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SUMMARY

A procedure for identifying data heterogeneity when fitting regression models is presented. The
method is based on the SAR procedure, developed by Peña and Tiao (2002), and has three steps. First,
the sample is cleaned for large outliers by using a discrepancy measure based on predictive ordinates.
Second, observations are split into small homogeneous groups by using a link function derived from
cross validation predictive distributions. Third, these small groups are then iteratively enlarged by
incorporating observations homogeneous to those in the group. In this way the possible piece-wise
regression equations are found. Examples are shown to illustrate the performance of the procedure for
finding mixtures of regressions due to the presence of outliers or to switching regression models. A
Monte Carlo study of the power of the proposed procedure is presented.

Keywords: OUTLIERS; PREDICTIVE DISTRIBUTION; STRUCTURAL CHANGE; SWITCHING

REGRESSION.

1. INTRODUCTION

Data heterogeneity when a regression model is fitted implies that some kind of segmentations
or clustering exits among the sample units. This problem has been studied under two main
approaches: (1) outlier detection and/or robust regression estimation and (2) switching and/or
structural change regression. From the Bayesian point of view these two situations can be
formulated as mixture estimation problems with different types of mixture distributions. For
the outlier problem Box and Tiao (1968) proposed a scale contaminated normal model for
the noise distribution and develop a Bayesian estimation procedure for this model. Several
other outlier detection and robust Bayesian estimation methods have been proposed based on
mixtures and heavy tails distributions. The estimation of these mixture models can be carried
out by Markov Chain Monte Carlo (MC2) methods, but the standard Gibbs sampling algorithm
presents serious convergence problems when there are groups of masked outliers (see Justel and
Peña, 1996).

A different source of heterogeneity was introduced by Quandt (1958) who proposed a model
in which the data is assumed to follow the regression equation yi = x′iβ1 + ui for i = 1, ..., n1
and a different regression equation yi = x′iβ2 + ui for i = n1 + 1, ..., n where β1 �= β2. The
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key problem in this model is to identify the change point between the two regimes and estimate
the parameters (see for instance Schweder, 1976) and this problem has been extensively studied
under the name of regression under a structural change. A comparison of some of the procedures
developed to estimate the change point can be found in Andrews et al (1996). A generalization of
this model is to assume that each observation can be generated with some unknown probability
by one of the two regressions models yi = x′iβj +σjui, where j = 1, 2 and uj is N(0, 1). This
situation may correspond to the case in which a categorical variable is omitted in the model, like
gender, month, or day of the week. If the categorical variable only has effect on the intercept
we have the standard missing attribute case, whereas if the regression coefficients depend on
the omitted categorical variable we have the switching regression problem. In the general case
of G possible regimes, or groups of data, and assuming normality, the model is

yi/xi ∼
G∑

g=1

αgN(x′iβg, σ
2
g), (1)

where αg ≥ 0 and
∑G

g=1 αg = 1. This model has been studied extensively both from the
Bayesian and the Likelihood point of view. See Aitkin (2001) for some comparisons. When the
number of groups is known and we have some reasonable initial estimate for the parameters in the
different regimes the model can be estimated by MC2 methods. However, when this information
is not available the estimation of this model is a difficult problem. First, the components of the
mixture have identification problems, Celeux et al. (2000). Second, when one of the groups has
a much smaller variance than the others, and behaves like a set of high leverage outliers, a false
convergence of the Gibbs sampling procedure may occur and some modifications are required to
achieve convergence (see Justel and Peña, 2001). Third, more experience is required about the
performance of the available procedures proposed to deal with the Bayesian estimation of these
models, see for instance Richarson and Green (1997) and Stephens (2000), when the number
of parameters and the number of groups are large and we do not have good initial estimates to
start the algorithm. A recent analysis with Bayesian MC2 methods can be found in Hurn, Justel
and Roberts (2002).

In this paper we present a different approach to solve the heterogeneity problem. The
approach is exploratory and is based on the SAR procedure developed by Peña and Tiao (2002).
It is designed to deal with any type of heterogeneity, including outliers and switching regressions,
and it can be used either as a starting point in a MC2 estimation algorithm or as a general model
building procedure.

The paper is organized as follows. In section 2 the SAR procedure applied to the regression
model is briefly summarized. A key ingredient of the procedure is the link function, and the
properties of this function in the regression case are studied in section 3. Section 4 presents
simple simulated examples to illustrate the algorithm and discusses its implementation. Section
5 shows that the proposed procedure can provide the same solution as sophisticated MC2

algorithms; that it is able to succeed in cases in which MC2 algorithms are found to fail; and that
it can be applied in large data mining problems. Section 6 includes a simulation study about
the size and power of the procedure. Section 7 contains some brief concluding remarks.

2. THE SAR PROCEDURE IN REGRESSION
Given a sample of n points (yi,x′i), i = 1, ..., n, where xi is a p×1 vector, letY = (y1, ..., yn)′

be the vector of responses and X = (x1, ...,xn)′ the n × p full rank matrix of explanatory
variables. The SAR (split and recombine) procedure is an iterative method to identify possible
clusters in a sample. It can be applied for all sorts of data heterogeneity and includes three
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basic steps. First, large isolated outliers are identified and deleted from the sample. Second,
the remaining data is split iteratively into homogeneous groups of some minimum fixed size,
called basic sets. Third, each basic set is allowed to grow by recombining points one by one
into it, as long as they are found homogeneous with the observations already in the group.
The complement of the enlarged group will now be treated as a new sample for a repeated
application of the three-step split and recombine procedure. This process will lead to a set of
possible different grouping of the sample, called possible data configurations (PDCs). These
solutions can be explored by a model selection criteria (see Peña, Rodrı́guez and Tiao, 2002) or
they can be used as starting point for a MC2 algorithm for mixtures.

