualitative terms and then transformed into quantitative
data, from which both Y and �u were derived.
There are situations in which Y is only a conjecture to be entertained in a scenario

analysis and the analyst is unwilling or unable to specify the elements of �u. In such
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a case, we can use the statistics (2.20) or (2.23) to select a matrix �u that renders Y
and ẐX compatible (assuming b = 0). For instance, given Ym, Cm, ẐX;m and �e we
can select �u;m in such a way that Km;calc is just less than the '-percent point of a
Chi-square distribution with k degrees of freedom, with ' a signiGcance level speciGed
beforehand.

4.4. Benchmarking

A benchmarking situation arises whenever two or more sources of information pro-
duce data with di6erent frequencies for the same variable. For instance, we may have
yearly and monthly data for the same variable. The more reliable dataset (typically
the one observed less frequently) is accepted as benchmark and the other data are
adjusted to make them compatible with the benchmark. Benchmarking is widely used
by Statistical Agencies, see Denton (1971), Trabelsi and Hillmer (1989), Cholette and
Dagum (1994) and Dagum et al. (1998).
To be speciGc, suppose that a multivariate time series model provides forecasts for

the next sn periods of a time series vector and let ẐX be the snk × 1 vector of
forecasts. We assume that these forecasts have some unknown bias b and that the
covariance matrix of the one step ahead forecast is known from the estimated model.
This information is summarized by (2.1). There is also another multivariate (perhaps
a simultaneous equation) model that provides n forecasts for the sum over s periods
of the same time series vector. For instance, if the Grst model uses monthly data and
the second yearly data, then s= 12: Let the nk-vector of forecasts be Y, so that (2.2)
applies with C equal to the required matrix that sums the monthly data to obtain the
yearly Ggures, and �u is obtained from the yearly model. Then we immediately obtain
a solution to the benchmarking problem by applying Eqs. (2.3)–(2.9). Some remarks
are now in order.

Remark 7. Suppose that the forecast errors from both models are uncorrelated; i.e.
�eu = 0; and assume that the bias is constant for each time series component; so that
b= (b1; : : : ; bk)′. If we apply the GCR; in this case with k = 1; we obtain the method
proposed by Cholette and Dagum (1994) for univariate times series The generalization
for a vector of time series is given by the equations

b̂=−[L′C′(�u + C�eC′)−1CL]−1L′C′(�u + C�eC′)−1(Y − C ẐX ) (4.11)

and

E(Z|ẐX ;Y) = (ẐX − L b̂) + �eC′(�u + C�eC′)−1[Y − C(ẐX − L b̂)]: (4.12)

Although these two equations seem complicated, the resulting procedure is in fact
usually very simple. Suppose for instance that we have a trivariate vector of quarterly
time series and that the model that we have built produces biased forecasts. We also
have a model built with yearly data that produces unbiased predictions. We generate
eight-quarter ahead forecasts with the Grst model and benchmark them with two yearly
predictions generated with the second model. In this case k = 3, s = 4, n= 2 and the
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matrices C and L are

C =

(
I3 I3 I3 I3 03 03 03 03

03 03 03 03 I3 I3 I3 I3

)
;

L′ = ( I3 I3 I3 I3 I3 I3 I3 I3 ); (4.13)

where 03 is the square three-dimensional zero matrix. Then it is straightforward to
check that

b̂=−1
4

 2∑
i=1

2∑
j=1

Pij

−1


(

2∑
i=1

Pi1

)
d1(

2∑
i=1

Pi2

)
d2

 ; (4.14)

where Pij for i; j = 1; 2 are the 3 × 3 squared sub-matrices of the precision matrix
(�u+C�eC′)−1 and d1 (d2) is the three-dimensional vector of di6erences between the
yearly forecast of each component for the Grst (second) year and the sum of the four
quarterly forecasts of this component for the same year. This di6erence is Grst split
evenly among the four quarters and then distributed according to the relative precision
of each forecast.

Remark 8. Suppose that both forecasts are unbiased. Then the covariance matrix of
the corrected forecast is given by

�Z = (�−1
e + C′�−1

u C)−1 (4.15)

showing that benchmarking increases the precision of the original forecast by adding to
the precision of the most frequent forecast; the precision of the benchmarking forecast.

