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In this article, we present a simple multivariate outlier-detection procedure and a robust estimator for
the covariance matrix, based on the use of information obtained from projections onto the directions that
maximize and minimize the kurtosis coef� cient of the projected data. The properties of this estimator
(computational cost, bias) are analyzed and compared with those of other robust estimators described in
the literature through simulation studies. The performance of the outlier-detection procedure is analyzed
by applying it to a set of well-known examples.
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The detection of outliers in multivariate data is recognized
to be an important and dif� cult problem in the physical, chem-
ical, and engineering sciences. Whenever multiple measure-
ments are obtained, there is always the possibility that changes
in the measurement process will generate clusters of outliers.
Most standard multivariate analysis techniques rely on the
assumption of normality and require the use of estimates for
both the location and scale parameters of the distribution. The
presence of outliers may distort arbitrarily the values of these
estimators and render meaningless the results of the applica-
tion of these techniques. According to Rocke and Woodruff
(1996), the problem of the joint estimation of location and
shape is one of the most dif� cult in robust statistics.

Wilks (1963) proposed identifying sets of outliers of size j

in normal multivariate data by checking the minimum values
of the ratios —A4I5—=—A—, where —A4I5— is the internal scatter of a
modi� ed sample in which the set of observations I of size j

has been deleted and —A— is the internal scatter of the complete
sample. The internal scatter is proportional to the determinant
of the covariance matrix and the ratios are computed for all
possible sets of size j . Wilks computed the distribution of
the statistic for j equal to 1 and 2. It is well known that
this procedure is a likelihood ratio test and that for j D 1
the method is equivalent to selecting the observation with the
largest Mahalanobis distance from the center of the data.

Because a direct extension of this idea to sets of out-
liers larger than 2 or 3 is not practical, Gnanadesikan
and Kettenring (1972) proposed to reduce the multivariate
detection problem to a set of univariate problems by looking
at projections of the data onto some direction. They chose the
direction of maximum variability of the data and, therefore,
they proposed to obtain the principal components of the data
and search for outliers in these directions. Although this
method provides the correct solution when the outliers are
located close to the directions of the principal components, it
may fail to identify outliers in the general case.

An alternative approach is to use robust location and
scale estimators. Maronna (1976) studied af� nely equivariant
M estimators for covariance matrices, and Campbell (1980)

proposed using the Mahalanobis distance computed using
M estimators for the mean and covariance matrix. Stahel
(1981) and Donoho (1982) proposed to solve the dimensional-
ity problem by computing the weights for the robust estimators
from the projections of the data onto some directions. These
directions were chosen to maximize distances based on robust
univariate location and scale estimators, and the optimal
values for the distances could also be used to weigh each point
in the computation of a robust covariance matrix. To ensure a
high breakdown point, one global optimization problem with
discontinuous derivatives had to be solved for each data point,
and the associated computational cost became prohibitive for
large high-dimensional datasets. This computational cost can
be reduced if the directions are generated by a resampling
procedure of the original data, but the number of directions
to consider still grows exponentially with the dimension of
the problem.

A different procedure was proposed by Rousseeuw (1985)
based on the computation of the ellipsoid with the smallest
volume or with the smallest covariance determinant that
would encompass at least half of the data points. This
procedure has been analyzed and extended in a large number
of articles; see, for example, Hampel, Ronchetti, Rousseeuw,
and Stahel (1986), Rousseeuw and Leroy (1987), Davies
(1987), Rousseeuw and van Zomeren (1990), Tyler (1991),
Cook, Hawkins, and Weisberg (1993), Rocke and Woodruff
(1993, 1996), Maronna and Yohai (1995), Agulló (1996),
Hawkins and Olive (1999), Becker and Gather (1999), and
Rousseeuw and Van Driessen (1999). Public-domain codes
implementing these procedures can be found in STATLIB—
for example, the code FSAMVE from Hawkins (1994) and
MULTOUT from Rocke and Woodruff (1993, 1996). FAST-
MCD from Rousseeuw and Van Driessen is implemented as
the “mcd.cov” function of S-PLUS.
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Because these procedures are based on the minimization of
certain nonconvex and nondifferentiable criteria, these estima-
tors are computed by resampling. For example, Rousseeuw
(1993) proposed selecting p observations from the original
sample and computing the direction orthogonal to the hyper-
plane de� ned by these observations. The maximum over this
� nite set of directions is used as an approximation to the
exact solution. Unfortunately, the number of candidate solu-
tions grows exponentially with the size of the problem and, as
a consequence, the corresponding procedures become compu-
tationally expensive for even moderately sized problems. Hadi
(1992, 1994), Atkinson (1994), Hawkins and Olive (1999),
and Rousseeuw and van Driessen (1999) presented methods
to compute approximations for these estimates requiring rea-
sonable computation times.

In this article, we present an alternative procedure, based
on the analysis of the projections of the sample points onto a
certain set of 2p directions, where p is the dimension of the
sample space. These directions are obtained by maximizing
and minimizing the kurtosis coef� cient of the projections. The
proposed procedure can be seen as an empirically successful
and faster way of implementing the Stahel–Donoho (SD) algo-
rithm. The justi� cation for using these directions is presented
in Section 1. Section 2 describes the proposed procedure and
illustrates its behavior on an example. Section 3 compares it
to other procedures by a simulation study. It is shown that the
proposed procedure works well in practice, is simple to imple-
ment, and requires reasonable computation times, even for
large problems. Finally, Section 4 presents some conclusions.

1. KURTOSIS AND OUTLIERS

The idea of using projections to identify outliers is the basis
for several outlier-detection procedures. These procedures rely
on the fact that in multivariate contaminated samples each
outlier must be an extreme point along the direction from the
mean of the uncontaminated data to the outlier. Unfortunately,
high-breakdown-poin t methods developed to date along these
lines, such as the SD algorithm, require projecting the data
onto randomly generated directions and need very large num-
bers of directions to be successful. The ef� ciency of these
methods could be signi� cantly improved, at least from a com-
putational point of view, if a limited number of appropriate
directions would suf� ce to identify the outliers. Our proposal
is to choose these directions based on the values of the kurtosis
coef� cients of the projected observations.

In this section, we study the impact of the presence of
outliers on the kurtosis values and the use of this moment
coef� cient to identify them. We start by considering the uni-
variate case in which different types of outliers produce dif-
ferent effects on the kurtosis coef� cient. Outliers generated by
the usual symmetric contaminated model increase the kurtosis
coef� cient of the observed data. A small proportion of outliers
generated by an asymmetric contaminated model also increase
the kurtosis coef� cient of the observed data. These two results
suggest that for multivariate data outliers may be revealed on
univariate projections onto directions obtained by maximizing
the kurtosis coef� cient of the projected data. However, a large
proportion of outliers generated by an asymmetric contami-
nation model can make the kurtosis coef� cient of the data

very small, close to its minimum possible value. This result
suggests searching for outliers also using directions obtained
by minimizing the kurtosis of the projections. Therefore, a
procedure that would search for outliers by projecting the data
onto the directions that maximize or minimize the kurtosis of
the projected points would seem promising.

In univariate normal data, outliers have often been associ-
ated with large kurtosis values, and some well-known tests
of normality are based on the asymmetry and kurtosis coef� -
cients. These ideas have also been used to test for multivariate
normality (see Malkovich and A� � 1973). Additionally, some
projection indices that have been applied in projection pur-
suit algorithms are related to the third and fourth moments
(Jones and Sibson 1987; Posse 1995). Hampel (1985) derived
the relationship between the critical value and the breakdown
point of the kurtosis coef� cient in univariate samples. He also
showed that two-point distributions are the least favorable for
detecting univariate outliers using the kurtosis coef� cient.

To understand the effect of different types of outliers on
the kurtosis coef� cient, suppose that we have a sample of uni-
variate data from a random variable that has a distribution F
with � nite moments (the uncontaminated sample). We assume
without loss of generality that ŒF D

R
xdF4x5 D 0, and we

will use the notation mF 4j5 D
R

xjdF 4x50 The sample is con-
taminated by a fraction � < 1=2 of outliers generated from
some contaminating distribution G1 with ŒG D

R
xdG4x51 and

we will denote the centered moments of this distribution by
mG4j5 D

R
4x ƒ ŒG5jdG4x50 Therefore, the resulting observed

random variable X follows a mixture of two distributions,
41 ƒ �5F C �G0 The signal-to-noise ratio will be given by
r 2 D Œ2

G=mF 4251 and the ratio of variances of the two distribu-
tions will be v2 D mG425=mF 425. The third- and fourth-order
moment coef� cients for the mixture and the original and con-
taminating distributions will be denoted by ai D mi435=m3=2

i 425
and ƒi D mi445=m2

i 425 for i D X1F 1G, respectively. The ratio
of the kurtosis coef� cients of G and F will be ˆ D ƒG=ƒF .

Some conditions must be introduced on F and G to ensure
that this is a reasonable model for outliers. The � rst con-
dition is that, for any values of the distribution parameters,
the standard distribution F has a bounded kurtosis coef� cient,
ƒF 0 This bound avoids the situation in which the tails of the
standard distribution are so heavy that extreme observations,
which cannot be distinguished from outliers, will appear with
signi� cant probability. Note that the most often used distri-
butions (normal, Student’s t, gamma, beta, : : : ) satisfy this
condition. The second condition is that the contaminating dis-
tribution G is such that

ŒGmG435 ¶ 03 (1)

that is, if the distribution is not symmetric, the relevant tail of
G for the generation of outliers and the mean of G both lie
on the same side with respect to the mean of F0 This second
assumption avoids situations in which most of the observations
generated from G might not be outliers.

To analyze the effect of outliers on the kurtosis coef� cient,
we write its value for the contaminated population as (see the
appendix for the derivation)

ƒX D
ƒF C �41ƒ �54c4 C 4rc3 C 6r 2c2 C r 4c05

h0 C h1r
2 C h2r

4
1 (2)
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where c4 D ƒF 4ˆv4 ƒ 15=41 ƒ �51 c3 D aGv3 ƒ aF 1 c2 D
� C 41 ƒ �5v21 c0 D �3 C 41 ƒ �531 h0 D 41 C �4v2 ƒ 1552,
h1 D 2�41 ƒ �5h1=2

0 , and h2 D �241 ƒ �520 We consider the
two following cases:

1. The centered case, in which we suppose that both F and
G have the same mean, and as a consequence ŒG D 0 and
r D 0. From (2), we obtain for this case

ƒX D
ƒF 41 C �4ˆv4 ƒ 155

41 C �4v2 ƒ 1552
0

Note that the kurtosis coef� cient increases due to the pres-
ence of outliers; that is, ƒX ¶ ƒF whenever ˆv4 ƒ 2v2 C 1 ¶
�4v2 ƒ 152. This holds if ˆ ¶ 1, or equivalently if ƒG ¶ ƒF 1
and under this condition the kurtosis will increase for any
value of �. Thus in the usual situation in which the outlier
model is built by using a contaminating distribution of the
same family as the original distribution [as in the often-used
normal scale-contaminated model; see, for instance, Box and
Tiao (1968)] or with heavier tails, the kurtosis coef� cient of
the observed data is expected to be larger than that of the
original distribution.

2. Consider now the noncentered case, in which both distri-
butions are arbitrary and we assume that the means of G and F
are different (ŒG 6D 0). A reasonable condition to ensure that
G will generate outliers for F is that the signal-to-noise ratio
r is large enough. If we let r ! ˆ in (2) (and we assume that
the moment coef� cients in the expression remain bounded),
we obtain

ƒX !
�3 C 41ƒ �53

�41ƒ �5
0

This result agrees with the one obtained by Hampel (1985).
Note that if � D 05 the kurtosis coef� cient of the observed
data will be equal to 1, the minimum possible value. On the
other hand, if � ! 0 the kurtosis coef� cient increases without
bound and will become larger than ƒF , which is bounded.
Therefore, in the asymmetric case, if the contamination is very
large the kurtosis coef� cient will be very small, whereas if the
contamination is small the kurtosis coef� cient will be large.

The preceding results agree with the dual interpretation
of the standard fourth-moment coef� cient of kurtosis (see
Ruppert 1987; Balanda and MacGillivray 1988) as measuring
tail heaviness and lack of bimodality. A small number
of outliers will produce heavy tails and a larger kurtosis
coef� cient. But, if we increase the amount of outliers, we can
start introducing bimodality and the kurtosis coef� cient may
decrease.

