A Powerful Portmanteau Test of

Daniel PENA and Julio RODRiIGUEZ

Lack of Fit for Time Series

A new portmanteau test for time series, more powerful than the tests of Ljung and Box and Monti, is proposed. The test is based on the
mth root of the determinant of the mth autocorrelation matrix. It is shown that the proposed statistic is a function of all of the squared
multiple correlation coefficients of the regressions of the residuals on their lags when the number of lags goes from | to m. It can
also be written as a function of the first /mn partial autocorrelation coefficients. The asymptotic distribution of the test statistic is a linear
combination of chi-squared distributions and can be approximated by a gamma distribution. It is shown, depending on the model and
sample size, that this test can be up to 50% more powerful than the Ljung and Box and Monti tests. The test is applied to the detection
of several types of nonlinearity by using the autocorrelation matrix of the squared residuals, and it is shown that, in general. the new
test is more powerful than the test of McLeod and Li. An example is presented in which this test finds nonlinearity in the residuals of

the sunspot series.
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1. INTRODUCTION

Suppose that a time series {X,} is generated by a station-
ary and invertible ARMA(p, q) process of the form ¢(B)X, =
0(B)e,, where &, ~ N(0, 0?) and ¢(B) and 6(B) are poly-
nomials given by ¢(B)=1-¢B—---—¢,B" and 8(B) =
1—6,B—-.-—0,B% where B'X, = X, ;. Usually X, is some
transformation of an observed time series such as differencing.
Defining 8(B) and ¢(B) as the estimated polynomials where
the coefficients ¢, and 6, are replaced by the maximum like-

N

lihood estimators, ¢, and 6, the residuals of this model are
given by &, = é“(B)d;(B)X,. Several diagnostic goodness-of-
fit tests have been proposed based on the residual autocor-
relation coefficients given by r, =3_/_, | £,&, />, & for
k=12,....

Box and Pierce (1970) introduced a portmanteau test to
check the adequacy of the fitted model, using the statistic

m

Q=n) r. (1)

and they showed that the asymptotic distribution of Q can be
approximated by a x* distribution with m — (p+ g) degrees of
freedom. Ljung and Box (1978) improved this approximation
by replacing the autocorrelation coefficients r, in (1) with their
standardized values

L (n+2),
2o, 2
. (n—-k)rA @
leading to the statistic
Q,_B:n(n+2)2(n—k)']r,‘z. (3)

k=1
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Ljung (1986) showed that when m is small, the estimated size
of Oy can be improved by using the scaled y* distribution
and that computing Q) with too many residual autocorrela-
tions can reduce the power of the test.

Monti (1994) proposed a portmanteau test of goodness-of-
fit based on partial autocorrelations. Let 77, be the kth residual
partial autocorrelation. If the model is correctly specified, 7,
is approximately distributed as a normal random variable with
mean zero and variance (n—k)/(n(n+2)). Thus, a portman-
teau test statistic, similar to the Ljung-Box statistic, can be
defined by

m

Our=n(n+2)Y (n—k) "7 4)

k=1

Under the assumption that the time series has been generated
by an ARMA(p, ¢), the asymptotic distribution of Qyy is x°
with m — (p + ¢) degrees of freedom. Monti (1994) showed
by simulation that when the fitted model underestimates the
order of the moving average component, Qy; is more power-
ful than Q, 5. Kwan and Wu (1997) examined via Monte Carlo
simulation the finite-sample properties of (3) and (4) for data
generated with monthly seasonality, finding only small differ-
ences between the powers of Qyr and Q, ;.

This article proposes a new portmanteau goodness-of-fit test
based on a general measure of multivariate dependence and is
organized as follows. Section 2 presents the test and its main
properties. Section 3 obtains its asymptotic distribution and
shows that it can be approximated by a gamma distribution.
Section 4 includes a Monte Carlo study of the properties of the
test and shows that it is more powerful than the tests proposed
by Ljung and Box (1978) and Monti (1994). Section 5 extends
the test to check nonlinearity by using the autocorrelations of
the squared residuals. It is shown that the proposed test is
more powerful than that proposed by McLeod and Li (1983).
Section 6 discusses some advantages and limitations of the
proposed test.
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2. THE PROPOSED TEST

The estimated residuals can be considered a sample of mul-
tivariate data from some distribution. We are interested in test-
ing whether or not the covariance (correlation) matrix of their
distribution is proportional (equal) to the identity. In multi-
variate analysis the likelihood ratio test for checking if a set
of normal random variables has a scalar covariance matrix is

proportional to the determinant of the correlation matrix of

the multivariate variables. Thus, it is sensible to explore a test
based on this statistic.

For stationary time series data the residual correlation
matrix of order m, R,,, is given by

iiNl = = . . ~_ * (5)

roF |

m "m—1

We propose to test for autocorrelation in the estimated resid-
uals by using a transformation of |R,,| that has a simpler dis-
tribution under the null hypothesis. The proposed portmanteau
statistic is

D, =n[l-|R,|""]. (6)

This statistic has two interesting interpretations. The first
can be obtained by using a recursive expression for the deter-
minant of the matrix (5). If we define t,,, = (r).....,r,), we

can write
3]
ﬁ _ ] r(m)
m i; ﬁ s
{(m) “rm—1

and, using the properties of the determinant of a partitioned
matrix, we have

|ﬁm| = liimfll(] - R?)l)’

Where R (m)Rm |
relation coefﬁctent in the linear fit &, = 37", h;€,_
recursive use of this expression, we have

r.,, is the square of the multlple cor-
;+u,. By

L/m
mll "= [n(l —R; )i' . (7)

Note that 1 — R? is a measure of dependence and [R,,|'/"
is the geometric average of these dependence measures. Thus,
I — lﬁm|‘»"’” can be interpreted as an average squared cor-
relation coefficient, obtained when autoregressive models of
increasing order are fitted to the residuals of the estimated
time series.

