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ABSTRACT

There are three main problems in the existing procedures for detect-

ing outliers in ARIMA models. The first one is the biased estimation

of the initial parameter values that may strongly affect the power to

detect outliers. The second problem is the confusion between level

shifts and innovative outliers when the series has a level shift. The

third problem is masking. We propose a procedure that keeps the

powerful features of previous methods but improves the initial

parameter estimate, avoids the confusion between innovative outliers
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Politécnica de Madrid, José Gutierrez Abascal, 2 28006 Madrid, Spain; E-mail:

mjsan@etsii.upm.es.

1265

DOI: 10.1081/STA-120021331 0361-0926 (Print); 1532-415X (Online)

Copyright & 2003 by Marcel Dekker, Inc. www.dekker.com

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 C
ar

lo
s 

Ii
i M

ad
ri

d]
 a

t 0
4:

03
 2

8 
Ja

nu
ar

y 
20

16
 



©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

and level shifts and includes joint tests for sequences of additive

outliers in order to solve the masking problem. A Monte Carlo

study and one example of the performance of the proposed

procedure are presented.

Key Words: Equivalent configurations; Influential observations;

Mis-specifications; Robust estimation.

1. INTRODUCTION

The study of outliers in ARIMA models has been a very active field
of research. Fox (1972) defines additive and innovative outliers and pro-
poses the use of maximum likelihood ratio tests to detect them. Chang
and Tiao (1983) and Chang et al. (1988) extend the results of Fox (1972)
to ARIMA models and present an iterative procedure for outlier detec-
tion and parameter estimation. Tsay (1988) generalizes this procedure for
detecting level shifts and temporary changes. Balke (1993) proposes a
method to solve the confusion between level shift and innovative outliers.
Chen and Liu (1993) present an outlier detection and parameter estima-
tion procedure that includes several improvements over previous proce-
dures and seems to be widely used. However, this procedure may
misidentify level shifts as innovative outliers, and some outliers may
not be identified due to masking effects. Outliers are not necessarily
influential observations and Peña (1990, 1991) presents statistics to
measure the influence of outliers on the model parameters. Bruce and
Martin (1989) define two diagnostics for detecting outlier patches. The
first measures the change in the estimate of the ARIMA coefficients and
the second the change in the estimated variance. Other useful references
for outlier detection in time series models are Bustos and Yohai (1986),
McCulloch and Tsay (1993, 1994), Le et al. (1996), and Justel et al.
(2001).

There are three main problems in the existing procedures for detect-
ing outliers in ARIMA models. (a) Confusion between level shift and
innovative outliers when the series has a level shift. (b) Masking, the
usual procedures based on the identification of outliers one by one,
may fail in the identification of patches of outliers. (c) Biased estimation
of the initial parameter values: if the sample contains influential outliers,
the initial parameter estimates made under the hypotheses of no outliers
can be very biased and the procedure may fail.

In order to illustrate these problems, we have simulated n ¼ 100
observations from the AR(1) model ð1� �BÞyt ¼ at, with � ¼ 0:6, and
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�a ¼ 1: In the generated sample, the parameter � is estimated as �̂� ¼ 0:45:
To show the confusion between level shift and innovational outliers, we
have introduced at t ¼ 50 a level shift of size equal to 4, and at t ¼ 51 an
additive outlier of size 4: Figure 1 shows the plot of the contaminated
time series. With the procedure proposed by Chen and Liu (1993), CL
from now on, and using a critical value C ¼ 3, three outliers are detected:
an innovative outlier at t ¼ 50 with estimated effect 3:74, a level shift at
t ¼ 51 with estimated effect 4:41, and an innovative outlier at t ¼ 98 with
estimated effect �2:78, and the autoregressive parameter is estimated at
the end of the procedure as �̂� ¼ 0:38: Note that the CL procedure not
only misclassifies the two types of outliers, but leads to a downward-
biased parameter estimate that generates a small false outlier at t ¼ 98:
Also, the effect on observation 51 is strongly under-evaluated (the total
effect should be 8, and the model estimates 5.8), which produces a false
large positive residual at this point. With the procedure proposed in this
article the two outliers are correctly identified, their estimated effects are
4:26 and 3:32, respectively, and the final estimated parameter value is
�̂� ¼ 0:42:

To illustrate the effect of outlier patches and bad initial param-
eter estimates, we now introduce in the previously simulated time
series two patches of outliers: two additive outliers of sizes �4 and
4 at t ¼ 16 and 17, respectively, and a level shift of size 3 at t ¼ 40
followed by an additive outlier of size 4 at t ¼ 41. Figure 2 shows the
plot of this contaminated time series. With the CL procedure and

Figure 1. Plot of a simulated AR(1) series with a level shift at t¼ 50 and an

additive outlier at t¼ 51.
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using the same critical value, only an additive outlier at t ¼ 41 is
detected. Its estimated effect is 5:06, and the final parameter estimates
are �̂� ¼ 0:86 and b��a ¼ 1:44. As the level shift pulls the �̂� parameter
towards one, and the other outliers inflate the estimated variance, the
CL procedure breaks down. Only the very large outlier at t ¼ 41 is
identified, and as a consequence both the AR parameter and the
variance are strongly biased. With the procedure proposed in this
article the four outliers are correctly identified and their estimated
effects are respectively �4:31 ðt ¼ 16, additive outlier), 3:29 ðt ¼ 17,
additive outlier), 3:26 ðt ¼ 40, level shift) and 5:04 (t ¼ 41, additive
outlier), with �̂� ¼ 0:42 and b��a ¼ 0:90.

