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Abstract

In this paper we propose two new descriptive measures for multivariate data: the effective

variance and the effective dependence. These measures have a direct geometric and statistical

interpretation and can be used to compare groups with different number of variables. The

contribution of these measures to understanding multivariate data is illustrated by several

examples.
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1. Introduction

The trace and the determinant of the covariance matrix of a sample of multivariate
data are often used as descriptive measures of multivariate variability. However,
these measures cannot be used to compare the variability of sets of variables with
different dimensions. The linear dependence between two variables is usually
measured by the correlation coefficient, introduced by Galton and Pearson a
century ago (see [14] for a brief history of this coefficient and 13 interpretations
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of its value). However, we do not have a simple measure of linear dependence
among a set of variables that can be used as a standard descriptive measure in any
dimension.
This paper proposes two new descriptive measures for multivariate data: the

effective variance and the effective dependence. These measures have a direct
geometric and statistical interpretation and can be used to compare groups with
different numbers of variables. The paper is organized as follows. In Section 2 we
present some conditions that a useful measure of multivariate variability must
satisfy. It is shown that neither the trace nor the determinant of the covariance
matrix satisfy these conditions and the effective variance is proposed. In Section 3 we
extend these conditions to a multivariate measure of linear relationship and the
effective dependence is introduced. It is shown that the effective dependence can be
used to estimate the number of principal components required to explain 90% of the
data variability. Section 4 discusses the sample distributions of these measures.
Section 5 illustrates their use in two examples.

2. A measure of multivariate variability

Let X be a p-dimensional random variable with finite covariance matrix RX: We
are interested in building a scalar measure of scatter VðXÞ that summarizes in some
optimal way the multivariate variability of the random variable. This measure
should be useful for comparing the scatter of random variables of different
dimension when they are measured on the same units. With this objective in mind,
we want first that this measure of variability depends on the covariance matrix.
Thus, we are only taking into account linear relationships between the components
of the X: Second, given two vectors X and Y with covariance matrices RX and RY we

define the additional linear variability introduced by Y in the vector Z0 ¼ ½X0Y0� over
the variability of X by

RYjX ¼ RY � RYXR�1
X RXY: ð1Þ

Note that RYjX is the covariance of the random variable Y� EðYÞ � BðX� EðXÞÞ;
where B ¼ R�1

X RXY and will be equal to the covariance of the random variable YjX
only if EðYjXÞ is linear on X: If the linear variability introduced by Y exceeds the
variability already present in X; the variability of Z should also be greater than the
variability in X:
Thus, we establish that a useful scalar measure must satisfy the following

properties:

(a) VðXÞ ¼ gðRXÞ: That is, the measure depends only of the covariance matrix.
(b) If X is scalar then VðX Þ ¼ varðXÞ:
(c) If Y ¼ QX where Q is an orthogonal matrix, then VðYÞ ¼ VðXÞ:
(d) If Y ¼ BXþ C where B is a non-singular diagonal matrix and C a vector, then

VðYÞ ¼ f ðBÞVðXÞ:
(e) VðXÞ ¼ 0 if and only if jRXj ¼ 0:
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(f) Let Z0 ¼ ½X0Y0� be a random vector of dimension p þ q where X and Y are
random variables of dimension p and q; respectively. Let us define the additional
variability introduced by Y with respect to the one of X; by VðY : XÞ ¼ gðRYjXÞ;
where RYjX is given by (1). Then VðZÞXVðXÞ if and only if VðY : XÞXVðXÞ
and VðZÞpVðXÞ if and only if VðY : XÞpVðXÞ:

The two most often used measures to describe scatter about the mean in
multivariate data are the total variation, [15], given by trðRXÞ ¼ l1 þ l2 þ?þ lp;

and the generalized variance, [18], given by jRXj ¼ l1l2?lp; where l1Xl2X?
Xlp40 are the eigenvalues of the covariance matrix RX: The former is often used as

a measure of variation in principal components analysis and the latter plays an
important role in maximum likelihood estimation and in model selection. It is
straightforward to check that the total variation satisfies properties (a)–(c) and the
generalized variance properties (a)–(e). Neither of them satisfies property (f):
including an additional variable Y in a data set cannot decrease the trace, whereas it
is well known that the determinant in dimension p � 1; jRp�1j; and the determinant in
dimension p; jRpj are related by

jRpj ¼ jRp�1js2pð1� R2p:1?p�1Þ; ð2Þ

where s2p is the variance of the pth variable and R2p:1?p�1 is the squared multiple

correlation coefficient between the variable p and the variables 1;y; p � 1: Thus, if
we choose the determinant of the covariance matrix as a scalar measure of scatter,
we can make jRpj greater or smaller than jRp�1j by choosing the units of the pth

variable Y in such a way that VðY jXÞ ¼ s2pð1� R2p:1?p�1Þ is greater or smaller than
one.
The generalized variance is a measure of the hypervolume that the distribution of

the random variables occupies in the space. Even if we standardize all the variables,
we cannot compare generalized variances in set of different dimensions because,
according to (2), this measure cannot increase by introducing new standardized
variables. It is clear that with this hypervolume interpretation we cannot compare
sets of different dimensions. An intuitive alternative is to use the average scatter in
any direction. We propose the name effective variance, for the measure given by

VeðXÞ ¼ jRXj1=p ¼ ðl1l2?lpÞ1=p ð3Þ
that is, the geometrical mean of the univariate variances of the principal components
of the data. It can also be interpreted as the length of the side of the hypercube whose
volume is equal to the determinant of Rp: Also, we can define the effective standard

deviation by

SDeðXÞ ¼ fVeðXÞg1=2 ¼ jRXj1=ð2pÞ:
It is straightforward to check that the effective variance satisfies properties (a)–(e). In
order to check property (f) note that,

jRZj1=ðpþqÞ ¼ jRXj1=ðpþqÞjRYjXj1=ðpþqÞ ð4Þ
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and, for instance, the condition jRYjXj1=q
XjRXj1=p is equivalent to jRYjXj1=ðpþqÞ

X

jRXjq=ðpðpþqÞÞ which implies, by using (4), that jRZj1=ðpþqÞ
XjRXj1=p:

From the properties of the geometric mean we have that

lppVeðXÞp
1

p

Xp

i¼1
li;

where lp is the minimum eigenvalue of RX:

Remark 1. Condition (f) implies that if we have two independent vectors, X and Y;
with the same measure of scatter, VeðXÞ ¼ VeðYÞ; then VeðZÞ ¼ VeðXÞ ¼ VeðYÞ:

Remark 2. Note that an alternative definition for multivariate scatter is the average
total variation, ATVðXÞ ¼ ð1=pÞtrðRXÞ; which does not satisfy properties (d)–(f).
This measure does not take into account the covariance structure.

3. A measure of multivariate linear dependence

The analysis in the previous section suggests a way to build a scalar measure of
multivariate linear dependence that summarizes the linear relationships between the
variables and can be applied in sets of different dimensions. We are interested in
measures that are functions of the correlation matrix of the variables and, as before,
we want to take into account linear relationships. We have to specify which
properties a measure of dependence, DðXÞ; of a random vector X; must have when
the dimension of the vector is changed. Suppose that we increase its dimension by

adding a new set of random variables Y; to form the new vector Z0 ¼ ½X0 Y0�: Then
the change on the dependence must depend on (i) the correlation matrix of the Y
vector and (ii) the correlation between X and Y as measured by the matrix of cross
correlations RXY: The additional correlation introduced by the Y variables can be
measured by