The second interpretation is based on the partial autocorre-
lation coefficients. Note that 1 — R? = RSS(1,:)/TSS, where
RSS(1,0) is the residual or unexplained sum of squares in the
analysis of variance (ANOVA) decomposition of the residual
regression £, =Y"'_ b€, +u, and TSS = 3" £] is the total
sum of squares. In the same way, | —R? | =RSS(1,i—1)/TSS
and

| —R?
I—R.,

RSS(1, 1)

“m_—l—)-_—(l*ﬂf)s (8)
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where 77 =[RSS(1,i—1)—RSS(1,i)}/RSS(1,i—1) is the ith
squared partial autocorrelation coefficient. Thus, using (8) and
(7). we obtain

"

l_[ 1m+1 —)/m (9)

| 1/m
m

This expression shows that |R,,|'"" is a weighted function of
the first m partial autocorrelation coefficients of the residuals.

3. DISTRIBUTION OF THE PROPOSED STATISTIC

In this section we derive the asymptotic distribution of the
proposed statistic (6) for all m, where m is the number of
sample autocorrelations. As this distribution is complicated,
we follow Box and Pierce (1970) in obtaining an approxima-
tion to this distribution when m is moderately high. Then, we
will show by Monte Carlo simulation that this approximation
works well in small samples.

3.1 Asymptotic Distribution

The statistic 5," is a continuous function of the sample par-
tial autocorrelations, 7, as shown in Equation (9). Defining
T = (7, . ... 7,)", and using a result of Monti (1994), we
have that n'/*77,, is asymptotically multivariate normal with
zero mean vector and covariance matrix (I, —Q,,), where
Q,, =X,,V!IX/, V is the information matrix for the param-
eters ¢ and 0, and X,, is an m X (p+ ¢g) matrix, with ele-
ments ¢’ and 6’ defined by 1/¢(B) =3, ¢'B and 1/6(B) =
Y, @B (see Brockwell and Davis, 1991, pp. 296-304). The
coefficients ¢, and 8; are readily computed using the recursive
procedure of Box and Jenkins (1976, pp. 132-134).

If the model is correctly identified, D is

m

Theorem 1.

asymptotically distributed as >0, A, xi .. where xi, (i =
1,...,m) are independent X| random variables and A; (i =
1,...,m) are the eigenvalues of (I, —Q,)W,,. where W,

is a diagonal matrix with elements w;, = (m—i+1)/m (i =
I,...,m).

The proof of this theorem is given in the Appendix.

For a general ARMA mode] the expression for the eigen-
values of (I, —Q,,)W,, is complicated. However, these eigen-
values are readily calculated for any given ¢, 6, and m. In
the following subsection, we propose an approximation to the
distribution Y-, A, x7 ; for moderately high m.

3.2 An Approximation to the Distribution of 5,,,

The probability Pr(ﬁm > x) can be evaluated by invert-
ing the characteristic function of Y./ A, x{, (Imhof, 1961).
This procedure requires only one-dimensional numerical inte-
gration, but for simplicity, we prefer to use the approxima-
tion proposed by Satterthwaite (1941, 1946) and Box (1954).
They suggested approximating a distribution of the form
> Axi,; by a distribution of the form ay;, with mean and
variance equal to those of the exact distribution, where the
degrees of freedom, b, are usually fractional. This implies a =
S A}/ Y A and b= (¥ A,)?/ 3 A7. Thus, following this sug-
gestion, we approximate the distribution of 5,,1 by a gamma
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Figure 1. The Solid Line is the Monte Carlo Distribution of 5m (left) and D,, (right) Generated from 10,000 Replications of an AR(1) Model
With ¢, = .5, When n =100 and m = 20. The dashed line is the G(a, B) approximation With « =7.3 and B =.77.

distribution, G(a = b/2, f = 1/2a), where the parameters are
defined by

_ 3m[(m+1)=2(p+q))°
“= 22(m+ 1Y2m—+ 1) = 12m(p+q)]

and

_ 3mf(m+ 1) =2(p+q)]
T 2(m+DC2m+ 1) —R2m(p+q)°

B

and the distribution has a mean of «/B=(m+1)/2—(p+gq)
and a variance of a/B% = (m+ 1)(2m+1)/3m—2(p+¢q). The
details of this approximation are given in the Appendix.