The rest of the article is organized as follows. Section 2 presents
the model and the notation. Section 3 analyzes the confusion between
innovational outliers and level shifts. Section 4 discusses the masking
problem with sequences of additive outliers and presents a possible
solution to this problem. Section 5 describes the proposed method
which modifies the one by Chen and Liu (1993) by incorporating the
results of the two previous sections as well as a robust initial param-
eter estimation. Section 6 studies the performance of the proposed
procedure in one example. Section 7 contains some concluding
remarks.

Figure 2. Plot of a simulated AR(1) series with three additive outliers at t¼ 16,

17, 41, and a level shift at t¼ 40.
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2. MODEL AND NOTATION

Let yt be a stochastic process following an ARIMA model

�ðBÞ 5d yt ¼ �ðBÞat, ð1Þ

where B is the backshift operator such that Byt ¼ yt�1,
�ðBÞ ¼ 1� �1B� � � � � �pB

p and �ðBÞ ¼ 1� �1B� � � � � �qB
q are poly-

nomials in B of degrees p and q, respectively, with roots outside the
unit circle, 5 ¼ 1� B is the difference operator and at is a white-noise
sequence of iid Nð0, �2

aÞ variables. The AR(1Þ representation of the pro-
cess is given by �ðBÞyt ¼ at, where �ðBÞ ¼ ð1� �1B� �2B

2
� � � �Þ ¼

��1
ðBÞ 5d �ðBÞ: In order to allow for outliers, we assume that instead

of yt we observe an outlier-contaminated series zt given by

zt ¼ !iViðBÞI
ðTiÞ
t þ yt ð2Þ

where !i is the outlier size, I
ðTiÞ
t is an impulse variable that takes the value

1 if t ¼ Ti and 0 otherwise and ViðBÞ defines the outlier type. When
ViðBÞ ¼ 1=�ðBÞ we have an innovative outlier (IO), when ViðBÞ ¼ 1 an
additive outlier (AO), and when ViðBÞ ¼ 1=ð1� BÞ a level shift (LS).
Then, calling et ¼ �ðBÞzt, Eq. (2) can be written as

et ¼ !ixt þ at ð3Þ

where for an IO !i ¼ !I and xt ¼ I
ðTÞ
t , for an AO !i ¼ !A

and xt ¼ �ðBÞI ðTÞt , and for a LS !i ¼ !L and xt ¼ �ðBÞð1� BÞ�1I
ðTÞ
t . In

order to test for a single outlier, the following hypotheses are usually
considered: (a) H0 : !I ¼ !A ¼ !L ¼ 0; (b) HI : !I 6¼ 0, (c) HA :
!A 6¼ 0, (d)HL : !L 6¼ 0, and the likelihood ratio test statistics for testing
H0 vs. HI , HA, and HL are respectively �i,T ¼ b!!i=�i for i ¼ I ,A, and L,
where �i is the standard deviation of the estimate. Under the null hypoth-
esis of no outliers, these statistics are asymptotically distributed as
Nð0, 1Þ.

In practice, the model parameters are unknown. Then the parameters
are initially estimated by assuming that there are no outliers and the
detection is based on the statistics �̂�I ,T , �̂�A,T , and �̂�L,T , in which the
parameters are substituted by their estimates. These statistics are asymp-
totically equivalent to �I ,T , �A,T , and �L,T , respectively. For detecting
outliers at an unknown position Chang et al. (1988) and Tsay (1988)
suggest calculating at each sample point the statistic

	t ¼ maxfj �̂�I , t j , j �̂�A, t j , j �̂�L, t jg,
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and if max 	t ¼j �̂�I ,T j C, where C is a predetermined constant, we
assume an IO in t ¼ T , if max 	t ¼j �̂�A,T j C an AO, and if
max 	t ¼j �̂�L,T j C a LS.

3. THE CONFUSION BETWEEN INNOVATIVE

OUTLIERS AND LEVEL SHIFTS

Suppose that we have a stationary AR process with a level shift (LS).
As shown by Chen and Tiao (1990) the observed series would seem a
random walk and the estimated AR parameter will be close to one. As a
level shift (LS) and an innovational outlier (IO) are identical on a random
walk, these two effects can be confused and the empirical evidence
(see Balke (1993)) shows that a level shift in a stationary time series is
usually identified as an innovational outlier.

In order to understand better this situation, first let us compare the
statistics for testing for an IO and a LS. Calling êeT ¼ b��ðBÞzt to the
residuals computed from the ARIMA model where the parameters are
estimated by maximum likelihood (ML) assuming no outliers, and calling
�̂�a to the ML estimate of �a, the statistic for testing for LS is:

�̂�L,T ¼
êeT �

Pn�T
i¼1 l̂li êeTþi

�̂�að1þ
Pn�T

i¼1 l̂l
2
i Þ

1=2
,

and using that l̂lj ¼ �1þ
Pj

i¼1 �̂�i, as the statistic for testing for IO is
�̂�I ,T ¼ êeT=�̂�a, both statistics are related by:

�̂�L,T ¼

�̂�I ,T þ

Pn�T
i¼1 ðêeTþið1�

Pi
j¼1 �̂�jÞÞ

�̂�a
ð1þ

Pn�T
i¼1 ð1�

Pi
j¼1 �̂�jÞ

2
Þ
1=2

: ð4Þ

Note that this equation shows that for an AR(1) model, when � ! 1
both statistics are equal, because then the two outlier models are identi-
cal. However, if � < 1 we expect �̂�L,T to be smaller than �̂�I ,T : In general,
for ARMA models, the statistic for LS will be similar to the one for IO
when the larger AR root approaches the non-stationary value of 1 or
when ð1�

Pi
j¼1 �̂�jÞ is small for all i  1: However, for stationary and

invertible ARMA models, when T is not close to the end of the series
and n is large, the second term will go to zero and the likelihood ratio for
level shifts, �̂�L,T , is expected to be smaller than the likelihood ratio for
innovational outliers, �̂�I ,T . This result suggests that the critical values
under the null hypothesis of these two statistics can be quite different.
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Second, note that the distribution of maxfj �̂�I ,T jg is the distribution
of the maximum of a sample of uncorrelated normal random variables,
whereas the distribution of maxfj �̂�L,T jg is the distribution of the max-
imum of a sample of correlated random variables, where the correlation
depends on the model. For a stationary series the correlations can be very
strong. For instance, if the series is white noise the estimation of bwwðtÞ

LS is
just the difference between the mean of the series before and after t, and
the �̂�L,T will be very correlated to �̂�L,Tþ1. On the other hand, if the series
is a random walk then a LS is identical to an IO and the �̂�L,T will be
uncorrelated. This suggests that we should consider LS in a stationary
time series as having a possible different effect than on a stationary time
series.

In order to check the behavior of �̂�L,T and �̂�I ,T in finite samples, we
have carried out a large simulation study that we summarize here (the
complete study is available from the author upon request). We present
the results for three sample sizes, n ¼ 50, 100, 250, and the 12 different
models indicated in Table 1. Note that model 4, 5, and 6 are nonstation-
ary whereas the others are stationary. For each combination of model
and sample size 1000 time series replications were made. In each replica-
tion, the likelihood ratio statistics for IO and LS were computed at each
observed point, and the maximum for each statistic was kept. The
estimated residual standard deviation is computed using the omit-one
method, that is, for testing a possible outlier at T , the residual standard
deviation is calculated omitting the residual in this point. The simulations
have been done using MATLAB (developed by The MathWorks Inc.).
The at (random errors) are generated with �a ¼ 1. The 95% percentile of
the distribution of maxfj �̂�i, t jg, with i ¼ IO, LS is given in Table 2.

For stationary process, the main conclusions we draw from Table 2
are: (a) the critical values for testing for IO are similar for different
models and we can safely use a value between 3.10 and 3.65 depending
on the sample size; (b) the critical values for testing for a LS depend on
the model, but they are always smaller than those for testing for an IO;
(c) for models with ð1�

Pi
j¼1 �̂�jÞ small for all i (models 2, 7, 8, and 10)

Table 1. Autoregressive parameter values.

Model 1 2 3 4 5 6 7 8 9 10 11 12

�1 0.2 0.8 �0.8 — — 0.6 1 1.2 �0.2 1.15 �0.4 0.4

�2 — — — — — — �0.24 �0.4 �0.06 �0.36 �0.36 0.36

�3 — — — — — — — — — 0.105 0.144 �0.144

5 — — — 1 2 1 — — — — — —

Multiple Outliers in ARIMA Models 1271
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the difference between the critical values is small, as expected from the
previous analysis, but for models with ð1�

Pi
j¼1 �̂�jÞ large (models 3, 9,

and 11) this difference can be quite large.
For nonstationary models the critical values for LS are slightly larger

than those for IO. From these results we conclude that an outlier
detection method based on 	t ¼ maxtfj �̂�i, t jg seems to be inadequate,
because the sampling behavior of the maximum value of the statistic
for the LS is different from the corresponding ones for IO and AO.
This large difference will imply a very low power to detect level shift

Table 2. Critical values to 95% of the statistics maxfjb��I;tjg
and maxfjb��L;tjg for the models in Table 1, where n is the sample

size andM is the model number in Table 1, and recommended

critical values.

n M IO LS M IO LS

50 1 3.15 2.52 7 3.10 2.89

50 2 3.09 2.89 8 3.09 3.05

50 3 3.10 2.39 9 3.11 2.36

50 4 3.14 3.34 10 3.12 3.14

50 5 3.16 3.30 11 3.10 2.22

50 6 3.16 3.40 12 3.16 2.63

100 1 3.39 2.61 7 3.36 2.93

100 2 3.36 3.03 8 3.39 3.19

100 3 3.35 2.41 9 3.40 2.50

100 4 3.41 3.61 10 3.41 3.25

100 5 3.40 3.48 11 3.36 2.52

100 6 3.43 3.55 12 3.37 2.70

250 1 3.62 2.72 7 3.71 3.10

250 2 3.73 3.22 8 3.64 3.13

250 3 3.67 2.59 9 3.66 2.59

250 4 3.60 3.73 10 3.66 3.28

250 5 3.69 3.75 11 3.62 2.59

250 6 3.69 3.74 12 3.66 2.90

Recommended

n IO LS-ST LS-NST

50 3.10 2.60 3.35

100 3.35 2.75 3.55

250 3.65 2.90 3.75

ST¼ stationary models, NST¼ nonstationary models.
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for stationary processes and a slight tendency to over detect level shift in
nonstationary processes. The problem can be very serious because, as we
will show in Sec. 5, an undetected level shift can have a strong effect on
the parameter estimates. Thus, we recommend the critical values for �̂�I ,T
and �̂�L,T indicated at the bottom of Table 2.