Kurtosis and Projections

The preceding discussion centered on the behavior of the
kurtosis coef� cient in the univariate case as an indicator for
the presence of outliers. A multivariate method to take advan-
tage of these properties would proceed through two stages—
determining a set of projection directions to obtain univariate
samples and then conducting an analysis of these samples to
determine if any outlier may be present in the original sample.
As indicated in the introduction, this is the approach developed
by Stahel and Donoho. In this section we will show how to
� nd interesting directions to detect outliers.

The study of the univariate kurtosis coef� cient indicates
that the presence of outliers in the projected data will imply
particularly large (or small) values for the kurtosis coef� cient.
As a consequence, it would be reasonable to use as projec-
tion directions those that maximize or minimize the kurtosis
coef� cient of the projected data. For a standard multivariate
contamination model, we will show that these directions are
able to identify a set of outliers.

Consider a p-dimensional random variable X following
a (contaminated normal) distribution given as a mixture of
normals of the form 41 ƒ �5N401 I5 C �N4„e11‹I5, where
e1 denotes the � rst unit vector. This contamination model
is particularly dif� cult to analyze for many outlier-detection
procedures, (e.g., see Maronna and Yohai 1995). Moreover,
the analysis in the preceding section indicates that this model,
for noncentered contaminating distributions, may correspond
to an unfavorable situation from the point of view of the
kurtosis coef� cient.

Since the kurtosis coef� cient is invariant to af� ne transfor-
mations, we will center and scale the variable to ensure that it
has mean 0 and covariance matrix equal to the identity. This
transformed variable, Y , will follow a distribution of the form
41 ƒ �5N4m11 S5 C �N4m21 ‹S5, where

m1 D ƒ�„S1=2e11 m2 D 41ƒ �5„S1=2e1

�1 D 1 ƒ �41 ƒ ‹51 �2 D
„2�41ƒ �5

�1 C „2�41 ƒ �5

S D
1
�1

4I ƒ �2e1e
0
15 (3)

and �1 and �2 denote auxiliary parameters, introduced to sim-
plify the expressions (see the appendix for a derivation of these
values).

We wish to study the behavior of the univariate projec-
tions for this variable and their kurtosis coef� cient values.
Consider an arbitrary projection direction u. Using the af� ne
invariance of the kurtosis coef� cient, we will assume ˜u˜ D 1.
The projected univariate random variable Z D u0Y will follow
a distribution 41 ƒ �5N4m0

1u1u0Su5 C �N4m0
2u1‹u0Su5, with

E4Z5 D 01 and E4Z25 D 10 The kurtosis coef� cient of Z will
be given by

ƒZ4—5 D a4�1 „1 ‹5 C b4�1„1 ‹5—2 C c4�1„1‹5—41 (4)

where the coef� cients a, b, and c correspond to

a4�1„1 ‹5 D
3

�2
1

41 ƒ � C �‹25

b4�1„1 ‹5 D
6�2

�2
1

41 ƒ ‹54�2‹ ƒ 41 ƒ �525

c4�1„1 ‹5 D �2
2 3

1ƒ � C �‹2

�2
1

ƒ 6
� C ‹41ƒ �5

�1

C
�3 C 41 ƒ �53

�41 ƒ �5
(5)

and — ² u1 D e0
1u (see the appendix for details on this

derivation).
We wish to study the relationship between the direction

to the outliers, e1 in our model and the directions u that
correspond to extremes for the projected kurtosis coef� cient.
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The optimization problem de� ning these extreme directions
would be either

max
—

s.t.

ƒZ4—5

ƒ1 µ — µ 1
(6)

or the equivalent minimization problem.
From the � rst-order optimality conditions for (6), the

extremes may correspond to either a point in the interval
4ƒ11 15 such that ƒ 0

Z4—5 D 0 or to the extreme points of the
interval, — D 1. Since ƒ 0

Z D 4c—3 C2b—, the points that make
this derivative equal to 0 are — D 0 and — D

p
ƒb=42c5.

We now analyze in detail the nature of each of these three
possible extreme points.

1. — D 1—that is, the direction of the outliers. This direc-
tion corresponds to a local maximizer whenever 4c C 2b >
0 (the derivative at — D 1) and to a minimizer whenever
4c C 2b < 0 (the case in which 4c C 2b D 0 will be treated
when considering the third candidate to an extreme point). The
expression for 4c C 2b from (5) is quite complex to analyze
in the general case, but for the case of small contamination
levels (� ! 0) it holds that �1 ! 1, �2=� ! „2, and

lim
�!0

4c C 2b

�
D 4„4 C 12„24‹ ƒ 151

implying that, since this value is positive except for very
small values of „ and ‹4‹ µ 1 ƒ „2=3), for small values of
� the direction of the outliers will be a maximizer for the
kurtosis coef� cient. Moreover, for large contamination levels
(� ! 1=2), after some manipulation of the expressions in (5)
it holds that

lim
�!1=2

44c C 2b5 D ƒ8„2 34‹ƒ 152 C „24‹C 15

4‹C 1542 C 2‹ C „252
< 01

and, as a consequence, if � is large we always have a mini-
mizer along the direction of the outliers.

2. — D 0, a direction orthogonal to the outliers. Along
this direction, as ƒ 00

Z405 D 2b1 the kurtosis coef� cient has a
maximizer whenever b < 0. For small contaminations, from
lim�!0 b=� D 6„24‹ ƒ 15, the kurtosis coef� cient has a max-
imizer for ‹ < 1 and a minimizer for ‹ > 1. Comparing the
kurtosis coef� cient values when the direction to the outliers
and a direction orthogonal to it are both local maximizers
(when ‹ < 1), from (4) and

lim
�!0

ƒZ4 15 ƒ ƒZ405

�
D „24„2 ƒ 641 ƒ ‹551

it follows that — D 1 corresponds to the global maximizer,
except for very small values of „. For large contaminations,
from

lim
�!1=2

b D ƒ6„2 ‹ ƒ 1
‹ C 1

2 1
„2 C 2‹ C 2

1

the kurtosis coef� cient has a maximizer at — D 0.
3. — D

p
ƒb=2c1 an intermediate direction, if this value

lies in the interval 6ƒ1117—that is, if 0 < ƒb=2c < 1. For
small contamination levels (� ! 0), it holds that

lim
�!0

ƒ
b

2c
D 3

1ƒ ‹

„2
1

and this local extreme point exists whenever 1 ƒ „2=3 < ‹ <
1—that is, basically when the dispersion of the contamination

Table 1. Extreme Directions for the Concentrated
Contamination Model

Small contamination

Direction ‹ < 1 ‹ > 1 Large cont.

— D 1 Global max. Global max. Global min.
— D 0 Local max. Global min. Global max.
— D

p
ƒb=2c Global min. — —

is smaller than 1. Additionally, since in this case ƒ 00
Z D ƒ4b

for ‹ < 1, it holds that b < 0 whenever ‹ < 1, implying ƒ 00
Z >

0. Consequently, for small concentrated contaminations this
additional extreme point exists and is a minimizer. For large
contamination levels, it holds that

lim
�!1=2

ƒ
b

2c
D 3

‹ ƒ 1
„

2 2 C 2‹ C „2

1ƒ 10‹ C ‹2
0

For ‹ ¶ 0 and any „, this expression is either negative or larger
than 1. As a consequence, no extreme intermediate direction
exists if the contamination is large.

Table 1 provides a brief summary of the preceding results.
Entries “Global max.” and “Global min.” indicate if a given
direction is the global maximizer or the global minimizer of
the kurtosis coef� cient, respectively. “Local max.” indicates
the case in which the direction orthogonal to the outliers is a
local maximizer for the kurtosis coef� cient.

To detect the outliers, the procedure should be able to
compute the direction to the outliers (— D 1) from Prob-
lem (6). However, from Table 1, to obtain this direction
we would need both the global minimizer and the global
maximizer of (6). In practice this cannot be done ef� ciently;
as an alternative solution, we compute one local minimizer
and one local maximizer. These computations can be done
with reasonable computational effort, as we describe later on.
This would not ensure obtaining the direction to the outliers
because in some cases these two directions might correspond
to a direction orthogonal to the outliers and the intermediate
direction, for example, but we are assured of obtaining either
the direction to the outliers or a direction orthogonal to it. The
computation procedure is then continued by projecting the
data onto a subspace orthogonal to the computed directions,
and additional directions are obtained by solving the resulting
optimization problems. In summary, we will compute one
minimizer and one maximizer for the projected kurtosis
coef� cient, project the data onto an orthogonal subspace, and
repeat this procedure until 2p directions have been computed.
For the case analyzed previously, this procedure should ensure
that the direction to the outliers is one of these 2p directions.

Note that, although we have considered a special contam-
ination pattern, this suggested procedure also seems reason-
able in those cases in which the contamination patterns are
different—for example, when more than one cluster of con-
taminating observations is present.

2. DESCRIPTION OF THE ALGORITHM

We assume that we are given a sample 4x11 : : : 1 xn5 of
a p-dimensional vector random variable X. The proposed
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procedure is based on projecting each observation onto a set
of 2p directions and then analyzing the univariate projections
onto these directions in a similar manner to the SD algorithm.
These directions are obtained as the solutions of 2p simple
smooth optimization problems, as follows:

1. The original data are rescaled and centered. Let Nx denote
the mean and S the covariance matrix of the original data;
then the points are transformed using

yi D Sƒ1=24xi ƒ Nx51 i D 11 : : : 1 n0 (7)

2. Compute p orthogonal directions and projections maxi-
mizing the kurtosis coef� cient.

a. Set y
415

i D yi and the iteration index j D 1.
b. The direction that maximizes the coef� cient of kur-

tosis is obtained as the solution of the problem

dj D arg max
d

1

n

nX
iD1

d0y
4j5
i

4

s.t. d0d D 1

0 (8)

c. The sample points are projected onto a lower-
dimension subspace, orthogonal to the direction dj . De� ne

vj D dj ƒ e11 Qj D
(

I ƒ vj v 0
j

v0
j
dj

if v0
jdj 6D 0

I otherwise,

where e1 denotes the � rst unit vector. The resulting matrix
Qj is orthogonal, and we compute the new values

u
4j5

i ²
z

4j5

i

y
4jC15

i

D Qj y
4j5

i 1 i D 11 : : : 1 n1

where z
4j5

i is the � rst component of u
4j5

i , which satis� es
z

4j5

i D d0
jy

4j5

i (the univariate projection values) and y
4jC15

i cor-
responds to the remaining p ƒ j components of u

4j5

i . We set
j D j C 11 and, if j < p, we go back to step 2b. Otherwise,
we let z

4p5

i D y
4p5

i .

3. We compute another set of p orthogonal directions and
projections minimizing the kurtosis coef� cient.

a. Reset y
4pC15
i D yi and j D p C 1.

b. The preceding steps 2b and 2c are repeated, but now
instead of (8) we solve the minimization problem

dj D arg min
d

1

n

nX
iD1

d0y
4j5
i

4

s.t. d0d D 1

(9)

to compute the projection directions.

4. To determine if z
4j5

i is an outlier in any one of the 2p
directions, we compute a univariate “measure of outlyingness”
for each observation as

ri D max
1µjµ2p

—z4j5

i ƒ median4z4j55—
MAD 4z4j55

0 (10)

5. These measures ri are used to test if a given observation
is considered to be an outlier. If ri > ‚p , then observation i is
suspected of being an outlier and labeled as such. The cutoff
values ‚p are chosen to ensure a reasonable level of Type I
errors and depend on the sample space dimension p.

Table 2. Cutoff Values for Univariate Projections

Sample space dimension p 5 10 20
Cutoff value ‚p 401 609 1008

6. If the condition in Step 5 were satis� ed for some i, a
new sample composed of all observations i such that ri µ ‚p

is formed, and the procedure is applied again to the reduced
sample. This is repeated until either no additional observations
satisfy ri > ‚p or the number of remaining observations would
be less than �4n C p C 15=2�.