This approximation has been checked by a Monte Carlo
experiment. As the gamma approximation to the asymptotic
distribution improves when the standardized autocorrelation
coefficients 7, defined by (2) are used, we will consider both
5,,,, given by (6), and D,, defined by

D, =n[l—[R,|""]. (10)
where ﬁ,,, is the correlation matrix built by using the standard-
ized autocorrelation coefficients 7,. Under the null hypothesis
5,,, and D,, are asymptotically equivalent, but obviously, some
differences may be expected in their small-sample behaviors.
Figure 1 illustrates the accuracy of the approximation of the
empirical distribution of 5,” and D,, to the gamma distribu-
tion, using 10,000 replications of sample size 100 by an AR(1)
process with ¢, = .5 and m = 20. We have found similar
results in a larger simulation study, and, as the approximation
by the standardized autocorrelations is better, we recommend
the use of D,,, especially for small sample sizes.

m*

Table 1 shows the percentiles corresponding to « = .05 for
different values of m and the estimated parameters (p+ ¢)
for the proposed approximating distribution. Note that in the
approximation m > ¢(p, ¢), where ¢(p,q) =3(p+q—1/2)
is obtained from the restriction that the variance must be pos-
itive.

4. SMALL-SAMPLE SIGNIFICANCE LEVEL
AND POWER OF D,,

In this section we present a comparative study of the signifi-
cance level and power of the three statistics D,,, Q5. and Qyr
given by (10), (3), and (4). The significance levels of Q, ; and
Oy have been obtained using the percentiles of the y* distri-
bution, and those of D, using the approximation obtained in
Section 3.2.

These significance levels have been evaluated under both
low-order AR and MA models, but here we report only the
results for the AR(1). Similar results were found in the other

Table 1. 95% Points of the Recommended Approximation to the
Distribution of D, for Different Values of m and (p+q)

p+q

m 0 1 2 3 4 5 6 7

7 8.56 6.70 4.52 —_ — — — —
10 1071 9.00 7.14 4.96 — — — —
12 12.10 10.46 8.71 6.76 4.37 — — —
14 1346 11.87 10.11 8.39 6.35 3.56 —_ —
24 1997 1852 17.05 1553 1396 1232 1057 8.63
36 2742 2606 2469 2330 2188 2044 1896 1744
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Table 2. Significance Levels of D,,, Qs and Q,; Under an AR(1) Mode!

m= 10 m=15 m =20

¢ Dn Qs Quw D, Qp Quw D, Qs O
a=.05

10 .055 .053 .056 054 057 .054 .055 .062 .054

.30 .053 .052 053 .052 057 .054 053 .062 .049

.50 .052 .055 052 049 .057 .046 .047 058 .046

.70 .054 .057 .053 .050 .060 .048 .050 .069 .048

80 .050 .054 .043 042 059 .039 .041 .061 .039
a=.01

10 .009 .013 011 009 .016 .011 .010 .019 .011

.30 .010 012 011 .009 .017 .011 .008 .021 .010

50 .008 012 .008 .007 .016 .007 .007 .019 .008

.70 .010 .015 .010 .008 015 .010 .009 .021 .007

90 .01 .013 009 .009 017 009 009 .021 .009

cases, and they are available upon request from the authors.
In each case, 10,000 Gaussian series of sample size n = 100
were generated. Three values for m, 10, 15, and 20, were
considered. Table 2 shows the significance levels of the three
statistics for several values of the AR(1) parameter when the
nominal levels a are .05 and .01. The observed significance
level is close to the nominal level for the three statistics, and
the results obtained for Q, ; and Qy; are similar to those pre-
sented by Monti (1994). In all 30 cases the observed signifi-
cance level of Q, ; is larger than the nominal level, whereas the

Journal of the American Statistical Association, June 2002

behavior of Qyp and D,, shows less variability. For a = .05,
the significance levels of D,, belong to the interval (.041-.055)
and are always between those of Q, ; (interval .052-.069) and
QO (interval .039 — .056). For a = .01 the observed values
for D,, and Qy, are in the interval (.007-.011), whereas those
of Q5 are in the range (.012-.021). The significance level of
D,, does not seem to be affected by the value of m.

The power of the tests is analyzed for the models proposed
by Monti (1994). Twenty-four different ARMA(2, 2) models
are considered. Table 3 shows the power of the three tests
when, erroneously, an AR(1) or a MA(1) model is fitted to
the data. In each case 1,000 series of 100 observations were
generated, and the power was computed for m = 10 and m =
20. The power of the three tests decreases as m increases,
as expected, but the loss of power in D,, is relatively small.
The test based on D,, is always the most powerful, and the
increase in power with respect to the best of the other two
statistics, Oy and O, g, can be as high as 50% in some cases
(see models 1, 11, and 23).

In order to analyze the performance of the test for small
sample size, Table 4 presents the same power study with n =
30. The values of m are 5 and 10. As before, the power of
the three tests decreases as m increases, and the test based on
D, is almost always the most powerful (with the exception
of model 22). Again the increase in power can be as high
as 75% (see models 5 and 11). As expected, the power of
the three tests is generally low, although in some cases (see
models 7, 15, and 19) the power of the proposed test can be
higher than 70%.

