
PROPERTIES OF PREDICTORS IN OVERDIFFERENCED NEARLY
NONSTATIONARY AUTOREGRESSION

By Ismael SAÂnchez and Daniel Pe·a

Universidad de Alicante and Universidad Carlos III de Madrid

First version received June 1998

Abstract. We analyze the effect of overdifferencing a stationary AR( p� 1) process
whose largest root is near unity. It is found that, if the process is nearly nonstationary,
the estimators of the overdifferenced model ARIMA( p, 1, 0) are root-T consistent. It is
also found that this misspeci®ed ARIMA( p, 1, 0) has lower predictive mean squared
error, to terms of small order, than the properly speci®ed AR( p� 1) model due to its
parsimony. The advantage of the overdifferenced predictor depends on the remaining
roots, the prediction horizon and the mean of the process.

Keywords. Autoregressive processes; near nonstationarity; overdifferencing; parsi-
mony; predictive mean squared error; unit roots.

1. INTRODUCTION

In this paper, we investigate the consequences in estimation and prediction of
overdifferencing a stationary AR( p� 1) with a root close to unity. Differencing
is normally used to transform a homogeneous linear nonstationary time series
into a stationary process that is often modeled as an ARMA( p, q) process. It is
said, then, that the original series follows an ARIMA( p, d, q) process, where d
is the number of differences required to obtain stationarity. We assume that the
process is not a long-memory process (see, for instance, Granger and Joyeux,
1980) and thus d is an integer equal to the number of unit roots in the
autoregressive characteristic equation. When a stationary process has an
autoregressive characteristic equation with a root close to unity it is said to be
nearly nonstationary. Given a small or moderate sample of this process, it is very
likely to be concluded, due to the low power of unit root tests in this case, that a
difference should be applied. The differenced series will be noninvertible and the
process is called overdifferenced.

Since the work of Fuller (1976) and Dickey and Fuller (1970), there has been a vast
literature concerning the detection of unit roots in autoregressive polynomials. This
literature notes the dif®culty of a correct detection in near nonstationary processes. In
spite of this, relatively little has been written on the consequences of a wrong
detection. Previous work on the effect of overdifferencing can be found in Plosser and
Schwert (1977, 1978), Harvey (1981), Campbell and Perron (1991) and Stock
(1996). Plosser and Schwert (1977) examine, using Monte Carlo techniques, the
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effect of overdifferencing in two cases: processes with a deterministic linear trend
and stochastic regression models. They conclude that, in these situations, the loss in
ef®ciency in both parameter estimation and prediction is not substantial, provided a
moving-average parameter is included. Harvey (1981), assuming known parameters,
also concludes that overdifferencing does not need to have serious implications for
prediction, provided a ®nite-sample prediction procedure is used and a moving-
average parameter is included. Campbell and Perron (1991) and Stock (1996)
compare, using Monte Carlo simulations, the prediction accuracy of an AR(1) and a
random walk. The empirical results of these authors show that the random walk can
produce forecasts with lower prediction mean squared error (PMSE) than the AR(1)
if the root is close to unity.

In this paper, we justify theoretically the advantages of the overdifferenced
predictor, found empirically by Campbell and Perron (1991) and Stock (1996),
in a general autoregression, and analyze the effect of other factors like the
remaining roots, sample size (T ) and horizon (H). We will assume that a root
of the AR( p� 1) is close to unity, and thus we will adopt as a more plausible
overdifferenced predictor the ARIMA( p, 1, 0) model, where no moving-average
component is involved.

We will prove that the PMSE of the overdifferenced model ARIMA( p, 1, 0) is
lower, to terms of small order, than the PMSE of the correct model AR( p� 1) if the
root that is closer to unity, rÿ1, follows r � exp(ÿc=T â), â. 1. The advantage of
the overdifferenced predictor is due to its parsimony. Therefore, it is larger if the
AR( p� 1) process has a non-zero mean, since this will vanish in the overdifferenced
model. The remaining roots also affect the advantage of the overdifferenced
predictor. Positive roots increase the advantage of the overdifferenced model,
whereas negative roots have the opposite effect. The avantage of the overdifferenced
model is small in the short term, but can increase with the horizon.