RYjX ¼ RYðI� R�1
Y RYXR

�1
X RXYÞ; ð5Þ

which is the product of the correlation matrix of the Y variables and a correction
term that depends on the canonical correlations between the vectors Y and X:
Thus, we establish that the dependence measure, DðXÞ must satisfy the following

properties:
(a) DðXÞ ¼ gðRXÞ: That is, the measure depends only of the correlation matrix.
(b) If X is scalar then DðXÞ ¼ 0:
(c) If Y ¼ QX where Q is an orthogonal matrix then DðYÞ ¼ DðXÞ:
(d) If Y ¼ BXþ C where B is a non-singular diagonal matrix and C a vector then

DðYÞ ¼ DðXÞ:
(e) 0pDðXÞp1; and DðXÞ ¼ 1 if and only if we can find a vector aa0 and b such

that a0Xþ b ¼ 0: Also DðXÞ ¼ 0 if and only if RX is diagonal.
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(f) Let Z0 ¼ ½X0Y0� be a random vector of dimension p þ q where X and Y are
random variables of dimension p and q; respectively. We define the additional
dependence as the additional correlation introduce by Y by DðY : XÞ ¼ gðRYjXÞ;
where RYjX is given by (5). Then DðZÞXDðXÞ if and only if DðY : XÞXDðXÞ; and
DðZÞpDðXÞ if and only if DðY : XÞpDðXÞ:
A standard measure of dependence in the bivariate case is r2; the squared of the

correlation coefficient. In the multivariate case, a possible generalization is 1� jRXj;
where RX is the correlation matrix. This measure satisfies properties (a)–(e), but
again it is not appropriate for comparing the dependence structure between datasets

with different numbers of variables. An alternative measure is ð1� jRXjÞ1=p which
has the advantage that for p ¼ 2 it is equal to r; the linear correlation coefficient.
However, this definition does not satisfy property (f).
By analogy to the effective variance we define the effective dependence by

DeðXÞ ¼ 1� jRXj1=p ð6Þ
and it is easy to check that it satisfies properties (a)–(e). Property (f) is obtained by
noting that as in (4)

jRZj1=ðpþqÞ ¼ jRXj
1=ðpþqÞ

jRYjXj1=ðpþqÞ

and the proof is the same as for the effective variance.

Remark 3. Condition (d) implies that the measures will be invariant if we change the
sign of any elements of the vector X: This is in agreement with condition (e) which
implies that DðXÞ is always positive.

Remark 4. The effective dependence for a bivariate random variable is 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
which is a useful measure of linear relationship. Let ðy; xÞ be the components of the
bivariate random vector, and s2yjx ¼ s2yð1� r2Þ: Then the effective dependence is
ðsy � sy=xÞ=sy and it directly provides the proportion of reduction in the standard

deviation of the random variable due to the use of the linear information provided
by the regressor. In the next section we will extend this idea for any dimension.

Remark 5. An alternative definition for a dependence measure is 1� jRpj1=ðp�1Þ that
in the bivariate case is equal to the squared correlation coefficient. For large p this
measure will be very close to the effective dependence but we prefer the exponent 1=p

for symmetry with respect to the effective variance.

3.1. Some properties of the effective dependence

Firstly, the effective dependence represents the average proportion of explained
variability among the variables. To see this, note that by repeated use of (4), we can
write

jRXj ¼ ð1� R2p:1?p�1Þð1� R2p�1:1?p�2Þyð1� R22:1Þ: ð7Þ
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where the ith term represents the proportion of unexplained variation in a regression
between the p � i þ 1 variable and the variables p � i; p � i � 1;y; 1: As the squared

correlation can always be interpreted as R2 ¼ 1� RSS=TSS; where RSS is the
residual sum of squares and TSS the total sum of squares and calling RSSðij1?
i � 1Þ to the residual sum of squares in the regression of the ith variable on the
i � 1;y; 1 and TSSðiÞ to the total variability in this regression, we can write

jRXj1=p ¼ RSSðpjp � 1;y; 1Þ?RSSð2j1ÞRSSð1Þ
TSSðpÞ?TSSð2ÞTSSð1Þ

� �1
p

¼ RSS

TSS
;

where RSSð1Þ ¼ TSSð1Þ and RSS and TSS are the geometric means of the residual
sum of squares and the total sum of squares of all the regressions. Note that this
measure is invariant to any permutation of the variables. Thus, the effective
dependence can be written as