4. UNMASKING SEQUENCES OF

ADDITIVE OUTLIERS

When the time series contains several outliers, the contaminated
model (2) can be generalized as

zt ¼
Xk
i¼1

!iViðBÞI
ðTiÞ
t þ yt ð5Þ

where k is the number of outliers. Assuming first that the parameters are
known, and calling, as before, et ¼ �ðBÞzt, we have et ¼ x0t�þ at where
�0

¼ ð!1, . . . ,!kÞ and x
0
t ¼ ðx1t, . . . , xktÞ. It is well known that procedures

that identify outliers one by one will work when the matrix ð
Pn

t¼1 xtx
0
tÞ
�1

is roughly diagonal, but may lead to several biases when the series have
patches of additive outliers and/or level shifts. Note that for an innova-
tional outlier xit ¼ I

ðTiÞ
t , and therefore the estimation of its effect is typi-

cally uncorrelated with other effects. However, for additive outliers
xit ¼ �ðBÞI ðTiÞt and the correlation between the effects of consecutive addi-
tive outliers can be very high. This is expected to happen when we have
patches of outliers, an empirical fact found by Bruce and Martin (1989).
For instance, suppose that in Eq. (5) we have k ¼ 2 and two consecutive
outliers at times T and T þ 1 with magnitudes !1 and !2. Suppose that
the parameters are known, and let !̂!ð�Þ

1 be the estimate of !1 when we use
model (2) assuming that it is the only outlier. Then, the expected value of
this estimate is given by

Eð!̂!ð�Þ

1 Þ ¼ !1 þ !2

Pn�T�1
i¼0 �i�iþ1Pn�T

i¼0 �2
i

where �0 ¼ �1. As an example, if !1 ¼ !2 ¼ ! and the process is a
random walk, the estimation assuming a single outlier at T will be !=2
and the variance of this estimate will be �2

a=2: Thus, the expected value
for the likelihood ratio will be !=

ffiffiffi
2

p
�a. On the other hand, in the correct
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model the expected value for the estimate is ! with variance 2�2
a=3, lead-

ing to an expected likelihood ratio of
ffiffiffi
3

p
!=

ffiffiffi
2

p
�a. We see in this simple

case that even if the parameters of the process are known, the presence of
the second outlier makes the likelihood ratio test much smaller than the
one from the correct model, making the identification of outliers in the
sample more difficult. This is the masking effect, which is a very serious
problem for outlier detection techniques.

A sequence of outliers is an even more serious problem when the
parameters are unknown because then: (a) the estimate �a will be inflated,
reducing the power of the detection tests; (b) the AR and MA parameter
estimates can be strongly biased. To show this, suppose that we have a
sequence of k additive outliers of sizes !1, . . . ,!k, at times
T ,T þ 1, . . . ,T þ k� 1: It is shown in the Appendix that calling the
observed autocorrelation coefficients computed from the contaminated
series rzðhÞ, and the true autocorrelation coefficients without outlier
effects ryðhÞ, we have

rzðhÞ ¼
ryðhÞ þ n�1S1 þ n�1 Pk�h

i¼1 e!!ie!!iþh � k2

n
e!!2

h i
1þ n�1

Pe!!2
i �

k2

n
e!!2

h i
þ 2n�1S2

ð6Þ

where eyyt ¼ ðyt � yÞ=sy, e!! ¼ !=sy, e!! ¼
Pe!!i=k, nsy2 ¼ P

y2t � ny2, S1 ¼Pe!!iðeyyT�1þi�h þeyyT�1þhþiÞ, and S2 ¼
Pe!!ieyyT�1þi: We may consider the

two following extreme cases. First, suppose that all the outliers have
the same sign and similar size. Then, if ! ! 1, we have that
rzðhÞ ! ðk� hÞ=k for k > h, and rzðhÞ ! 0 for k � h: This implies that
if the number of outliers is small (k ¼1 or 2) the series will seem to be
white noise, whereas if the number of outliers k is large the series will
seem to be a non-stationary process. Second, suppose that the outliers are
random values from a distribution of zero mean and very large variance.
Then, it is easy to show from Eq. (6) that rzðhÞ ! 0 and the series will
seem to bewhite noise. In the general case of patches of outliers of arbitrary
size, the effect depends on the relative size of each patch and the sizes and
lengths of the other patches and can be obtained from Eq. (6).

Tsay et al. (2000) have shown that single multivariate outliers can
produce patches of outliers in the univariate time series. Thus, we should
be always aware of this possibility when searching for univariate outliers.
The previous analysis suggests that: (a) in order to allow for the reduction
of power due to masking, the step of initial outlier identification through
the individual likelihood ratio test should be carried out with a moderate
significance level (between 0.25 and 0.1), bearing in mind that the
points will be checked jointly afterwards in the step of joint estimation.
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(b) A step of search for patches of outliers should be included in the
outlier identification procedure.

5. THE PROPOSED PROCEDURE

The procedure we propose for multiple outlier detection is based on
the one developed by Chang et al. (1988), Tsay (1988), and Chen and Liu
(1993) but includes several modifications to solve the problems indicated
in the previous sections. It has three stages. In the first stage, Initial
parameter estimation, a robust initial estimate is computed from a
sample in which all influential points are eliminated. In the second
stage, Outlier detection, outliers are identified one by one using the like-
lihood ratio test but the algorithm is modified to avoid the confusion
between LS and IO. In the last stage, Joint estimation, the procedure uses
maximum likelihood to jointly estimate the model parameters and the
effects of the outliers and to search for patches of outliers.

5.1. Stage 1: Initial Estimation of the Model Parameters

The goal of this stage is to obtain a robust estimation of the model
parameters. This is done by a two steps procedure. In the first step the
parameters are estimated assuming no outliers and influential points in
the computation of the parameters are found. In the second step these
points are assumed to be missing values in the sample, and a new set of
parameter estimates is computed from this modified time series data.
The interpolation is easily carried out by introducing dummy variables
at the points to be interpolated, as shown in Gómez et al. (1999). The
parameter estimates obtained in the second step will be the initial
parameter values used to search for outliers in the outlier detection
procedure.

