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Abstract: This paper proposes a procedure to detect patches of outliers in an au-

toregressive process. The procedure is an improvement over the existing detection

methods via Gibbs sampling. We show that the standard outlier detection via

Gibbs sampling may be extremely inefficient in the presence of severe masking and

swamping effects. The new procedure identifies the beginning and end of possible

outlier patches using the existing Gibbs sampling, then carries out an adaptive

procedure with block interpolation to handle patches of outliers. Empirical and

simulated examples show that the proposed procedure is effective.
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1. Introduction

Outliers in a time series can have adverse effects on model identification and
parameter estimation. Fox (1972) defined additive and innovative outliers in a
univariate time series. Let {xt} be an autoregressive process of order p, AR(p),
satisfying

xt = φ0 + φ1xt−1 + · · · + φpxt−p + at, (1.1)

where {at} is a sequence of independent and identically distributed Gaussian
variables with mean zero and variance σ2

a, and the polynomial φ(B) = 1−φ1B−
· · · − φpB

p has no zeros inside the unit circle. An observed time series yt has an
additive outlier (AO) at time T of size β if it satisfies yt = βI

(T )
t +xt, t = 1, . . . , n,

where I
(T )
t is an indicator variable such that I

(T )
t = 0 if t �= T , and I

(T )
t = 1 if

t = T . The series has an innovative outlier (IO) at time T if the outlier directly
affects the noise process, that is, yt = φ(B)−1βI

(T )
t + xt, t = 1, . . . , n. Chang

and Tiao (1983) show that additive outliers can cause serious bias in parameter
estimation whereas innovative outliers only have minor effects in estimation. We
deal with additive outliers that occur in patches in an AR process. The main
motivation for our study is that multiple outliers, especially those which occur
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closely in time, often have severe masking effects that can render the usual outlier
detection methods ineffective.

Several procedures are available in the literature to handle outliers in a time
series. Chang and Tiao (1983), Chang, Tiao and Chen (1988) and Tsay (1986,
1988) proposed an iterative procedure to detect four types of disturbance in
an autoregressive integrated moving-average (ARIMA) model. However, these
procedures may fail to detect multiple outliers due to masking effects. They can
also misspecify “good” data points as outliers, resulting in what is commonly
referred to as the swamping or smearing effect. Chen and Liu (1993) proposed a
modified iterative procedure to reduce masking effects by jointly estimating the
model parameters and the magnitudes of outlier effects. This procedure may also
fail since it starts with parameter estimation that assumes no outliers in the data,
see Sánchez and Peña (1997). Peña (1987, 1990) proposed diagnostic statistics to
measure the influence of an observation. Similar to the case of independent data,
influence measures based on data deletion (or equivalently, using techniques of
missing value in time series analysis) will encounter difficulties due to masking
effects.

A special case of multiple outliers is a patch of additive outliers. This type
of outliers can appear in a time series for various reasons. First and perhaps
most importantly, as shown by Tsay, Peña and Pankratz (1998), a multivariate
innovative outlier in a vector time series can introduce a patch of additive outliers
in univariate marginal times series. Second, an unusual shock may temporarily
affect the mean and variance of a univariate time series in a manner that can-
not be adequately described by the four types of outlier commonly used in the
literature, or by conditional heteroscedastic models. The effect is a patch of ad-
ditive outliers. Because outliers within a patch tend to interact with each other,
introducing masking or smearing, is important in applications to detect them.
Bruce and Martin (1989) were the first to analyze patches of outliers in a time
series. They proposed a procedure to identify outlying patches by deleting blocks
of consecutive observations. However efficient procedures to determine the block
sizes and to carry out the necessary computation have not been developed.

McCulloch and Tsay (1994) and Barnett, Kohn and Sheather (1996, 1997)
used Markov Chain Monte Carlo (MCMC) methods to detect outliers and com-
pute the posterior distribution of the parameters in an ARIMA model. In par-
ticular, McCulloch and Tsay (1994) showed that the Gibbs sampling provides
accurate parameter estimation and effective outlier detection for an AR process
when the additive outliers are not in patches. However, as clearly shown by the
following example, the usual Gibbs sampling may be very ineffcient when the
outliers occur in a patch.
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Figure 1. Top: AR(3) artificial time series with five outliers at periods t =
27 and 38–41 (marked with a dot). Bottom: results of the Gibbs sampler
after 26,000 iterations; (a) posterior probabilities for each data point to be
outlier; (b) posterior mean estimates of the outlier sizes for each data; and
(c) convergence monitoring by plotting the parameter values drawn in each
iteration.

Consider the outlier-contaminated time series shown in Figure 1. The outlier-
free data consist of a random realization of n = 50 observations generated from
the AR(3) model,

xt = 2.1xt−1 − 1.46xt−2 + 0.336xt−3 + at t = 1, . . . , 50, (1.2)

where σ2
a = 1. The roots of the autoregressive polynomial are 0.6, 0.7 and 0.8, so

that the series is stationary. A single additive outlier of size −3 has been added
to the time index t = 27, and a patch of four consecutive additive outliers have
been introduced from t = 38 to t = 41, with sizes (11, 10, 9, 10). The data are
available to author request. Assuming that the AR order p = 3 is known, we
performed the usual Gibbs sampling to estimate model parameters and to detect
outliers. Figure 1 gives some summary statistics of the Gibbs sampling output
using the last 1,000 samples from a Gibbs sampler of 26,000 iterations (when
the Markov chains are stabilized as shown in Figure 1-c). Figure 1-a provides
the posterior probabilities of being an outlier for each data point, and Figure 1-b
gives the posterior means of outlier sizes. From the plots, it is clear that the
usual Gibbs sampler easily detects the isolated outlier at t = 27, with posterior
probability close to one and posterior mean of outlier size −3.03. Meanwhile, the
usual Gibbs sampler encounters several difficulties. First, it fails to detect the
inner points of the outlying patch as outliers (the outlying posterior probabilities
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are very low at t = 39 and 40). This phenomenon is referred to as masking.
Second, the sampler misspecifies the “good” data points at t = 37 and 42 as
outliers because the outlying posterior probabilities of these two points are close
to unity. The posterior means of the sizes of these two erroneous outliers are
−3.42 and −2.09, respectively. In short, two “good” data points at t = 37
and 42 are swamped by the patch of outliers. Third, the sampler correctly
identifies the boundary points of the outlier patch at t = 38 and 41 as outliers,
but substantially underestimates their sizes (the posterior means of the outlier
sizes are only 3.31 and 4.51, respectively).