The SAR procedure is based on three statistics and a link function. The first statistic is based
on the predictive ordinate, p(yi|Y (i)), that has been used by several authors for outlier detection,
see Box (1980), Geisser (1980, 1987), Pettit and Smith (1985), Pettit (1990), Peña and Tiao
(1992), Peña and Guttman (1993), and others. The notation Y (i) indicates that observation
yi has been deleted from the data set Y . The justification of this measure is easy to see by
introducing a dummy variable δi that is equal to 1 when observation yi has been generated by
the same model that has generated the data in Y (i) and 0 otherwise. Then, we have that

P (δi = 0|yi,Y (i)) = 1− kP (yi|δi = 1,Y (i))P (δi = 1) (2)

where k is a constant. Calling p(yi|Y (i)) the predictive density of yi when it is generated by
the same model that generates Y (i) we see that the smaller the predictive ordinate the larger
the probability that the observation has been generated by a model different from the one that
generates the rest of the data. The first statistic we define is the standardized predictive ordinate
c0(i), given by

c0(i) = −2 ln

{
p(yi|Y (i))
p(ŷi(i)|Y (i))

}
, (3)

where p(yi|Y (i)) is the predictive distribution of yi given data Y (i), and ŷi(i) = E(yi|Y (i)) is
the expected value of this distribution. This standardized predictive ordinate is computed first
to test for outliers, and second to test if a new point can be incorporated to a group formed by
data Y (i). The second statistic we define, c1(i), is given by

c1(i) = max
yj

(c1(i|j)) = max
yj

[
−2 ln

{
p(yi|Y (ij))

p(ŷi(ij)|Y (ij))

}]
(4)

where Y (ij) represents a set of data in which observations yi and yj are deleted, p(yi|Y (ij)) is
the predictive distribution of yi given data Y (ij), and ŷi(ij) = E(yi|Y (ij)). The maximum is
taken with respect all the observations in Y (i) and indicates the minimum standardized value
of the predictive distribution of yi that can be obtained by deleting a point from Y (i). The third
statistic we use is the maximum standardized change in the predictive distribution obtained by
deleting an observation from the set Y (i), and is given by

d1(i) = c1(i)− c0(i)

and this statistic is used jointly with c0(i) to identify masked outliers from the sample. Finally,
the binary relationship implied by c1(i) provides a link function, l(i), between observation yi
and the observation yj which produces the maximum in (4): observation yj is the one that, when
deleted, will make yi the most discrepant with the rest of the data. This link function is defined
by

l(i) = j if yj = arg max
yk

(c1(i|k))
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that is, the point (yi,x′i) is linked to (yj,x′j) if deleting this last point from the sample produces
the maximum discrepancy between the observation yi and the remaining n−2 observations. We
will call the point, (yj,xj), the discriminator of (yi,xi). Note that (1) each sample point must
have a discriminator; (2) a discriminator is, in some metric implied by the model, an extreme
point in the set Y (i); (3) the relationship defined by the link function is neither symmetric nor
transitive.

In the linear regression case calling β̂ = (X ′X)−1X ′Y and s2 = e′e/(n − p), where
e = (I −H)Y and H = X(X ′X)−1X ′ is the idempotent projection matrix, and assuming
the standard non informative prior for the vector of parameters θ = (β, σ), p(θ) ∝ σ−1, then,
given Y , the predictive distribution for a future observation yf from the linear model (see e. g.
Box and Tiao, 1973), is the standard univariate t distribution with ν degrees of freedom

p(yf |Y ) =
1

B
(1

2 ,
ν
2

)√
ν
s−1(1 + hf )−1/2

(
1 +

t2f
ν

)− (ν+1)
2

where t2f = (yf − ŷf )2/s2(1 + hf ), ŷf = x′f β̂, hf = x′f (X
′X)−1xf , and xf is the future

explanatory vector. For c0(i), we let yf = yi, xf = xi, and we have that

�n[p(yi|Y (i))] = k − 1
2

ln[s2
(i)(1 + hi(i))]−

(
ν0 + 1

2

)
ln

(
1 +

t2i
ν0

)
where ν0 = (n − p − 1), hi(i) = hf , ti = tf in which ŷi(i) = x′iβ̂(i) is the predictive mean of

yi, and β̂(i) and s2
(i) are the estimates based on Y (i) and X(i) where X(i) is obtained from X

by deleting xi. Since ln[p(ŷi(i)|Y (i))] = k − (1/2) ln
[
s2
(i)(1 + hi(i))

]
, we can write

c0(i) = (ν0 + 1) ln
(

1 +
t2i
ν0

)
. (5)

The statistic ti is the studentized residual, or standardized predictive residual, that is normally
used for testing an individual outlier in regression. Expression (5) shows that c0(i) is a monotonic
transformation of t2i and, for large n, these two measures will be equivalent.

In the same way, letting yf = yi, xf = xi, and deleting yi and yj from Y to become Y (ij),
we obtain c1(i) as

c1(i) = (ν1 + 1) max
yj

[
ln

{
1 +

t2i(ij)

ν1

}]
(6)

Here ν1 = (n − p − 2) and t2i(ij) is given by t2i(ij) = (yi − ŷi(ij))2/s2
(ij)(1 + hi(ij)), where

hi(ij) = hf , ŷi(ij) = x′iβ̂(ij) is the predictive mean of yi, and β̂(ij) and s2
(ij) are the estimates

based on Y (ij) andX(ij). For large n, c1(i) will be equivalent to maxyj
t2i(ij).

The SAR procedure consists of the following three basic steps (see Peña and Tiao, 2002,
for further justifications, tables of the statistics and further details):

1. Check the sample for outliers by computing c0 = max c0(i) and d1 = max d1(i) and test
for outliers according to the null distribution of first c0 and then d1. The critical values of these
statistics have been obtained by Monte Carlo. Delete the outliers and repeat the checking until
either no more outliers are found or a set of size= p+ h, is obtained, where h is a parameter to
control the degrees of freedom of the fitted model that is usually taken, for n small or moderate,
equal to ln(n− p).
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2. Split the remaining sample by putting in the same group all the observations which
share the same discriminator. Points that are either outliers or discriminators are considered as
isolated observations and they are not incorporated into the groups. Thus: (1) If l(i) = j and
l(k) = j then (i, k) are put in the same group. (2) discriminators and treated as isolated points.
(3) observations in subgroups of sizes smaller than p + h are treated as isolated points. Once
the new groups are found, we go back to 1 and through repeated application of steps 1 and 2,
we split the original sample S0 into m basic sets (B1, ..., Bm) and isolated points consisting of
outliers, discriminators and observations from undersized groups in the splitting process.