Table 3. Power Levels of the Tests Based on D, Qg, and Q,,; When the Data Are Generated From ARMA(2,2) Models
and AR(1) and MA(1) Modeils Are Fitted, n = 100

m=10 m= 20
M ¢, &, o, 0, D, Qe Qur D, Qs Qwr
(a) Fitted by AR(1) model
1 — — —.50 — 415 234 278 .299 189 178
2 — — —.80 — 987 751 959 972 .590 .855
3 — — —.60 30 994 762 .983 .987 655 941
4 .10 .30 — — 597 421 412 452 364 .296
5 1.30 -.35 — — .807 620 .605 649 .540 415
6 .70 — —.40 — .781 542 .609 .637 428 415
7 70 — —.90 — 1.000 982 .998 .998 .905 992
8 40 — —.60 .30 .999 .836 .998 997 697 .965
9 .70 — .70 -.15 216 175 .169 .182 173 A1
10 .70 20 .50 — .858 759 763 .781 .658 .621
11 .70 .20 -.50 — 599 .324 .384 447 .288 .260
12 .90 —.40 1.20 —-.30 .088 694 971 970 555 .893
(b) Fitted by MA(1) model
13 .50 — — — .366 295 .265 .287 .243 189
14 .80 — — — .993 .984 .980 .987 .969 939
15 1.10 -.35 — — 1.000 1.000 999 .999 .886 .988
16 — — .80 -.50 .988 .851 .940 .953 727 .838
17 — — —.60 .30 674 .400 A786 .540 337 .340
18 .50 — -.70 — 957 .888 .876 .888 .801 .736
19 -5 — .70 — 957 .893 876 .208 .807 758
20 .30 — .80 —.50 .859 .583 743 .765 468 556
21 .80 — —-.50 .30 .992 980 .960 973 .968 916
22 1.20 -.50 .90 — 719 A77 .709 .688 377 .562
23 .30 —.20 -.70 — 426 278 .280 .306 .233 .208
24 90 —.40 1.20 -.30 .965 .780 .923 .32 638 .822
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Table 4. Powers of the Tests Based on D, Q., and Qy; When the Data Are Generated Using ARMA(2, 2) Models
and AR(1) and MA(1) Models Are Fitted, n= 30
m=25 m=10

M 4)1 ¢2 BI 92 Dm QLB OMT Dm OLB QMT
(a) Fitted by AR(1) model

1 — — —.50 — 210 123 142 153 A17 .098

2 — — —.80 — .587 309 457 495 .253 .305

3 — — —.60 30 608 316 .495 .559 .259 400

4 10 .30 — — 161 113 112 115 .099 .088

5 1.30 -.35 —_ — .367 210 197 220 .198 .130

6 .70 — —.40 — 377 241 .239 .254 222 77

7 .70 — —.90 — .864 498 736 754 447 596

8 .40 — —.60 .30 674 312 .533 579 275 416

9 .70 —_ .70 -.15 .059 .036 .046 .044 .053 .041
10 .70 20 .50 — 177 116 125 129 106 105
11 .70 .20 -.50 — 238 113 134 140 102 .079
12 .90 —.40 1.20 -.30 430 222 .386 435 .204 310
(b) Fitted by MA(1) model
13 .50 — — — 112 .087 .088 .086 .084 .072
14 .80 — — — .584 .467 442 .451 418 .321
15 1.10 —-.35 — — .784 .660 .670 665 587 529
16 — — .80 —-.50 481 .278 355 .379 .282 .281
17 — — —.60 .30 31 127 .200 .243 142 72
18 50 — —.70 — .538 .392 .362 .386 .340 .249
19 —-.50 — .70 — 730 577 544 .587 496 417
20 .30 — .80 -.50 .267 161 .206 216 164 153
21 .80 — —.50 30 655 547 4N 514 .504 .400
22 1.20 —-.50 .90 — 133 131 .163 165 .109 144
23 .30 -.20 -.70 — .236 146 163 .166 146 122
24 .90 —.40 1.20 -.30 .395 183 326 .363 189 .260

5. CHECKING THE LINEARITY ASSUMPTION

The analysis of time series using nonlinear models has
gained much attention in recent years because of the limita-
tions of linear models in capturing some observed real data
structures and the advances in computational power. A large
number of tests of the linearity assumption have been pro-
posed, see Peiia, Tiao, and Tsay (2001, chap. 10). These tests
can be classified into two groups. The first group is based on
the Volterra expansion (Wiener, 1958, lecture 10) of a station-
ary time series Y,, as

Y,=P~+lz aE i+ Y A& i€

i=—c0 i, j=—

-+ Z azjkgt—zgr—jer—k G, (] 1)

i jk=—0o

where w is the mean level of Y, and {g,, —oc <t < 0}
is a strictly stationary process of independent and identi-
cally distributed random variables. Obviously, Y, is nonlinear
if any of the higher order coefficients, {a;}, {a;}, ..., is
nonzero. Based on this expansion and on Tukey’s one degree
of freedom for the nonadditivity test, Keenan (1985) and Tsay
(1986), among others, have proposed specific tests for nonlin-
earity.

A second group of tests is based on the idea, proposed by
Granger and Anderson (1978) and Maravall (1983), that look-
ing at the autocorrelation function of the squared values of
the time series could be useful for identifying nonlinear time
series. If the residuals &, are independent then the £; will also

be independent, but if the model is nonlinear and the residuals
£, are not independent, this feature can appear in the auto-
correlation function of &2, McLeod and Li (1983) proposed
detecting nonlinearity in time series data, using the statistic

O1u(8) =n(n+2) 3 (n—k)"'rl(&), (12)
k=1

where r,(£?) are the autocorrelation coefficients of the squared

residuals computed by

Z:':I\'Jrl (é? B &2)(5124

(&)

where 6% =3 £?/n. In a similar way, it is possible to build
a test similar to that of Monti, using the partial autocorrela-
tion of the squared residuals, Qyr(€?). We can extend the D,,
statistic (10) for testing for nonlinearity to

_(}2)

f;\-(é,z)= ., m),

Dm(ég) = ,'1[] — |ﬁm(é::-)|l/'m]‘

where R,,(£2) is the autocorrelation matrix (5), which is now
built using the standardized autocorrelation coefficients 7, (£?).
In the following theorem, we give the asymptotic distribution
of the statistic D,,(£?) under the null hypothesis that the series
follows an ARMA model that is correctly identified.