The example clearly illustrates the masking and swamping problems encoun-
tered by the usual Gibbs sampler when additive outliers exist in a patch. The
objective of this paper is to propose a new procedure to overcome these difficul-
ties. Limited experience shows that the proposed approach is effective.

The paper is organized as follows. Section 2 reviews the application of the
standard Gibbs sampler to outlier identification in an AR time series. Section 3
proposes a new adaptive Gibbs algorithm to detect outlier patches. The con-
ditional posterior distributions of blocks of observations are obtained and used
to expedite the convergence of Gibbs sampling. Section 4 illustrates the perfor-
mance of the proposed procedure in two examples.

2. Outlier Detection in an AR Process

2.1. AR model with additive outliers

Suppose the observed data, y = (y1, . . . , yn)′ are generated by yt = δtβt +xt,
t = 1, . . . , n, where xt is given by (1.1) and δ = (δ1, . . . , δn)′ is a binary random
vector of outlier indicators; that is, δt = 1 if the tth observation is contami-
nated by an addtive outlier of size βt, and δt = 0 otherwise. For simplicity,
assume that x1, . . . , xp are fixed and xt = yt for t = 1, . . . , p, i.e., there ex-
ist no outliers in the first p observations. The indicator vector of outliers then
becomes δ = (δp+1, . . . , δn)′ and the size vector is β = (βp+1, . . . , βn)′. Let
Xt = (1, xt−1, . . . , xt−p)′ and φ = (φ0, φ1, . . . , φp)′. The observed series can be
expressed as a multiple linear regression model given by

yt = δtβt + φ′Xt + at t = p + 1, . . . , n. (2.3)

We assume that the outlier indicator δt and the outlier magnitude βt are indepen-
dent and distributed as Bernoulli(α) and N (0, τ2) respectively for all t, where
α and τ2 are hyperparameters. Therefore, the prior probability of being con-
taminated by an outlier is the same for all observations, namely P (δt = 1) = α,
for t = p + 1, . . . , n. The prior distribution for the contamination parameter α is
Beta(γ1, γ2), with expectation E(α) = γ1/(γ1 + γ2).
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Abraham and Box (1979) obtained the posterior distributions for the pa-
rameters in model (2.3), under Jeffrey’s reference prior distribution for (φ, σ2).
In this case the conditional posterior distribution of φ, given any outlier config-
uration δr, is a multivariate-t distribution, where δr is one of the 2n−p possible
outlier configurations. Then the posterior distribution of φ is a mixture of 2n−p

multivariate-t distributions:

P (φ | y) =
∑

wrP (φ | y, δr), (2.4)

where the summation is over all 2n−p possible outlier configurations and the
weight wr = P (δr | y). For such a model, we can identify the outliers using the
posterior marginals of elements of δ,

pt = P (δt = 1 | y) =
∑

P (δrt | y), t = p + 1, . . . , n, (2.5)

where the summation is now over the 2n−p−1 outlier configurations δrt with
δt = 1 (the posterior probabilities P (δrt | y) are easy to compute). The posterior
distributions of the outlier magnitudes are mixtures of Student-t distributions:

P (βt | y) =
∑

wrP (βt | y, δr), t = p + 1, . . . , n. (2.6)

Therefore, it is possible to derive the posterior probabilities for the parameters
in model (2.3). In practice, however, the computation is very intensive, even
when the sample size is small. Since these probabilities are mixtures of 2n−p or
2n−p−1 distributions. The approach becomes infeasible when the sample size is
moderate or large and some alternative approach is needed. One alternative is
to use MCMC methods.

2.2. The standard Gibbs sampling and its difficulties

McCulloch and Tsay (1994) proposed to compute the posterior distributions
(2.4) − (2.6) by Gibbs sampling. The procedure requires full conditional poste-
rior distributions of each parameter in model (2.3) given all the other parameters.
Barnett, Kohn and Sheather (1996) generalized the model to include innovative
outliers and order selection. They used MCMC methods with Metropolis-Hasting
and Gibbs Sampling algorithms. For ease of reference, we summarize conditional
posterior distributions, obtained first by McCulloch and Tsay (1994), with con-
jugate prior distributions for φ and σ2

a. We use non-informative priors for these
parameters. Note that, as the priors for β and δ are proper, even if we assume
improper priors for (φ, σ2

a) the joint posterior is proper.
If the hyperparameters γ1, γ2 and τ2 are known, the conditional posterior dis-

tribution of the AR parameter vector φ is multivariate normal Np+1(φ�, σ2
aΩφ),
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where the mean vector and the covariance matrix are

φ� = Ωφ

n∑
t=p+1

Xtxt, and Ωφ =
( n∑

t=p+1

XtX
′
t

)−1
.

The conditional posterior distribution of the innovational variance σ2
a is Inverted-

Gamma((n − p)/2, (
∑n

t=p+1 a2
t )/2).

The conditional posterior distribution of α depends only on the vector δ, it
is Beta(γ1 +

∑
δt, γ2 + (n− p)−∑

δt)). The conditional posterior mean of α can
then be expressed as a linear combination of the prior mean and the sample mean
δ̄ of the data: E(α | δ) = ωE(α)+(1−ω)δ̄, where ω = (γ1 +γ2)/(γ1 +γ2 +n−p).