3. The recombining process starts by selecting a basic set, Bi, fitting the model to the data in
this basic set, and checking the observations in the complementary set Bi for homogeneity with
respect to the basic set one at a time. The checking is done with the statistic c0(i) conditional
on data in Bi. If the minimum of c0(i) for all the points in Bi is below the 99th percentile of the
distribution of this statistic, then the corresponding observation is incorporated into the basic set.
Then the model is refitted to the newly enlarged basic set including a new observation and the
process of checking the remaining observations is repeated. When no more observations can be
incorporated into the initial set, the enlarged set is considered as a first level final homogeneous
group Fi. This enlarging process is repeated for each of the m basic sets. The result will be a set
of first level final groups (F1, ..., Fm). Now, select a first level final group Fi and conditional
on this group the complementary set F i is analyzed as a new sample and steps 1-3 are applied.
Repeating this process, the algorithm is continued until we obtain all the non-redundant PDCs
originated from the set of basic sets. Note that each PDC is a partition of the sample into disjoint
subsets.

The key tool of the procedure is the link function, which defines the discriminator for each
sample point. In the next section we analyze its properties in the regression case.

3. THE PROPERTIES OF THE LINK FUNCTION

Let e = Y −Xβ̂ = (e1, ..., en)′ be the residuals of the regression fitted to the sample (Y ,X)
and hij the ij − th element of the projection matrix H = X(X ′X)−1X ′ . It is shown in the
appendix that we can write

t2i(ij) =
e2
i + (1− hjj)−1[h2

ije
2
j(1− hjj)−1 + 2eihijej ]

aii − c(1− hjj)−1[dh2
ij + biie2

j + 2eihijej ]

where c = (n−p−2)−1 and d = (n−p)s2 are constants and bii = (1−hii), aii = c[dbii−e2
i ].

This expression shows that for a given observation, (yi,x′i), the statistic t2i(ij) is maximized if the

discriminator point (yj,x′j) is chosen so that: (1) the product eihijej is positive, (2) the measure
of leverage of the discriminator (1 − hjj)−1 is as large as possible, (3) the predictive residual
ej(1−hjj)−1 is, in absolute value, as large as possible. Dividing both terms by s2(1−hii) and
calling zij = hij(1 − hjj)−1/2(1 − hii)−1/2 and rj = ej [s2(1 − hjj)]−1/2 to the standardized
residuals, we have that

t2i(ij) =
r2
i + [z2

ijr
2
j + 2rirjzij ]

c[(n− p)− r2
i − (n− p)z2

ij − r2
j − 2rirjzij ]

and it is straightforward to check that, assuming rirjzij is positive, the partial derivatives of this
function with respect to the new variables rj and zij , that measure outlyingness and leverage,
are positive. Thus, the discriminator should be a point with large standardized residual, rj,
and large leverage, as measured by zij. It is interesting to note that these measures appear in a
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natural way in the analysis of outlying observations in linear models using standard Bayesian
procedures, see Peña and Guttman, 1993. Note that we can write, in the space of the explanatory
variables, hij = h

1/2
ii h

1/2
jj cos θ, and, therefore, the cross leverage hij will be large for a fixed

value of hii if the leverage of the discriminator, hjj , is large and cos θ close to one.
In order to understand better the behavior of the link function suppose that we want to find

the discriminator of a point yi with non negative residual, ei ≥ 0.As the t2i(ij) statistic is invariant
to translations, suppose for simplification that all the variables are measured on deviations to
the mean so that the regression equation has no constant term. We consider the following three
possible cases:

(1) Suppose xi = 0 so that hii = 0 = zij. Then t2i(ij) = r2
i /c[(n− p)− r2

i − r2
j ], and the

discriminator will be the point with largest value of the standardized residual r2
j .

(2) Suppose xi > 0 but ei = 0 = ri and the point analyzed lies on the regression line. Then
t2i(ij) = [(n − p) − (n − p)z2

ij − r2
j ]
−1z2

ijr
2
j /c and the point will be linked to the value than

maximizes this expression. Note again that the discriminator will be a high leverage point with
large standardized residual.

(3) Suppose xi � 0 and ei � 0. Then the discriminator must: (a) have rirjzij > 0 which
implies that either the residual is also positive and θ < π/2 or the residual is negative and
π/2 < θ < π, and (b) have large values of the leverage and the standardized residual.

For instance, consider the simple regression through the origin, with
∑

xi =
∑

yi = 0
and

∑
x2
i = 1 so that hij = xixj , if an observation has an x value larger than the mean and the

residual is positive the discriminator will be either: (1) a point with positive residual and also
xj > 0, or (2) a point with negative residual and xj < 0.

Figure 1 shows a sample of simulated data from an homogeneous regression and the links
obtained in this sample. The discriminators are indicated by: (1) an arrow and (2) the vertex of
the cone of lines that go to all the points that are linked to the discriminator. Only eight points
are discriminators. If we now put together points with the same discriminator and consider
as a group a set of at least 3 points we will obtain four groups. Note that, as indicated in the
previous rules, the discriminator is a point with either a large residual or a large leverage or a
combination of both effects. For instance, points 8 and 24 have high leverage, whereas points
7 and 20 have a relatively large residual. Note that points are linked to discriminators located
according to the previous rules.

We now illustrate the behavior of the link function in the four heterogeneous cases of simple
regression considered in Figure 2: (a) concentrated contamination; (b) switching regression; (c)
mixture of two regressions with omitted categorical variable and (d) structural change. Figure 2
shows the data indicated by numbers and the results of applying the link function to the four
data sets. Only a few points in each case are discriminators and they are indicated as before
by: (1) an arrow and (2) the vertex of the cone of lines that go to all the points that are linked
to the discriminator. In case (a) only five points are discriminators and putting together those
observations with the same discriminator we obtain five basic sets. The link function puts all
the outliers in the same basic set. Note that points are linked to discriminators that are extreme
according to the previous rules. In case (b) the sample is split into five groups induced by the
five discriminators. A discriminator is always an extreme point with large leverage and large
residual, and points are linked to the discriminator with the same residual sign and at the same
side of the mean of the explanatory variable. Again, the sample is split into homogeneous
groups. A similar situation occurs in case (c) in which seven discriminators exists. Finally, in
case (d) four discriminators are found and, as before, points are linked to extreme observations
(high leverage and or high residual) located in the same region of the space as determined by the
fitted regression line. In the four examples the sample is split into homogeneous groups and this
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Figure 1. Results of applying the link function in the homogeneous regression case

is the pattern found in other SAR applications (see Peña and Tiao, 2002, and Peña, Rodrı́guez
and Tiao, 2002).
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Figure 2. Behavior of the link function in simple linear regression in the four cases: (a) group of masked
outliers; (b) switching regression; (c) mixture of two regressions with omitted categorical variable; (d)
regression under an structural change.
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4. THE PROPOSED ALGORITHM