7. Finally, a Mahalanobis distance is computed for all
observations labeled as outliers in the preceding steps, using
the data (mean and covariance matrix) from the remaining
observations. Let U denote the set of all observations not
labeled as outliers. The algorithm computes

Qm D
1

—U —
X
i2U

xi1

eS D
1

—U —ƒ 1

X
i2U

4xi ƒ Qm54xi ƒ Qm051

and
vi D 4xi ƒ Qm50eSƒ14xi ƒ Qm5 8 i 62 U 0

Those observations i 62 U such that vi < �2
p1 099 are consid-

ered not to be outliers and are included in U . The process
is repeated until no more such observations are found (or U
becomes the set of all observations).

The values of ‚p in Step 5 of the algorithm have been
obtained from simulation experiments to ensure that, in the
absence of outliers, the percentage of correct observations
mislabeled as outliers is approximately equal to 5%. Table 2
shows the values used for several sample-space dimensions.
The values for other dimensions could be obtained by inter-
polating log‚p linearly in log p.

2.1 Computation of the Projection Directions

The main computational effort in the application of the pre-
ceding algorithm is associated with the determination of local
solutions for either (8) or (9). This computation can be con-
ducted in several ways:

1. Applying a modi� ed version of Newton’s method.
2. Obtaining the solution directly from the � rst-order opti-

mality conditions. The optimality conditions for both prob-
lems are

4
nX

iD1

4d0y
4j5

i 53y
4j5

i ƒ 2‹d D 0

d0d D 10

Multiplying the � rst equation by d and replacing the con-
straint, we obtain the value of ‹. The resulting condition is

nX

iD1

4d0y
4j5

i 52y
4j5

i y
4j50

i d D
nX

iD1

4d0y
4j5

i 54d0 (11)

This equation indicates that the optimal d will be a unit eigen-
vector of the matrix

M4d5 ²
nX

iD1

4d0y
4j5
i 52y

4j5
i y

4j50

i 1
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Table 3. Cutoff Values for Univariate Projections

Sample space dimension p 5 10 20
Scaling factor kp 098 095 092

that is, of a weighted covariance matrix for the sample, with
positive weights (depending on d). Moreover since the eigen-
value at the solution is the value of the fourth moment, we are
interested in computing the eigenvector corresponding to the
largest or smallest eigenvalue.

In summary, an iterative procedure to compute the direction
d proceeds through the following steps:

1. Select an initial direction Nd0 such that ˜ Nd0˜2 D 10

2. In iteration l C 1, compute NdlC1, as the unit eigenvector
associated with the largest (smallest) eigenvalue of M4 Ndl5.

3. Terminate whenever ˜ NdlC1 ƒ Ndl˜ < …, and set dj D NdlC1.

Another relevant issue is the de� nition of the initial direc-
tion Nd0. Our choice has been to start with the direction corre-
sponding to the largest (when computing maximizers for the

0 10

–5

0

5

(a)

10 0

–5

0

5

(b)

10 0 10

0

5

10

15

(c)

Figure 1. Scatterplots for a Dataset With � D 1. The axes correspond to projections onto (a) the direction to the outliers (x axis) and orthogonal
direction (y axis), (b) the direction maximizing the kurtosis coef’ cient (x axis) and an orthogonal direction (y axis), (c) the direction minimizing
the kurtosis coef’ cient (x axis) and an orthogonal direction (y axis).

kurtosis) or the smallest (when minimizing) principal compo-
nents of the normalized observations y

4j5

i =˜y
4j5

i ˜. These direc-
tions have the property that, once the observations have been
standardized, they are af� ne equivariant. They would also cor-
respond to directions along which the observations projected
onto the unit hypersphere seem to present some relevant struc-
ture; this would provide a reasonable starting point when the
outliers are concentrated, for example. A more detailed dis-
cussion on the motivation for this choice of initial directions
was given by Juan and Prieto (1997).

2.2 Robust Covariance Matrix Estimation

Once the observations have been labeled either as outliers or
as part of the uncontaminated sample, following the procedure
described previously, it is possible to generate robust estimates
for the mean and covariance of the data as the mean and
covariance of the uncontaminated observations. This approach,
as opposed to the use of weight functions, seems reasonable
given the reduced Type I errors associated with the procedure.
Nevertheless, note that it is necessary to correct the covariance
estimator to account for the bias associated with these errors.
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The proposed estimators become

Qm D
1

—U —
X
i2U

xi

and
eSc D

1

4—U — ƒ 15kd

X
i2U

4xi ƒ Qm54xi ƒ Qm501

where U is the set of all observations not labeled as outliers,
—U — denotes the number of observations in this set, and kd is
a constant that has been estimated to ensure that the trace of
the estimated matrix is unbiased.

The values of kd have been obtained through a simulation
experiment for several sample space dimensions and are given
in Table 3. The values for other dimensions could be obtained
by interpolating log kp linearly in log p.

2.3 Examples

To illustrate the procedure and the relevance of choosing
projection directions in the manner described previously, we
show the results from the computation of the projection direc-
tions for a few simple cases. The � rst ones are based on
generating 100 observations from a model of the form 41 ƒ

0 10

–5

0

5

(a)

10 0 10
–15

–10

–5

0

(b)

0 10

–5

0

5

(c)

Figure 2. Scatterplots for a Dataset With � D 3. The axes correspond to projections onto (a) the direction to the outliers (x axis) and an
orthogonal direction (y axis), (b) the direction maximizing the kurtosis coef’ cient (x axis) and an orthogonal direction (y axis), (c) the direction
minimizing the kurtosis coef’ cient (x axis) and an orthogonal direction (y axis).

�5N401 I5 C �N410e1 I 5 in dimension 2, where e D 41 150, for
different values of � .

Consider Figure 1, corresponding to the preceding model
with � D 01. This � gure shows the scatterplots of the data,
where the axes have been chosen as (1) in Figure 1(a), the
direction to the outliers (e) and a direction orthogonal to it;
(2) in Figure 1(b), the direction giving a maximizer for the
kurtosis coef� cient (the x axis) and a direction orthogonal to
it; and (3) in Figure 1(c), the direction corresponding to a
minimizer for the kurtosis coef� cient (also for the x axis) and
a direction orthogonal to it. In this case, the direction maxi-
mizing the kurtosis coef� cient allows the correct identi� cation
of the outliers, in agreement with the results in Table 1 for the
case with small � .

Figure 2 shows another dataset, this time corresponding to
� D 03, in the same format as Figure 1. As the analysis in the
preceding section showed and the � gure illustrates, here the
relevant direction to identify the outliers is the one minimizing
the kurtosis coef� cient, given the large contamination present.

Finally, Figure 3 presents a dataset generated from the
model using � D 02 in the same format as the preceding
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Figure 3. Scatterplots for a Dataset With � D 2. The axes correspond to projections onto (a) the direction to the outliers (x axis) and an
orthogonal direction (y axis), (b) the direction maximizing the kurtosis coef’ cient (x axis) and an orthogonal direction (y axis), (c) the direction
minimizing the kurtosis coef’ cient (x axis) and an orthogonal direction (y axis).

� gures. It is remarkable in this case that both the direction
maximizing the kurtosis coef� cient and the direction mini-
mizing it are not the best ones for identifying the outliers;
instead, the direction orthogonal to that maximizing the
kurtosis corresponds now to the direction to the outliers. The
optimization procedure has computed a direction orthogonal
to the outliers as the maximizer and an intermediate direction
as the minimizer. As a consequence, the direction to the
outliers is obtained once Problem (6) is solved for the obser-
vations projected onto the direction maximizing the kurtosis.
This result justi� es that in some cases (for intermediate
contamination levels) it is important to compute directions
orthogonal to those corresponding to extremes in the kurtosis
coef� cient, and this effect becomes even more signi� cant as
the sample-space dimension increases.

Consider a � nal example in higher dimension. A sample of
100 observations has been obtained by generating 60 obser-
vations from an N401 I5 distribution in dimension 10, and
10 observations each from N410di1 I5 distributions for i D
11 : : : 14, where di were distributed uniformly on the unit
hypersphere. Figure 4 shows the projections of these observa-

tions onto four of the directions obtained from the application
of the proposed procedure. Each plot gives the value of the
projection onto one of the directions for each observation in
the sample. The outliers are the last 40 observations and have
been plotted using the symbols “C,” “o,” “#1” and “� ” for
each of the clusters, while the uncontaminated observations
are the � rst 60 in the set and have been plotted using the
symbol “ü .”

Figure 4(a) shows the projections onto the kurtosis maxi-
mization direction. This direction is able to isolate the observa-
tions corresponding to one of the clusters of outliers in the data
(the one labeled as “#”) but not the remaining outliers. The
next direction, which maximizes the kurtosis on a subspace
orthogonal to the preceding direction, reveals the outliers indi-
cated as “C,” as shown in Figure 4(b). This process is repeated
until eight additional directions, maximizing the kurtosis onto
the corresponding orthogonal subspaces, are generated. The
next direction obtained in this way (the third one maximizing
the kurtosis) is not able to reveal any outliers, but the fourth,
shown in Figure 4(c), allows the identi� cation of the outliers
shown as “o.” The remaining kurtosis maximization directions
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Figure 4. Univariate Projections Onto Directions Generated by the Algorithm for a Dataset in Dimension 10. The x axis represents the obser-
vation number, while the y axis corresponds to the projections of each observation onto (a) the ’ rst maximization direction, (b) the second
maximization direction, (c) the fourth maximization direction, (d) the third minimization direction.

(not shown in the � gure) are not able to reveal any additional
groups of outliers.

To detect the outliers labeled as “� ,” the kurtosis minimiza-
tion directions must be used. The � rst two of these are again
unable to reveal the presence of any outliers. On the other
hand, the third minimization direction, shown in Figure 4(d),
allows the identi� cation of (nearly) all the outliers at once (it
is a direction on the subspace generated by the four directions
to the centers of the outlier clusters). The remaining directions
are not very useful.

This example illustrates the importance of using both mini-
mization and maximization directions and in each case relying
not just on the � rst optimizer but on computing a full set of
orthogonal directions.

3. PROPERTIES OF THE ESTIMATOR

The computation of directions maximizing the kurtosis
coef� cient is af� ne equivariant. Note that the standardization
of the data in Step 1 of the algorithm ensures that the resulting
data are invariant to af� ne transformations, except for a rota-
tion. The computation of the projection directions preserves

this property, and the values of the projections are af� ne
invariant. Note also that the initial point for the optimization
algorithm is not affected by af� ne transformations.

As a consequence of the analysis in Section 1.1, we con-
clude that the algorithm is expected to work properly if the
directions computed are those to the outliers or orthogonal to
them since additional orthogonal directions will be computed
in later iterations. It might fail if one of the computed direc-
tions is the one corresponding to the intermediate extreme
direction (whenever it exists). This intermediate direction will
correspond either to a maximizer or to a minimizer, depending
on the values of �1 „, and ‹. Because the projection step does
not affect the values of � or ‹, if we assume that „ ! ˆ,
this intermediate direction would be found either as part of
the set of p directions maximizing the kurtosis coef� cient or
as part of the p minimizers, but it cannot appear on both sets.
As a consequence, if this intermediate direction appears as a
maximizer (minimizer), the set of minimizing (maximizing)
directions will include only the directions corresponding to
— D 0 or — D 1 and, therefore, the true direction to the
outliers will always be a member of one of these two sets.
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Table 4. Results Obtained by the Proposed Algorithm, Using Both Maximization and Minimization Directions, on Some Small Datasets

Dataset Dimension # Observations # Outliers Outliers Time (s.)

Heart 2 12 5 2, 6, 8, 10, 12 .05
Phosphor 2 18 7 1, 4, 6, 7, 10, 16, 18 .16
Stackloss 3 21 8 1, 2, 3, 4, 13, 14, 20, 21 .27
Salinity 3 28 8 5, 10, 11, 15, 16, 17, 23, 24 .32
Hawkins–Bradu–Kass (1984) 3 75 14 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 .17
Coleman 5 20 7 1, 6, 9, 10, 11, 13, 18 .22
Wood 5 20 4 4, 6, 8, 19 .22
Bush’ re 5 38 15 7, 8, 9, 10, 11, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38 .11

Simulation Results

We have conducted a number of computational experiments
to study the practical behavior of the proposed procedure.
Since the use of minimization directions for the kurtosis coef-
� cient is not a very intuitive choice, we have implemented two
versions of the proposed algorithm—kurtosis1 corresponds to
the description given in Section 2; kurtosis2 uses only the set
of p maximization directions, while preserving the remaining
implementation details in the algorithm.