The conditional posterior distribution of δj , j = p + 1, . . . , n, is Bernoulli
with probability

P (δj = 1 | y,φ, σ2
a, δ(j),β, α) =

[
1 +

(1 − α)
α

B10(j)
]−1

, (2.7)

where δ(j) is obtained from δ by eliminating the element δj and B10 is the Bayes
factor. The logarithm of the Bayes factor B10 is

log B10(j) =
1

2σ2
a

[ Tj∑
t=j

et(1)2 −
Tj∑
t=j

et(0)2
]
, (2.8)

where Tj = min(n, j +p), et(δj) = x̃t−φ0−∑p
i=1 φix̃t−i, and x̃t = yt− δtβt is the

residual at time t when the series is corrected by the identified outliers in δ(j)

and δj . It is easy to see that et(1) = et(0) + πt−jβj , where π0 = −1 and πj = φj

for j = 1, . . . , p.
The probability (2.7) has a simple interpretation. The two hypotheses δj = 1

(yj is contaminated by an outlier) and δj = 0 (yj is outlier free), given the data,
only affect the residuals ej , . . . , eTj . Assuming parameters are known, we can
judge the likelihoods of these hypotheses by (a) computing the residuals et(1)
for t = j, . . . , Tj ; (b) computing the residuals et(0); and (c) comparing the two
sets of residuals. The Bayes factor is the usual way of comparing the likelihoods
of the two hypotheses. Since the residuals are one-step-ahead prediction errors,
(2.8) compares the sum of prediction errors in the periods j, j + 1, . . . , Tj when
the forecasts are evaluated under the hypothesis δj = 1 and under the hypothesis
δj = 0. This is equivalent to the Chow test (1960) for structural changes when
the variance is known.

The conditional posterior distributions of the outlier magnitudes βj, for j =
p + 1, . . . , n are N (δjβ

�
j , σ2

j ), where

β�
j =

σ2
j

σ2
a

[
ej(0) − φ1ej+1(0) − · · · − φTj−jeTj (0)

]
(2.9)
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and σ2
j = τ2σ2

a/(τ2ν2
Tj−jδj + σ2

a), with ν2
Tj−j = (1 + φ2

1 + · · · + φ2
Tj−j).

When yj is identified as an outlier and there is no prior information about
the outlier magnitude (τ2 → ∞), the conditional posterior mean of βj tends to
β̂j = ν−2

Tj−j [ej(0)−φ1ej+1(0)−· · · φTj−jeTj (0)], which is the least squares estimate
when the parameters are known (Chang, Tiao and Chen (1988)); the conditional
posterior variance of βj tends to the variance of the estimate β̂j . The conditional
posterior mean in (2.9) can also be seen as a linear combination of the prior mean
and the outlier magnitude estimated from the data. The magnitude estimate is
the difference between the observation yj and the conditional expectation of yj

given all the data, ŷj|n, which is the linear predictor of yj that minimizes the
mean squared error. Then (2.9) can be expressed as

β�
j =

τ2ν2
Tj−j

τ2ν2
Tj−j + σ2

a

(yj − ŷj|n) +
σ2

a

τ2ν2
Tj−j + σ2

a

β0, (2.10)

where β0 is the prior mean of βj (zero in this paper). For the AR(p) model under
study, the optimal linear predictor ŷj|n is a combination of the past and future p

values of yj,

ŷj|n = φ0ν
−2
Tj−j π̃Tj−j − ν−2

Tj−j

( p∑
i=1

Tj−j−i∑
t=0

πtπt+ixj−i +
Tj−j∑
i=1

Tj−j−i∑
t=0

πtπt+ixj+i

)
,

(2.11)
where π̃t = 1 − φ1 − · · · − φt for t ≤ p. Using the truncated autoregressive
polynomial πTj−j(B) = (1−π1B−· · ·−πTj−jB

Tj−j) and the “truncated” variance,
ν2

Tj−j = (1 + π2
1 + · · · + π2

Tj−j) of the dual process

xD
t = φ0π̃p + at − φ1at−1 − · · · − φpat−p, (2.12)

the filter (2.11) can be written as a function of the “truncated” autocorrelation
generating function ρD

Tj−j(B) = ν−2
Tj−jπp(B)πTj−j(B−1) of the dual process ŷj|n =

φ0ν
−2
Tj−jπ̃Tj−j − [1 − ρD

Tj−j(B)]xj .
We may use the above results to draw a sample of a Markov chain using Gibbs

sampling. This Markov chain converges to the joint posterior distribution of the
parameters. When the number of iterations is sufficiently large, the Gibbs draw
can be regarded as a sample from the joint posterior distribution. These draws
are easy to obtain because they are from well-known probability distributions.
However, as shown by the simple example in 1.2, such a Gibbs sampling procedure
may fare poorly when additive outliers appear in patches.

To understand the situation more fully, consider the simplest situation in
which the time series follows an AR(1) model with mean zero and there exists
a patch of three additive outliers at time T − 1, T , T + 1. To simplify the
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analysis, we first assume that the three outliers have the same size, βt = β for
t = T − 1, T, T + 1, and the AR parameter is known. Checking if an observation
is contaminated by an additive outlier amounts to comparing the observed value
with its optimal interpolator derived using the model and the rest of the data. For
an AR(1) process the optimal interpolator (2.11) is ŷt|n = φ(1+φ2)−1(yt−1+yt+1).
The first outlier in the patch is tested by comparing yT−1 = xT−1 + βT−1 with
ŷT−1|n = x̂T−1|n + φ(1 + φ2)−1βT . It is detected if βT is sufficiently large, but its
size will be underestimated. For instance, if φ is close to unity the estimated size
will only be half the true size. For the second outlier, we compare yT = xT + βT

with ŷT |n = x̂T |n + φ(1 + φ2)−1(βT−1 + βT+1) = x̂T |n + (1 + φ2)−1(2φβT ). If
φ is close to one the outlier cannot be easily detected, because the difference
between the optimal interpolator and the observed value is xT − x̂T |n + (1 −
φ)2(1+φ2)−1β, small when φ is close to unity. Note that in practice the masking
effect is likely to remain even if we correctly identify an outlier at T − 1 and
adjust yT−1 accordingly, because, as mentioned above, the outlier size at T − 1
is underestimated. In short, if φ is close to unity the middle outlier at time T is
hard to detect. The detection of the outlier at time T + 1 is also difficult and its
size is underestimated.