The algorithm proposed for finding heterogeneity in regression models is the SAR algorithm
briefly presented in Section 2. Here we will just illustrate it by using the data from Figure 2(b).
Some of the intermediate results when applying the algorithm are indicated in Figure 3. First,
four basic stets are found (see Figure 3(a)); second, the enlarging of the first basic set incorporates
all the observations from the first regime (see Figure 3(b)); third, conditioning on this result the
complementary part is split and a basic set is found (see Figure 3(c)); fourth the set is enlarged
and the rest of the available observations are incorporated except for two points indicated by
arrows in Figure 3(d) that are identified as outliers.
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Figure 3. Flow chart of the SAR procedure in the switching regression. (a) Basic sets; (b) enlarging of
the first basic set; (c) Splitting of the complementary part, one basic set is found; (d) enlarging of the
basic set and the two outliers detected, that are indicated by arrows.
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The two regression lines and the two outliers found in Figures 3(a)-(d) is one of the possible
data configurations, (PDCs) provided by the algorithm, because when starting from a different
basic set some of the points may be allocated in a slight different way. Figure 3, top, shows
a flow chart of the four paths generated by each of the four basic sets. The path illustrated in
Figures 3(a)-(d) is the first one, and it is presented in a dotted rectangle. Starting from the first
basic set of 13 observations (B1) the set is enlarged to include 30 observations (F1). Then the
complementary part of F1 is analyzed and a basic set B1,1 of 14 observations is found. This basic
set grows to include 28 observations (F11). The complementary part of this groups contains two
observations that are considered as outliers (groups F111 and F1111, each of one observation).
The four PDCs finally found are shown in Figure 4. These four PDCs only differ in the way
in which the doubtful observations in the intersection of the two lines are allocated. In the first
PDC these observations are all included in the regression with positive slope and no outliers are
found. In the second PDC, they are included in the regression with negative slope. In the third
and fourth PDCs two of the points are considered as outliers and the remaining doubtful points
are allocated: (1) in the third PDC to the regression with positive slope and (2) in the fourth to
the one with negative slope. The selection of the best PDC can be made by : (1) Using the BIC
criterion; (2) Fitting two regression lines to each of the two clear groups and then computing
the posterior probabilities of each observation in the intersection belonging to each of the two
regression lines.
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Figure 4. The four PDCs found for data from Figure 2 (b) in the switching regression problem.

In the three other cases shown in Figure 1 also more than one PDC may be obtained. In case
(a) two PDCs are found: the first considers the sample as homogeneous and the second splits
the data into the homogeneous group and the outliers. In case (c) only one PDC is obtained
and this is the correct solution. In case (d) three possible PDCs, shown in Figure 5, are found.
The interesting ones are the second and the third that differ in the way in which observations in
the intersection of the two regimes are allocated. The method makes clear that some of these
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observations can be generated by both models. The true data generation pattern for this example
is shown in Figure 5(d).
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Figure 5. PDCs for the structural chage data From 1(d). The two interesting solutions (2nd and 3rd)
differ in the way the data around the change point are allocated between the two groups.

Some remarks about the procedure are in order:
Remark 1. If p is large and n/p is small, let us say smaller than 20, many points can be

extreme and many discriminators may be found, leading to many small initial groups. This
will make the procedure slower and less powerful for the identification of small heterogeneous
groups, as too many points will be deleted in the first split. In this case it is faster and safer to
delete only discriminators of order m, that are defined as data points that are discriminators for
at least m points in the sample. In Peña, Rodrı́guez and Tiao (2002) these discriminators are
defined and analyzed for cluster problems in high dimensions.

Remark 2. The procedure evaluates the relative size of statistics c0 and d1 by their sampling
distribution which has been obtained by simulation. Although we believe that this type of
crossbreeding between Bayesian and frequentist ideas enriches statistics, the procedure could
be made easily completely Bayesian by working either with the posterior probabilities or the
Bayes factors. In order to do so we have to introduce an alternative model to explain how the
point yi under consideration could be heterogeneous with the group. A simple solution is to
assume as alternative distribution the scale normal contaminated model and use (2) to compute
the posterior probabilities or the Bayes factors.

Remark 3. The solutions obtained by the SAR procedure are not very sensitive to the choice
of the parameter h and therefore to the minimal size, p + h, of the basic set. When h is small
the procedure obtains a large number of basic sets and this increases the power to find small
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heterogeneous groups of masking outliers, but the number of PDC increases and makes the
procedure slower for large data sets. If we expect that heterogeneity will be due to the possible
existence of two or more regressions, we can choose h moderately large.

5. EXAMPLES

In this section three examples are shown to illustrate the performance of the SAR algorithm
and to compare it with other approaches. The first one is a real data set that has already be
analyzed in the Bayesian literature. We show that the SAR procedure leads to the same solution
obtained by MC2 methods. The second example is a masking outlier example, and there the
SAR procedure succeeds where standard MC2 methods may fail completely. The third example
is presented to illustrate the usefulness of the SAR procedure as a data mining tool in large high
dimensional regression data sets.

Example 1. Figure 6 shows the ethanol data set, which relates the equivalence ratio, a measure
of the richness of the air-ethanol mix for burning ethanol in a single-cylinder automobile test
to the engine concentration of nitric oxide in engine exhaust (normalized by engine work)
(Brinkman, 1981). Hurvich, Simonoff and Tsai (1998) analyze this data set with nonparametric
regression and Hurn, Justel and Robert (2001) use Stephens (2000) birth-and-death proposal
for carrying out MC2 estimation of mixture switching regression models. Figure 6 shows the
four PDCs found by the SAR procedure. The four PDCs differ in the way in which doubtful
points are allocated: the two regimes are clearly identified in the four cases, but there are a large
uncertainty on the allocation of the observations in the intersections of the two lines.
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Figure 6. The four PDCs found for the Ethanol data when y= equivalence ratio and x= nitric oxide
concentration.
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Example 2. An interesting classical example of masking is the artificial data generated by
Hawkins, Bradu and Kass (1984). The model includes 75 data points of one response and 3
explanatory variables. The data is generated in such a way that the first 10 data points are high
leverage outliers, whereas the next four are good observations with high leverage. Traditional
methods of outlier detection fail in this case due to the high leverage problem and Justel and
Peña (1996) showed that Gibbs Sampling also fails and it is unable to identify the outliers, even
after 30,000 iterations. These authors showed that the lack of convergence in the algorithm is
not a problem of the outlier model considered, as the same lack of convergence was found in all
the outliers models included in the study, including a nonparametric hierarchical model based
on Direchlet processes and later Justel and Peña (2001) introduced modifications in the MC
chain to solve this problem. Figure 7 shows the two PDCs found with the SAR algorithm in this
problem. The first one is the right one, and is the one chosen by the BIC criterion. The second
one is the wrong one obtained by the standard application of the Gibbs Sampling algorithm.
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Figure 7. The two PDCs for the HBK data.