5. Practical considerations

In this section we consider some situations that may arise in practice and suggest
some ways to deal with them.

5.1. Nonlinear transformation of variables

It sometimes happens that the linear expression (2.1) relating the original forecast to
the true series holds only for a transformation of the variables. Typically the logarith-
mic transformation is applied to stabilize the variance of some elements of Z. Other
transformations employed in practice include the power or Box-Cox transformations as
well as products or ratios of variables. In this situation a multiple time series model
produce forecasts for the vector of transformed variables, T (Z). Then (2.1) becomes

[T (Z)X = Lb+ T (Z) + e; (5.1)
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where [T (Z)X denotes the forecast vector based on X , so that E[T (Z)X ]= [T (Z)X −Lb.
Besides, e satisGes all the assumptions in the statement of the GCR.
Usually the available restrictions apply to the original variables, in such a way that

(2.2) holds true. Then the easiest solution to the problem of incorporating the linear
restrictions into the nonlinear forecasts is to write the restrictions in terms of the
transformed variables, whenever that is possible. That is, write

Y∗ = C∗T (Z) + u∗ (5.2)

and apply formulas (2.3)–(2.9) in the transformed scale of the variables involved. This
solution can be employed only in a few cases, for instance when C= I , in which case
(5.2) imposes isolated restrictions on the elements of T (Z): Then we have Y∗ := T (Y)
and u∗ = f(u;Z). Finally bring the MMSELP E[T (Z)| [T (Z)X ;Y] to the original scale
by applying the inverse transformation, i.e. by calculating T−1{E[T (Z)| [T (Z)X ;Y]} on
the assumption that the inverse transformation exists. When every element of T (Z)
is a power transformation that yields an approximate symmetric distribution for each
variable in Z, this predictor can be interpreted as a vector of medians of the marginal
distributions of Z| [T (Z)X ;Y. This happens because in that case E[T (Z)| [T (Z)X ;Y] is
also the vector of medians of the marginal distributions of T (Z)| [T (Z)X ;Y.

A more general approach will consider a Grst-order approximation of T (Z) by ex-
panding it around ẐX =T−1[ [T (Z)X ], which is not necessarily an optimal forecast. Thus
we have

T (Z) := T (ẐX ) + J (ẐX )(Z− ẐX ) (5.3)

with J (ẐX ) being the Jacobian of the transformation, evaluated at Z= ẐX . Then, by
deGnition of ẐX we get

ẐX − Z := J−1(ẐX )[ [T (Z)X − T (Z)] = J−1(ẐX )Lb+ J−1(ẐX )e; (5.4)

where the last equality follows from (5.1). Now let us write this expression as

ẐX
:= L∗b+ Z+ e∗ (5.5)

with L∗ = J−1(ẐX )L and e∗ = J−1(ẐX )e, so that

Var(e∗|X ) = J−1(ẐX )�eJ−1(ẐX )′ = �∗
e (5.6)

and

E(e∗u|X ) = J−1(ẐX )�eu = �∗
eu: (5.7)

Then we are in such a position that the GCR applies to (5.5) and (2.2) yielding
the desired approximate estimator b̂ and predictor E(Z|ẐX ;Y), with L∗, �∗

e and �∗
eu

in place of L, �e and �eu. Of course, if a predictor is needed in the transformed scale
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we can use

E[T (Z)| [T (Z)X ;Y] := T [E(Z|ẐX ;Y)] and �T (Z) = J (ẐX )�ZJ (ẐX )′: (5.8)

5.2. Unknown covariance matrices

The GCR can be applied once �e, �u and �eu are either known on a priori grounds
or estimated from the available data. If they were known we would be using indeed
GLS, otherwise we would be forced to employ a feasible procedure, and most likely
we would use estimated generalized least squares (EGLS). The asymptotic properties
of EGLS can be derived as in Judge et al. (1980) and, for Gnite samples, via Monte
Carlo simulation, although these results will be highly dependent on speciGc sample
size and model considerations. Here we will not pursue this topic any further.
We now concentrate on the problem of estimating the required covariance matrices

involved in the specialized cases of the GCR. In Grst place, the error covariance matrix
�e will always be needed, even in the case of binding constraints where �u = 0 and
�eu =0: To see how that matrix can be estimated, let us assume that the multiple time
series model admits the following Gnite vector auto-regressive (VAR) representation