Next consider the case that the AR parameter is estimated from the sam-
ple. Without outliers the least squares estimate of the AR parameter is φ̂0 =∑

xtxt−1(
∑

x2
t )

−1 = rx(1), the lag-1 sample autocorrelation. Suppose the series
is contaminated by a patch of 2k+1 additive outliers at times T−k, . . . , T, . . . , T+
k, of sizes βt = βo

t sx, where s2
x =

∑
x2

t /n is the sample variance of the outlier-free
series. In this case, the least squares estimate of the AR coefficient based on the
observed time series yt is given, dropping terms of order o(n−1), by

φ̂y =
rx(1) + n−1 ∑k

−k βo
T+j(x̃T+j−1 + x̃T+j+1) + n−1 ∑k

−k βo
T+jβ

o
T+j−1

1 + 2n−1
∑k

−k βo
T+jx̃T+j + n−1

∑k
−k(βo

T+j)2
,

where x̃t = xt/sx. If the outliers are large, with the same sign and similar sizes,
then for a fixed sample size n, φ̂y will approach unity as the outlier sizes increase.
This makes the identification of outliers difficult.

Note that characteristics of the outlier patch will appear clearly if the length
of the patch is known and one interpolates the whole patch using observations
before and after the patch. This is the main idea of the adaptive Gibbs Sampling
proposed in the next section. For the standard outlier detection procedure using
Gibbs sampling, proper “block” interpolation can only occur if one uses ideal
initial values that identify each point of the outlier patch as an outlier.

Figure 2 shows the evolution of the masking problem when the Gibbs sam-
pling iteration starts for the simulated data in (1.2). At each iteration, the
Gibbs sampler checks if an observation is an outlier by comparing the observed
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value with its optimal interpolator using (2.8) and (2.10). The outlier sizes for
β37 to β42 generated in each iteration are represented in Figure 2 as continuous
sequences —grey shadows represent iterations where the data are identified as
outliers. The outliers at t = 38 and 41 are identified and corrected in few iter-
ations, but their sizes are underestimated. The central outliers, t = 39 and 40,
are identified in very few iterations and their sizes on these occasions are small.
We can see that four outliers are never identified in the same iteration. If we use
ideal initial values that assign each point of the outlier patch as an outlier, the
sizes obtained at an iteration are the dots in Figure 2 (horizontal lines represent
true outlier sizes). At the right side of the graphs, the estimation of the posterior
distributions are represented for standard Gibbs sampling (the fill curve) and for
the Gibbs sampler with “block” interpolation.

iteration
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Figure 2. Artificial time series: outlier sizes from β37 to β42 generated in each
iteration. Continuous sequences for the standard Gibbs sampler, and dots for
the Gibbs sampler with “block” interpolation. The grey shadows are used to
show the iterations where the data are identified as outliers. The horizontal
lines represent the true values.

One can regard these difficulties as a practical convergence problem for the
Gibbs sampler. This problem also appears in the regression case with multiple
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outliers, as shown by Justel and Peña (1996). High parameter correlations and
the large dimension of the parameter space slow down the convergence of the
Gibbs sampler (see Hills and Smith (1992)). Note that the dimension of the
parameter space is 2n + p + 3 and, for outliers in a patch, correlations are large
among the outlier positions and among the outlier magnitudes. When Gibbs
draws are from a joint distribution of highly correlated parameters, movements
from one iteration to the next are in the principal components direction of the
parameter space instead of parallel to the coordinate axes.

3. Detecting Outlier Patches

Our new procedure consists of two Gibbs runs. In the first run, the standard
Gibbs sampling of Section 2 is applied to the data. The results of this Gibbs run
are then used to implement a second Gibbs sampling that is adaptive in treating
identified outliers and in using block interpolation to reduce possible masking
and swamping effects.

In what follows, we divide the detail of the proposed procedure into subsec-
tions. The discussion focuses on the second Gibbs run and assumes that results
of the first Gibbs run are available. For ease in reference, let φ̂

(s)
, σ̂

(s)
a , p̂(s),

and β̂
(s)

be the posterior means based on the last r iterations of the first Gibbs
run which uses s iterations, where the jth element of p̂(s) is p̂

(s)
p+j, the posterior

probability that yp+j is contaminated by an outlier.

3.1. Location and joint estimation of outlier patches

The biases in β̂
(s)

induced by the masking effects of multiple outliers come
from several sources. Two main sources are (a) drawing values of βj one by
one and (b) the misspecification of the prior mean of βj , fixed to zero. One-
by-one drawing overlooks the dependence between parameters. For an AR(p)
process, an additive outlier affects p + 1 residuals and the usual interpolation
(or filtering) involves p observations before and after the time index of interest.
Consequently, an additive outlier affects the conditional posterior distributions
of 2p+1 observations; see (2.8) and (2.9). Chen and Liu (1993) pointed out that
estimates of outlier magnitudes computed separately can differ markedly from
those obtained from a joint estimation. The situation becomes more serious in
the presence of k consecutive additive outliers for which the outliers affect 2p+k

observations. We make use of the results of the first Gibbs sampler to identify
possible locations and block sizes of outlier patches.