Example 3. In this example we consider a mixture of two regressions with omitted categorical
variable in relatively large dimension data. The sample has been generated by the model

y = β0 + β′1x+ β2z + u.

Here x has dimension 20, u ∼ N(0, 1), and 400 values are generated for the first regression
with z = 0, and 100 values for the second regression with z = 1. The parameter values have
been chosen as β0 = 0, β′1 = −1′20 = (−1, ...,−1) and β2 = 90, and the values of the
explanatory variables are independent random drawings from a uniform distribution. For the
first regression the range of the explanatory variables is (0, 10) so thatx|(z = 0) ∼ [U(0, 10)]20

whereas for the second the range is (9, 10) so that x|(z = 1) ∼ [U(9, 10)]20 . These values
have been chosen so that the standard residual plots from the fitted regression do not provide
any evidence of heterogeneity. The results of the application of the SAR procedure to this data
set with different values of h are indicated in Table 1.

If a small value of h is chosen, see the case h = 10, three PDCs are obtained that only differ
in the allocation of two points as outliers. The first one assigns correctly 392 out of 400 to the
first regression and 99 observations out of 100 to the second regression, and the remaining 9
points are isolated outliers. The second PDC assigns correctly 392 out of the 400 to the first
regression and the whole 100 observations to the second and, again, the remaining 8 points
are considered as outliers. Finally, the third PDC assigns correctly 391 out of 400 to the first
regression and the 100 observations to the second and includes 9 isolated outliers. For moderate
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Table 1. PDCs for data in example 3 for several h values.

h PDC1 PDC2 PDC3 Time

z = 0 z = 1 IA z = 0 z = 1 IA z = 0 z = 1 IA

10 392 99 9 392 100 8 391 100 9 161s
25 400 100 0 – – – – – – 118s
50 400 100 0 – – – – – – 118s
75 500 0 0 – – – – – – 93s

values of h, see the rows for h = 25 and or 50, the SAR procedure obtains only one PDC
with all observations correctly classified and without outliers. For large values of h, see the
row of h = 75, the minimum size of the basic group is 75+21=96, and the procedure obtain
only one PDC with all observations in one group and the data set is found homogeneous. Note
that this is to be expected when the size of the basic group is similar or larger than the group
of heterogeneous observations. The table includes the running time in seconds of the program
(written in Matlab) for several values of h. We have also tried h = 6, that corresponds to the
rule ln(n − p). Nine PDCs configuration are found. Eight of them identify clearly the two
groups and include between 391 and 394 observation of the first group in the first regression
and between 99 and 100 of the second in the second regression. These 8 PDCs only differ in the
number of outliers that goes from 6 to 10. The 9th PDC also finds two groups of 393 and 105
observations plus 2 outliers, but the second group includes 5 points from the first that produce
strong biases in the estimation of the regression coefficients. Thus for large n we recomend that
h should be chosen so that the size of the basic set is similar to the expected size of the smallest
heterogeneous groups we want to detect.

6. MONTE CARLO ANALYSIS FOR THE CHANGING REGRESSION PROBLEM

We have carried out a Monte Carlo experiment for different structures of mixture regressions.
1000 samples for each combination of parameter values have been generated as follows. First 50
uniform U(0, 10) observations have been obtained and these values are used as the explanatory
variable in the regression y = 1.5x + 1.5ε, where ε is N(0, 1). Then, 30 observations are
generated byx = d+U(0, 15) and used as explanatory variables in the regressiony = a+bx+σε
where, as before, ε is N(0, 1). Note that the important parameter d controls whether or not
there is a horizontal gap (Hg = d− 10) and vertical gap (Vg = a− 15 + db) between the end
point of the first and the beginning point of the two regression lines.

Table 2 shows the frequency of obtaining an approximate correct solution for 13 different
parameter values. The first case corresponds to the size of the test, as all the data is generated for
the same model. Cases 1-8 correspond to structural change, cases 9-10 to switching regression
and cases 11-12 to mixture of two regressions with an omitted dummy variable. The size of the
test has been computed with h = 3, similar values have been found for other values of h ≤ 10.
In the cases of two regression lines without a horizontal or vertical gap usually two solutions are
found, but the points in the intersection are attributed either to the first or the second regression.
There is no information to identify these points into one of the two groups unless we introduce
some separation among them. Thus, in this case the proportion of points correctly identified is
smaller than when a gap is introduced..

Table 2 shows a second Monte Carlo experiment to analyze the power of the procedure for
finding a concentrated contamination. 1000 samples for each combination of parameter values
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Table 2. Power study for the two regimes and contaminated regression.

Two regimes regression

case b Vg Hg σ 95true 90true

0 1.5 0 0 1.5 0.979 1.00

1 -.5 0 0 1 0.217 0.666
2 -.5 0 0 0.5 0.512 0.929
3 -.5 -2.5 5 1 0.836 0.894
4 -.5 -2.5 5 0.5 0.906 0.971
5 -.5 +2.5 5 1 0.904 0.958
6 -.5 +2.5 5 0.5 0.980 1.000
7 .5 -2.5 5 1 0.732 0.767
8 .5 -2.5 5 0.5 0.827 0.869
9 -1.5 0 -10 1 0.220 0.808

10 -1.5 0 -10 0.5 0.435 0.921
11 1 0 -10 1 0.968 0.994
12 1 0 -10 0.5 0.975 0.996