Our � rst experiment has analyzed the outlier-detection
behavior of the algorithm on a collection of eight small
datasets. The � rst seven were taken from Rousseeuw and
Leroy (1987) and were studied by Rousseeuw and Van
Driessen (1999), for example. The last one is from Campbell
(1989) and was analyzed by Maronna and Yohai (1995) and
Becker and Gather (1999), among others. Table 4 gives the
corresponding results for algorithm kurtosis1, indicating the
dataset, its dimension and number of observations, the number
of observations that have been labeled as suspected outliers,
the speci� c observations that have been so labeled, and the
running times in seconds. The cutoff points used to label
the observations as outliers have been those indicated in the
description of the algorithm in Section 2 (Steps 5 and 7 and
Table 2). All values are based on a Matlab implementation
of the proposed procedure, and the running times have been
obtained using Matlab 4.2 on a 450 MHz Pentium PC.

These results are similar to those reported in the literature
for other outlier-detection methods, and they indicate that the
proposed method behaves reliably on these test sets. These
same test problems have been analyzed using kurtosis2. The
results are given in Table 5, and for these small problems are
nearly identical (except for the “phosphor” dataset) to the ones

Table 5. Results Obtained by the Proposed Algorithm, Using Only Maximization Directions, on Some Small Datasets

Dataset # Outliers Outliers Time (s.)

Heart 5 2, 6, 8, 10, 12 .05
Phosphor 2 1, 6 .05
Stackloss 8 1, 2, 3, 4, 13, 14, 20, 21 .16
Salinity 8 5, 10, 11, 15, 16, 17, 23, 24 .11
Hawkins–Bradu–Kass (1984) 14 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 .06
Coleman 7 1, 6, 9, 10, 11, 13, 18 .11
Wood 4 4, 6, 8, 19 .11
Bush’ re 16 7, 8, 9, 10, 11, 12, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38 .11

obtained using both minimization and maximization directions
and presented in Table 4.

To explore further the properties of the method, we have
performed an extensive set of simulation experiments for
larger sample sizes and observation dimensions. The experi-
ments compare the performance of both proposed algorithms,
regarding the identi� cation of the outliers and the estimation
of covariance matrices, with the results from two other codes:

1. A recent and ef� cient algorithm for the implementation
of the minimum covariance determinant (MCD) procedure
proposed by Rousseeuw (1985). The FAST-MCD algorithm
based on the splitting of the problem into smaller subprob-
lems, is much faster than previous algorithms; it was proposed
by Rousseeuw and Van Driessen (1999).

2. A version of the SD algorithm, corresponding to the
implementation described by Maronna and Yohai (1995). The
choice of parameters has been the same as in this reference.
In particular, the number of subsamples has been chosen as
1,000 for dimension 5. For dimensions 10 and 20, not included
in the Monte Carlo study by Maronna and Yohai (1995), we
have used 2,000 and 5,000 subsamples, respectively.

For a given contamination level �, we have generated a
set of 10041 ƒ �5 observations from an N401 I 5 distribution
in dimension p. We have added 100� additional observations
from an N4„e1‹I5 distribution, where e denotes the vector
411 : : : 1150. This model is analogous to the one used by
Rousseeuw and van Driessen (1999). This experiment has
been conducted for different values of the sample-space
dimension p (p D 51 101 20), the contamination level �
(� D 011 021 031 04), the distance of the outliers „ („ D 101 100),
and the standard deviation of these outliers

p
‹4

p
‹ D 011 11 5).

For each set of values, 100 samples have been generated.
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Table 6. Success Rates for the Detection of Outliers Forming One Cluster

„ D 10 „ D 100

p �
p

‹ FAST-MCD SD Kurtosis1 Kurtosis2 FAST-MCD SD Kurtosis1 Kurtosis2

5 03 01 0 100 100 83 100 100 100 88
1 100 100 95 38 100 100 94 31

04 01 0 0 53 0 0 100 100 0
1 100 99 91 0 100 100 93 0
5 100 93 100 100 100 100 100 100

10 02 01 0 100 100 100 100 100 100 100
1 100 100 60 83 100 100 61 84

03 01 0 100 100 0 0 100 100 1
1 100 100 23 2 100 100 21 0

04 01 0 0 52 0 0 0 100 0
1 74 0 82 0 67 0 81 0
5 100 53 100 100 100 73 100 100

20 01 01 86 100 100 100 100 100 100 100
1 100 100 87 88 100 100 84 82

02 01 0 72 100 8 0 100 100 7
1 98 61 1 2 100 100 0 0
5 100 67 100 100 100 100 100 100

03 01 0 0 98 0 0 0 100 0
1 19 0 0 0 20 0 0 0
5 100 0 100 100 100 0 100 100

04 01 0 0 1 0 0 0 5 0
1 0 0 9 0 1 0 8 0
5 100 0 99 95 100 0 99 90

Table 6 gives the number of samples in which all the outliers
have been correctly identi� ed for each set of parameter values
and both the proposed algorithms (kurtosis1 and kurtosis2)
and the FAST-MCD and SD algorithms. To limit the size of
the table, we have shown only those cases in which one of
the algorithms scored less than 95 successes.

The proposed method (kurtosis1) seems to perform much
better than FAST-MCD for concentrated contaminations,
while its behavior is worse for those cases in which the shape
of the contamination is similar to that of the original data
(‹ D 1). From the results in Section 1, this case tends to
be one of the most dif� cult ones for the kurtosis algorithm
because the objective function is nearly constant for all
directions, and for � nite samples it tends to present many
local minimizers, particularly along directions that are nearly
orthogonal to the outliers. Nevertheless, this behavior, closely
associated with the value ‹ D 1, disappears as ‹ moves away
from 1. For example, for p D 10 and � D 03 the number of
successes in 100 trials goes up from 23 for ‹ D 1 to 61 forp

‹ D 08 and 64 for ‹ D 1025. In any case, we have included
the values for ‹ D 1 to show the worst-case behavior of the
algorithm.

Regarding the SD algorithm, the proposed method behaves
better for large space dimensions and large contamination lev-
els, showing that it is advantageous to study the data on a
small set of reasonably chosen projection directions, particu-
larly in those situations in which a random choice of directions
would appear to be inef� cient.

The variant of the algorithm that uses only maximization
directions (kurtosis2) presents much worse results than
kurtosis1 when the contamination level is high and the
contamination is concentrated. As the analysis in Section 1

suggested, in those cases the minimization directions are
important.

The case analyzed in Table 6 covers a particular contamina-
tion model, the one analyzed in Section 1. It is interesting to
study the behavior of the algorithm on other possible contam-
ination models, for example when the outliers form several
clusters. We have simulated cases with two and four clus-
ters of outliers, constructed to contain the same number of
observations (�100�=k�), with centers that lie at a distance
„ D 10

p
p from the origin (the center of the uncontaminated

observations) along random uniformly distributed directions.
The variability inside each cluster is the same ‹ for all of
them. Table 7 gives the results of these simulations, in the
same format as Table 6.

The results are similar to those in Table 6. The proposed
method works much better than FAST-MCD for small values
of ‹ and worse for values of ‹ close to 1. Regarding the SD
algorithm, the random choice of directions works better as the
number of clusters increases. Nevertheless, note that, as the
sample space dimension and the contamination level increase,
the preceding results seem to indicate that the SD algorithm
may start to become less ef� cient.

The results in Tables 6 and 7 show that the 2p directions
obtained as extremes of the kurtosis coef� cient of the pro-
jections can be computed in a few seconds and perform in
most cases better than the thousands of directions randomly
generated by the SD estimator, requiring a much larger com-
putational time. Moreover, the minimization directions play a
signi� cant role for large concentrated contaminations. These
results suggest that the SD estimator can be easily improved
while preserving its good theoretical properties by including
these 2p directions in addition to the other randomly selected
directions. From the same results, we also see, that the FAST-
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Table 7. Success Rate for the Detection of Outliers Forming Two and Four Clusters

2 clusters 4 clusters

p �
p

‹ FAST-MCD SD Kurtosis1 Kurtosis2 FAST-MCD SD Kurtosis1 Kurtosis2

5 .4 01 65 100 16 0 100 100 89 94
1 100 100 100 81 100 100 100 100

10 .3 01 18 100 100 78 100 100 100 100
.4 01 0 100 51 0 72 100 15 5

1 83 100 60 0 99 100 97 95

20 .2 01 15 100 100 100 93 100 100 100
1 100 100 90 88 100 100 100 100

.3 01 0 100 100 0 22 100 100 99
1 37 98 1 0 99 100 99 98
5 100 60 100 100 100 100 100 100

.4 01 0 60 5 0 0 100 6 0
1 0 28 3 0 1 99 2 0
5 100 0 100 93 100 23 98 100

MCD code performs very well in situations in which the
kurtosis procedure fails and vice versa. Again, a combination
of these two procedures can be very fruitful.

The preceding tables have presented information related to
the behavior of the procedures with respect to Type II errors.
To complement this information, Type I errors have also been
studied. Table 8 shows the average number of observations
that are labeled as outliers by both procedures when 100 obser-
vations are generated from an N401 I 5 distribution. Each value
is based on 100 repetitions.

The kurtosis algorithm is able to limit the size of these
errors through a proper choice of the constants ‚p in Step 5
of the algorithm. The SD algorithm could also be adjusted
in this way, although, in the implementation used, the cutoff

for the observations has been chosen as
q

�2
p1 095, following the

suggestion of Maronna and Yohai (1995).
A second important application of these procedures is the

robust estimation of the covariance matrix. The same simula-
tion experiments described previously have been repeated but
now measuring the bias in the estimation of the covariance
matrix. The chosen measure has been the average of the log-
arithms of the condition numbers for the robust covariance
matrix estimators obtained using the three methods—FAST-
MCD, SD, and kurtosis. Given the sample generation process,
a value close to 0 would indicate a small bias in this condition
number. Tables 9 and 10 show the average values for these
estimates for the settings in Tables 6 and 7, respectively. To
limit the size of the tables, only two values for the contami-
nation level (� D 011 03) have been considered.

The abnormally large entries in these tables correspond to
situations in which the algorithm is not able to identify the

Table 8. Percentage of Normal Observations Mislabeled
as Outliers

Dimension FASTMCD SD Kurtosis1 Kurtosis2

5 909 804 609 609
10 2209 02 909 1102
20 3602 00 706 702

outliers properly. An interesting result is that the kurtosis pro-
cedure does a very good job regarding this measure of per-
formance in the estimation of the covariance matrix, at least
whenever it is able to identify the outliers properly. Note in
particular how well it compares to FAST-MCD, a procedure
that should perform very well, particularly for small contam-
ination levels or large dimensions. Its performance is even
better when compared to SD, showing again the advantages
of a nonrandom choice of projection directions.

Regarding computational costs, comparisons are not simple
to carry out because the FAST-MCD code is a FORTRAN
code, while the kurtosis procedure has been written in Matlab.
Tables 4 and 5 include running times for some small datasets.
Table 11 presents some running times for larger datasets, con-
structed in the same manner as those included in Tables 6–10.
All cases correspond to � D 02, „ D 10, and

p
‹ D 01. The

SD code used 151000 replications for p D 30 and 301000
for p D 40. All other values have been � xed as indicated for
Table 6. The times correspond to the analysis of a single
dataset and are based on the average of the running times for
10 random datasets. They have been obtained on a 450 MHz
Pentium PC under Windows 98.

These times compare quite well with those of SD and
FAST-MCD. Since the version of FAST-MCD we have used is
a FORTRAN code, this should imply additional advantages if
a FORTRAN implementation of the proposed procedure were
developed. A Matlab implementation of the proposed proce-
dures is available at http://halweb.uc3m.es/fjp/download.html .

4. CONCLUSIONS

A method to identify outliers in multivariate samples, based
on the analysis of univariate projections onto directions that
correspond to extremes for the kurtosis coef� cient, has been
motivated and developed. In particular, a detailed analysis has
been conducted on the properties of the kurtosis coef� cient
in contaminated univariate samples and on the relationship
between directions to outliers and extremes for the kurtosis in
the multivariate case.