The intuitive basis of the method is to compute an initial robust
estimate by cleaning the sample of all the influential points. Influential
observations in time series can be classified as: (a) individually
influential observations (e.g., a large additive outlier) and (b) jointly
influential observations (e.g., a sequence of similar additive outliers).
The first type of observations are detected by the statistic (Peña, 1991):

DẐZðTÞ ¼
ðẐZ� ẐZ

ðINTÞ
T Þ

0
ðẐZ� ẐZ

ðINTÞ
T Þ

h�̂�2
a

, ð7Þ
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where h is the number of ARMA parameters, �̂�2
a is the estimate of the

white-noise variance, ẐZ is the vector of forecasts assuming no outliers,
and ẐZ

ðINTÞ
T is the vector of forecasts computed by assuming that the T-th

observation is an additive outlier. This vector of forecasts is obtained by
fitting the intervention model �ðBÞðzt � !AI

ðTÞ
t Þ ¼ at, where �ðBÞ, !A,

and I
ðTÞ
t have been defined previously.

When the time series has a level shift, or a sequence of consecutive
additive outliers of similar size, the points in the sequence can be jointly
very influential, but they may not be individually influential observations.
In fact, we have checked in a Monte Carlo study that the influence
measure (7) detects a low percentage of the observations included in
the sequence. Then, if we delete observations according only to DẐZðTÞ,
several outliers will be undetected, and they will bias the initial parameter
estimates. A straightforward method to measure the effect of a level
shift is

DLðTÞ ¼
ðẐZ� ẐZ

ðILSÞ
T Þ

0
ðẐZ� ẐZ

ðILSÞ
T Þ

h�̂�2
a

, ð8Þ

where ẐZ is the vector of forecasts from the time series model
without outlier effects, and ẐZ

ðILSÞ
T is the vector of forecasts from the

intervention model �ðBÞðzt � !LS
ðTÞ
t Þ ¼ at, where !L is the effect of a

LS at t ¼ T and S
ðTÞ
t is a step variable that takes the value 1 if t  T ,

and 0 otherwise.
Thus, the steps of stage 1 are as follows. (a) Calculate the estimates of

the model parameters for the observed series, supposing that it is outlier
free. (b) Calculate the influence measure DLðtÞ for every t, select the
time at which the maximum value of DLðtÞ occurs, call it T1, i.e.,
T1 ¼ argmaxDLðtÞ, then estimate the intervention model. If !̂!L is
significant, remove the effect of the LS from the observations by defining
the adjusted series

zct ¼
zt t < T1

zt � !̂!L t  T1,
:

�

On the adjusted series we compute again the influence measure DLðtÞ
and repeat step 2 until !̂!L is non-significant. (c) Compute the individual
measure of influence DẐZðtÞ for the adjusted series, zct . Select the �% more
influential values and remove their effects from the observations as if they
were additive outliers. Next, the model parameters are again estimated.
These estimated parameters are used in stage 2.
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5.2. Stage 2: Outlier Detection

The goal of this stage is to iteratively identify the presence of
outliers in the time series. The steps are as follows. (a) Compute the
residuals of the model using the final parameter estimates of stage 1,
and �̂�a. (b) Compute �̂�I , t, �̂�A, t, and �̂�L, t, for t ¼ 1, . . . , n, and for each
time t, let �̂�va,TA be the largest of statistics j �̂�i, t j for IO and AO
and TA the corresponding time. If �̂�va,TA ¼j �̂�I ,TA j C1, there is a
possibility of IO at t ¼ TA. If �̂�va,TA ¼j �̂�A,TA j C1, there is a possibil-
ity of AO at t ¼ TA. (c) For t ¼ 1, . . . , n, select �̂�L,TB ¼ maxtj�̂�L, tj.
If �̂�L,TB  C2 there is a possibility of LS at t ¼ TB. There are three
possible situations:

1. If neither outliers nor LS are found, then stop. The procedure
finishes and the conclusion is that the observed series does not
contain outliers.

2. An outlier (IO or AO) or a LS are detected. Then remove the
effect of this outlier to obtain the adjusted series.

3. An outlier (IO or AO) and a level shift are detected. If they occur
at different points, then remove both of them. If they occur at the
same point, then a joint analysis is made to check if both effects
are significant (it is possible that when there is a LS at T , the
procedure detects at this time the LS, but simultaneously an IO
or AO), by estimating an intervention model with two dummy
variables at T : an impulse for IO/AO, and a step for the LS. The
IO/AO and LS are considered as significant when the statistics
j !̂!j=

ddtð!̂!jÞdtð!̂!jÞ j are larger than the critical values C1 and C2 used in
steps 3 and 4, where ddtð!̂!jÞdtð!̂!jÞ is the estimated standard deviation of
the estimated effect.

Steps (b) and (c) are iterated until the significant outliers are
removed.

5.3. Stage 3: Joint Estimation

All the outliers identified in stage 2 and the model parameters are
estimated jointly by an intervention model. If the effects of some outliers
are not significant in this joint model, remove the smallest non-significant
outlier from the set of detected outliers and estimate again the effect of
the k� 1 outliers. This process should be repeated until all the outliers in
the final set are significant. Then, a search for patches of outliers is
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carried out as follows. If the number of time points between two
consecutive additive outliers is g, and g � h, where h is chosen so that
j �j j� 0:1 for j > h, an intervention model for the adjusted series is
estimated that includes impulse dummy variables for additive outliers
for all the time points between those two consecutive outliers. In this
way we check for sequence of outliers. If more outliers are found, a
new adjusted series is defined and the procedure iterates through stages
2 and 3 until no more outliers are found.