An important consequence of these results is that, for forecasting purposes, it
is better to overdifference than to underdifference. Therefore, the possible low
power of unit root tests in autoregression is not as important in forecasting as
in model identi®cation, since we can still obtain an ef®cient predictor.

The paper is organized as follows. In Section 2 we introduce the model and
notation. In Section 3 we de®ne nearly nonstationary processes. The
consequences of overdifferencing in estimation are analyzed in Section 4,
and the effect on the PMSE for each predictor is analyzed in Section 5. In
Section 6 we compare the PMSE of the competing models and extract further
results from the AR(1) case. A simulation study is presented in Section 7 to
illustrate the results.

2. THE MODEL AND NOTATION

Let fytg be the following stationary AR( p� 1) process:

j(B)yt � ö(B)(1ÿ rB)yt � á� at (2:1)
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where B is the backshift operator, and j(B) � (1ÿP p�1
i�1 ji B

i) is a polynomial
operator on B such that j(B) � 0 has all its roots outside the unit circle, with
rÿ1 being the root closer to unity. Let at be a sequence of independent
identically distributed random variables with zero mean and variance ó 2. Let
ì � E(yt); then á � ìj(1). We make the following assumption.

A1. For some s0 . 2, Efjatjs0g,1.

It is well known that this model can be represented in ®rst-order vector
autoregressive form as follows:

Yt � AáYtÿ1 � Ut, p�2 (2:2)

with Yt � (yt, . . ., ytÿp, 1)9, Ut, p�2 � (at, 0, . . ., 0)9, where the subindex p� 2
indicates the dimension of the vector and

Aá �

j1 j2 � � � j p j p�1 á
1 0 � � � 0 0 0

0 1 � � � 0 0 0

..

. ..
. . .

. ..
. ..

. ..
.

0 0 � � � 1 0 0

0 0 � � � 0 0 1

0BBBBBB@

1CCCCCCA:

Then yt � e9p�2Yt, with e p�2 � (1, 0, . . ., 0)9. Let Ã y � E(YtY 9t) and ã y �
E(Yt yt�1). If we represent the process in deviations from the mean, we obtain
~Yt � A0

~Ytÿ1 � Ut, p�1, where ~Yt � (~yt, ~ytÿ1, . . ., ~ytÿp)9, ~yt � yt ÿ ì, and A0 is
the ®rst ( p� 1) 3 ( p� 1) submatrix of Aá. We will also denote Ã ~y � E(~Yt

~Y 9t).
If a difference is applied to yt, the series obtained, wt � (1ÿ B)yt, can be
represented as

ö(B)(1ÿ rB)wt � (1ÿ B)at (2:3)

which is noninvertible. The process wt has the following vector representation
(LuÈtkepohl, 1991, p. 223):

Zt � A1 Z tÿ1 � U�t, p�2 (2:4)

with Zt � (W 9t, at)9, Wt � (wt, . . ., wtÿp)9, U�t, p�2 � (at, 0, . . ., 0, at)9 and

A1 � A0 ÿe p�1

0 � � � 0 0

� �
with wt � e9p�1 Zt. Let Ãw � E(WtW 9t) and ãw � E(Wtwt�1). In what follows,
we will use a circum¯ex ^ to denote estimates from a sample of the
overdifferenced process fwtg and the check symbol _ for estimates from a
sample of the original process fytg. The least squares estimator of the
AR( p� 1) parameter vector jj � (j1, . . ., j p�1,á)9, ®tted to a sample of size T
of the original process, is �jj � �Ãÿ1