Contaminated regression

case n1 n2 t0 s0 95true 90true

1 50 10 1 0.1 0.950 0.980
2 50 10 1 0.5 0.836 0.885
3 50 10 1 1 0.629 0.817

4 50 10 2 0.1 0.982 1.000
5 50 10 2 0.5 0.969 0.994
6 50 10 2 1 0.965 0.992

7 50 10 3 0.1 0.988 0.999
8 50 10 3 0.5 0.973 0.995
9 50 10 3 1 0.976 0.998

10 50 10 4 0.1 0.985 1.000
11 50 10 4 0.5 0.986 0.998
12 50 10 4 1 0.983 0.997

have been generated as follows. First n1 uniform U(0, 10) observations have been obtained
and these values are used as the explanatory variable in the regression y = 1.5x + ε, where ε
is N(0, 1). Then, n2 observations are obtained from N((x0, y0), s0I), where x0 is a random
value from a uniform U(−2.5, 12.5), and

y0 = 1.5x + t0sR

√
(1− x2

0),

where sR is the residual standard deviation in the regression using the first n1 observations.
Note that t0 represents the standardized size of the outlier and its location is made in agreement
with this parameter. Finally the parameter s0 defines the dispersion of the outliers with respect
to its center. The table shows that the power of the SAR procedure in all cases is large, and the
procedure seems to overcome the masking problem.
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7. CONCLUDING REMARKS

The SAR procedure seems to offer a powerful method for the Bayesian analysis of regression
mixture models. The method can be helpful in identifying patterns in heterogeneous regression
data, including masked outliers, switching regression, change point problems and other multiple
regime situations. Although the main contribution of the procedure is to find structure in the
data as an exploratory tool, the selection between the possible data configurations (PDCs)
can be done by applying a MC2 algorithm for model estimation. An important difference of
the SAR procedure with respect to alternative methods for finding heterogeneity in regression
mixtures is that the mixture components do not have to compete to classify each observation.
Thus, more than one possible solution may exist and the procedure will find all solutions
coherent with the model structure, under different restrictions implied by the conditioning
of the homogeneous enlarged basic sets. This property gives a high robustness to the SAR
procedure because when there exist observations that could be assigned to various components
of the mixture they are usually not split up between the different mixture components but are
allocated in groups to the PDCs, avoiding the well known masking problem in outlier detection.
Finally, the ideas presented here can be easily extended to other regression situations as non
linear regression problems, heteroskedastic regression models, generalized linear models and
multivariate regression models, including simultaneous equation econometric models.
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APPENDIX
Let I = (i1, ..., ik) represent the indices for k observations with vector of responses Y I and
regressors XI . Calling β̂(I) = (X ′(I)X(I))−1X ′(I)Y (I) to the vector when these observations
are deleted from the sampleX,Y , and using the well known expression (see Cook and Weisberg,
1982) we have that,

β̂(I) = β̂ − (X ′X)−1XI(I −HI)−1eI ,

whereHI = XI(X ′X)−1X ′I and eI = Y I −XI β̂. Now calling

eI(I) = Y I −XI β̂(I) = (I −HI)−1eI ,

we have that
(n− p− I)s2

(I) = (n− p)s2 − e′I(I −HI)−1eI

and it is easy to show thatHI(I) = XI(X ′(I)X(I))−1X ′(I) verifiesHI(I) = HI(I −HI)−1.

Now, making Y I = (yi, yj)′, I = (i, j), using the previous equations and after some straight-
forward algebra, we found

t2i(ij) =
(ei + hijej/(1− hjj))2

aii − c/(1− hjj)[dh2
ij + biie2

j + 2eihijej ]

where c = (n− p− 2)−1 and d = (n− p)s2 are constant and bii = (1−hii), aii = c[dbii− e2
i ]

are only function of point ith.
To understand better this function, we consider the simple regression through the origin

case with
∑

xi =
∑

yi = 0 and
∑

x2
i = 1 so that hij = xixj . Then, we can write, for each

(ei, xi), this function as

t2i(ij) = f(ej, xj) =
(n− p− 2)(ei + ejxixj/(1− x2

j))
2

(d(1− x2
i )− e2

i )−
(
1/(1− x2

j)
)

(dx2
i x

2
j + (1− x2

i )e
2
j + 2eiejxixj)

.

It can be proved that if ei �= 0 and xi �= 0, then, f(ej, xj) = f(−ej,−xj) and f(ej,−xj) =
f(−ej, xj) and (ej = 0, xj = 0) is a saddle point. If ei �= 0 or xi �= 0, then, f(ej, xj) =
f(−ej,−xj) = f(ej,−xj) = f(−ej, xj) and (ej = 0, xj = 0) is a minimum.
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DISCUSSION

HAL S. STERN (Iowa State University, USA)

1. Introduction. Peña, Rodríguez, and Tiao (PRT) present a novel exploratory approach for
investigating data heterogeneity when fitting regression models. It is my pleasure as discussant
to thank them on behalf of those attending the conference. This introduction provides a brief
review of the PRT approach and some preliminary comments. The remaining sections provide
more detailed discussion of some important issues.

The authors use the term data heterogeneity to refer to the existence of clusters or subgroups
among the sample units. In the regression context the subgroups may be clusters of outlying
observations in an otherwise homogeneous population or subpopulations best described by
different linear models. The SAR (split and recombine) procedure, described more fully in Peña
and Tiao (2002), is used to discover such heterogeneities. The key element in the approach is a
3-step process that identifies a subgroup for which a single regression model seems appropriate.
This process is repeated until all such subgroups are identified. The three steps are: (1) outliers
are identified using the predictive ordinate p(yi|Y(i)) where Y(i) refers to the vector of responses
without observation i; (2) the remaining data is split into small homogeneous groups known
as basic sets (each containing at least a specified minimum number of observations) using the
concept of “link”ing or discriminator points; (3) these basic sets are enlarged by incorporating
all of the observations in the data set that are consistent with the linear model that describes the
homogeneous group. Once a basic set is selected and enlarged, the SAR procedure is restarted
on the set of all observations that are excluded from the enlarged group. The outcome of the
procedure is called a possible data configuration (PDC). The outcome depends on the group
which is enlarged first thus there may be several different PDCs for a given data set.

The authors cite as their goal to “solve” (my quotes) the heterogeneity problem. Though
I quibble below with the idea of solving the heterogeneity problem in this way, it is clear that
SAR is a powerful exploratory technique that addresses a number of important heterogeneous
regression models. It is interesting to note that the SAR procedure, though proposed by Bayesian
researchers and motivated by Bayesian principles, will likely be welcomed by non-Bayesians.
The cross-validatory ideas that motivate SAR are familiar in regression diagnostics and there
is little for anyone to object to in terms of probability modeling. The remainder of this discus-
sion considers four issues: the types of heterogeneous mixture models considered, appropriate
alternatives for comparison with SAR, whether one can solve the heterogeneity problem in this
way, and the nature of exploratory analysis.