Theorem 2. If the series follows an ARMA model, the
statistic D,,(£7) computed from the squared residuals of
the correctly fitted model is asymptotically distributed as
> wxi . where xP, (i =1,...,m) are independent x;
random variables and w, = (m—i+1)/m (i=1,...,m).
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The proof of this theorem is given in the Appendix.

The asymptotic distribution of Theorem 2 can be approx-
imated as before by a Satterthwaite-type approach using a
distribution of the form ay;. Thus, if the series follows
an ARMA model, the asymptotic distribution of D, (&)
can be approximated by a gamma distribution, G(a = b/2,
B = 1/2a), where a = 3m(m+ 1)/42m + 1) and B =
3m/2(2m+1). The first column ot Table | shows the per-
centile corresponding to « = .05 for the most usual values of
m for this approximated distribution.

5.1 Power Study

In this section we compare the powers of the statistics
D, (81). Q3(&). and Qyr(&)) for testing for linearity. We
will calculate the test powers for the four nonlinear models
used by Keenan (1985),

Model 1, Y, =¢,—.4de, |+ .3¢,_5+.5¢¢,_:

Model 2, Y, =e¢,— 3¢, , +.2¢, ,+.4¢, e, — 25¢ .
Model 3. Y, =.4Y,_, —.3Y,_,+.5Y, j¢,_ +e,;
Model 4, ¥, = 4Y,  —3Y_, +.5Y, e, + 8¢, +e,:

where the e,’s are independent N (0, 1).

Table 5 summarizes the power results. For each model
1,000 replications of sample size n = 204 were generated. An
AR(p) model is fitted to the data, where p is selected by
the Akaike information criterion (AIC) (Akaike, 1974) with
p € {1.2.3,4}. The power of the proposed test, D, (£7), is
broadly between 6% (Model 4, m = 7) and 40% (Model 2,
m = 24) higher than the powers of the tests based on Q, z(£7)
and Qy(£7). None of these tests is powerful in handling
Model 1, which contains a concurrent nonlinear term e,e,_,.
The difficulties in observing the nonlinearity of Model | are
seen in the study by Tsay (1986), which compares some statis-
tics for checking nonlinearity over the same four models. From
the comparison of Table 5 and the results obtained by Tsay
(1986), we conclude that the proposed test D, (&7) is better
than that proposed by Keenan for all lags, for m =7, 12, and
24, and for all models except Model 2. However, the proposed
portmanteau test is slightly worse than the test proposed by
Tsay (1986).

We are interested in checking the behavior of the proposed
statistics in the detection of nonlinearity in Threshold Autore-
gressive (TAR) models, which are among the most popular

Table 5. Powers of the Tests Based on D,,, Q g, and Qyu; When the
Data Are Generated by Four Nonlinear Models,
and the Fitted Model Is an AR(p), « = .05

m=7 m=12 m=24
M del D, Qs Qn Dn Qs Quw D, Qs Qu
1 157 114 120 126 100 .091 .091 .094 .089
2 566 497 .480 511 A0 BM4 406 289 277
3 960 900 914 oo .. .70 .740 .70
4 .788 .686 .614

914 860 .830 .50
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Table 6. Powers of the Tests Based on D,,, Qg and Qy; Give Data
Generated From a TAR(2) Model When AR(2) Is Fitted, « = .05

m=12 m=24 m=36
n b, Qs  Qur D, Qe Quw D, Qe  Qur
100 .045 .036 .046 .043 .044 045 .025 .056 .032
200 054 051 053 045 .050 .056 .037 .059 044
500 .054 .048 050 .046 054 046 .040 .059 .051

nonlinear time series models in applied research. The simplest,
two-regime TAR(1) model is given by

L (.,
yi=¢, +é, v +e,.
N (2) (2) | .
.‘i:(b() +(b| ,\I—I+b2/‘

ity <c.
ify,_ >c.

With this aim, 1,000 replications were generated with sample
sizes 100, 200, and 500 from the TAR(2) model with four
regimes proposed by Tiao and Tsay (1994). This model is
an alternative to the AR(2) model for capturing the structure
of the U.S. real GNP series from the first quarter of 1947
to the first quarter of 1991 with a total of 177 observations.
The regimes and their economic interpretation are described
in Tiao and Tsay (1994),

Table 6 shows the power of the three statistics D,,. Q. and
Qyr applied to the residual autocorrelations after fitting an
AR(2) model. The values shown in the table are close to the
nominal significance level used, (.05), confirming the lack of
power of these statistics to detect threshold nonlinear structure.

Table 7 displays the power of the statistics based on the
autocorrelations of the squared residuals of the AR(2) fit,
D, (€). O 5(€7). and Qyr(&7). The power of the three statis-
tics is now much larger, especially in large samples, and again
the statistic D, (£7) is the most powerful for all sample sizes
and lags. The increase in power of D, (£7) with respect to the
best of Q5 and QO for m =12 goes from 22.9% to 40.8%.