y �ã y, where �Ã y � (T ÿ pÿ 1)ÿ1
PTÿ1

j� p�1YjY 9j
and �ã y � (T ÿ pÿ 1)ÿ1

PTÿ1
j� p�1Yj yj�1. Similarly, the least squares estimator of
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the parameter vector ö � (ö1, . . ., ö p)9 of a misspeci®ed AR( p), ®tted to a
sample of size T ÿ 1 of the overdifferenced process (2.3), is ö̂ � Ã̂ÿ1

w ã̂w, where
Ã̂w � (T ÿ pÿ 1)ÿ1

PTÿ1
j� p�1W jW 9j and ã̂w � (T ÿ pÿ 1)ÿ1

PTÿ1
j� p�1W jw j�1. We

also make the following assumptions, where k . k denotes the Euclidean norm.

A2. E(k�Ãÿ1
y k2k) (k � 1, 2, . . ., k0) is bounded for all ®nite and suf®ciently

large T and some k0.

A3. E(kÃ̂ÿ1
w k2k) (k � 1, 2, . . ., k0) is bounded for all ®nite and suf®ciently

large T and some k0.

Assumptions A2 and A3 are similar to Assumption A3 of Kunitomo and
Yamamoto (1985). They are also equivalent to Assumption A3 of Bhansali
(1981). It should be noted that they are satis®ed if the distribution is normal (see
Fuller and Hasza, 1981). These assumptions are needed in several parts of this
work, especially in application to the results of Kunitomo and Yamamoto (1985)
and Bhansali (1981). They imply that, for a large enough sample size, the
estimations of the covariance matrices are suf®ciently near the true values
(Bhansali, 1981, p. 590).

3. NEARLY NONSTATIONARY AUTOREGRESSIONS

A process is said to be nearly nonstationary (near integrated) if its autoregressive
characteristic equation has a root, rÿ1, very close to unity. If r is close enough
to unity, the term 1ÿ rB in (2.3) will be similar to 1ÿ B. Therefore, although
the overdifferenced process wt is strictly a noninvertible ARMA( p� 1, 1), an
average correlogram of wt will suggest estimating by an AR( p) instead.

The similarity between wt and a true AR( p) process does not only depend on
r but is in¯uenced by the remaining roots. In order to see this point, let ð j

be the coef®cients of the polynomial ð(B) � 1ÿ ð1 Bÿ ð2 B2ÿ � � �, where
j(B) � ð(B)(1ÿ B). These coef®cients follow

ð j � ö j � (rÿ 1)(1ÿP jÿ1
k�1ök) if j < p

(rÿ 1)(1ÿP p
k�1ök) if j . p

�
(3:1)

with ök � 0 if k , 1. If we denote as rÿ1
i , i � 1, . . ., p, the roots of the

characteristic equation ö(B) � 0, then

1ÿ
Xp

k�1

ök

 !
�
Yp

i�1

(1ÿ ri): (3:2)

Therefore, negative values of ri increase the value of ð j, j . p, and decrease the
similarity of wt and an AR( p).

Thus, the de®nition of a nearly nonstationary process needs (i) a
parameterization that converges to the unit root with the sample size and (ii)
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a constant term that can re¯ect the in¯uence of the remaining roots in ®nite
samples. Phillips (1987) and Chan and Wei (1987) de®ne a nearly nonstationary
process for the AR(1) case by reparameterizing r � exp(ÿc=T ) � 1ÿ c=T �
o(Tÿ1), where c is a ®xed constant. In this de®nition, the convergence rate to
unity is ®xed to be O(Tÿ1). These authors use this de®nition to provide
asymptotic theory for the estimation of r. The formulation is justi®ed by
Phillips (1987) because this is the order of consistency of the least squares
estimator, and by Chan and Wei (1987) because this is the order of the
observed Fisher information of r under normality. In order to analyze the
consequences of overdifferencing with different convergence rates we will
de®ne r as

r � exp ÿ c

T â

� �
(3:3)

with c and â being ®xed constants. We deal only with stationary processes, and
hence c, â. 0. Time series generated by (2.1) and (3.3) formally constitute a
triangular array of the type fytT : t � 1, . . ., T ; T � 1, 2, . . .g. Since this
formulation is not essential in this paper, we will still use the notation fytg to
refer to this process. It has to be noted that, since á � E(yt)(1ÿ r)ö(1), the
process has no constant term if r � 1.