2. Mixture of Regressions. Four heterogeneous regression models are used by the authors
to demonstrate the utility of the SAR procedure. These are an outlier contamination model, a
structural change model, a switching regression model (subgroups may differ in all coefficients),
and a missing categorical variable model (subgroups differ in intercept only). Each of the four
can be expressed as a probability model for scalar yi conditional on covariate vector xi of the
form yi |xi ∼

∑
j αjN(x′iβj, σ

2
j ). This common form of mixture model misses an important

form of heterogeneity. The next paragraph describes a more general regression mixture model.
It turns out that the SAR procedure is effective in identifying this form of heterogeneity as well.

One natural way to motivate mixture models is to introduce an indicator zi for each case,
with zi = j if the ith observation comes from subgroup j (or has level j for an unobserved
categorical variable). Then the mixture model for yi conditional onxi is obtained by considering
the joint model yi, zi |xi ∼ p(zi |xi)p(yi | zi, xi) and marginalizing over zi to obtain yi |xi ∼∑

j Pr(zi = j |xi)p(yi | zi, xi). The model considered by the authors is obtained if Pr(zi =
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j |xi) = αj independent of xi and a normal linear regression model is used for yi given
zi and xi. When viewed in this way however it seems much more natural to allow for the
possibility that the latent variable zi depends on xi, perhaps with a multinomial model Pr(zi =
j |xi) = exp (x′iδj)/

∑
k exp (x′iδk). The multinomial-regression mixture model is used by

Peng et al. (1996) as a “mixture of experts” and by Morduch and Stern (1997) as an approach
to heterogeneity in data regarding family spending in Bangladesh.

The more complicated mixture poses some problems for inference in that the likelihood
function may have multiple modes (including some degenerate cases with only enough observa-
tions in some subgroups to identify the regression parameters) and the multinomial parameters
describing the latent indicators are not well identified. Example 3 in the paper is a mixture of
this more complex type because the covariate distribution differs across the subgroups. That
example proves that the SAR procedure can handle data heterogeneity of this type.

3. Alternatives to SAR.. Several parts of the paper refer to Gibbs sampling or Markov chain
Monte Carlo (MCMC) as an alternative to SAR. This is used as a shorthand way to reference
a formal analysis of an apparently relevant model, say the outlier contamination model, using
MCMC. Of course this is not really a fair comparison at all in the sense that the formal prior-
to-posterior analysis provides a very different type of information than is provided by the SAR
analysis. It may be difficult to get MCMC algorithms to converge for mixture models but once
this is achieved the investigator is rewarded with the usual posterior inferences that Bayesians
find so attractive.

As SAR does not offer such inferences it might be better compared to traditional and
new clustering techniques. Especially noteworthy are the model-based clustering of Banfield
and Raftery (1993) and the work by Liu in this volume. Model-based clustering allows for
multivariate Gaussian clusters with varying shape and orientation and thus might pick up the
mixtures of linear models contemplated here. Recent work on data visualization is also relevant
(Sutherland et al. , 2000).

It might also be interesting to explore how well SAR does relative to the traditional approach
of statisticians building up from simpler models with the aid of model diagnostics. For example,
a traditional linear regression analysis of the authors’ example 1 along with residual plots might
suggest a quadratic model. Another model-based approach would be to search for modes of the
likelihood under a hypothesized heterogeneity or mixture model. One wonders if the different
PDCs might show up as different modes in the likelihood.

4. Solving the Heterogeneity Problem. The authors clearly identify their procedure as ex-
ploratory, suggesting that formal inference might be done after SAR helps to identify a suitable
model. It is difficult to argue with such an approach. At times though there are claims about
the SAR procedure’s ability to find the “correct” solution (at one point noting that using BIC
to choose among PDCs would have selected the right answer). There are at least three reasons
it would be better to avoid such claims. First, the primary goal of such exploration should be
to generate interesting views of the data not to identify the “true” data generating mechanism
which is destined to remain unknown in most applications. Second, all of the simulated data
sets are from linear regression models or mixtures of linear regressions. These simulations
show that SAR can identify heterogeneity and that SAR won’t always identify heterogeneity,
but the simulations don’t address how SAR might perform on data best described with a non-
linear relationship. The ethanol data of example 1 looks a bit like data from a quadratic model.
Though the piecewise linear model may fit a bit better in that particular data set, this example
raises the question as to whether all quadratics should be viewed as mixtures of regressions. A
third argument for caution regarding SAR’s performance concerns the effect of the minimum
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group size parameter. This is a key parameter and the advice provided here is that investigators
should choose this parameter to match “the expected size of smallest heterogeneous groups we
want to detect”. Thus the quality of SAR’s results will depend mightily on the investigator’s
knowledge regarding the expected heterogeneity.

5. Concluding Remarks on SAR and Exploratory Analysis.. There are clear roles for exploratory
tools in data analysis; such methods help find structure, suggest models, and critique models.
The SAR approach seems to offer much in the first two of these roles. Exploratory techniques
like SAR can help find structure in new and difficult settings. The mining of large databases
and the analysis of large sets of biological data each demonstrate that there is a clear need for
exploratory tools in the current scientific environment. The authors mention data mining as
a possible application of SAR. The relationships sought in data mining applications are of all
types, not just linear, so it would be interesting to see how SAR performs in the data mining
context.

In some applications the exploratory analysis may reveal all that we need to know. It is much
more common that the outcome of an exploratory analysis is the suggestion of a probabilistic
model allowing formal inference regarding the data-generating process. In this regard SAR
performs well. The end result of the SAR analysis will often be the suggestion of a suitable
mixture model; one must be careful to avoid overstating the significance of such “post hoc”
explanations of heterogeneity.

The authors’ conclusions describe plans to extend the application of SAR to finding data
heterogeneity in the fitting of generalized linear models, non-linear models, simultaneous equa-
tion models, etc. This is clearly an intriguing idea given the success they have had with linear
models but there is some risk. One major appeal of the SAR approach to heterogeneity in linear
models is that there is a simplicity and intuition which users are likely to find appealing. This
may be more difficult to provide if the SAR building blocks are more complex models.