Zt =Dt ++1Zt−1 + · · ·++pZt−p + at ; (5.9)

where Dt is a vector of predetermined variables in the information set X and +1; : : : ; +p

are matrices of constant parameters. The error at is assumed to follow a Gaussian white
noise process with E(at |X )= 0 and E(ata′t |X )=-, then the forecasts produced by this
model for h= 1; : : : ; H , with origin at t = T , are

ẐX;T+h =DT+h ++1 ẐX;T+h−1 + · · ·++p ẐX;T+h−p (5.10)

with ẐX;T+i =ZT+i for i6 0: If we write a= (aT+1; : : : ; aT+H )′ the vector of forecast
errors becomes

ẐX − Z=.a; (5.11)

where . is a kH × kH lower triangular matrix with −Ik in the main diagonal, −+1

in the Grst subdiagonal, −+2 in the second subdiagonal and so on. From (5.11) it
follows that E(ẐX − Z|X ) = 0 and Var(ẐX − Z|X ) = .�a.′. Since in practice we
are usually unsure whether (5.9) is an appropriate model or that we are using an
appropriate information set, we assume here that ẐX −Z=Lb+e, with b unknown and
nonestimable if only X is used. Thus we are now in the situation originally considered
by expression (2.1), so that �e = .�a.′. Therefore estimating �e becomes an easy
task because both . and �a can be estimated by standard methods (see LIutkepohl,
1991) from the available data.
The second important case occurs when the restrictions are unbinding and uncorre-

lated with the vector e, that is, �u �=0 and �eu=0. This situation may happen when the
two sources of information providing ẐX and Y are independent, for instance when
the restrictions are basically conjectures or expert opinions about some linear combina-
tions of the future values. Then the same source of information that provides the linear
restrictions should be exploited to get an estimate of �u: For example, in Pankratz
(1989) a forecast manager provided an expert opinion of some sales variable on the



V.M. Guerrero, D. Peña / Journal of Statistical Planning and Inference 116 (2003) 249–276 267

basis of sales force information. Moreover, the manager’s experience led him=her to
the assertion that “the maximum error associated with Gelds estimates of this type has
been ±10%”. Thus, on the assumption that the expected error range is covered by ±3
standard deviations, the manager’s input was used to estimate �u.
Another situation in which zero correlation between e and u can be reasonably

and conveniently assumed is when combining forecasts from di6erent models. In fact,
as indicated in Section 4.1, the literature on this topic recommends making �eu = 0
(see Newbold and Granger (1974) or Trabelsi and Hillmer (1989)). Nevertheless, the
estimation of �u is an integral part when producing forecasts Y with a statistical
model di6erent from (5.9), so that �̂u can be obtained again from the same source of
information that provides Y. Similarly when benchmarking time series it is customary
to assume that �eu=0, while �u is estimated from the same survey data that produced
Y, as indicated by Cholette and Dagum (1994). The next section shows how this
matrix can be computed in practice, although we have not found in the example any
advantage by assuming that this matrix is di6erent from zero.

6. An empirical example

As an example of the previous rules we will show how to combine the multiple
time series forecasts of the components of a vector time series and the forecasts for
the aggregate of these components. We consider a vector of Gve time series, Zt =
(Z1t ; Z2t ; Z3t ; Z4t ; Z5t)′, in which the components are the cost of living indexes for food,
Zit , manufacturing products, Z2t , services, Z3t , hotels and tourism, Z4t , and housing, Z5t ,
in Spain. The sample data include 309 monthly observations from 1=1976 to 9=2001
of these components and can be obtained from www.ine.es. The Grst 273 observations
(1=1976 to 9=1998) have been used to Gt the models and the other 36 are used to
evaluate the forecasts. These Gve components are shown in Fig. 1.
The vector of time series is Gtted by a seasonal VARIMA (2; 1; 0)(0; 1; 1)12

(I − /1B− /2B2)(I − B12)(I − B)Zt = (I −112B12)Ut ; (6.1)

where B is the backshift operator such that BZt = Zt−1 for every Z and t, and 2t ∼
N (0; �2). The maximum likelihood estimates are

/̂1 =



0:382 0 0 0 0

0:182 0 0 0 0

0 0 0:168 0 0:129

0 0 0:214 0 0

0 0 0 0 0:384


; /̂2 =



0 0 0 0 0

0 0:178 0 0 0

0 0 0 0 0

0 0:135 0 0 0

0 0 0 0 0:159


;

http://www.ine.es
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Fig. 1. Five components of the cost of living index in Spain (1976–1998).