The method is af� ne equivariant, and it shows a very sat-
isfactory practical performance, especially for large sample
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Table 9. Average Logarithm of the Condition Numbers for Covariance Matrix Estimates, Outliers Forming One Cluster

„ D 10 „ D 100

p �
p

‹ FAST-MCD SD Kurtosis1 Kurtosis2 FAST-MCD SD Kurtosis1 Kurtosis2

5 01 01 097 1026 090 088 1001 1022 091 090
1 007 1015 090 094 1005 1010 084 090
5 1002 099 088 093 099 1006 090 090

03 01 7079 4009 097 1071 092 4008 095 1087
1 091 2095 1021 3048 088 2095 1048 6096
5 089 2008 1005 1005 093 2056 1003 1007

10 01 01 1087 2000 1060 1063 1084 1097 1056 1058
1 1085 1076 1059 1061 1084 1084 1061 1064
5 1086 1060 1053 1059 1085 1071 1055 1059

03 01 9053 5055 1057 8038 14000 5059 1059 12089
1 1063 4041 5011 6021 1059 4045 8085 10089
5 1069 3032 1072 1073 1068 4021 1075 1075

20 01 01 3087 3052 2060 2053 3001 3056 2048 2049
1 2099 3054 3000 2088 3010 3049 3085 4005
5 3006 3019 2045 2042 3009 3051 2042 2043

03 01 10097 7097 2045 9096 15056 12057 2044 14059
1 7032 7011 7033 7032 10096 11070 11094 11095
5 2087 5026 2061 2056 2077 9085 2060 2060

space dimensions and concentrated contaminations. In this
sense, it complements the practical properties of MCD-based
methods such as the FAST-MCD procedure. The method also
produces good robust estimates for the covariance matrix, with
low bias.

The associate editor of this article suggested a generaliza-
tion of this method based on using the measure of multivari-
ate kurtosis introduced by Arnold (1964) and discussed by
Mardia (1970) and selecting h µ p directions at a time to
maximize (or minimize) the h-variate kurtosis. A second set
of h directions orthogonal to the � rst can then be obtained and
the procedure can be repeated as in the proposed algorithm.
This idea seems very promising for further research on this
problem.

Table 10. Average Logarithm of the Condition Numbers for Covariance Matrix Estimates, Outliers Forming Two and Four Clusters

2 clusters 4 clusters

p �
p

‹ FAST-MCD SD Kurtosis1 Kurtosis2 FAST-MCD SD Kurtosis1 Kurtosis2

5 .1 01 1001 095 093 091 1006 079 086 083
1 1003 090 090 092 1004 077 089 091
5 097 084 087 090 1003 079 092 090

.3 01 092 2042 094 098 092 1048 099 1001
1 092 1095 1002 1008 090 1037 1006 1004
5 089 1056 1004 1002 091 1013 1000 1002

10 .1 01 1081 1054 1056 1058 1084 1026 1053 1056
1 1085 1044 1057 1064 1087 1023 1051 1060
5 1090 1038 1061 1064 1086 1021 1056 1054

.3 01 8000 3040 1056 2041 1068 2027 1057 1059
1 1070 2087 1083 1078 1066 2013 1072 1075
5 1067 2051 1075 1071 1069 1089 1073 1076

20 .1 01 3004 2074 2051 2045 3011 2014 2042 2038
1 3008 2079 2042 2041 3015 2016 2039 2032
5 3008 2061 2040 2039 3016 2007 2037 2024

.3 01 10091 5005 2047 9010 6050 3053 2050 2050
1 5087 4093 6096 6098 2076 3082 2063 2070
5 2076 4040 2055 2061 2081 3058 2063 2061

There are also practical problems in which the af� ne equi-
variance property may not be very relevant. For example, in
many engineering problems arbitrary linear combinations of
the design variables have no particular meaning. For these
cases, and especially in the presence of concentrated con-
taminations, we have found that adding those directions that
maximize the fourth central moment of the data results in a
more powerful procedure.

The results presented in this article emphasize the advan-
tages of combining random and speci� c directions. It can be
expected that, if we have a large set of random uniformly
distributed outliers in high dimension, a method that computes
a very large set of random directions will be more powerful
than another one that computes a small number of speci� c
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Table 11. Running Times (in s.) on Large Synthetic Datasets

p n FAST-MCD SD Kurtosis1 Kurtosis2

10 100 505 400 102 06
200 908 800 206 108

20 100 2006 1107 303 105
200 3600 2201 709 400

30 300 11408 10906 2800 1809
500 18306 18208 5401 4606

40 400 27005 33809 7401 3804

directions. On the other hand, when the outliers appear along
speci� c directions, a method that searches for these directions
is expected to be very useful. These results emphasize the
advantages of combining random and speci� c directions in the
search for multivariate outliers. In particular, the incorpora-
tion of the kurtosis directions in the standard SD procedure
can improve it in many cases with small additional computa-
tional time.
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APPENDIX: DETAILS OF THE DERIVATION OF
THEORETICAL RESULTS IN SECTION 1.

A.1 An Expression for ƒX

To derive (2), we need expressions for mX 445 and mX425 in
terms of the moments of the distributions F and G. Note that,
since ŒF D 0, we have that E4X5 D �ŒG0 Moreover

E4X25 D 41 ƒ �5mF 425 C �4mG425 C Œ2
G5

D mF 42541ƒ � C �v2 C �r 25

and
mX 425 D mF 42541C �4v2 ƒ 15C �41ƒ �5r 250

For the fourth moment,

mX 445 D 41 ƒ �5
Z

4x ƒ �ŒG54dF4x5

C �
Z

4x ƒ �ŒG54dG4x51

where
Z

4x ƒ �ŒG54dF 4x5

D mF 445 ƒ 4�ŒGmF 435 C 6�2Œ2
GmF 425 C �4Œ4

G1

and
Z

4x ƒ �ŒG54dG4x5

D mG445 C 441 ƒ �5ŒGmG435 C 641ƒ �52Œ2
GmG425

C 41 ƒ �54Œ4
G0

Combining these results and rearranging terms, we have

mX 445=mF 4252

D ƒF C �41ƒ �5 4r4aGv3 ƒ aF 5 C 4ƒGv4 ƒ ƒF 5=41 ƒ �5

C 6r 24� C 41 ƒ �5v25 C r 44�3 C 41ƒ �535 0

The desired result follows from ƒX D mX445=mX 4252 and these
expressions.

A.2 Parameters in the Distribution of Y

The mean of a random variable X following a distribution
of the form 41 ƒ �5N401 I5 C �N4„e11‹I5 is ŒX D �„e1 and
its covariance matrix is

SS D 41ƒ �5I C �4‹I C „2e1e
0
15 ƒ �2„2e1e

0
1

D 41ƒ � C �‹5I C �41ƒ �5„2e1e
0
1

D �1 I C
„2�41ƒ �5

�1

e1e
0
1 0

The inverse of SS will also be a rank-one modi� cation of the
identity. It is easy to check that

S ² SSƒ1 D
1

�1

4I ƒ �2e1e150 (A.1)

Note that S is diagonal with all entries equal to 1=�1 except
for the � rst one. Its square root, S1=2, is also a diagonal matrix
with all entries equal to 1=

p
�1 except for the � rst one, which

equals
p

41ƒ �25=�1. In particular,

S1=2e1 D

s
1ƒ �2

�1

e1 D
1p

�1 C „2�41ƒ �5
e10 (A.2)

The distribution of Y D S1=24X ƒ ŒX 5 follows from these
results.

A.3 An Expression for ƒZ

The kurtosis coef� cient of Z will be equal to its fourth
moment. E4Z45 D 41 ƒ �5E4Z4

15 C �E4Z4
251 where Z1 is

N4m0
1u1 u0Su5, Z2 is N4m0

2u1‹u0Su5, and

E4Z4
i 5 D E44Zi ƒ Nzi5

45C 6E44Zi ƒ Nzi5
25Nz2

i C Nz4
i

D 3‘ 4
i C 6‘ 2

i Nz2
i C Nz4

i 1 (A.3)

where Nzi and ‘ i denote the mean and standard deviation of Zi .
Letting — D e0

1u, from (A.2) and (3) it follows that

Nz1 D m0
1u D ƒ

�„—p
�1 C „2�41 ƒ �5

Nz2 D m0
2u D

41 ƒ �5„—p
�1 C „2�41 ƒ �5

1

and from (A.1)

‘ 2
1 D ‘ 2

2 =‹ D u0Su D
1ƒ �2—

2

�1

0

Replacing these values in (A.3), we have

ƒZ D 3
41ƒ �2—

252

�2
1

41 ƒ � C �‹25

C 6
1 ƒ �2—

2

�1

„2�41 ƒ �5—2

�1 C „2�41ƒ �5
4� C ‹41 ƒ �55

C
„4�241ƒ �52—4

4�1 C „2�41ƒ �552

�3 C 41ƒ �53

�41 ƒ �5
0
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Grouping all the terms that correspond to the same pow-
ers of — and using �14� C ‹41 ƒ �55 ƒ 41 ƒ � C �‹25 D 41 ƒ
‹54�2‹ ƒ 41ƒ �5251 the result in (4) is obtained.

[Received March 1999. Revised June 2000.]
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Peña and Prieto present a new method for robust multi-
variate estimation of location and shape and identi� cation of
multivariate outliers. These problems are intimately connected
in that identifying the outliers correctly automatically allows
excellent robust estimation results and vice versa.

Some types of outliers are easy to � nd and some are dif� -
cult. In general, the previous literature concludes that problems

are more dif� cult when the fraction of outliers is large. More-
over, widely scattered outliers are relatively easy, whereas
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concentrated outliers can be very dif� cult (Rocke and
Woodruff1996) . This article is aimed squarely at the case in
which the outliers form a single cluster, separated from the
main data and of the same shape (but possibly different size)
as the main data, an especially dif� cult case for many outlier-
detection methods (Rocke and Woodruff 1996). We believe

that it is entirely appropriate that special methods like those
in the present article be developed to handle this case, which
is often too dif� cult for general-purpose outlier-detection and
robust-estimation methods.

In this discussion, we make some comparisons of the esti-
mators kurtosis1, FAST-MCD, SD, and also certain M and S
estimators; then we point out the connection to cluster anal-
ysis (Rocke and Woodruff 2001). The MCD, MVE, SD, and
S estimators with hard redescending in� uence functions are
known to have maximum breakdown. Kurtosis1 probably also
has maximum breakdown, although this article has no formal
proof. M estimators are sometimes thought to be of breakdown
1=4p C 15, but this is actually incorrect. Work by Maronna
(1976), Donoho (1982), and Stahel (1981) showed that when-
ever the amount of contamination exceeds 1=4p C 15 a root of
the estimating equations that can be carried over all bounds
exists. In fact, a root may exist that remains bounded. S esti-
mators are a subclass of M estimators, as shown by Lopuhaä
(1989), and have maximal breakdown when hard redescending
– functions are used and the parameters are correctly chosen.
This provides an example of a class of M estimators that have
maximal breakdown.

M estimators can be highly statistically ef� cient and are
easy to compute by iteratively reweighted least squares but
need a high-breakdown initial estimator to avoid converging
on the “bad” root (this also applies to S estimators, which
are computed by solving the related constrained M estimation
problem). MULTOUT (Rocke and Woodruff 1996) combines
a robust initial estimator with an M estimator to yield a high-
breakdown, statistically ef� cient methodology. Note also that
identifying outliers by distance and reweighting points with
weight 0 if the point is declared an outlier and weight 1 other-
wise is a type of M estimator with a – function that is constant
until the outlier rejection cutoff point. This is used by many
methods (e.g., FAST-MCD, kurtosis1) as a � nal step, which
improves statistical ef� ciency.

Thus, the key step in outlier identi� cation and robust esti-
mation is to use an initial procedure that gives a suf� ciently
good starting place. The gap can be quite large between the
theoretical breakdown of an estimator and its “practical break-
down,” the amount and type of contamination such that suc-
cess is unlikely. Consider, for example, the case in Table 6
in which n D 100, p D 20, � D 03, ‹ D 1, and „ D 100. The
amount of contamination is well below the breakdown point
(40%), and the contamination is at a great distance from the
main data, but none of the methods used in this study are very
successful.

The study reported in Table 6 has some dif� culties:

1. The number of data points is held � xed at 100 as the
dimension rises, which leads to a very sparse data problem in
dimension 20. Many of these methods could perhaps do much
better with an adequate amount of data. This is particularly

true of FAST-MCD and MULTOUT, which are designed to
handle large amounts of data.