SAR is an exploratory tool worth having in the proverbial “statistician’s toolbox”. Though
it doesn’t “solve” the heterogeneity problem it seems capable of providing real insight into the
structure of data for a wide range of applications.

P. IGLESIAS and R. B. ARELLANO-VALLE (Universidad Católia, Chile)

In this paper an interesting procedure based on SAR is introduced for modelling het-
eroscedasticity in the context of regression analysis. Such procedure is obtained from the
predictive distribution of the normal regression model and the usual non-informative prior dis-
tribution. An interesting property is that if the normal regression model is replaced by an
elliptical regression model, but the same non-informative prior distribution is considered, then
such procedure will remain invariant (Osielwaski and Steel, 1993). On the other hand, if an-
other prior distribution is adopted in order to obtain marginal equivalency with the normal model
(Arellano-Valle, Iglesias an Vidal, 2002), then the procedure obtained in this case is also invari-
ant under elliptical models, but will yield different results than those obtained by considering
the usual non-informative prior distribution. Although invariance (with respect to the likelihood
in this case) can be a desirable property, we would expect that models with heavier or lighter
tails than the normal model yield different clusters. We think that this ”lack of robustness” is
due to the fact that the procedure is based on the predictive distribution only, that is, the other
components of the Bayesian model are not considering. It would be interesting to introduce in
the procedure those parameters for which the posterior distributions is not invariant to depar-
tures from normality (the precision parameter in this case). Furthermore, if we consider that the
usual non-informative prior distribution is not the only reference prior distribution, the follow-
ing question arise naturally: What is the performance of the proposed procedure when using
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Jeffrey’s prior or some other reference prior distribution that depends on the order of the model
parameters (Bernardo y Smith, 1994)? What is the sensitivity of the procedure to changes on the
prior distribution? Finally, there are alternative methods for modelling heteroscedasticity, like
the product partition model introduced by Hartigan (1990) which considers all the components
of the Bayesian model when obtaining the clustering. Quintana and Iglesias (2002) propose
to adopt this approach within the context of decision theory. The idea is to clearly define the
purpose of the study (such as estimation, hypothesis testing, outlier detection, etc) and from
this to develop a clustering algorithm that depends also on the loss function associated to the
decision problem. An interesting problem is to consider justifying the proposed procedure from
a decision theoretic viewpoint, doing at the same time a comparative study with other procedures
considered in the literature.

CHRISTIAN P. ROBERT (CEREMADE, Université Paris Dauphine, France)

While I find the diagnosis tools developped by the authors quite clever and apparently very
efficient, I cannot but question the relevance of exploratory devices when “exact” procedures
are available. Indeed, we studied in Hurn et al. (2002) the performances of a (fully) Bayesian
approach to the estimation of the number of components in a mixture of standard [like (1)] and
generalized linear models. Using Stephens’s (2000) continuous time MCMC algorithm with
a simple birth-and-death proposal, we found very satisfactory performances of the algorithm,
with no obvious dependance on the starting values (as should be).

Given that such a (fully) Bayesian modelling is possible [and can be implemented in a
fairly straightforward manner], it necessarily brings more information that the exploratory SAR
procedure, since the later cannot, for instance, classify competing regression lines in terms of
their posterior probability or eliminate dubious solutions. While Gibbs sampling indeed has
difficulties to escape the “fatal attraction” of leverage points in outlier problems, more hybrid
solutions using subsampling [in a spirit similar to the one developped in this paper] or tempering
(Celeux et al., 2000) should work better.

In addition, the SAR procedure does not strike me as being fundamentally Bayesian, since
the predictive p(y|Y ) is built on a single normal regression model with conjugate priors, while
the actual model is a mixture of normal regression models with or without conjugate priors.
So the discriminating factors c0(i) are only formally related to the Bayesian approach. Also,
for other generalized linear models, the contruction of the predictive distribution p(y|Y ) is not
possible in closed form. It thus seems to me that, unless the authors propose an alternative
criterion, the necessary call to an approximative device of a numerical or simulational nature
is not fundamentally different (in difficulty level) from the construction of the full MCMC
apparatus. I nonetheless find the construction of the discriminators quite interesting in that they
may serve as anchors, to borrow from Liu et al. (2002) terminology, for constructing more
adaptive or more efficient MCMC samplers.

REPLY TO THE DISCUSSION

We first want to thank our official discussant, Hal Stern, for his comments and to Christian
Robert, Pilar Iglesias and Reinaldo Arellano-Valle for their contributions to the discussion of
our paper.

Our reply to Hal Stern must be brief because we are in agreement with all the points he raised,
and we fully share his point of view of the usefulness of the SAR procedure for exploratory
data analysis. We appreciate his thoughtful and wise comments on our procedure which will
stimulate us to extend it for further applications. We agree that our method should be compared
to clustering methods, and in fact we have carried out a comparison of the SAR procedure with
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and some of traditional and new clustering methods, including k-Means, Mclust, the Projection
Pursuit method by Peña and Prieto (2000) and others (see Peña, Rodrı́guez and Tiao, 2002).
The result we have found by an extensive Monte Carlo study is that the SAR procedure seems
to have the best performance according to standard criteria to compare cluster methods. In the
present paper we have emphasized the exploratory role of the SAR procedure in regression and
thus the comments of Harl Stern on our claims on solving the heterogeneity problem are right.
However, we also believe that the SAR procedure can be extended to provide a formal structure
for inference but this will be the subject of further research.

We agree with Christian Robert that if we had exact procedures we better use them. However
the problem is that with complex data set usually there is no exact procedure available. We may
assume a model, run MCMC and get an answer but this type of ”exact” procedure when applied
with the wrong model can be misleading, as illustrated in the outlier problem we refer to in our
paper. We believe that the SAR procedure can help in formulating a reasonable model for the
data in hand. Regarding the second point, we assume that a regression model has been fitted
to the data and we want to check for homogeneity. If the model was a mixture of regression
we could in principle apply the SAR procedure to the mixture to check if it is homogeneous.
We agree that a key advantage of the SAR procedure is its simplicity and small computational
burden and we will try to keep this feature in its extension to generalized linear models.

The comments and suggestions by P. Iglesias and R.B. Arellano-Valle are very appropriate.
We do not expect difference in behavior in the SAR procedure by moderate changes of the prior
distribution, but this point deserves a carefully investigation. Also the suggestion to develop
cluster algorithms as decision problems is attractive and we will be interested in developments
in this area in the future.
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