1̂12 =



0:994 0 −0:095 0 0:237

0 0:860 0 0 0:139

0:219 0 0:712 0 0

0:217 0 0 0:666 0

0 0:155 0 0 0:802


and

�̂2 =



0:0700 0:0286 −0:0038 0:0009 0:0001

0:0286 0:0236 0:0010 0:0084 0:0009

−0:0038 0:0010 0:0555 0:0609 0:0022

0:0009 0:0084 0:0609 0:1249 0:0023

0:0001 0:0009 0:0022 0:0023 0:0281


: (6.2)

The large value of the moving average parameter at position (1; 1) suggests that
the Grst component may be seasonally overdi6erenced (the largest real eigenvalue of
the 1̂12 matrix is 0.98). We have also Gtted a model in which the Grst component
does not have a seasonal di6erence but the results were very similar, so we decided
to present only the results for the simplest model. The matrix �̂2 is well conditioned
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(its condition number is 4.14) and there is no strong evidence of common factors or
cointegration in the data.
We now form the aggregate univariate time series Yt =

∑5
i=1 Zit . We decided to use

the arithmetic mean of the components instead of a weighting function of them (as in
the cost of living index) in order to simplify the presentation and to have a neutral
standard to judge the gain in precision when incorporating the aggregate. The same
analysis can be applied to any weighting function of the components. The 273 data
observations of the aggregated univariate time series have been Gtted by the seasonal
ARIMA (2; 1; 0)(0; 1; 1)12 model

(1− 0:225B− 0:191B2)(1− B12)(1− B)Yt = (1− 0:664B12)ât ; (6.3)

where 4̂2
a = 0:6927. Both models are broadly in agreement with each other because as

Yt=1
′Zt , then (1−B12)(1−B)Yt=1

′(I−B12)(I−B)Z, with 1 the 5-dimensional vector
of ones. The second term is the sum of MA(∞) components, obtained by inverting
the AR(2) matrix operator, leading to a univariate MA(∞) for Yt , that is in agreement
with the ARMA(2,1) univariate model. Also 4̂2

a = 0:6927 is much larger than trace
(�̂2) = 0:3021, as expected, due to the presence of several relatively large o6-diagonal
elements in the parameter matrices of the multivariate model. This agrees with the
result of Wei and Abraham (1981) that forecasting the components and adding them
to forecast the aggregate dominates in MSE the forecasts for the aggregate obtained
with the univariate model (see also Pino et al., 1987).
We generated 3 years of forecasts with the multivariate and the univariate models.

Let Z= (Z′
T+1; : : : ;Z

′
T+36)

′ be the vector of dimension 180× 1 to be forecasted from

the multivariate model and ẐX = (Ẑ
′
T+1; : : : ; Ẑ

′
T+36)

′ be the corresponding vector of
forecasts based on X = (Z1; : : : ;Z273). Also let Y = (Ŷ T+1; : : : ; Ŷ T+36)′ be the vec-
tor of univariate forecasts. Computing the combined forecasts requires the covariance
matrices of the forecast errors from both models. The covariance matrix �̂e of the
vector e = ẐX − Z of multivariate forecast errors is built from the following squared
k × k block matrices: (1) V̂ar(eT+l), which includes the variances and covariances
of the forecast errors in the components of the time series vector at time T + l and
(2) Ĉov(eT+l; eT+l+i), which includes the covariances between the forecast errors at
times T + l and T + l + i. In order to show the expression for these matrices, let us
write the multivariate model as Zt = .̂(B)2̂t , where the .̂j matrices are obtained from
(I − /̂1B − /̂2B2)(I − B12)(I − B) = .̂(B)(I − 1̂12B12). Then ẐT+l =