5.4. Comments on the Procedure

In the first stage one possibility is to remove the effect of the
individually influential values one by one, by estimating an additive
outlier model for each of them. However, as the objective of this
stage is to obtain initial parameter estimates, we prefer to delete the
�% more influential points. The value of � depends on the number of
expected outliers and, unless we are studying a very contaminated
series, deleting 10% of the sample will be enough to obtain robustness
in most applications. The search for outliers in stage 2 must be carried
out with less strict critical values (e.g., � ¼ 0:1) than those used in the
third stage, so that all the possible outliers are identified one by one. A
consequence of this may be that this stage provides some wrong out-
liers, but this is not a serious problem since all the potential outliers
detected will be afterwards jointly tested in stage 3. The values for C1

and C2 depend on the sample size and confidence level. For three
sample sizes of 50, 100, and 250 observations we recommend the
values of C1 and C2 that are shown in Table 2. Note that for stationary
process the critical values for LS are smaller than for IO whereas for
nonstationary models they are greater, in agreement with the simulation
results shown in Table 2.

As we start by cleaning the time series for LS first one might think
that, given the possible confusion between LS and IO, some IO would be
identified as LS and these will produce an initial biased in the procedure.
However note that the problem of confusion between LS and IO appears
mainly because if we have a LS the estimated ARMA parameters are
biased and the larger AR root will go to one (Chen and Tiao, 1990).
However, the effects of IO on the parameters are small (Chang et al. 1988;
Peña, 1990) and as the cleaning is carried out by searching for
strong effects on the parameter values the possibility of confusion seems
to be small. This expected result has been confirmed by a simulation
study.
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6. PERFORMANCE OF THE

PROPOSED PROCEDURE

The performance of the procedure has been studied by simulation.
As in Chen and Liu (1993) two measures of the performance of the
procedure are considered: (a) the relative frequency of correct detection
(type and location) of the outliers; (b) the accuracy and precision in the
estimation of the model parameters. For this purpose, we use the sample
mean and the sample root mean square error (RMSE) of the model
parameter estimates. In the simulation study the factor levels have been
selected in the same way as in Chen and Liu (1993) in order to facilitate
the comparison between the two procedures. Five factors are considered:
(a) type of outlier, IO, AO, and LS; (b) time series structure, AR(1) and
MA(1); (c) outlier size, 3�a, 4�a, and 5�a; (d) number of outliers, a single
outlier or several adjacent outliers; (e) position of the outliers, at the
beginning, in the middle or at the end of the series. The combination
of these factors leads to the 15 models presented in Table 3. Models 1
through 12 correspond to the models used by Chen and Liu (1993). The
simulations have been done using MATLAB and the random errors
generated with �a ¼ 1. The sample size is 100, the true values of the
parameters �1 and �1 are both 0.6, and the number of replications is
500. The estimation of the variance (�̂�2

a) used to calculate the different
statistics for testing outliers has been obtained by omitting the residual in
t ¼ T . The order of the model is supposed to be known.

Table 3. Models considered in the study of the performance of the proposed

procedure.

Model

AR (1) Outliers

Model

MA (1) Outliers

Model Instants Type ! Model Instants Type !

1 40 LS 3 4 40 LS 3

2 40 LS 4 5 40 LS 4

3 40 LS 5 6 40 LS 5

7 40, 41 AO, AO 3, 4 Model

AR (1)

Outliers

8 40, 41 IO, AO 3, 4 Model Instants Type !

9 40, 41 LS, AO 3, 4 13 50, 51, 52, 53 4 AO 5; �5; 5; �5

10 10, 11 AO, AO 4, �3 14 10, 11, 12, 13 4 AO 5; �5; 5; �5

11 10, 11 IO, AO 4, �3 15 88, 89, 90, 91 4 AO 5; �5; 5; �5

12 10, 11 LS, AO 4, �3

Multiple Outliers in ARIMA Models 1279

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 C
ar

lo
s 

Ii
i M

ad
ri

d]
 a

t 0
4:

03
 2

8 
Ja

nu
ar

y 
20

16
 



©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

We do not present results about the detection of a single IO or AO,
because the results for the proposed procedure are, as expected, almost
identical to those given by Chen and Liu (1993) because then masking
does not occur. We show in Table 4 the frequency of correct detection
(type and location), D, and the average number of misidentified outliers
or false positives, F, for the case of a single LS (models 1 to 6). The
critical values used in our study correspond to � ¼ 0:05, C1 ¼ 3:25,
and C2 ¼ 2:75. In order to make a fair comparison of our procedure
with CL, we have used the same critical value as they do, C ¼ 3.
Table 5 presents the results of the parameter estimation of our procedure
and, in brackets, those obtained by CL. In the table (no) corresponds
to the estimated parameter supposing that there are no outliers, (out)
to the last estimation of the parameter at the end of the procedure,
and �̂�a to the estimation of the residual standard deviation. RMSE(�̂�)
represents the sample root mean square error of the estimation of �
given by

RMSEð�̂�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbiasð�̂�ÞÞ2 þ

d
Varð�̂�ÞVarð�̂�Þ

q
, ð9Þ

where biasð�̂�Þ ¼ �̂� � �, and
d

Varð�̂�ÞVarð�̂�Þ is the estimated sample variance
of �̂�.

It is shown in Table 5 that in all the models for a single LS there is a
clear improvement in the parameter estimation: the RMSE(no) is smaller
with the proposed procedure and in model 6, this reduction is about 30%.
The reduction of RMSE in the estimation of �̂�a is also important and can
be as large as 50%. For the case of two consecutive outliers, the compar-
ison between the proposed procedure and the CL procedure shows that,

Table 4. Comparison of the frequency of correct outlier

detection, D, and false positives, F, with the procedure

proposed in this article (PP) and the procedure of Chen and

Liu (CL) for LS model.