Given a sample from a process generated by (2.1) and (3.3), the analyst has
to decide whether to estimate r or to impose the value r � 1. By the properties
of least squares estimators it can be proved that the least squares estimator of r
satis®es r̂ � r� Op(Tÿ(â�1)=2), whereas imposing unity has the property
1 � r� O(Tÿâ). Then, for â. 1, the convergence rate when imposing unity is
faster than estimating by least squares. This result helps to explain why
processes with â. 1 are, for some purposes, better modeled in differences.

4. PROPERTIES OF ESTIMATORS IN THE OVERDIFFERENCED PROCESS

4.1. Root-T consistency

Let fwtj pg be the true AR( p) process ö(B)wtj p � at. This process follows the
Markovian representation W tj p � ApW tÿ1j p � Ut, p. The p 3 p matrix Ap has
the same structure as A0 with the coef®cients (ö1, . . ., ö p) in the ®rst row and
W tj p � (wtj p, . . ., wtÿ p�1j p)9. Then, from (2.3),

wt � öÿ1(B) 1ÿ (1ÿ r)B

1ÿ rB

� �
at � wtj p ÿ

X1
j�0

ø j(1ÿ r)ztÿ1ÿ j (4:1)

where ø j are the coef®cients of öÿ1(B), and (1ÿ rB)zt � at. Let us denote
Ãwj p � E(W tj pW 9tj p) and ãwj p � E(W tj pwt�1j p). We de®ne the sampling
autocovariances as Ã̂wj p � (T ÿ pÿ 1)ÿ1

PTÿ1
j� p�1W jj pW 9jj p, ã̂wj p � (T ÿ

pÿ 1)ÿ1
PTÿ1

j� p�1W jj pw j�1j p, and also make the following assumption.
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A4. E(kÃ̂ÿ1
wj pk2k) (k � 1, 2, . . ., k0) is bounded for all ®nite and suf®ciently

large T and some k0.

The distance between the sampling second-order moments of wt and wtj p is
determined in the following theorem.

Theorem 1. Let fwtg be the process (2.3) and let w1, . . ., wT be a sample
from this process. Let r be de®ned as in (3.3) with â > 1. Then

(a) Ã̂w � Ã̂wj p � Op(Tÿ1=2)
(b) ã̂w � ã̂wj p � Op(Tÿ1=2).

The proof is given in the Appendix. Since wtj p is a stationary process, then
ã̂wj p � ãwj p � Op(Tÿ1=2). Applying this result and Theorem 1, the following
corollary holds.

Corollary 1. Assume the conditions of Theorem 1 hold. Then

(a) Ã̂w � Ãwj p � Op(Tÿ1=2)
(b) ã̂w � ãwj p � Op(Tÿ1=2).

We can now prove root-T consistency of ö̂. See the proof in the Appendix.

Theorem 2. Assume the conditions of Theorem 1 hold. Then

ö̂ � ö� Op(Tÿ1=2):

4.2. Bias and mean squared error

Let ö̂j p be the least squares estimator of ö from a sample from a true AR( p)
process. The bias and mean squared error (MSE) of this estimator, of a properly
speci®ed autoregression, have been widely investigated (see, for instance,
Bhansali, 1981; Kunitomo and Yamamoto, 1985; Shaman and Stine, 1988; and
references therein). Since the similarlity between the estimator ö̂, of the
ARIMA( p� 1, 1, 1) misspeci®ed as an AR( p), and ö̂j p depends on the near
nonstationarity hypothesis, we will express their differences in terms of r. The
following theorems formulate the ®rst- and second-order moments of the least
squares estimator ö̂ around the true parameter ö as the respective moments of
ö̂j p plus an error term depending on r.