The tentative specification of locations and block sizes of outlier patches is
done by a forward-backward search using a window around the outliers identified
by the first Gibbs run. Let c1 be a critical value between 0 and 1 used to identify
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potential outliers. An observation whose posterior probability of being an outlier
exceeds c1 is classified as an “identified” outlier. More specifically, yj is identified
as an outlier if p̂

(s)
j > c1. Typically we use c1 = 0.5. Let {t1, . . . , tm} be the

collection of time indexes of outliers identified by the first Gibbs run.
Consider patch size. We select another critical value c2, c2 ≤ c1, to specify

the beginning and end points of a “potential” outlier patch associated with an
identified outlier. In addition, because the length of an outlier patch cannot
be too large relatively to the sample size, we select a window of length 2hp to
search for the boundary points of a possible outlier patch. For example, consider
an “identified” outlier yti . First, we check the hp observations before yti and
compare their posterior probabilities p̂

(s)
j with c2. Any point within the window

with p̂
(s)
j > c2 is regarded as a possible beginning point of an outlier patch

associated with yti . We then select the farthest point from yti as the beginning
point of the outlier patch. Denote the point by yti−ki

. Second, do the same for
the hp observations after yti and select the farthest point from yti with p̂

(s)
j > c2

as the end point of the outlier patch. Denote the end point by yti+vi . Combine
the two blocks to form a tentative candidate for an outlier patch associated with
yti , denoted by (yti−ki

, . . . , yti+vi).
Finally, consider jointly all the identified outlier patches for further refine-

ment. Overlapping or consecutive patches should be merged to form a larger
patch; if the total number of outliers is greater than n/2, where n is the sample
size, increase c2 and re-specify possible outlier patches; if increasing c2 cannot
sufficiently reduce the total number of outliers, choose a smaller h and re-specify
outlier patches.

With outlier patches tentatively specified, draw Gibbs samples jointly within
a patch. Suppose that a patch of k outliers starting at time index j is identified.
Let δj,k = (δj , . . . , δj+k−1)′ and βj,k = (βj , . . . , βj+k−1)′ be the vectors of outlier
indicators and magnitudes, respectively, for the patch. To complete the sampling
scheme we need the conditional posterior distributions of δj,k and βj,k, given the
others. We give these distributions in the next theorem, derivations are in the
Appendix.

Theorem 1. Let y = (y1, . . . , yn)′ be a vector of observations according to
(2.3), with no outliers in the first p data points. Assume δt ∼ Bernoulli(α),
t = p + 1, . . . , n, and

P (φ, σ2
a, α,β) ∝ σ−2

a αγ1−1(1 − α)γ2−1 exp


− 1

2τ2

n∑
t=p+1

β2
t


 ,

where the parameters γ1, γ2 and τ2 are known. Let et(δj,k) = xt−φ0−∑p
i=1 φixt−i

be the residual at time t when the series is adjusted for all identified outliers



662 ANA JUSTEL, DANIEL PEÑA AND RUEY S. TSAY

not in the interval [j, j + k − 1] and the outliers identified in δj,k, with Tj,k =
min{n, j + k + p − 1}. Then the following hold.
a) The conditional posterior probability of a block configuration δj,k, given the

sample and the other parameters, is

pδj,k
= C αsj,k(1 − α)k−sj,k exp

(
− 1

2σ2
a

Tj,k∑
t=j

et(δj,k)2
)
, (3.13)

where sj,k =
∑j+k−1

t=j δt, and C is a normalization constant so that the total
probability of the 2k possible configurations of δj,k is one.

b) The conditional posterior distribution of βj,k given the sample and other pa-

rameters is Nk

(
β�

j,k,Ωj,k

)
,

β�
j,k = Ωj,k

(
− 1

σ2
a

Tj,k∑
t=j

et(0)Dj,kΠt−j +
1
τ2

β0

)
, (3.14)

Ωj,k =
(
Dj,k

( 1
σ2

a

Tj,k∑
t=j

Πt−jΠ′
t−j

)
Dj,k +

1
τ2

I
)−1

, (3.15)

where Dj,k is a k× k diagonal matrix with elements δj , . . . , δj+k−1, and Πt =
(πt, πt−1, . . . , πt−k+1)′ is a k×1 vector, with π0 = −1, πi = φi for i = 1, . . . , p,
and πi = 0 for i < 0 or i > p.

After computing the probabilities (3.13) for all 2k possible configurations
for the block δj,k, the outlying status of each observation in the outlier patch
will be classified separately. Another possibility, suggested by a referee, is to
engineer some Metropolis-Hasting moves by using Theorem 1. An advantage
of our procedure is that we can generate large block configurations from (3.13)
without computing C, but an optimal criterion (in the sense of acceptance rate
and moving) should be found. This possibility will be explored in future work.

Let W 1 = σ−2
a Ωj,k(Dj,k

∑Tj,k

t=j Πt−jΠ′
t−jDj,k) and W 2 = τ−2Ωj,k. Then

β�
j,k can be written as β�

j,k = W 1β̃j,k + W 2β0, where W 1 + W 2 = I, implying
that the mean of the conditional posterior distribution of βj,k is a linear combina-
tion of the prior mean vector β0 and the least squares estimate (or the maximum
likelihood estimate) of the outlier magnitudes for an outlier patch

β̃j,k =
(
Dj,k

Tj,k∑
t=j

Πt−jΠ′
t−jDj,k

)−1( −
Tj,k∑
t=j

et(0)Dj,kΠj,k

)
. (3.16)

Peña and Maravall (1991) proved that, when δt = 1, the estimate in (3.16) is
equivalent to the vector of differences between the observations (yj , . . . , yj+k−1)
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and the predictions ŷt = E(yt | y1, . . . , yj−1, yj+k, . . . , yn) for t = j, . . . , j + k − 1.
The matrix Π =

∑Tj,k

t=j Πt−jΠ′
t−j is the k × k submatrix of the “truncated”

autocovariance generating matrix of the dual process in (2.12). Specifically,

Π =




ν2
Tj,k−j γ D

1,Tj,k−j−1 · · · γ D
k−1,Tj,k−j−k+1

γ D
−1,Tj,k−j ν2

Tj,k−j−1 · · · γ D
k−2,Tj,k−j−k+1

...
...

. . .
...

γ D
−k+1,Tj,k−j γ D

−k+2,Tj,k−1 · · · ν2
Tj,k−j−k+1




,

where γ D
i,j = ν2

j ρ D
i,j, ν2

j is the “truncated” variance of the dual process and ρ D
i,j

is the coefficient of Bi in the “truncated” autocorrelation generating function of
the dual process, i.e., ρ D

j (B) = ν−2
j πp(B)πj(B−1).