2. When n D 100 and p D 20, the maximum breakdown of
any equivariant estimator is .4. Of course, this does not mean
that the estimator must break down whatever the con� guration
of the outliers, but it does show that at � D 04 and p D 20 and
for every dataset generated there is an outlier con� guration
such that no equivariant estimator will work.

3. The case ‹ D 5 is one in which the outliers are actually
scattered rather than concentrated. This is especially true when
„ D 10. With standard normal data in 20 dimensions, almost
all observations lie at a distance less than the .001 point of
a �20 distribution, which is 6.73. The outliers are placed at
a distance of 10, and the .999 sphere for these has a radius
of 455460735 D 33065. Thus, the outliers actually surround the
good data, rather than lying on one side. This explains why
FAST-MCD gets all of the ‹ D 5 cases regardless of other
parameter settings.

4. When n D 100 and p D 20, the preceding computation
shows that standard normal data will almost all lie in a sphere
of radius 6.73 around the center. If the outliers are displaced
by 10 with the same covariance (‹ D 1), these spheres overlap
considerably, and in some instances no method can identify
all “outliers” because some of them lie within the good data.
Shrunken outliers (‹ D 01) do not have this problem since the
radius of the outliers is only .67, so a displacement of 10
prevents overlap. Expanded outliers (‹ D 5) are relatively easy
because the outliers surround the main data, and the chance
of one falling in the relatively small sphere of the good data
is small.

The results are better for two and four clusters (Table 8)
than for one and would be even better for individually scat-
tered outliers. The important insight is that many methods
work well except in one hard case—when the outliers lie
in one or two clusters. Methods such as the FAST-MCD
and MULTOUT must be supplemented by methods speci� -
cally designed to � nd clustered or concentrated outliers. These
clustered outlier methods are not replacements for the other
methods because they may perform poorly when there are
signi� cant nonclustered outliers.

The remaining question concerns appropriate methods to
supplement the more general estimation techniques and allow
detection of clustered/concentrated outliers. The methods of
Peña and Prieto are aimed at that task, by trying to � nd the
direction in which the clustered outliers lie. The performance
of these methods is documented in the article under discus-
sion. Another attempt in this direction was given by Juan
and Prieto (2001), who tried to � nd outliers by looking at
the angles subtended by clusters of points projected on an
ellipsoid. They showed reasonable performance of this method
but provided computations only for very concentrated outliers
(‹ D 001).

Rocke and Woodruff (2001) presented another approach. If
the most problematic case for methods like FAST-MCD and
MULTOUT is when the outliers form clusters, why not apply
methods of cluster analysis to identify them? There are many
important aspects to this problem that cannot be treated in
the limited space here, but we can look at a simple version
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of our procedure. We search for clusters using a model-based
clustering framework and heuristic search optimization meth-
ods, then apply an M estimator to the largest identi� ed cluster
(for details, see Coleman and Woodruff 2000; Coleman et al.
1999; Reiners 1998; Rocke and Woodruff 2001).

To illustrate our point, we ran a slightly altered version of
the simulation study in Table 6 from Peña and Prieto. First, we
placed the outliers on a diagonal rather than on a coordinate
axis. If u D 411 11 : : : 115, then the mean of the outliers was
taken to be pƒ1=2„u, which lies at a distance of „ from 0. After
generating the data matrix X otherwise in the same way as did
Peña and Prieto, we centered the data to form a new matrix
X ü and then generated “sphered” data in the following way:
Let X ü D UDV >, the singular value decomposition (SVD) in
which D is the diagonal matrix of singular values. Then the
matrix eX D X ü V Dƒ1V > D UV > is an af� ne transformed ver-
sion of the data with observed mean vector 0 and observed
covariance matrix I . The purpose of these manipulations is to
ensure that methods that may use nonaf� ne-equivariant meth-
ods do not have an undue advantage. Pushing the outliers
on the diagonal avoids giving an advantage to component-
wise methods. The SVD method of sphering, unlike the usual
Cholesky factor approach, preserves the direction of displace-
ment of the outliers.

We ran all the cases from the simulation of Peña and Prieto.
Time constraints prevented us from running the 100 repeti-
tions, but out of the � ve repetitions we did run, we succeeded
in 100% of the cases in identifying all of the outliers, except
for the cases in which p D 20 and ‹ D 1; these required more
data for our methods to work. We could identify all of the
outliers in 100% of the cases when n D 500, for example,
instead of n D 100. The successful trials included all of the
other cases in which no other method reported in Table 6 was
very successful.

This insight transforms part of the outlier-identi� cation
problem into a cluster-analysis problem. However, the lat-
ter is not necessarily easy (Rocke and Woodruff 2001). For
example, we tried the same set of simulation trials using the
standard clustering methods available in S-PLUS. In this case,
we ran 10 trials of each method. The methods used were
two hierarchical agglomeration methods, mclust (Ban� eld and
Raftery 1993) and agnes (Kaufman and Rousseeuw 1990;
Struyf, Hubert, and Rousseeuw 1997); diana, a divisive hier-
archical clustering method; fanny, a fuzzy clustering method;
pam, clustering around medoids (Kaufman and Rousseeuw
1990; Struyf et al. 1997); and k-means (Hartigan 1975). First,
it should be noted that all of these methods succeed almost
all of the time for separated clusters (‹ D 01 or ‹ D 1) if the
data are not sphered. All of these methods except mclust use
Euclidean distance and make no attempt at af� ne equivariance.
Mclust uses an af� ne equivariant objective function based on
a mixture model, but the initialization steps that are crucial to
its performance are not equivariant.

Over the 72 cases considered (with sphered data), none of
these methods achieved as much as 50% success. The overall
success rates were agnes 36%, diana 48%, fanny 41%, k-
means 10%, mclust 37%, and pam 12% (compared to MCD
75%, SD 77%, kurtosis1 83%, and our clustering method
89%). For shrunken outliers (‹ D 01), the most successful

were fanny 81% and mclust 37%, and the least successful
were agnes 1% and k-means 2% (compared to MCD 41%,
SD 70%, kurtosis1 88%, and our clustering method 100%).
For expanded outliers (‹ D 5), the most successful were
agnes 97%, diana 96%, mclust 73%, and fanny 39%, and the
least successful was pam 0% (compared to MCD 100%, SD
88%, kurtosis1 100%, and our clustering method 100%). This
case is quite easy for robust multivariate estimation methods;
FAST-MCD and MULTOUT each get 100% of these. Again,
the most dif� cult case is shift outliers (Rocke and Woodruff
1996; Hawkins 1980, p. 104), in which ‹ D 1. The best per-
formance among these clustering methods is diana 34%, with
the next best being k-means at 16% (compared to MCD 82%,
SD 73%, kurtosis1 62%, and our clustering method 67%).

The poor performance of these clustering methods is prob-
ably due to two factors. First, use of the Euclidean metric is
devastating when the shape of the clusters is very nonspher-
ical. Since this can certainly occur in practice, such methods
should at least not be the only method of attack. Second,
some of these problems require more extensive computation
than these methods allow, at least in the implementation in
S-PLUS. Performance of many descents of the algorithm from
a wide variety of starting points, including random ones, can
obtain better solutions than a single descent from a single
plausible starting point. This is particularly true when the data
are extremely sparse, as they are in these simulations. Many
of these methods could, of course, be modi� ed to use mul-
tiple starting points and might show enormously improved
performance.

We con� rmed this by using two additional model-based
clustering methods that permit control of the amount of com-
putation. The � rst of these was EMMIX (McLachlan and
Basford 1988; McLachlan and Peel 2000). The second was
EMSamp (Rocke and Dai 2001). For both programs, the per-
formance was similar to that of our clustering method; success
was usual if enough random starting points were used except
for shift outliers in dimension 20 in the present n D 100 case.

Since different methods are better at different types of out-
liers and since once the outliers have been identi� ed by any
method they can be said to stay identi� ed, an excellent strat-
egy when using real data instead of simulated data (where the
structure is known) is to use more than one method. Among
the methods tested by Peña and Prieto, the best combina-
tion is FAST-MCD plus kurtosis1. Together these can improve
the overall rate of identi� cation from 75% and 83%, respec-
tively, to 90%, since FAST-MCD is better for shift outliers
and kurtosis1 is better for shrunken outliers. An even better
combination is our clustering method plus FAST-MCD, which
gets an estimated 95% of the cases.

We can summarize the most important points we have tried
to make here as follows:

1. General-purpose robust-estimation and outlier-detection
methods work well in the presence of scattered outliers or
multiple clusters of outliers.

2. To deal with one or two clusters of outliers in dif� -
cult cases, methods speci� cally meant for this purpose such
as those of Peña and Prieto and Juan and Prieto (2001) are
needed to supplement the more general methods.
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3. An alternative approach for this case is to use clustering
methods to supplement the general-purpose robust methods.

4. Choice of clustering method and computational imple-
mentation are important determinants of success. We have
found that model-based clustering together with heuristic
search technology can provide high-quality methods (Cole-
man and Woodruff 2000; Coleman et al. 1999; Reiners 1998;
Rocke and Dai 2001; Rocke and Woodruff 2001).

5. The greatest chance of success comes from use of multi-
ple methods, at least one of which is a general-purpose method
such as FAST-MCD and MULTOUT, and at least one of which
is meant for clustered outliers, such as kurtosis1, the angle
method of Juan and Prieto (2001), or our clustering method
(Rocke and Woodruff 2001).
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Peña and Prieto propose a new algorithm to detect multi-
variate outliers. As a byproduct , the population scatter matrix
is estimated by the classical empirical covariance matrix of
the remaining data points.

The interest in outlier-detection procedures is growing fast
since data mining has become a standard analysis tool in both
industry and research. Once information (“data”) is gathered,
marketing people or researchers are not only interested in the
behavior of the regular clients or measurements (the “good
data points”) but they also want to learn about the anomalous
observations (the “outliers”).

As pointed out by the authors, many different procedures
have already been proposed over the last decades. However,
none of them has a superior performance at all kinds of
contamination patterns. The high-breakdown MCD covari-
ance estimator of Rousseeuw (1984) is probably the most
well known and most respected procedure. There are sev-
eral reasons for this. First, the MCD has good statistical
properties since it is af� ne equivariant and asymptotically
normally distributed. It is also a highly robust estimator,
achieving a breakdown value of 50% and a bounded in� u-
ence function at any elliptical distribution (Croux and Haes-
broeck 1999). Another advantage is the availability of a
fast and ef� cient algorithm, called FAST-MCD (Rousseeuw

and Van Driessen 1999), which is currently incorporated in
S-PLUS and SAS. Therefore, the MCD can be used to robus-
tify many multivariate techniques such as discriminant anal-
ysis (Hawkins and McLachlan 1997), principal-component
analysis (PCA) (Croux and Haesbroeck 2000), and factor anal-
ysis (Pison, Rousseeuw, Filzmoser, and Croux 2000).

Whereas the primary goal of the MCD is to robustly esti-
mate the multivariate location and scatter matrix, it also can
be used to detect outliers by looking at the (squared) robust
distances RD 4xi5 D 4xi ƒ TMCD5tSƒ1

MCD4xi ƒTMCD5. Here, TMCD

and SMCD stand for the MCD location and scatter estimates.
One can compare these robust distances with the quantiles
of the �2

p distribution. Since this rejection rule often leads
to an in� ated Type II error, Hardin and Rocke (2000) devel-
oped more precise cutoff values to improve the MCD outlier-
detection method.

If one is mainly interested in � nding the outliers, it is less
important to estimate the shape of the good points with great
accuracy. As the authors explain, it seems natural to try to � nd
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(for each data point) the direction along which the relative
distance to the uncontaminated observations is largest. This
was the idea behind the Stahel–Donoho estimator. Since the
center of the good data is unknown, this estimator projects
the dataset on all possible directions and then considers a
robust univariate distance [Formula (10)] for each data point.
The maximal distance of the point over all directions is then
de� ned as its outlyingness.