Finally we analyze an important class of nonlinear time
series models with changing conditional variance. Engle
(1982) proposes Autoregressive Conditional Heteroscedastic-
ity (ARCH) models, which have been generalized to the
Autoregressive Stochastic Volatility (ARSV(1)) models, pro-
posed by Taylor (1986), and the Generalized Autoregressive
Conditional Heteroscedasticity (GARCH(1,1)) models, pro-
posed by Bollersley (1986). These models have been used for
analyzing financial time series (see Carnero, Pefia, and Ruiz
(2001), for a review of their applications in finance) and for

Table 7. Powers of the Tests Based on D,,(£?), Qug(£?), and Q(é?)
Give Data Generated From a TAR(2) Model When AR(2)
Is Fitted, a = .05

m=12 m=24 m =36
n D, Qs Qur D, Qs Ow D, Qs Qur
100 162 115 109 089 0768 .077 Q75 075 055
200 296 228 .213 216 .17 178 .18 146 122
500 648 527 524 556 442 415 499 369 .342
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Table 8. Powers of the D,,(£2), Q_(8?), and Qu;(£2) Tests for Two
ARCH(p) Models

m=7 m=12 m=24

P n D, Qs Quw D, Qs Qun D, Qs Qu

1 100 567 484 469 504 427 .411 409 .341 298

250 .787 733 .731 755 .707 .691 .699 .644 .623

500 .854 835 .840 .843 .818 .814 .825 .794 .788

1000 921 904 903 .912 .894 .893 .898 .886 .882

3 100 .446 421 405 .417 370 .350 .334 .313 .265

250 724 707 692 .709 685 .657 .670 .628 .579

500 .796 .778 773 .788 .754 .754 765 .734 .708
1000 .882 .873 .870 .875 .850 .842 .854

.830 .814

modeling environmental variables (see Tol, 1996, tfor a mete-
orological application). The test most often used for checking
this type of nonlinearity is Q, 4(&7) as given by (12).

To analyze the power of the new proposed test for these
models, we generate first 1,000 series of sizes n = 100,
250, 500. and 1,000 for the covariance stationary process
ARCH(p),

.VI = SIU!

o =aytay] +ap-\‘12—p’
where a, > 0 and Y7 «; < |. We consider the cases p =
| and p = 3. The parameters «; have been sampled from a
uniform U(0, 1) and are rescaled by an auxiliary variable, s,
from a uniform distribution U(0, 1) so that 37, «; = s.

Table 8 shows the power of the tests based on D, (£?),
0, 5(&7). and Qy (&%) for the ARCH(p) models, with m =7,
12, and 24. The test based on D, (£7) is again the most pow-
erful for all sample sizes and lags, but the advantage of this
test over the other two is lower here than with other nonlinear
models. For the ARCH(3) model the ditferences in power of
the three tests arc small, and the increase in power of D, (£7)
goes from 1.0% to 12.7%.

Tables 9 and 10 show the power of these tests for four
covariance stationary GARCH(1,1) models.

.VI - SIU

I

ki i hi
o =1+ay_, +Bo,,

where o >0, >0, and @+ < . Again 1,000 replicates
have been made. The parameters in the first two models (see
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Table 9), are taken from real financial time series (see Carnero
et al., 2001), whereas those in Table 10 are taken from envi-
ronmental data (see Tol, 1996). An interesting result is that the
power of the proposed test depends very much on the parame-
ter values: it is slightly less than the one for Q| (£;) (although
greater than the one for Qy(£;)) in financial data with long
persistence, whereas it is the most powerful of the three in
Table 10 with parameter values obtained from the environ-
mental data. A possible reason for this ditferent behavior is
given in the following section.

Table 11 shows the power for 1,000 replicates trom an
ARSV(1) model,

,\,I = U*EIUI'

el i
logo; = ¢logo, | +1,.

where o, > 0, |¢| < |, and &, and 7, are assumed to be
mutually independent and normally distributed white noise
processes with zero mean and variances | and o, respec-
tively. The simulation experiment follows the design of Sand-
mann and Koopman (1998). The autoregressive parameters
are ¢ = (.7..9, .98}, and the parameter o, is selected so that
the coefficient of variation of logo; takes the values 10, I,
and .0l. High values of the ratio of volatility variance to
its squared mean indicate pronounced relative strength of a
stochastic volatility process.

We can observe that the proposed test is more powertul
than the other tests for m = 24 and m = 36. However, for
m =12 and ¢ > .9 the power of D, (&) is similar to or
slightly slower than the test based on Q5. These results are
consistent with the behavior observed in Table 9, since both
models, GARCH(1,1) and ARSV(1), are used to fit financial
time series with long persistence.