∑∞
j=l .̂j2̂t+l−j

and the forecast error for ZT+l will be given by eT+l =ZT+l − ẐT+l =
∑l−1

j=0 .̂2̂t+l−j,

so that V̂ar(eT+l) = V̂ar(
∑l−1

j=0 .̂j2̂t+l−j) =
∑l−1

j=0 .̂j�̂2.̂
′
j. Also,

Ĉov(eT+l; eT+l+i) = Ĉov

 l−1∑
j=0

.̂j2̂T+l−j;
l+i−1∑
j=0

.̂j2̂T+l+i−j

=
l−1∑
j=0

.̂j�̂2.̂
′
j+i :

(6.4)

The computation of the elements of �̂u, the forecast error covariance matrix of
u = Y − CZ, requires obtaining V̂ar(uT+l) and Ĉov(uT+l; uT+l+i), and this is done as
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follows. Let us write

Y =


Ŷ T+1

...

Ŷ T+36

=


1; : : : ; 1 · · · 0; : : : ; 0

...
. . .

...

0; : : : ; 0 · · · 1; : : : ; 1



ZT+1

...

ZT+36

+ u (6.5)

and Ŷ T+l = E[YT+l|YT ; YT−1; : : : ] =
∑∞

j=l  ̂ jât+l−j, where Yt =  ̂ (B)ât , and  ̂ (B) is
obtained by equating coe7cients of powers of B in (1−0:225B−0:191B2) (1−B12)(1−
B)=  ̂ (B)(1−0:664B12). The univariate forecast error is given by uT+l=YT+l− Ŷ T+l=∑l−1

j=0  ̂ jât+l−j and has V̂ar(uT+l)=4̂2
a
∑l−1

j=0  ̂
2
j and Ĉov(uT+l; uT+l+i)=4̂2

a
∑l−1

j=0  ̂ j  ̂ j+i.
The matrix �eu can be estimated by

�̂eu(i; i + h) = Ê(eT+iuT+i+h)

= Ĉov[(ÛT+i + .̂1ÛT+i−1 + · · ·+ .̂i−1ÛT+1)

×(âT+i+h +  ̂ 1âT+i+h−1 + · · ·+  ̂ i+h−1âT+1)]

=
i−1∑
s=0

.̂s

(
i+h−1∑
r=0

 ̂ r Ĉov(ÛT+i−s; âT+i+h−r)

)
; (6.6)

but the covariances were small and we did not Gnd any advantage from using them.
Thus we only provide here the results that came out by assuming that �eu = 0.

Using the precision matrices from both forecasts we calculated the Chi-squared com-
patibility test statistic given by (2.20). The value in this case is 6.89, showing com-
patibility between both sets of forecasts. The precision share of the multivariate versus
the univariate forecasts given by (2.16) is equal to 0.9104. So we may conclude that
most of the precision comes from the joint information in the components, although
there is some information in the aggregate that can be used to improve the forecasts of
the components. A measure of the advantage of incorporating the univariate forecasts
to the multivariate ones, in the forecast of each component, can be computed as the
relative reduction in squared forecast error for each component. Calling eMjl to the
forecast error of the jth component at time T + l obtained by using the multivariate
model, and eCjl to the forecast error of the same component at time T + l, produced
by the combination of forecasts, we have that the relative reduction (or increase) of
forecast error is given by

g(j) =

∑H
l=1 e

2
Mjl −

∑H
l=1 e

2
Cjl

max(
∑H

l=1 e
2
Mjl;
∑H

l=1 e
2
Cjl)

(6.7)

thus a positive (negative) value of g(j) indicates a relative reduction (increase) in the
forecast error of the component by using the combined forecast. The global gain is
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Table 1
Percentage of improvement in MSE for each component and overall

g(1) g(2) g(3) g(4) g(5) gT gm

15.80 30.10 34.10 29.07 − 12.46 12.38 19.32

0 5 10 15 20 25 30 35 40
130

135

140

145

150

155

160
Forecast comparison with the actual data - 4ª comp.

Fig. 2. Observed data (———–), Multivariate forecast (. . . .) and combined forecast (— — — ) for the
4th component of the time series.