This projection pursuit (PP) strategy has the advantage of
being applicable even when p > n. This situation often occurs
in chemometrics, genetics, and engineering. It is therefore not
surprising that many multivariate methods in high dimensions
have been robusti� ed using the PP principle (e.g., see Li

and Chen 1985; Croux and Ruiz-Gazen 1996, 2000; Hubert,
Rousseeuw, and Verboven 2000). The computation time of
these estimators would be huge if all possible directions were
to be scanned. To reduce the search space, Stahel (1981) pro-
posed taking the directions orthogonal to random p subsets. In
PCA, where only orthogonal equivariance is required, Croux
and Ruiz-Gazen (1996) and Hubert et al. (2000) looked at
the n directions from the spatial median of the data to each
data point. However, it is clear that the precision of these
algorithms would improve if one were able to � nd the most
interesting directions. This is exactly what the authors try to do
in this article, which I have therefore read with great interest.

However, several key aspects of their proposal can be
criticized.

1. The standardization in Step 1. First a standardization
is performed [Formula (7)] using the classical mean and
covariance matrix. It is well known that these estimators are
extremely sensitive to outliers, which often leads to masking
large Type II errors by labeling outliers as good data points
and swamping large Type I errors by � agging good points as
outliers. Rousseeuw and Leroy (1987, pp. 271–273) gave an
example of how classical prestandardization can destroy the
robustness of the � nal results.

2. Maximizing and minimizing the kurtosis in
Steps 2 and 3. The theoretical discussion in Section 1.1 indi-
cates that the kurtosis is maximal (respectively, minimal)
in the direction of the outliers when the contamination is
concentrated and small (respectively, large). However, this is
not always true for an intermediate level of contamination.
To exemplify this, I have generated 100 univariate data points
according to the asymmetric contamination model of Sec-
tion 1.1: 41 ƒ �5N401 15 C �N4„1 ‹5. Figure 1, (a) and (b),
con� rms the authors’ conclusions. For � D 5%, the kurtosis
increases rapidly, whereas at � D 40% the kurtosis decreases
to 1.17. Figure 1(c) shows the kurtosis for � D 20%1 ‹ D 02,
and „ ranging from 1 to 20. The kurtosis � rst attains a
minimum of 2.45 at „ D 3 and then increases. But it stays
close to 3, the kurtosis of the standard normal distribution.
To construct a con� dence interval for the kurtosis at a normal
sample of size 100, I generated 10,000 samples of size 100
and computed the .025 and .975 quantiles of their kurtosis,
resulting in the 95% con� dence interval [2.27, 4.05]. We see
that none of the contaminated samples had a kurtosis outside
this con� dence interval.

Moreover, Section 1.1 deals with only concentrated outliers.
What if the outliers are not concentrated in one place? As an
example, I generated symmetric contamination, according to
the model

41ƒ �5N40115 C
�

2
N4„1‹5 C

�

2
N4ƒ„1 ‹50

Figure 1(d) shows the kurtosis as a function of „ for � D 20%
and ‹ D 02. Here again it can be seen that the kurtosis does
not become extremely large or small, except for „ close to 2.

3. Taking 2p orthogonal directions in Steps 2 and 3. In
Section 1.1, only a very particular kind of contamination is
studied. For this pattern, it indeed seems reasonable to con-
sider orthogonal directions, but why should this also work at
other contamination patterns?

Moreover, I do not understand why � rst only p direc-
tions that maximize the kurtosis are considered and then p
directions that minimize the kurtosis. Why is this better than
for example, alternating between a direction that maximizes
and one that minimizes the kurtosis? The actual implemen-
tation gives me the impression that, although inspired by
the behavior of the kurtosis, the chosen directions are still
rather arbitrary.

To verify this, I conducted the following experiment. Using
the author’s Matlab code, I changed their orthogonal directions
obtained in Steps 2 and 3 into two random sets of p orthogo-
nal directions. (A random set of p orthogonal directions was
obtained by taking the principal components of 100 randomly
generated p-variate standard normal observations.) Let us call
this new estimator rand2p. Then I repeated some of the simu-
lations that are described in Section 3.1 and that are reported in
Table 6. My Table 1 lists the results obtained with the authors’
proposed method kurtosis1, as well as with rand2p and FAST-
MCD. For each set of parameters, the � rst line indicates the
success rate of the algorithms, which (following the authors’
convention) is de� ned as the number of samples in which all
the outliers have been correctly identi� ed. ( In my opinion, it
would be better to count how many points were � agged as
outliers.) The second line shows the results obtained by the
authors.

The third line lists the average number of iterations needed
in Step 6 of the kurtosis1 and the rand2p algorithm. Although
the authors claim that they consider projections in only 2p

directions, this is somewhat exaggerated, since in Step 6 of
the algorithm it is said that whenever some outliers are found
the procedure is applied again to the reduced sample, so typi-
cally several sets of 2p directions are considered. Table 1 thus
indicates how many times 2p directions were constructed on
average.

Table 1 shows that the rand2p algorithm based on random
directions unrelated to the data has the same or even better
performance than the authors’ kurtosis1. The number of itera-
tions that occur in rand2p is larger than in kurtosis1, but since
the former algorithm does not need any optimization step, its
computation time is still lower than that of kurtosis1. This
shows that selecting directions based on the kurtosis does not
add value. On the other hand, note that, in spite of the iter-
ations, the total number of directions considered is still very
low compared with the large number of random directions
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Figure 1. The Behavior of the Kurtosis at Different Contamination Patterns: (a) 5% Asymmetric Contamination, (b) 40% Asymmetric Contami-
nation, (c) 20% Asymmetric Contamination, (d) 20% Symmetric Contamination.

used by the original Stahel–Donoho algorithm (1,000, 2,000,
and 5,000 for p D 5, 10, and 20).

In the next column, note a large discrepancy between my
results obtained for FAST-MCD and the author’s results. I
do not know how to explain this difference. Did the authors
not use the default algorithm with 50% breakdown value?
For p D 20, � D 02, and ‹ D 01, we note that FAST-MCD
has much better performance when n is 500 rather than 100.
This is due to the curse of dimensionality that occurs when
n=p is too small. Therefore I also considered n D 500 for the
other simulations in p D 20 dimensions. Note that the author’s
results printed in parentheses are still based on samples of size
n D 100.

4. Choice of the cutoff values ‚p in Step 5. The authors did
not explain how they obtained the cutoff values ‚p in Table 2.
Since these values are not distribution-free, I suppose they
were determined by generating many samples from the normal
distribution and applying the � rst four steps from the kurtosis1

algorithm. If so, I am very surprised that the estimated Type
I errors listed in Table 7 are quite far from 5%.

5. Sequential determination of outliers in Step 7. The
authors’ version of outlyingness is only used as a � rst step in
the outlier detection. In Step 7 the mean and covariance matrix
of the good data points are computed and used to decide which
outliers can still be reclassi� ed as good observations. This pro-
cedure is repeated until no more outliers can be reallocated.
My � rst question is why the cutoff value �2

pƒ11 099 is used for
p-dimensional data. Second, it seems very dangerous to repeat
this procedure in case the outliers are forming a chain. This is
illustrated in Figure 2. This is a rather arti� cial example, but
clearly shows what happens when the outliers are determined
sequentially. The smallest ellipse is the 97.5% tolerance region
based on the mean and covariance matrix of the good data
points obtained after Step 6. Applying the whole kurtosis1
algorithm to this dataset yields the larger tolerance ellipse,
which has been attracted by the chain of outliers. I therefore
suggest that Step 7 be applied only once.
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Table 1. A Comparison Among Kurtosis1 (the authors’ method),
rand2p (based on random sets of directions), and FAST-MCD.

p � ‹ „ n Kurtosis1 Rand2p FAST-MCD

5 03 01 10 100 100 100 57
(100) (0)

4088 10014
10 03 01 100 100 97 100 88

(100) (0)
1085 4034

1 100 100 25 100 100
(21) (100)

3012 4057
20 02 01 100 100 97 100 39

(100) (0)
104 3001

500 100 100 73
(100) (0)

3085 5009
1 10 500 30 100 100

(1) (98)
5088 5003

04 01 10 500 100 100 0
(1) (0)

1 3093

NOTE: For each con’ guration, the ’ rst line indicates the success rate of the
algorithm, the second line the success rate reported by the authors, and the
third line the average number of iterations.

6. Robustness of the estimated covariance matrix. The � nal
covariance matrix is said to be robust and, as the simulations
indicate, this seems to be the case for certain contamination
patterns. But what is the breakdown value of this estimator?
It would be very useful to know, since the breakdown value is
an objective measure of the robustness of the estimator toward
all kinds of contamination. If the breakdown value is nonzero,
this would give a more solid justi� cation of this proposal, and
it would allow a comparison with other robust methods that is
not based only on simulations. I therefore strongly encourage
the authors to work further on this topic.
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Response
Daniel Peña and Francisco J. Prieto

We � rst want to thank the editor for organizing this
discussion and the two discussants for their stimulating com-
ments and valuable insights. We are grateful to them for giving
us an opportunity to think harder about the problem and for
clarifying several interesting issues.

Hubert indicates that, in her opinion, the MCD covariance
estimator of Rousseeuw (1984) is the most respected pro-
cedure for multivariate outlier detection. We agree with her
that this estimator has some excellent properties, but it also
has some problems. For instance, Adrover and Yohai (2001)

computed numerically the maximum bias of this estimate and
showed that, when the dimension increases, the maximum bias
of the MCD grows almost exponentially. This is in agreement
with the result in our article in which we found that the code
FAST-MCD performs badly for concentrated contamination.
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Hubert raises several speci� c criticisms about our method,
andwe thank her for this opportunity to clarify some of these
issues as follows.

1. Hubert worries that the standardization using nonrobust
estimators may lead to dif� culties with the resulting proce-
dure, as illustrated, for example, by Rousseeuw and Leroy
(1987). This problem cannot appear in our method. First, note
that the algorithm we propose is af� ne equivariant, indepen-
dently of the initial standardization. The kurtosis coef� cient is
invariant to translations and scaling of the data, and a rotation
will not affect the maximizers or minimizers. Moreover, we
have tried to be careful when de� ning the operations to gener-
ate the successive directions, as well as in the choice of an ini-
tial direction for the optimization problems. As a consequence,
any (invertible) linear transformation of the data, including
the one used in the proposed algorithm, should not affect its
results. Second, the problem illustrated by Rousseeuw and
Leroy (1987) cannot happen to the class of estimators based on
weighted versions of the sample mean and covariance matrix
in which the suspected outliers are assigned a zero weight.The
one used in the article belongs to this class. If xi denotes the
original data and yi D Axi C b denotes the data after a (any)
linear transformation, we would de� ne location and scale esti-
mators for the modi� ed data as

my D
X

i

wiyi1 Sy D
X

i

wi4yi ƒ my54yi ƒ my5
01

where
P

i wi D 1. Undoing the transformations, we have

mx D Aƒ14my ƒ b5 D
X

i

wixi

and

Sx D Aƒ1Sy4Aƒ150 D
X

i

wi4xi ƒ mx54xi ƒ mx5
00

Thus, if the outliers are properly identi� ed in the transformed
data, the use of the sample mean and covariance to standardize
it would never cause a breakdown of the estimators, even if
these sample moments (the coef� cients in the transformation)
become arbitrarily large due to the presence of outliers.

2. As we describe in the article, and in accordance with
Hubert’s comments, the behavior of the kurtosis coef� cient
is particularly useful to reveal the presence of outliers in the
cases of small and large contaminations, and this agrees with
the standard interpretation of the kurtosis coef� cient as mea-
suring both the presence of outliers and the bimodality of the
distribution.

What is remarkable is that in intermediate cases with � D 03
the procedure does not break down completely and its perfor-
mance improves with the sample size, as we show in Table 3.
Although we cannot claim to understand perfectly well the
behavior of the algorithm in these cases, we think that some
explanations for the observed results can be found in the iter-
ative application of the technique. If a few of the outliers are
detected in some iterations (by chance or because they form a
small cluster), the remaining outliers will constitute a smaller
percentage of the remaining sample, and they will be easier to
detect by the procedure. This seems to indicate that a divide-
and-conquer strategy (that we have not implemented) could be
of help to improve the practical behavior of the algorithm.

We do not see the relevance to our procedure of the uni-
variate con� dence interval for the kurtosis coef� cient at this
point of the discussion. A multivariate kurtosis test could be
built by using the results of Machado (1983), who derived
the distribution of the maxima and minima of the kurtosis of
the projected data along u, where u is a unit norm vector, for
multivariate normal data, and Baringhaus and Henze (1991),
who derived the asymptotic distribution of the maximum of
the projected kurtosis for elliptically symmetric distributions.