!=�a ¼ 3 !=�a ¼ 4 !=�a ¼ 5

ARð1Þ MA(1) ARð1Þ MAð1Þ ARð1Þ MA(1)

D PP 0.35 0.68 0.71 0.89 0.91 0.93

D CL 0.22 0.56 0.62 0.63 0.89 0.74

F PP 0.21 0.40 0.10 0.39 0.29 0.44

F CL 0.10 0.50 0.10 0.40 0.20 0.50
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again in all the models, the RMSE both for the parameters and �̂�a is also
smaller with our procedure. The critical values used in our procedure
correspond to C1 ¼ 3:25, and C2 ¼ 2:75. For the CL procedure, the
critical value is C ¼ 3.

Table 6 shows the estimation results and the percentage of correctly
detected outliers for models 13, 14, and 15 of Table 3. These models are
not included in Chen and Liu (1993). The number of replications and the
critical values are the same as before. In these three models the number of
outliers is four. We see that although two or more outliers were correctly
detected with a relative frequency in a range of 69–73.4%, less that 7% of
the cases are the four outliers ‘‘correctly detected’’. In spite of this
behavior, we have checked that the sample mean of the estimated auto-
regressive parameter after removing the detected outliers is quite close to
the true value (0.6); the most unfavorable case is 0.561. Also, the
RMSE(out), as seen in Table 6, is small, suggesting a good performance
of the procedure. These apparently contradictory results, incorrect
detection but correct estimation of the parameters, can be explained by
the concept of equivalent configurations that we discuss in the next
section.

Table 5. Performance of the procedure for a single LS and for the

models of two consecutive outliers. AR(1) and MA(1) models with

� ¼ 0:6 and � ¼ 0:6. The results of the procedure of Chen and Liu

(1993) are shown in brackets.M is the model number in Table 3. ðnoÞ

represent the null case with no outliers and ðoutÞ with outliers.

M

RMSE

(no)

RMSE

(out)

RMSE

( �̂�aÞ M

RMSE

(no)

RMSE

(out)

RMSE

(�̂�a)

1 0.214 0.140 0.117 7 0.090 0.094 0.088

(0.213) (0.189) (0.234) (0.087) (0.112) (0.192)

2 0.262 0.199 0.132 8 0.090 0.095 0.085

(0.264) (0.184) (0.248) (0.087) (0.112) (0.192)

3 0.292 0.162 0.137 9 0.184 0.143 0.184

(0.296) (0.166) (0.196) (0.183) (0.212) (0.216)

4 0.638 0.353 0.495 10 0.213 0.103 0.078

(0.850) (0.406) (0.708) (0.212) (0.131) (0.213)

5 0.692 0.329 0.746 11 0.147 0.010 0.077

(0.962) (0.511) (1.238) (0.212) (0.131) (0.213)

6 0.742 0.373 1.077 12 0.113 0.076 0.095

(1.040) (0.494) (1.562) (0.111) (0.159) (0.201)
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6.1. Patches of Outliers and Equivalent Configurations

We say that two configurations of outliers are equivalent when their
effects on a time series are indistinguishable. The equivalent configura-
tions depend on the model. For instance, for an MA(1) model the con-
figuration: two additive outliers at time T and T þ 1 of sizes !1 and !2 is
equivalent to a configuration with two outliers at time T , the first AO of
size !1 þ !2=# and the second IO of size �!2=#:

When the parameters are estimated from the data, we can have a
large number of approximately equivalent configurations. For instance,
in models 13 through 15 we have an AR(1) with four consecutive additive
outliers of similar size and alternating signs. Then, if the AR parameter �
is not large (so that �4

’ 0), this sequence verifies:

!I ðTÞt � !I ðTþ1Þ
t þ !I ðTþ2Þ

t � !I ðTþ3Þ
t

’ !ð1� �BÞ�1I
ðTÞ
t � !1I

ðTþ1Þ
t þ !2I

ðTþ2Þ
t � !3I

ðTþ3Þ
t

and the sequence of outliers IO, AO, AO, AO with sizes !1 ¼ !ð1þ �Þ,
!2 ¼ !ð1� �2

Þ and !3 ¼ !ð1þ �3
Þ is a configuration (approximately)

equivalent to the original one. As in our simulations � ¼ 0:6 we expect
that this last configuration can be found quite often in practice and this is
confirmed in Table 7.

This table shows the configurations identified when two and three
outliers of the sequences are correctly identified. For instance, in model
13 when three outliers are correctly identified, the sequence AO, IO, AO,
AO, appears 46.34% of the time. When only two out of the four outliers
are correctly identified, more possibilities may arise and Table 7 presents
the more common configurations found in the simulations. For instance,

Table 6. Performance of the procedure for multiple outliers and number

of correctly detected outliers ðDÞ with the proposed procedure for the

models from 13 through 15 (percentage). ðnoÞ Represent the null case

with no outliers and ðoutÞ with outliers.

D

Model RMSE(no) RMSE(out) RMSE( �̂�aÞ 0 1 2 3 4

13 0.567 0.096 0.150 1.80 29.2 38.2 24.6 6.2

14 0.575 0.100 0.178 1.20 25.4 41.0 26.4 6.0

15 0.571 0.123 0.227 1.00 26.8 40.8 24.6 6.8
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as the third coefficient in the sequence IO, AO, AO, AO must be small
compared to the others, it is possible that we would find no outlier in this
position, leading to the sequence IO,AO,�,AO that is the most frequent
in the three models compared in the table.