5.2 An Example with Real Data

In this section we apply the D, (&7) statistic to find non-
linearities in the well-known sunspot time series. This time
series has been studied previously by various authors who
have applied both linear and nonlinear models. A detailed
description of some of the different models proposed can be
found in Priestley (1989). Following Priestley (1989, p. 882),
we have fitted an AR(9) model to the sample of 246 observa-
tions corresponding to the first 246 observations from 1,700.
The order of the linear model was determined by the AIC.
The model is estimated by maximum likelihood, and no struc-
ture is found in the residuals using the statistics D,, O,

Table 9. Powers of the D, (£2), Qg(£?), and Qy(€2) Tests for Two GARCH(1,1) Models of Financial Time Series

m=12 m=24 m=232
n a B D, Qs Qur D, Qe Qur D, Qe Qur
250 .05 .90 .268 301 .256 244 279 221 213 .246 182
15 .80 .821 .825 778 782 775 .695 731 732 623
500 .05 .90 522 .553 494 510 527 441 479 .486 388
15 .80 .986 .986 .976 .981 .979 .959 973 971 .937
1,000 .05 .90 807 .837 .786 .802 .809 .728 776 771 672
15 .80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999
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Table 10. Powers of the D,,(§2), Qa(£2), and Qu;(€?) Tests for Two GARCH(1,1) Models of Meteorological Time Series

m=7 m=12 m=24
n @ a B D, Qs Qur D Qs Qur D, Qi Qur
90 1.21 404 153 .506 .433 425 454 .369 .337 .328 .290 .220
1.58 .55 105 631 546 523 553 479 435 426 .369 .309
180 1.21 404 183 .825 751 731 781 .703 671 .697 611 .536
1.58 .55 105 .905 .867 .854 .875 .818 .794 .810 739 875

and Qyr, with lags m = 12 and 24 and a = .05. However,
when the statistic D, (£%) is used, a clear indication of non-
linear structure appears. Table 12 presents the values of the
three portmanteau statistics applied to the squared residuals.
To facilitate the comparison, in addition to the value of each
statistic the ratio between the statistic and the percentile cor-
responding to « = .05 for each distribution is also given (see
columns 3, 5, and 7). The statistic D,,(£7) clearly suggests
a nonlinear structure in the residuals of the sunspot series,
whereas the results from the Ljung-Box and Monti statistics
on the squared residuals are not decisive.

6. ADVANTAGES AND LIMITATIONS OF THE
PROPQOSED TEST

The proposed test has an interesting property that may
explain why it works so well in some cases compared with
other portmanteau goodness-of-fit tests. Note that, for large
n, both the Ljung-Box and Monti tests are symmetric on
the autocorrelation coefficients; that is, given a sequence of
autocorrelation coefficients (r,....r,), a permutation of this
sequence does not affect the test. However, the proposed test
is highly asymmetric with respect to the autocorrelation coef-
ficients. In fact, R,, includes 2(m —i+ 1) times the ith auto-
correlation coefficient, which implies that the first autocorre-
lation coefficient appears 2m times in the matrix, whereas the
mth autocorrelation coefficient appears only twice. One would
expect that this asymmetry will imply a larger sensitivity of
IR,,| to changes in the low-order coefficients, and this seems
to be the case. We have checked that for m =1,2,3,4,5, we
have

where the derivative of the determinant with respect to the jth
autocorrelation coefficient is evaluated at r,,, = (e. &,.. ., €)".
We can see that, in these particular cases, the effect of a
change in the jth autocorrelation coefficient decreases with
the lag. Thus, we can conclude that the proposed test is
more sensitive to the low-order autocorrelation coefficients
than to the large order ones. in contrast to Q5 and Qyr,
which have the same sensitivity for all order autocorrelation
coefficients.

This same property applies to the partial autocorrelation
coefficients. In the proposed statistic they also have a weight
that decreases with the lags. From (9) it is easy to see that

d|ﬁ"l| . 7}/ o H
——==2(m+1-}) — ||R,,I. j=1l...,m,
dm; b=
and evaluating this function at 7, = (¢.&,....¢)’,
d|R \ -\
I mi I — _2(”1 + ] —j)S(I _ 8.’)111(!11+I)/_—l’
dm, \a,, ==t

we conclude that the effect on the determinant of a change
in the jth partial autocorrelation coefficient decreases linearly
with the lag.

When the information about the lack of fit is mainly
included in the low lag autocorrelation coefficients (simple or
partial), D,, seems to be more powerful because it gives more
weight to these coefficients than do both Oy and Q. On
the other hand, when this is not the case and the information
is spread over a long number of lags, this advantage may dis-
appear and D,, has a power similar to those of Q)5 and Qyy.

d[ﬁ”| | For instance, for heteroscedastic data with long persistence
i _ ; nm— T
o M —2e(m+1-j)(1-&)""", J=1.....m. (see Tables 9 and 11) we have seen that the performances of
J tm)y—*
Table 11. Power of the D,,(§2), Q5(€?), and Qy(€2) Tests for ARSV(1) Models (n = 250)
m=12 m=24 m=236

¢ Tn a. cv D, Qs Qur D, Qs Qur D, Qs Qur
.70 1.239 014 10 503 425 .396 410 324 315 .342 274 .257
.70 .666 .041 1 468 .389 .362 376 .299 275 315 .263 228
.70 .247 .029 0.1 297 .237 226 .232 179 155 179 164 A17
.90 675 .016 10 .837 .818 787 .787 733 .687 735 .662 .606
.90 .363 .025 1 .868 .832 790 795 767 .703 751 .709 .607
.90 135 .029 0.1 .688 695 631 847 .604 .525 566 532 435
.08 .308 .016 10 .959 .959 .939 .935 927 .888 910 .892 .847
.98 .166 .025 1 .954 .954 .934 .937 936 .898 917 .907 .839
.98 .061 029 0.1 .905 .925 .886 .885 .885 .830 .854 .852 763
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Table 12. Nonlinearity Tests on the Residuals of the Sunspot Data
When an AR(9) Model Is Fitted

m  Dn(&) Dn(E)/de Qulé)) QulE)/de Qurlél) Quiléf)/de
7 1735  1.93 21.13 1.50 19.15 1.36
12 1852 153 229 1.08 21.17 1.01
24 21.01 1.05 27.07 74 26.56 73

the three tests are similar. We have checked that for seasonal
models the performance of D, is still better in general (and
sometimes equal) to the performances of Q, ; and Qyr. How-
ever, it is possible that if the relevant information for model
checking is mainly given by the high-order autocorrelation
coefficients, D, might be less powerful than Q, ; and Q.