Theorem 3. Assume A1 (with s0 � 8), A2, A3 and A4. Then

E(ö̂ÿ ö) � E(ö̂j p ÿ ö)� O
1ÿ r
1� r
� �1=2

( )
: (4:2)

The proof is given in the Appendix. Since (1ÿ r)=(1� r) � O(Tÿâ) and given
that E(ö̂j p ÿ ö) � O(Tÿ1) (see, for instance, Bhansali, 1981) we need a value
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â. 2 for the biases to be equal up to terms of order O(Tÿ1), whereas for root-T
consistency we only need â > 1.

Theorem 4. Assume A1 (with s0 � 8), A2, A3 and A4. Then

Ef(ö̂ÿ ö)(ö̂ÿ ö)9g � Ef(ö̂j p ÿ ö)(ö̂j p ÿ ö)9g

� O max
1ÿ r
1� r
� �1=2

Tÿ1=2,
1ÿ r
1� r

( )" #
:

See the proof in the Appendix. We can see from this theorem that the MSEs are
closer to each other than the biases. If r is such that â. 1 then the two
expressions for the MSE are equal up to terms O(Tÿ1).

5. MSE OF H-STEPS-AHEAD PREDICTION

In this section, we obtain the MSE of predicting yT�H for t � T. The PMSE of
a properly speci®ed autoregression is (see, for instance, Kunitomo and
Yamamoto, 1985)

PMSE(�yT�H ) � ó 2
XHÿ1

h�0

(e9p�2 Ah
áe p�2)2 � ó 2

T

XHÿ1

h�0

XHÿ1

k�0

(e9p�2 Ah
áe p�2)(e9p�2 Ak

áe p�2)

3 tr(A Hÿ1ÿh
á Ã y A9 Hÿ1ÿk

á Ãÿ1
y )� O(Tÿ3=2): (5:1)

This expression is inconvenient however, to compare the PMSE of the
AR( p� 1) model (PMSE(�yT�H )) with the PMSE of the misspeci®ed
ARIMA( p, 1, 0) model (PMSE( ŷT�H )). We will rewrite the estimated H-
steps-ahead predictions in terms of their estimated increments (�wt and ŵt,
respectively). Hence, PMSE(�yT�H ) �PH

h�1PMSE(�wT�h)� 2
PH

h�1

PH
k�h�1 E

f(wT�h ÿ �wT�h)(wT�k ÿ �wT�k)g, where �wt � �yt ÿ �ytÿ1. A similar expression
applies for PMSE(ŷT�H ).

5.1. PMSE of the properly speci®ed AR(p � 1) predictor

Let �Aá be the least squares estimator of Aá using the properly speci®ed model
(2.2). The estimated increment �wT�h de®ned as a function of the estimated
coef®cients �Aá is

�wT�h � e9p�2
�Ahÿ1
á (�Aá ÿ I p�2)YT (5:2)

where I p�2 is the identity matrix. The observed value wT�h is

wT�h � e9p�2 Ahÿ1
á (Aá ÿ I p�2)YT � Lh
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where Lh � L1 ÿ L2, with L1 �
Phÿ1

k�0e9p�2 Ak
áUT�hÿk, p�2 and L2 �

Phÿ1
k�1e9p�2

Akÿ1
á UT�hÿk, p�2.
The PMSE(�wT�h) and Ef(�wT�h ÿ wT�h)(�wT�k ÿ wT�k)g are shown in the

following theorem (see the proof in the Appendix). The assumptions about s0

in Theorems 5 and 6 are needed in order to apply the results of Kunitomo and
Yamamoto (1985) in the proof of the theorems.