DeðXÞ ¼ 1�
RSS

TSS
:

This interpretation also holds when the set of variables can be partitioned as Z0 ¼
½X0Y0�; where X has dimension p and Y has dimension q and suppose that pXq: We
have

DeðZÞ ¼ 1� fð1� R2xp:1?p�1Þ?ð1� R2x2:1Þg
1

pþq

� fð1� R2yq:1?q�1Þ?ð1� R2y2:1Þg
1

pþq
Yl

i¼1
ð1� r2i Þ

( ) 1
pþq

;

where l ¼ minðp; qÞ ¼ q and r2i are the canonical correlation coefficients between the

two sets of variables. This expression shows that if the two sets are uncorrelated,
then DeðZÞ is just the average of the internal dependence. When the two sets are
correlated the effective dependence is an average of the internal dependence and the
cross dependence as measured by the canonical correlation coefficients.
Note that the effective dependence satisfies the following inequality:

1

p

Xp

i¼1
R2i:1?ði�1ÞpDeðXÞp1;

obtained by noting that from (7),

1� jRXj1=p ¼ 1�
Yp

i¼1
ð1� R2i:1?ði�1ÞÞ

" #ð1=pÞ

and by using the properties of the geometric mean. This inequality is satisfied for all
permutations of the variables, since if Y ¼ PX; where P is a permutation matrix,
then DeðYÞ ¼ DeðXÞ: Note that if P is a permutation matrix then jPj ¼ 71 and

jRYj ¼ jPj2jRXj ¼ jRXj implies that jRYj ¼ jRXj:
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Secondly, the effective dependence is a measure of the lack of sphericity of the
standardized variables. Anderson [2, p. 427] defines sphericity as

cðRpÞ ¼
jRpj1=p

ð1=pÞtrðRpÞ
;

and he uses this measure for testing the hypothesis H0 : R ¼ s2I: If c ¼ 1; then the
geometric mean of the eigenvalues is equal to the arithmetic mean and all the
variables are uncorrelated, and the shape of the data is a sphere. When c tends to
zero, the data moves away from sphericity and when c ¼ 0; we are in a lower
dimension, and the ellipsoid is degenerate. For standardized variables cðRpÞ ¼
jRpj1=p , and

DeðXÞ ¼ 1� cðRpÞ:

Thirdly, when all the off diagonal values of the correlation matrix are equal and
the number of variables is large, the effective dependence will converge to this
common correlation value.
To illustrate this property, suppose that the correlation matrix of a vector of p

random variables has the simple structure

Rp ¼

1 r y r

r 1 r

^ & ^

r r y 1

2
6664

3
7775:

Then the coefficient of determination in the regression of any variable with respect

to the rest R2p:1?p�1-r as p-N: This result, shown by Mustonen [13], is a

consequence of

lim
p-N

ð1� R2p:1?p�1Þ ¼ ð1� rÞ lim
p-N

1þ ðp � 1Þr
1þ ðp � 2Þr

� �
¼ ð1� rÞ:

Then, it is easy to show that, for the generalized variance,

lim
p-N

ð1� jRpjÞ ¼ lim
p-N

½1� ð1� rÞp�1f1þ ðp � 1Þrg� ¼ 1 8rAð0; 1Þ;

whereas for the effective dependence,

lim
p-N

DeðXÞ ¼ lim
p-N

ð1� jRpj1=ðp�1ÞÞ

¼ lim
p-N

½1� ð1� rÞf1þ p � 1ð ÞrÞ1=ðp�1Þ�

¼ r 8rAð0; 1Þ; ð8Þ

which provides an interesting interpretation of the correlation coefficient as the
limiting average proportion to explain variability in this situation.
Finally, the effective dependence can be used to predict the number of principal