3.2. The second Gibbs sampling

We discuss the second adaptive Gibbs run of the proposed procedure. The
results of the first Gibbs run provide useful information to start the second Gibbs
sampling and to specify prior distributions of the parameters. The starting values
of δt are as follows: δ

(0)
t = 1 if p̂

(s)
t > 0.5, i.e., if yt belongs to an identified outlier

patch; otherwise, δ
(0)
t = 0. The prior distributions of βt are as follows.

a) If yt is identified as an isolated outlier the prior distribution of βt is N (β̂(s)
t , τ2),

where β̂
(s)
t is the Gibbs estimate of βt from the first Gibbs run.

b) If yt belongs to an outlier patch the prior distribution of βt is N (β̃(s)
t , τ2),

where β̃
(s)
t is the conditional posterior mean given in (3.16).

c) If yt does not belong to any outlier patch, and is not an isolated outlier, then
the prior distribution of βt is N (0, τ2).
For each outlier patch, the results of Theorem 1 are used to draw δj,k and

βj,k in the second Gibbs sampling. The second Gibbs sampling is also run for s

iterations, but only the results of the last r iterations are used to make inference.
The number s can be determined by any sequential method proposed in the lit-
erature to monitor the convergence of Gibbs sampling. We use a method that
can be easily implemented, based on comparing the estimates of outlying proba-
bility for each data point, computed with non-overlapping segments of samples.
Specifically, after a burn-in period of b = 5, 000 iterations, we assume convergence
has been achieved if the standard test for the equality of two proportions is not
rejected. Thus, calling p̂

(s)
t the probability that yt is an outlier computed with

the iterations from s−r+1 to s, we assume convergence if for all t = p+1, . . . , n
the differences

∣∣∣p̂(s)
t − p̂

(s−r)
t

∣∣∣ are smaller than ε = 3
√

0.52/sr.
An alternative procedure for handling outlier patches is to use the ideas of

Bruce and Martin (1989). This procedure involves two steps. First, select a
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positive integer k in the interval [1, n/2] as the maximum length of a outlier
patch. Second, start the Gibbs sampler with n− k − p parallel trials. In the jth
trial, for j = 1, . . . , n − k − p, the points at t = p + j to p + k + j are assigned
initially as outliers. For other data points, use the usual method to assign initial
values. In application, one can use several different k values. However, such a
procedure requires intensive computation, especially when n is large.

4. Applications

Here we re-analyze the simulated time series of Section 1 and then consider
some real data. We compare the results of the usual Gibbs sampling, referred to
as standard Gibbs sampling, with those of the adaptive Gibbs sampling to see
the efficacy of the latter algorithm. The example demonstrates the applicability
and effectiveness of the adaptive Gibbs sampling, and it shows that patches of
outliers occur in applications.

Table 1. Outlier magnitudes: true values and estimates obtained by the
standard and adaptive Gibbs samplings.

Parameter β27 β37 β38 β39 β40 β41 β42

True Value -3 0 11 10 9 10 0
Standard GS -3.03 -3.42 3.31 0.05 -0.05 4.51 -2.09
Adaptive GS -3.06 -0.09 11.97 11.63 10.43 10.91 -0.23

4.1. Simulated data revisited

As shown in Figure 1, standard Gibbs sampling can easily detect the isolated
outlier at t = 27 of the simulated AR(3) example, but it has difficulty with the
outlier patch in the period 38− 41. For the adaptive Gibbs sampling, we choose
hyperparameters γ1 = 5, γ2 = 95 and τ = 3, implying that the contamination
parameter has a prior mean α0 = 0.05, and the prior standard deviation of
βt is three times the residual standard deviation. Using ε = 0.047 to monitor
convergence, we obtained s = 26, 000 iterations for the first Gibbs sampling and
s = 7, 000 iterations for the second, adaptive Gibbs sampling. All parameter
estimates reported are the sample means of the last r = 1, 000 iterations. For
specifying the location of an outlier patch, we chose c1 = 0.5, c2 = 0.3, and the
window length 2p to search for boundary points of possible outlier patches, where
p = 3 is the autoregressive order of the series. Additional checking confirms that
results are stable over minor modifications of these parameter values.

The results of the first run are shown in Figure 1 and summarized in Table 1.
As before, the procedure indicates a possible patch of outliers from t = 37 to 42.
In the second run the initial conditions and the prior distributions are specified
by the proposed adaptive procedure. The posterior probability of outlier for each
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data point, p̂
(s)
t , is shown in Figure 3-a, and the posterior mean of the outlier sizes

is shown in Figure 3-b. Adaptive Gibbs sampling successfully specifies all outliers,
and there are no swamping or masking effects. In Figure 3-c we compare the
posterior distributions of the adaptive (shadow area) and the standard (dotted
curve) Gibbs sampling for the error variance and the autoregressive parameters;
in Table 1 we compare some of the outlier sizes with the true values. One clearly
sees the efficacy and added value of the adaptive Gibbs sampling in this way.
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Figure 3. Adaptive Gibbs sampling results with 7,000 iterations for the ar-
tificial time series with five outliers: (a) posterior probabilities for each data
point to be outlier, (b) posterior mean estimates of the outlier sizes for each
data, and (c) kernel estimates of the posterior marginal parameter distribu-
tions; the dotted lines are estimates from the first run and vertical lines mark
true values.

Figure 4 shows the scatterplots of Gibbs draws of outlier sizes for t =
37, . . . , 42. The right panel is for adaptive Gibbs sampling whereas the left panel
is for the standard Gibbs sampling. The plots on the diagonals are histograms of
outlier sizes. Adaptive Gibbs sampling exhibits high correlations between sizes
of consecutive outliers, in agreement with outlier sizes used. On the other hand,
scatterplots of the standard Gibbs sampling do not adequately show correlations
between outlier sizes.