Theorem 5. Let wt follow (2.3), where r � exp(ÿc=T â) and â. 1. Assume
A2, A3, A4 and A1 with s0 � 32 when h � 1, 2, and s0 � 16h when h > 3.
Then

PMSE(�wT�h) � ó 2
Xhÿ1

j�0

(e9p�2 A
j
1c p�2)2 � ó 2

T

Xhÿ1

j�0

Xhÿ1

k�0

(e9p A j
pe p)(e9p Ak

pep)

3 tr(Ahÿ1ÿ j
á Ã y A9hÿ1ÿk

á Ãÿ1
y )� O(Tÿ3=2) (5:3)

and, for k > h,

Ef(�wT�h ÿ wT�h)(�wT�k ÿ wT�k)g � ó 2
Xhÿ1

i�0

(e9p�2 Ai
1c p�2)(e9p�2 A

i�(kÿh)
1 c p�2)

� ó 2

T

Xkÿ1

n�0

Xhÿ1

i�0

(e9p An
pep)(e9p Ai

pep)

3 tr(Ahÿ1ÿi
á Ã y A9kÿ1ÿn

á Ãÿ1
y )� O(Tÿ3=2)

(5:4)

where c p�2 � (1, 0, . . ., 0, 1)9.

The terms on the right-hand side of (5.3) and (5.4) have two components. The
®rst component includes the variance of the prediction errors and the covariance
between prediction errors at different horizons, respectively, of the noninvertible
ARMA( p� 1, 1) process. The second component is the sampling error, due to
the estimation of the p� 2 parameters of the vector jj.

5.2. PMSE of the overdifferenced ARIMA(p, 1, 0) predictor

Assume that we predict wT�h with the predictor derived from the estimated
AR( p), i.e. ŵT�h � e9p Âh

pWT , where Â p is the least squares estimator of Ap.
Then

ŵT�h � e9p Ah
pWT � e9p(Âh

p ÿ Ah
p)WT � E(wT�hj pjT )� e9p(Âh

p ÿ Ah
p)WT :

The true value wT�h is, from (2.4), wT�h � e9p�2 Ah
1 ZT � Lh � E(wT�hjT )� Lh.
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Then the h-steps-ahead prediction error is wT�h ÿ ŵT�h � Lh ÿ e9p(Âh
p ÿ Ah

p)
WT ÿ v t, where, by (4.1),

v t � E(wT�h ÿ ŵT�hj pjT ) �
X1

j�hÿ1

ø j(1ÿ r)zT�hÿ1ÿ j �
Xhÿ2

j�0

ø j(1ÿ r)rhÿ1ÿ jzT :

(5:5)

The following theorem gives an approximation of order o(Tÿ1) of the
expectation of the lead-h mean squared prediction error (see the proof in the
Appendix).

Theorem 6. Let wt follow (2.3), where r � exp(ÿc=T â) and â. 1. Assume
A2, A3, A4 and A1 with s0 � 32 when h � 1, 2 and s0 � 16h when h > 3.
Then

PMSE(ŵT�h) � ó 2
Xhÿ1

k�0

(e9p�2 Ak
1 c p�2)2 � ó 2

T

Xhÿ1

j�0

Xhÿ1

k�0

(e9p A j
pep)(e9p Ak

pep)

3 tr(Ahÿ1ÿ j
p Ãwj p A9hÿ1ÿk

p Ãÿ1
wj p)� o(Tÿ1) (5:6)

and, for k > h,

Ef(ŵT�h ÿ wT�h)(ŵT�k ÿ wT�k)g � ó 2
Xhÿ1

i�0

(e9p�2 Ai
1c p�2)(e9p�2 A

i�(kÿh)
1 c p�2)

� ó 2

T

Xkÿ1

n�0

Xhÿ1

i�0

(e9p An
pep)(e9p Ai

pep)

3 tr(Ahÿ1ÿi
p Ãwj p Akÿ1ÿn

p Ãÿ1
wj p)� o(Tÿ1)

(5:7)

where c p�2 � (1, 0, . . ., 0, 1)9.