obtained by adding the gains in the Gve components as follows:

gT =

∑5
j=1

∑H
i=1 e

2
Mji −

∑5
j=1

∑H
i=1 e

2
Cji

max(
∑5

j=1

∑H
i=1 e

2
Mji −

∑5
j=1

∑H
i=1 e

2
Cji)

: (6.8)

An alternative measure of global gain is gm =
∑5

j=1 g(j)=5. Of course other measures
can be used, see for instance Clements and Hendry (1993). The values for g(j), gT and
gm are indicated in Table 1. The improvements in forecast precision for components
2, 3 and 4 are quite large, and the global gain of incorporating the univariate forecasts
is between 12% and 19%, depending on the measure used. Fig. 2 shows a plot of the
multivariate and combined forecasts for the 4th component (the median of the values
for the components, see Table 1). It can be seen that gain in precision by incorporating
the joint information provides better forecasts of the trend in that component.
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7. Concluding remarks

We propose the GCR as a unifying tool to solve many apparently unrelated prob-
lems. Our approach is theoretically supported by generalized least squares and it was
shown to be Jexible enough to accommodate problems of estimation and testing within
a uniGed framework. We do not attempt to conclude that the optimal solutions deduced
from the GCR are e7cient in computational terms. To that end we could employ a
recursive approach like Kalman Gltering (see, for instance, Harvey and Chung, 2000)
known to be computationally more e7cient. However, we do believe that the new
interpretation of the results previously appeared in the literature is enlightening of
such issues as the role of bias, compatibility testing and measurement of precision
shares.
It is important to realize that the GCR may be applied to a very general class of

multiple time series models that can be put into a reduced form. On the other hand, it
should be stressed that many other problems, di6erent from those considered explicitly
in Sections 3 and 4, can also be posed in the context of the GCR. Therefore, its limits
of application are not just those shown here. In fact, it is up to the analyst’s ingenuity
to discover more practical applications.
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Appendix A. Proof of the general combining rule

Eqs. (2.1) and (2.2) are put together to form the system(
ẐX

Y

)
=

(
L I

0 C

)(
b

Z

)
+

(
e

u

)
(A.1)

with

E

(
e

u
|X
)

= 0 and Var

(
e

u
|X
)

=

(
�e �eu

�′
eu �u

)
: (A.2)
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Therefore, GLS produces(
b̂

E(Z|ẐX ;Y)

)
=

(
�b �bZ

�′
bZ �Z

)(
L′ 0

I C′

)(
�e �eu

�′
eu �u

)−1(
ẐX

Y

)
(A.3)

with (
�b �bZ

�′
bZ �Z

)
=

( L′ 0

I C′

)(
�e �eu

�′
eu �u

)−1(
L I

0 C

)−1

=

(
A B

B′ D

)−1

; (A.4)

where, assuming that all the inverse matrices involved exist

A= L′(�−1
e + �−1

e �eu�−1
u|e�

′
eu�

−1
e )L; B= L′(�−1

e + �−1
e �eu�−1

u|e�
′
f)

and

D = �−1
e + �f�−1

u|e�
′
f (A.5)

by calling �f = �−1
e �eu − C′ and �u|e = �u − �′

eu�
−1
e �eu. Then, inversion by blocks

yields

�b = (A− BD−1B′)−1; �bZ =−A−1B(D − B′A−1B)−1

and

�Z = (D − B′A−1B)−1: (A.6)

Next, the following matrix inversion lemma:

(E + FGH)−1 = E−1 − E−1F(G−1 + HE−1F)−1HE−1; (A.7)

which holds for E and G nonsingular matrices, allows us to obtain

�b = [L′C′(�u|e + �′
f�e�f)−1CL]−1 = (L′C′�−1

d CL)−1; (A.8)

where �d =Var(u − Ce|X ) = �u − C�eu − �′
euC

′ + C�eC′. Similarly we get

�Z =D−1 + D−1B′�bBD−1

= (�e − �e�f�−1
d �′

f�e) + (I − �e�f�−1
d C)L�bL′(I − C′�−1

d �′
f�e) (A.9)

and

�bZ =−�bBD−1 =−�bL′(I − C′�−1
d �′

f�e): (A.10)