Finally, we also ran a more extensive simulation study where the locations
for the isolated outlier and the patch were randomly selected. Using the same xt

sequence, we ran standard and adaptive Gibbs sampling for 200 cases with the
following results.
1. The isolated outlier was identified by standard and adaptive Gibbs sampling

procedures in all cases.
2. The standard Gibbs sampler failed to detect all the outliers in each of the

200 simulations. A typical outcome, as pointed out in Section 3, had the
extreme points of the outlier patch and their neighboring points identified
as outliers; observations in the middle of the outlier patch were subjected
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to masking effects. Occasionally, the standard Gibbs sampler did correctly
identify three of the four outliers in the patch. Figure 5-left shows a bar plot
for the relative frequencies of outlier detection for each data point in the 200
runs. We summarize the relative frequency of identification for each outlier
in the patch (bars 1st-4th) and their two neighboring “good” observations.

3. In all simulations, the proposed procedure indicates a possible patch of outliers
that includes the true outlier patch.

4. The adaptive Gibbs sampler failed in 13 cases, corresponding to randomly
selected patches in the same region of the series. Figure 5-right shows the
positive performance of the adaptive algorithm in detecting all outliers in the
patch.
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Figure 4. Scatterplots of the standard (left) and adaptive (right) Gibbs sam-
pler output for β37 to β42 and the histograms of each magnitude in the
diagonal.
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Figure 5. Bar plots for the relative frequencies, in 200 simulations, of out-
lier detection of each data in the patch (bars 1st-4th), previous and next
“good” observations. Left: standard Gibbs sampling. Right: adaptive Gibbs
sampling.
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4.2. A real example

Consider the data of monthly U.S. Industry-unfilled orders for radio and
TV, in millions of dollars, as studied by Bruce and Martin (1989) among others.
We use the logged series from January 1958 to October 1980, and focus on the
seasonally adjusted series, where the seasonal component was removed by the
well-known X11-ARIMA procedure. The seasonally adjusted series is shown in
Figure 6, and can be download from the same web site as the simulated data.
An AR(3) model is fit to the data and the estimated parameter values are given
in the first row of Table 2. The residual plot of the fit, also shown in Figure 6,
indicates possible isolated outliers and outlier patches, especially in the latter
part of the series.
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Figure 6. Top: Seasonally adjusted series of the logarithm of U.S. Industry-
unfilled orders for radio and TV. Bottom: Residual plot for the AR(3) model
fitted to the series.

Table 2. Estimated parameter values with the initial model and those ob-
tained by the standard and the adaptive Gibbs sampling algorithms.

Parameter φ0 φ1 φ2 φ3 σa

Initial model 0.28 0.61 0.19 0.15 0.091
Standard GS 0.18 0.83 0.19 -0.05 0.062
Adaptive GS 0.18 0.78 0.23 -0.04 0.062

The hyperparameters needed to run the adaptive Gibbs algorithm are set
by the same criteria as those of the simulated example: γ1 = 5, γ2 = 95, τ =
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3σa = 0.273. In this particular instance, r = 1, 000 and the stopping criterion
ε = 0.047 is achieved by 96, 000 iterations in the first Gibbs run and by 11, 000
iterations in the second. As before, to specify possible outlier patches prior to
running the adaptive Gibbs sampling, the window width is set to twice the AR
order, c1 = 0.5 and c2 = 0.3. In addition, we assume that the maximum length
of an outlier patch is 11 months, just below one year.

Table 3. Posterior probabilities for each data point to be an outlier by the
standard and the adaptive Gibbs sampling algorithms. Estimated outlier
sizes by the standard and the adaptive Gibbs sampling algorithms.

Date 5/68 6/68 7/68 1/73 9/76 1/77 3/77 8/77

Standard GS Outlier probability 0.31 0.74 0.66 0.54 0.99 0.53 0.99 0.99

Outlier size -0.07 0.17 0.12 -0.09 -0.22 -0.08 -0.23 0.21

Adaptive GS Outlier probability 0.62 0.45 0.27 0.37 0.99 0.24 0.99 1.00

Outlier size -0.15 0.14 0.13 -0.06 -0.21 -0.03 -0.20 0.21

Date 2/78 3/78 9/78 3/79 4/79 5/79 9/79

Standard GS Outlier probability 1.00 1.00 1.00 0.51 0.36 1.00 1.00

Outlier size -0.26 -0.27 0.37 0.09 0.06 -0.41 0.26

Adaptive GS Outlier probability 1.00 1.00 1.00 0.92 0.89 1.00 1.00

Outlier size -0.28 -0.28 0.37 0.24 0.23 -0.28 0.32

Using 0.5 as the cut-off posterior probability to identify outliers, we sum-
marize the results of standard and adaptive Gibbs sampling in Table 3. The
standard Gibbs algorithm identifies 13 data points as outliers. Nine isolated
outliers and two outlier patches both of length 2. The two outlier patches are
6-7/1968 and 2-3/1978. The outlier posterior probability for each data point is
shown in Figure 7. On the other hand, the second, adaptive Gibbs sampling
specifies 11 data points as outliers —six isolated outliers, and two outlier patches
of length 2 and 3 at 2-3/1978 and 3-5/1979, respectively. The outlier posterior
probabilities based on adaptive Gibbs sampling are also presented in Figure 7.
Finally, Table 4 presents outlier posterior probabilities for each data point in the
detected outlier patches, for both the standard and adaptive Gibbs samplings.
For the possible outlier patch from January to July 1968, the two algorithms
show different results: standard Gibbs sampling identifies the patch 6-7/1968 as
outliers; adaptive Gibbs sampling detects an isolated outlier at 5/68. For the
possible outlier patch from September 1976 to March 1977, the standard algo-
rithm detects an isolated outlier at 1/77, while the adaptive algorithm does not
detect any outlier within the patch. For the possible outlier patch from March
to September 1979, the standard algorithm identifies two isolated outliers in
April and September. On the other hand, the adaptive algorithm substantially
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increases the outlying posterior probabilities for March and April of 1979 and,
hence, changes an isolated outlier into a patch of three outliers. The isolated
outlier in September remains unchanged. Based on the estimated outlier sizes in
Table 3, the standard Gibbs algorithm seems to encounter severe masking effects
for March and April of 1979.