APPENDIX: PROOFS OF THEOREMS AND
APPROXIMATIONS TO THE DISTRIBUTIONS

Proof of Theorem 1

Suppose that under the null hypothesis, 5,,, is asymptotically dis-
tributed as the random variable X. Then, applying the 6-method (e.g.,
in Arnold, 1990) to g(x) =log(1 — x), it follows that —nlog R, |'/"
is also asymptotically distributed as X. From (9) we obtain the equiv-
alent expression,

Mom—i+1

—n log(lﬁ,,,l””’) =-ny ———log(l — 7). (A1)
= M

To find the distribution of (A.l), suppose that (n#i,n#3,
,n7?}) is asymptotically distributed as Y. Then, applying the

multivariate 8-method (e.g., in Arnold, 1990) to g(#Z,...,#2) =
=¥ ((m—i+1)/m)log(l —#2), it follows that
" it ] . -1 I
—nzulog(l—ﬂ’f)% (l. e, —)Y. (A2)
= m m 1

where — stands for convergence in distribution. From the Cramer—
Wold theorem (e.g., in Arnold, 1990), it follows that

m

m—1 1 i Ao a2
[ RS — (nm . nmy, .. ni,)

Using the fact that n'/* 7, is asymptotically distributed as N (0.1, —
Q,,) and from the theorem on quadratic forms given by Box (1954),
it follows that

m—1 1 i a2 a2y
ly— ..., — J(n7ry, nfs, .. n;)
m
m

= nﬁ'('m)Wﬁ(,,,) = /\.X|2,r (A.4)

izl

Finally, tfrom (A.3) and (A 4),

m_] 1 " 5
(SN T

i=1

and from (A2)7 5»1 - Z:n:l /\IX|21
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Approximation to the Distribution of D,

Box and Pierce (1970) and McLeod (1978) approximate the matrix
Q, =X,V 'X by the projection matrix Q,, = X,,(X,X,)"'X,,
when m is moderately high. This approximation is useful for com-
puting an expression for @ and b that does not depend on the ARMA

parameters ¢ and 6. We have

"

Z )‘i = [r((lm

i=1

- Qm)wm)
= [r(wm) - [r(Qm) + ( 1 /’n)[r(anCm)~ (AS)

where C,, is a diagonal matrix with elements ¢; =i, i =0
(m—1), and

.....

m

Z A;l = tr((Im - Qm )Wm (Im - Qm)wm)
i=1

=tw(W2) -1r(Q,,) + (2/m)(Q,,C,,)
- (Z/Inz)tr(Q"'C’z") + ( 1 /mz)tr(QNICl“QIHCNl)' (A‘6)

An alternative expression for 3_ A; and 3~ A? can be obtained using
the Cholesky decomposition of the matrix (I, —Q,,) (see Velilla
(1994)). As Q,, is an idempotent matrix with rank p+ g, (A.5) and
(A.6) can be written as a function of p, g, m, g;, and g;;, where the
q;; are the elements of Q

me

" m+ 1 | )
Z)‘f: ) _(P+q)+_2(’_l)qz'i~ (A7)
i=1 mio
m 1
YA = —(m+D2m+1)~(p+4q)
i=1 6m
2 m 2 m 5
NG~ Da. — i~ 1.
XIS WIS
1 m m . )
+?ZZ(2—1)(1—1)q5. (A.8)

i=2 j=2

Now we will show that the terms in (A.8) which depend on g
tend to zero when m increases. Consider the sequences a; =i and
by = (i~ 1)g;. Then 37, (i — 1)g;/i <301, q; =p+q < oo as
m — oo, and by Kronecker’s lemma (Davidson, 1997, pp. 34-35) we
obtain that (2/m)> " (i — 1)g; — 0. A similar argument and the
property of idempotent matrices, g;; = g;; + Y./, g;;. is used to show
that (2/m?) ¥ (i = 1Y2q; — 0 and (1/m?) S0, X7 (i~ () -
l)q,.zj—>0. Thus, for large m we can approximate Equations (A.7)
and (A.8) by

" m+1
A=———(p+a) (A.9)
i=1 “
m 5 l
LA = (mE2m 1) = (p+q). (A.10)
i=1

Proof of Theorem 2

This is based on the result by McLeod and Li (1983) for the
asymptotic distribution of n'/?r,,(£%), which is N(0,1,,). Applying
this result to the one obtained by Monti (1994), the asymptotic dis-
tribution of »n'/>7, (£7) is N(0,L,). Following the same reasoning
as in Theorem 1, the asymptotic distribution for D,,(£?) is obtained.

[Received December 2000. Revised August 2001.]
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