Now, from (A.3) it follows that:(
b̂

E(Z|ẐX ;Y)

)
=

(
�b �bZ

�′
bZ �Z

)(
' ;

#  

)(
ẐX

Y

)

=

(
(�b'+ �bZ#)ẐX + (�b; + �bZ )Y

(�′
bZ'+ �Z#)ẐX + (�′

bZ; + �Z )Y

)
(A.11)
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with '= L′(�−1
e +�−1

e �eu�−1
u|e�

′
eu�

−1
e ), ;=−L′�−1

e �eu�−1
u|e , #=�−1

e +�f�−1
u|e�

′
eu�

−1
e

and  =−�f�−1
u|e . Then, after some tedious algebraic manipulations we get

�b'+ �bZ#= �bL′C′�−1
d and �b; + �bZ =−�bL′C′�−1

d (A.12)

so that

b̂=−�bL′C′�−1
d (Y − C ẐX ): (A.13)

Furthermore

�′
bZ; + �Z = (I + �e�f�−1

d C)L�bL′C′�−1
d − �e�f�−1

d (A.14)

and, since '= L′�−1
e − ;�′

eu�
−1
e and #= �−1

e −  �′
eu�

−1
e , we also have

�′
bZ'+ �Z#= (�′

bZL
′ + �Z)�−1

e − (�′
bZ; + �Z )�′

eu�
−1
e

= I + �e�f�−1
d C − (I + �e�f�−1

d C)L�bL′C′�−1
d C (A.15)

hence

E(Z|ẐX ;Y) = ẐX + [(I + �e�f�−1
d C)L�bL′C′�−1

d − �e�f�−1
d ](Y − C ẐX )

= ẐX − �e�f�−1
d (Y − C ẐX )− (I + �e�f�−1

d C)L b̂

= (ẐX − L b̂)− �e�f�−1
d [Y − C(ẐX − L b̂)] (A.16)

Finally, it is clear that

E( b̂|X ) =−�bL′C′�−1
d E(u − Ce− CLb|X )

=�bL′C′�−1
d CLb= b (A.17)

and

E[E(Z|ẐX ;Y)− ẐX |X ] = E(ẐX − Z− L b̂|X )− �e�f�−1
d E[Y − C(ẐX − L b̂)]

= E[L(b− b̂) + e|X )]

−�e�f�−1
d E[u − Ce− CL(b− b̂)|X ]

= 0: (A.18)

Appendix B. Proof of the GCR when no bias is present

Let L= 0, then '= 0 and ; = 0 in (A.11), so that

E(Z|ẐX ;Y) =�Z#ẐX + �Z Y

=�Z(�−1
e + �f�−1

u|e�
′
eu�

−1
e )ẐX − �Z�f�−1

u|eY (B.1)

and

�Z = �e − �e�f�−1
d �′

f�e = (�−1
e + �f�−1

u|e�
′
f)

−1: (B.2)



V.M. Guerrero, D. Peña / Journal of Statistical Planning and Inference 116 (2003) 249–276 275

Appendix C. Proof of expressions (2.12) and (2.13)

We now consider the equation

Y − �′
eu�

−1
e ẐX = (CZ+ u)− �′

eu�
−1
e (Z+ e) (C.1)

that is

Ŷ = (C − �′
eu�

−1
e )Z+ U with U= u − �′

eu�
−1
e e (C.2)

so that E(U|X ) = 0 and E(UU′|X ) = �u|e: Then, by generalized least squares we obtain

E(Z|X; Ŷ) =−(�f�−1
u|e�

′
f)

−1�f�−1
u|e Ŷ: (C.3)

Now (C.2) implies that

E[E(Z|X; Ŷ)− Z|X ] = E[− (�f�−1
u|e�

′
f)

−1�f�−1
u|eU|X ] = 0 (C.4)

so that

Var[E(Z|X; Ŷ)− Z] = E[(�f�−1
u|e�

′
f)

−1�f�−1
u|eUU

′�−1
u|e�

′
f(�f�−1

u|e�
′
f)

−1]

= (�f�−1
u|e�

′
f)

−1: (C.5)
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