Table 4. Posterior outlier probabilities for each data point in the three larger
possible outlier patches.
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Date 1/68 2/68 3/68 4/68 5/68 6/68 7/68

Standard GS 0.350 0.024 0.017 0.293 0.308 0.738 0.660
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Date 9/76 10/76 11/76 12/76 1/77 2/77 3/77

Standard GS 0.999 0.014 0.013 0.147 0.526 0.097 0.990

Adaptive GS 0.999 0.011 0.013 0.159 0.244 0.136 0.989

0

0.3

0.5

1

3/79 5/79 7/79 9/79

Standard Gibbs Sampling

0

0.3

0.5

1

3/79 5/79 7/79 9/79

Adaptive Gibbs Sampling

Date 3/79 4/79 5/79 6/79 7/79 8/79 9/79

Standard GS 0.511 0.356 1.000 0.023 0.025 0.036 1.000

Adaptive GS 0.918 0.893 1.000 0.056 0.011 0.066 1.000
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Figure 7. Posterior probability for each data point to be outlier with the
standard (top) and the adaptive (bottom) Gibbs sampling.

Figure 8 shows the time plot of posterior means of residuals obtained by
adaptive Gibbs sampling and should be compared with the residuals we obtained
without outlier adjustment in Figure 6.

The results of this example demonstrate that (a) outlier patches occur fre-
quently in practice and (b) the standard Gibbs sampling for outlier detection
may encounter severe masking and swamping effects, while the adaptive Gibbs
sampling performs reasonably well.
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Figure 8. Mean residuals with the adaptive Gibbs sampler.
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Appendix. Proof of Theorem 1

The conditional distribution of δj,k given the sample and the other parame-
ters is

P (δj,k | y,θδj,k
) ∝ f(y | θδj,k

; δj,k) · αsj,k(1 − α)k−sj,k . (A.1)

The likelihood function can be factorized as

f(y | θδj,k
; δj,k)=f(yj−1

p+1 | θδj,k
)·f(yTj,k

j | yj−1
p+1,θδj,k

; δj,k)·f(yn
Tj,k+1 | y

Tj,k

p+1,θδj,k
),

where yk
j = (yj, . . . , yk)′. Only f(yTj,k

j | yj−1
p+1,θδj,k

; δj,k) depends on δj,k and it
is the product of the conditional densities:

f(yj | yj−1
p+1,θδj,k

; δj) ∝ exp
(
− 1

2σ2
a

(ej(0) − δjβj)2
)

...

f(yj+k−1 | yj+k−2
p+1 ,θδj,k

; δj,k) ∝ exp
(
− 1

2σ2
a

(ej+k−1(0) − δj+k−1βj+k−1 + · · ·

+πk−1δjβj)2
)

f(yj+k | yj+k−1
p+1 ,θδj,k

; δj,k) ∝ exp
(
− 1

2σ2
a

(ej+k(0) + π1δj+k−1βj+k−1 + · · ·

+πkδjβj)2
)

...

f(yTj,k
| y

Tj,k−1
p+1 ,θδj,k

; δj,k) ∝ exp
(
− 1

2σ2
a

(eTj,k
(0) + πTj,k−j−k+1δj+k−1βj+k−1

+ · · · + πTj,k−jδjβj)2
)
.

Hence the likelihood function can be expressed as

f(y | θδj,k
; δj,k) (A.2)

∝exp
(
− 1

2σ2
a

( j+k−1∑
t=j

(et(0) +
t−j∑
i=0

πiδt−iβt−i)2 +
Tj,k∑

t=j+k

(et(0) +
t−j∑

i=t−j−k+1

πiδt−iβt−i)2
))

,
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and the residual et(δj,k) is given by

et(δj,k) =




et(0) +
t−j∑
i=0

πiδt−iβt−i if t = j, . . . , j + k − 1

et(0) +
t−j∑

i=t−j−k+1

πiδt−iβt−i if t > j + k − 1,

where π0 = −1 , πi = φi for i = 1, . . . , p and πi = 0 for i < 0 and i > p.
Therefore, (A.2) can be written as

f(y | θδj,k
; δj,k)∝exp

(
− 1

2σ2
a

Tj,k∑
t=j

et(δj,k)2
)
.

Then by replacing in (A.1) we obtain (3.13) for any configuration of the vector
δj,k.

The conditional distribution of βj,k given the sample and the other param-
eters is

P (βj,k | y,θβj,k
) ∝ f(y | θβj,k

;βj,k) · P (βj,k).

Using (A.2)

f(y | θβj,k
;βj,k) ∝ exp

(
− 1

2σ2
a

Tj,k∑
t=j

(et(0)+Π′
t−jDj,kβj,k)

′(et(0)+Π′
t−jDj,kβj,k)

)
.

Therefore,

P (βj,k | y,θβj,k
)

∝ exp
(
− 1

2σ2
a

Tj,k∑
t=j

(et(0) + Π′
t−jDj,kβj,k)

′(et(0) + Π′
t−jDj,kβj,k)

)

× exp
(
− 1

2τ2
(βj,k − β0)

′(βj,k − β0)
)

∝ exp
(
− 1

2

(
β′

j,k

( 1
σ2

a

Tj,k∑
t=j

Dj,kΠt−jΠ′
t−jDj,k +

1
τ2

I
)
βj,k

−2
(
− 1

σ2
a

Tj,k∑
t=j

et(0)Π′
t−jDj,k +

1
τ2

β′
0

)
βj,k

))

∝ exp
(
− 1

2
(βj,k − β�

j,k)
′Ω−1

j,k(βj,k − β�
j,k)

)
,

where Ωj,k and β�
j,k are defined in (3.14) and (3.15) respectively.
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