In summary, when dealing with a series that has consecutive outliers,
we must be careful when comparing the correct detection performance of
different procedures because of the lack of identification of multiple
equivalent configurations.

6.2. Example

In this example, we use the variable Annual Unemployment Rate
(person over 16 of the entire civilian labor force) from 1920 to 1979 of
the set of time series provided by the SCA program. The CL procedure
(implemented in the SCA program) identifies a TC in t¼ 19 with an
ARI(1,1) model, and a critical value C¼ 3. Using the procedure proposed
in this article, with an ARI(1,1) model, six outliers are detected: an AO at
t ¼ 4 and five IO at t ¼ 3, 11, 12, 13, 19.

The proposed procedure applied to this series produces the follow-
ing results: in stage 1, the maximum value of the influence measure for
a LS, DLðtÞ, occurs in t=19. The effect of a LS in this point is non
significant. The individual influence measure DẐZ is calculated in every

Table 7. Percentage of equivalent configurations for three

and two correctly detected AO (models 13, 14, and 15).

Eq. Configurations Model 13 Model 14 Model 15

Pattern detected when 3 outliers are correctly identified

IO, AO, AO, AO 35.77 32.58 28.46

AO, IO, AO, AO 46.34 52.27 46.35

Others 17.89 15.15 25.19

Total 100 100 100

Pattern detected when 2 outliers are correctly identified

IO, IO, AO, AO 11.00 9.76 12.25

IO, AO, IO, AO 8.90 10.73 2.94

AO, IO, IO, AO 2.62 0.05 0.49

IO, AO, �, AO 27.75 33.17 25.98

AO, IO, AO, � 12.57 11.70 7.84

Others 37.16 34.59 50.5

Total 100 100 100
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time point of the observed series. Table 8 shows the time points
and the values of DẐZ for 10% of the observations, those with the
highest values of influence measure. These observations are then
interpolated.

Stage 2 starts with the observed series and the estimation of the
parameters obtained in stage 1. The procedure detects iteratively an IO
in t ¼ 3, an IO in t ¼ 19, an IO in t ¼ 13, an IO in t ¼ 11, an IO in t ¼ 12,
and an AO in t ¼ 4. These outliers are corrected iteratively, and the
outlier detection starts again with the adjusted series and the estimated
parameters obtained in stage 1. As there are no more outliers, stage 2
ends. In stage 3, the joint estimation is carried out and all the estimated
effects and autoregressive parameters are significant. The final estimate
parameters, their t values and the residual standard error are presented
in Table 9.

As it is observed from Table 9, PP detects an IO at t ¼ 19 and CL
procedure (SCA) detects a TC at the same point. Both results could be
considered as equivalent. However, the PP detects two significant outlier
sequences that are not detected by the CL procedure.

Table 9. Parameter estimates for the ARI(1,1) model for the

unemployment rate using the proposed procedure (PP) and the CL

procedure.

PP CL

Type of

parameter Value t Values

Type of

parameter Value t Values

�1 0.71 6.70 �1 0.33 2.80

IO in t¼ 3 �6.66 �4.7 TC in t¼ 19 5.90 3.15

AO in t¼ 4 �4.44 �5.2 �2 2.2367

IO in t¼ 11 4.24 2.6

IO in t¼ 12 5.55 3.1

IO in t¼ 13 6.15 4.1

IO in t¼ 19 5.85 4.7

�2 1.6732

Table 8. The individual measure of influence for the example.

t 4 5 10 13 18 19 39
DẐZ 2.4 1.7 1.5 0.9 3.1 2.8 0.9
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7. CONCLUSION

In this article, we have presented a multiple outlier detection proce-
dure that seems to improve the performance of previous methods in
identifying level shifts and patches of outliers. This is achieved by using
two tools. The first is a better initial parameter estimate that is obtained
by cleaning the series of patches of jointly influential observations that
are treated as level shifts. The second is a better significance level that
avoids the confusion of level shift with innovative outliers. In our opi-
nion, the proposed procedure keeps the powerful features of the original
idea by Chang and Tiao (1983) and developed further by Tsay (1988) and
Chen and Liu (1993), which have proved to be very useful in many
applications, but adds some tools to prevent the confusion between IO
and LS, to deal with multiple outliers and to avoid masking.

APPENDIX: THE EFFECT OF OUTLIERS ON THE

AUTOCORRELATIONS COEFFICIENTS

We prove here Eq. (6). If we have the sequence of outliers !1, . . . :,!k
at time T , . . . :,T þ k� 1. Then we haveX

ztzt�h � nz2

¼
X

ytyt�h � ny2

þ
X

!i yT�1þi�h � yþ yT�1þhþi � y
� �

þ
Xk�h
i¼1

!i!iþh �
k2

n
!2:

and

X
z2t � nz2 ¼

X
y2t � ny2 þ

X
!2
i �

k2

n
!2

þ 2
X

!iðyT�1þi � yÞ:

Calling rzðhÞ ¼ ð
P
ztzt�h � nz2Þ=ð

P
z2t � nz2Þ to the observed autocorre-

lation coefficient at lag h and eyyt ¼ ðyt � yÞ=sy, e!! ¼ !=sy, e!! ¼
Pe!!i,

nsy
2
¼

P
y2t � ny2, S1 ¼

Pe!!iðeyyT�1þi�h þeyyT�1þhþiÞ, S2 ¼
Pe!!ieyyT�1þi

we have that

rzðhÞ ¼
ryðhÞ þ n�1S1 þ n�1 Pk�h

i¼1 e!!ie!!iþh � k2

n
e!!2

h i
1þ n�1

Pe!!2
i �

k2

n
e!!2

h i
þ 2n�1S2

:
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