components required to explain a given proportion of the variability of the data.
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One would expect that the larger the global correlation structure the smaller the
number of principal components or factors needed to describe the linear properties
of the observed data. A useful measure of linear dependence should inherit this
property and we will show that the effective dependence is strongly related to the
proportion of components needed to summarize the data (see Fig. 1). Suppose that
we have a sample of p standardized variables and let li; i ¼ 1;y; p be the
eigenvalues of the correlation matrix of the data. We want to study the relationship
between the De of the sample and the proportion of components, h=p; needed to
explain 90% of the total variability. We carried out a simulation study by generating
random correlation matrices of dimension p as follows: (1) the eigenvalues of the
correlation matrix are drawn from a Betaða;bÞ distribution, with a and b chosen
from a grid in the interval ð0; 3Þ2; obtaining 900 pairs of parameters ðai; biÞ: (2) The
values are normalized so that their sum is p: For each fixed value p; we generated 900
matrices. This process was performed for p ¼ 40; 80;y; 440; so that 9900 correlation
matrices were generated in total. For each one of these matrices, we calculate

h
p

� �
A½0; 1� and the De: We observed that the relation between

h
p

� �
and DeðXÞ is a

sigmoid, but in the interval DeðXÞA½0:1; 0:9� we can approximate it by the linear
relation

h

p
¼ 0:8230� 0:492DeðXÞ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

h/
p (9

0%
)

De (X)

Fig. 1. Relationship between the proportion of the Principal Components which explain 90% of the total

variability and the effective dependence in ½0:1; 0:9�:
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with R2 ¼ 0:97 (see Fig. 1). This relationship can be approximated by

h ¼ pð0:8� 0:5DeðXÞÞ: ð9Þ

To illustrate this result, we present the analysis of Jeffers’ [9] pine pitprops data,
taken from Mardia et al. [11, pp. 176–178, 225–227]. This data set has 180
observations of pitprops cut from the Corsican pine tree. The data have 13 variables
ðXÞ measured on each prop. The effective dependence of these data is DeðXÞ ¼
0:563: From Eq. (9) we obtain that h ¼ 0:519p and the estimated number of principal
components explaining 90% of the total variability is 6.74. Thus we need 6 or 7
components. The eigenvalues of the correlation matrices are: 4.22, 2.38, 1.88, 1.11,
0.91, 0.82, 0.58, 0.44, 0.35, 0.19, 0.05, 0.04 and 0.04. For the first 6 components, the
cumulative variability is 87:1% and if the seventh component is added, it is 91:5%:
Therefore more than 90% of the cumulated variability is obtained considering the
first 7 components. Jeffers took the first 6 components in his analysis, because of
their clear physical interpretation.

4. Sample distributions

The sample distribution of the effective variance can be obtained from existing
results on the generalized variance (see [2,12]). The generalized variance is usually
estimated by the sample generalized variance, detðSpÞ; where Sp is the sample

covariance matrix with dimension p � p: In the case of effective variance it is
estimated by the pth root of the generalized sample variability. The following two

lemmas derive the distribution of ðdetðSpÞÞ1=p when Sp is computed with a sample of

size N ¼ n þ 1; from the Npðl;RpÞ distribution. In this case Sp follows a Wishart

distribution with n degrees of freedom and covariance matrix ð1=nÞRp;

Wpðn; ð1=nÞRpÞ: The two lemmas characterize the asymptotic distribution and an
approximation of the exact distribution by the sample effective variance.

Lemma 4.1. Let Sp be a p � p sample covariance matrix from the Npðl;RpÞ with n

degrees of freedom. Then

ffiffiffi
n

p
ðjSpj1=p=jRpj1=p � 1Þ

is asymptotically normally distributed with mean 0 and variance 2=p:

Proof. The asymptotic distribution of the effective variance can be obtained from
the asymptotic normality of the generalized variance. Anderson [2], shows thatffiffiffi

n
p

ðjSpj=jRpj � 1Þ is asymptotically normal with mean 0 and variance 2p: Then,
applying the d-method (see [16, p. 118]), for gðxÞ ¼ x1=p; it follows, that Ve is also
asymptotically normally distributed, with mean 0 and variance 2=p: &
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Lemma 4.2. The exact distribution for the pth root of jSpj=jRpj is

jSpj1=p=jRpj1=pBG
pðn � pÞ
2

;
pðn � 1Þ
2

1� ðp � 1Þðp � 2Þ
2n

� �1=p
 !