3. The 2p maximization and minimization directions gen-
erated by the algorithm are considered simultaneously. In this
sense, Hubert’s proposal to alternate between directions would
be of interest if we used a procedure that stops once a signif-
icant direction is computed. The algorithm we describe does
not make use of this feature, and in this sense it is a sim-
pler one to describe and understand, although it may be more
expensive to implement.

Another question raised by Hubert is the choice of orthog-
onal directions. Our motivation to use these orthogonal direc-
tions is twofold. On the one hand, we wish the algorithm to
be able to identify contamination patterns that have more than
one cluster of outliers. For example, this would be the case
if we have individually scattered outliers. If these clusters are
apart in space, a single projection direction would be able to
� nd only one of the clusters, at most. Clearly, it would be of
interest to try to identify several of these clusters in a single
pass, by using more than one direction. To ensure that these
directions do not provide overlapping information, we have
chosen them to be orthogonal. The second motivation arises
from a property of the kurtosis, described in Section 1.1 of the
article, that implies that in some cases the directions of inter-
est are those orthogonal to the maximization or minimization
directions.

Hubert carried out an experiment to determine the relevance
of different choices for the projection directions, based on the
use of random orthogonal directions. Unfortunately, the gen-
eration of random directions, as she suggested, is not an af� ne
equivariant procedure. Rather than discussing the importance
of outlier-identi� cation procedures being af� ne equivariant,
we prefer to illustrate the impact of using a procedure that
does not satisfy this property. We carried out the same exper-
iment described by Hubert, but we standardized the data in
advance. Since our procedure is af� ne equivariant, the results
we obtain are the same (apart from statistical variability)
in both cases, whereas the results of the procedure used by

Table 1. Success Rates for Outliers in One Cluster:
Random Directions

p �
p

‹ „ n Kurtosis Rand2p

5 03 01 10 100 100 2

10 03 01 100 100 97 0
1 100 100 35 25

20 02 01 100 100 94 0
500 100 0

1 10 500 30 41
04 01 10 500 100 0
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Figure 1. Cones of Random Directions for the Identi’ cation of Outliers: (a) Data Used in the Simulations; (b) Standardized Data.

Hubert change completely. Table 1 shows that the use of ran-
dom directions is a very poor choice for this data.

The reason the random directions are so ef� cient for the
data used in the simulation made by Hubert is that the out-
liers were located quite far out from the uncontaminated data.
Figure 1 attempts to illustrate this point. In Figure 1(a), we
represent data generated as in the simulation experiment and
the cones of directions that would be able to separate the out-
liers in the projections. The useful directions are those outside
the narrow cones. Figure 1(b) presents the same data after a
linear transformation to standardize it. It is readily apparent
that after the transformation the set of useful directions is
much smaller than before.

It could be shown that the probability of the projection of
the center of the outliers being beyond the z1ƒ� quantile of
the standard normal for the data used in the simulation exper-
iment, will be given by

P

³
—Y — ¶

z1ƒ�

p
p ƒ 1p

„2p ƒ z2
1ƒ�

´
1

where Y follows a Student’s tpƒ1 distribution. For � D 001,
„ D 10, and p D 5, this probability is approximately equal to
083, and for „ D 10 and p D 20, the corresponding value is 080.
These values change signi� cantly after a linear transformation
is applied to the data. We prefer to use an af� ne equivariant
algorithm based on the maximization and minimization of the
kurtosis coef� cient, even if in some cases it may behave worse
than other alternatives.

The different results obtained with FAST-MCD are due to
the different values used for the variance of the contaminating
distribution. We must apologize to Hubert for introducing a
source of confusion in the previous version of the article, in
which in Section 1.1 ‹ was the variance of the contaminating
distribution, whereas in the simulations ‹ was the standard
deviation. This has been corrected in the published version
of the article. Thanks to her careful checking of our results,
which we appreciate very much, a possible source of confu-
sion for the readers of the article has been removed. Table 2
gives the values we obtain for FAST-MCD for several values

of ‹, which basically correspond to those indicated by Hubert
and show that, in agreement with previous results, FAST-MCD
works better for less concentrated contamination.

4. The procedure used to compute the values in Table 3
of the article is in fact the one mentioned by Hubert in her
comments. The results are unfortunately not totally satisfac-
tory; the reason is the large variability in these values in the
simulations. This variability has two main effects—it is dif� -
cult to � nd correct values (huge numbers of replications would
be required) and for any set of 100 replications there is a
high probability that the resulting values will be far from the
expected one. Nevertheless, we agree that these values could
be estimated with greater detail, although they do not seem to
be very signi� cant for the behavior of the algorithm, except
for contaminations very close to the original sample.

5. We again thank Hubert for detecting a misprint in the
article that we have corrected in this printed version. In the
version she discusses, it was wrongly written that the cut-
off value was �2

pƒ1 instead of �2
p . Actually, in the code that

we have made public the percentiles are obtained from the
Hotelling-T 2 approximation instead of the �2

p , which behaves
better for small sample sizes.

Table 2. Success Rates for Outliers in One Cluster: FAST-MCD

p �
p

‹ „ n Fast-MCD

5 3 1 10 100 0
32 10 100 55

10 3 1 100 100 0
32 100 100 94

1 100 100 100

20 2 1 100 100 0
32 100 100 31
1 100 500 0
32 100 500 57

1 10 500 100
4 1 10 500 0

32 10 500 0
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Table 3. Success Rates for One Cluster of Outliers in p D 20

Dimensions: Different Sample Sizes

�
p

‹ „ n Fast-MCD Kurtosis

.2 01 100 200 0 99
500 0 99

11000 0 98
21000 0 98

.3 1 100 200 29 1
500 40 52

11000 52 99
21000 50 100

.4 1 100 200 2 59
500 1 100

11000 2 100
21000 0 100

Regarding the suggestion of applying Step 7 only once,
we have found that this requires a very careful calibration
of the cutoff values, and as a consequence it becomes very
sensitive to deviations from normality in the data. We are
a little surprised by her general criticism of procedures that
determine the outliers sequentially. The statistical literature
is full of examples of very successful sequential procedures
and, to indicate just one, Peña and Yohai (1999) presented a
sequential procedure for outlier detection in large regression
problems that performs much better than other nonsequential
procedures.

6. Regarding breakdown properties, we agree with Hubert
that it would be of great interest to prove a high-breakdown-
point property of the proposed algorithm to con� rm the good
behavior that it shows in the simulations.

Rocke and Woodruff mention some dif� culties arising from
the speci� c contamination patterns used in the simulation
experiment:

We agree that in dimension 20 a sample of size 100 is small.
To check the effect of increasing the sample size on FAST-
MCD and on our proposed algorithm, we have performed a
small simulation experiment, reported in Table 3. As expected,
the success rate improves with the sample size. It is interest-
ing to stress that in the worst case for the kurtosis algorithm,
� D 03 and ‹ D 11 the performance improves very fast with the
sample size. This suggests that our algorithm can be a fast and
simple alternative for detecting outliers and computing robust
estimates in large datasets in high dimensions.

We regret that Rocke and Woodruff may have been misled
by the notation we used in Section 1.1 and in the description
of the simulation experiment. In this experiment, the outliers
have been generated to have mean „e, where e denotes a
vector of ones—that is, the same vector that these authors
denote as u in their comments. As a consequence, the dis-
tance between the means of both distributions is „

p
p (rather

than „).
This situation modi� es some of the conclusions from the

Rocke–Woodruff analysis. For example, the � rst case has a
standard deviation of the outliers equal to 51 „ D 10, and
p D 20, and the 0999 sphere with radius 33065 containing the
outliers would be centered on a point at a distance 10

p
20 D

44072 from the center of the uncontaminated data. As a con-
sequence, the outliers in this case would lie on one side of the
original data, and would not surround it with high probability.
The same analysis would also imply that for ‹ D 1 the spheres
around the original data and the contaminating cluster would
not overlap.

We agree with Rocke and Woodruff that methods like
FAST-MCD or MULTOUT must be supplemented by other
methods for concentrated contaminations. The proposal of
Juan and Prieto (1997) would be very useful in this regard
because it is designed just for this speci� c objective. However,
we do not think that kurtosis1 is useful only for concentrated
outliers. As we have shown in the simulations, it works as
well as FAST-MCD when

p
‹ D 5, whereas it leads to a much

smaller proportion of good observations mislabeled as outliers
when the dimension grows; see Table 6 in the article. We have
conducted another limited simulation experiment for

the worst-case amount of contamination, � D 03, and differ-
ent concentrations of the contamination presented in Table 4.

From Table 4 we see that the reduction in performance tends
to concentrate closely around ‹ D 1, and for values of

p
‹ on

the order of 05–07 and 105, the performance seems to be back
to reasonable levels. However, this reduction of performance
disappears for large sample size, as was shown in Table 3.

However, since kurtosis1 does not work well for values
very close to ‹ D 1 and small sample sizes, it would be
interesting to � nd an optimal combination of this code and
some of the other available codes. Since we have not included
comparisons with MULTOUT in the article, we will use only
the results from Tables 6 and 8 for FAST-MCD and SD.
The best option from these tables seems to be a combination
of SD and kurtosis1. Thus the directions obtained by the
kurtosis algorithm can be used to compute a fast version of the
Donoho–Stahel estimate. It is also possible to combine these
directions with others obtained by resampling, searching for
speci� c as well as random directions. Peña and Yohai (1999)

Table 4. Success Rates for Outliers in One Cluster:

Different Concentrations

p �
p

‹ „ n Kurtosis

10 .3 03 100 100 99
05 100 100 95
07 100 100 54
09 100 100 26

1 100 100 32
102 100 100 69
105 100 100 98
2 100 100 100

20 .3 03 100 500 99
05 100 500 100
07 100 500 100
09 100 500 88

1 100 500 75
102 100 500 86
105 100 500 100
2 100 500 100
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suggested that this type of combination could be very suc-
cessful in robust regression, and we think that the empirical
evidence available suggests it would also be very promising
for detecting multivariate outliers.

We agree completely with Rocke and Woodruff in the inter-
est of using clustering algorithms when a concentrated con-
tamination is suspected to be present (a case very closely
related to the standard cluster identi� cation problem) or as a
complement to other robust outlier-identi� cation procedures.
The results that they mention seem very promising, and we
are looking forward to reading the two manuscripts referenced
in their report with their new results. Note also that their com-
ments can be interpreted to work in the opposite direction—
that is, that an algorithm that is ef� cient for the detection of
concentrated contaminations may be a reasonable basis for a
clustering algorithm. Along these lines we have carried out
some work (Peña and Prieto 2001) to improve on the per-
formance of the kurtosis-based method in a cluster-analysis
setting. Basically, we have combined the idea of projections
onto interesting directions with an analysis of the spacings of
the projections to identify groups in the data. Both the the-
oretical analysis and the simulation results seem to indicate
that this approach may be of interest, at least for linearly sep-
arable clusters. One theoretical motivation for the procedure
(Peña and Prieto 2000) is that if we have two clusters from
two normal populations with different means but the same
covariance matrix, the direction that minimizes the kurtosis
of the projection is the Fisher linear discriminant function.
Thus we can obtain the optimal discriminant direction without
knowing the means or the common covariance matrix, which
allows its application to cluster analysis. We have also proved
(Peña and Prieto 2001) that if we have a sample generated by
two elliptical distributions with different means and covariance
matrices, the directions that maximize or minimize the kurtosis

coef� cient belong to the admissible linear classi� cation rules
as de� ned by Anderson and Bahadur (1962). We conduct a
search for groups along each of these directions using spac-
ings. The performance of the resulting cluster procedure is
very encouraging.

We would like to � nish this response by thanking both
discussants for their thought-provoking comments that have
helped us to understand the procedure better. We agree with
Rocke and Woodruff that a combination of different proce-
dures and approaches seems to be the most promising strategy
to � nd multivariate outliers. This suggests exploring ideas
from cluster analysis, robust statistics, and outlier-detection
methods using both classical and Bayesian inference. The mix-
ture of different cultures and approaches has been the main
source of change and improvement in our world, and we
believe that this is also true for statistics.
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