:

Proof. Using the results of Hoel [8] related to the exact distribution for the pth root
of jApj=jRpj; we have

jApj1=p=jRpj1=pBG
pðn � pÞ
2

;
p

2
c

� �
;

where

c ¼ 1
2
1� ðp � 1Þðp � 2Þ

2n

� �1=p

and jApj is ðn � 1ÞpjSpj: Applying the property that, XBGða; bÞ-dXBGða; b=dÞ;
then

jSpj1=p=jRpj1=pBG
pðn � pÞ
2

;
pðn � 1Þ
2

1� ðp � 1Þðp � 2Þ
2n

� �1=p
 !

: &

The exact distribution of De Xð Þ can be easily obtained from the exact distribution
of jRXj given in [7]. The asymptotic distribution of �n log jRXj; under the hypothesis
that RX ¼ I; is a w2 with pðp � 1Þ=2 degrees of freedom (see [3]). Thus, the asymptotic
distribution of npDeðXÞ is a w2 with the same degrees of freedom.

5. Examples

To illustrate the information provided by for the effective variance and the
effective dependence in a descriptive analysis of multivariate data, we apply them to
two well known sets of data. The first is the Fisher Iris data, originally due to
Anderson [1] and analyzed by Fisher [6] in his seminal paper on discriminant
analysis. These data correspond to measures of three species of flowers called, Iris
Setosa, Iris Versicolor and Iris Virginica. There are 50 specimens of each species and
four variables: Y1=sepal length, Y2=sepal width, Y3=petal length and Y4=petal
width, all measured in cm.
Fig. 2 shows the scatterplot of the Iris data in the variables Y1 and Y4: The

specimens for Setosa are squares, for Versicolor circles and for Virginica triangles. In
Fig. 2 two concentric circles centered in the mean of each group are plotted. The
circle in solid line shows the observed scatter in the projected data and it has radius

2� SDeðRðiÞ
14Þ; where RðiÞ

14 is the covariance matrix of variables Y1 and Y4 in the group

i: The second circle, in dotted line, shows the real multivariate scatter and it has

radius 2� SDeðRðiÞÞ; where RðiÞ is the covariance matrix in the group i; for all
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variables. The similarity of the two circles indicates that the dispersion in the
projected data is similar to the dispersion in the multivariate data. Fig. 2 shows that
the circles are similar in the species Setosa, whereas in the two other groups, the
multivariate dispersion is slightly inferior than the projected dispersion. If we
compare the multivariate dispersion between the three groups, using the dotted
circles, small differences in the dispersion between groups are observed.
In Table 1, some scatter measures for each group in the Iris data are shown. The

first group of measures correspond to all variables and the second group to the
projected data shown in the scatterplot in Fig. 2. The total variability and the
generalized variance do not provide a descriptive information to understand the
data, and are not appropriate for comparing the variance in sets of different
dimensions. The ATV and the new measure Ve provide information over the scatter
in each group in units which are comparable in dimensions 4 and 2, corresponding to
the multivariate dispersion and in the dispersion in the projected data. The ATV for
each group is similar to the ATV for each group in the projected data, but this
measure does not take into account the covariance structure of the variables in each
group. The fourth row in Table 1 shows the Ve in each group for all variables. If we
compare this Ve with the Ve for the groups in the projected data, we can see a clear
resemblance in the species Setosa and small differences in the two other species. In
the last row of each set of measures, the ratio between Ve and ATV is shown, which
is the sphericity. Based on this measure for each group, we can observe that the

Fig. 2. Plot with the 3-groups for Fisher Iris data. The circle in solid line has radius SDeðRkÞ for each
group, k ¼ 1; 2; 3; and the circle in dotted line has radius SDeðR14Þ; where R14 is the covariance matrix
between the variables X1 and X4 in the group i:
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sphericity is higher in the projected data than in the original data. Moreover, in the
species Versicolor, the sphericity is smaller than in the rest of the groups. This
descriptive analysis of Iris data shows differences, in form and scatter, between the
covariance matrix in the groups. This conclusion coincides with the result shown by
Krzanowski and Radley [10], over the difference in scatter in each species.
To illustrate the information provided by the effective dependence we consider the

data on air quality measurements in the New York metropolitan area from May 1,
1973 to September 30, 1973 from Cleveland et al. [4]. Only the n ¼ 111 complete
cases are considered here. This data set is obtained for studying the relationship
between the variable Ozone concentration in parts per billion, X1; with the variables
solar radiation in langleys ðX2Þ; wind speed in miles/h ðX3Þ and temperature in
degrees F ðX4Þ: As the variables are measured in different units, we will study the
standardized data. Fig. 3 shows a scatterplot matrix of the standardized Ozone data.
In each scatterplot we present three vectors with equal length. The angle between Xi

and Z1 shows the effective dependence between the variables Xi and Xj; in such a

way that cos2ðyÞ ¼ DeððXi;XjÞÞ; whereas the angle between Xi and Z shows the

effective dependence among all variables, ðX1;y;X4Þ: If the angle between Z1 and Z

is small DeððXi;XjÞÞ for the projected data is similar to DeððX1;y;X4ÞÞ for the four
variables. Fig. 3 shows that in the projections ðX1;X3Þ and ðX1;X4Þ the angle
between Z and Z1 is small and we conclude that the linear relationship observed
between the projected pairs of variables is similar to the average multivariate
relationship. On the other hand, variables ðX1;X2Þ; ðX2;X3Þ; ðX2;X4Þ and ðX3;X4Þ
show a weaker linear relationship than the average dependence in the data set.
The effective dependence for this data set is 0.27. The plot shows that this

moderate value is due to the fact that only X1 is strongly associated with the other

Table 1

Descriptive measures of variance for each group in the Fisher Iris data

Setosa Versicolor Virginica

Measures of variability in all variables

TVðRðiÞÞ 0.309 0.624 0:888

GVðRðiÞÞ 2:1� 10�6 1:9� 10�5 1:3� 10�4

ATVðRðiÞÞ 0:077 0:156 0:222

VeðRðiÞÞ 0:038 0:066 0:107

cðRðiÞÞ 0:493 0:423 0.482

Measures of variability in projected data ðY1;Y4Þ
TVðRðiÞ

14Þ 0.135 0.305 0.480

GVðRðiÞ
14Þ 0:001 0:007 0:028

ATVðRðiÞ
14Þ 0:068 0:153 0:240

VeðRðiÞ
14Þ 0:036 0:085 0:168

cðRðiÞ
14Þ 0:529 0:556 0:7
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variables, although this relationship is slightly non-linear, (see [5,17]). Table 2
illustrates the average position of the effective dependence with respect to the
maximum and the minimum of the correlation and the determination coefficients.
Given the value of the effective dependence and applying the proposed rule (9), the

number of principal components required to explain 90% of the variability for this
data is, h ¼ 4ð0:8� 0:5� 0:27Þ ¼ 2:65: Computing the principal components we
obtain that the first two principal components explain 81:3%; whereas the first three
explain 93:2%: This is in agreement with the proposed rule.
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Fig. 3. Scatterplot matrix for the Ozone data. The angle between vectors Z1 and Xi show the Deð½Xi ;Xj �Þ
and the angle between Z and Xi show the Deð½X1;y;X4�Þ:

Table 2

Relative position of effective dependence in Ozone data

Data set min r2 minR2 DeðXÞ max r2 maxR2

Ozone 0.121 0.140 0.270 0.475 0.605
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