The terms on the right-hand side of (5.6) and (5.7) have two components. The
®rst one, the variance of the prediction errors and their covariance between
different horizons of the true ARIMA( p� 1, 1, 1) process, is the same as in
Theorem 5. The second one is the sampling error due to the estimation of the p
parameters ö, in contrast with the estimation of the p� 2 parameters of the
AR( p� 1) model. It should be observed that this second component differs from
that in the previous subsection only in the elements inside the trace operators.
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6. COMPARING PREDICTION ACCURACY

In this section, we compare the PMSEs found in the last section for the two
models. We prove that, under the assumption of near nonstationarity exposed in
(3.3), with â. 1, overdifferencing may produce lower PMSE (to terms of small
order). The expressions in Theorems 5 and 6 reveal that the only difference
between PMSE(�yT�H ) and PMSE( ŷT�H ) is in the elements inside the trace
operators. These traces can be compared using the following two lemmas:
Lemma 1 compares such a trace in processes with and without a constant term;
Lemma 2 compares the trace in nearly nonstationary processes with no constant
term and the trace in the overdifferenced model. The proofs of these lemmas can
be found in the Appendix.

Lemma 1. Let yt follow process (2.1). Then

tr(Ai
áÃ y A9 j

á Ã
ÿ1
y ) � 1� tr(Ai

0Ã ~y A9 j

0 Ã
ÿ1
~y ):

Lemma 2. Let yt follow process (2.1) with r � exp(ÿc=T â) and â. 1. Then

tr(Ai
0Ã ~y A9 j

0 Ã
ÿ1
~y ) � ri� j � tr(Ai

pÃwj p A j
pÃ
ÿ1
wj p)� o(Tÿ1):

Now we can prove the advantage of overdifferencing when the process is nearly
nonstationary.

Theorem 7. Let yt follow process (2.1) with r � exp(ÿc=T â) and â. 1,
and let the conditions of Theorems 5 and 6 hold. Then, for H > 1,

PMSE(�yT�H )ÿ PMSE( ŷT�H ) � íH � o(H2T ÿ1)

where

íH � ó 2

T

XH

h�1

Xhÿ1

j�0

ø j

0@ 1A2

� ó
2

T

XH

h�1

Xhÿ1

j�0

ø jrhÿ1ÿ j

0@ 1A2

. 0 (6:1)

with ø j � (e9p A j
pep), j � 1, . . ., H .

The proof is a direct application of Lemmas 1 and 2 to the differnces between
(5.3) and (5.6) and between expressions (5.7) and (5.4).

Expression (6.1) shows that the advantage of the overdifferenced model can
be decomposed into two parts. The ®rst term at the right-hand side of (6.1) is
the result of applying Lemma 1 and therefore is due to the MSE of estimating
the constant term á in the AR( p� 1) model. The second term is the result of
applying Lemma 2 and then is due to the MSE of estimating an extra
parameter in the AR( p� 1). Thus, the superior forecasting performance of the
model ARIMA( p, 1, 0) is due to its more parsimonious representation. For
H � 1 the difference is 2ó 2=T if a constant is needed, and ó 2=T if á � 0 and
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no constant is estimated. This result is similar to that of Ledolter and Abraham
(1981) for overspeci®ed models, where they state that each unnecessary
estimated parameter increases the one-step-ahead PMSE by ó 2=T.

Although these results are applicable to a general stationary autoregression, it
is interesting to analyze the AR(1) case. First, its simplicity avoids the use of
some asymptotic approximations. Second, the results will not be affected by
any other root, as shown in (3.2), and they can be considered as a neutral
benchmark. The PMSE of the proper predictor in this case can be evaulated
with (5.1), whereas the PMSE in the overdifferenced model is easily evaluated
using a random walk as predictor. The following remarks summarize the results
for both the AR(1) case with no intercept (AR(1)) and the AR(1) case with
intercept (AR(1, ì)).

Remark 1. Let yt follow the process yt � rytÿ1 � at, jrj, 1. Then
PMSE(�yT�H )ÿ PMSE( ŷT�H ) � íH jAR(1) � o(H2T ÿ3=2), where

íH jAR(1) � ó 2 H2r2( Hÿ1)

T
ÿ (1ÿ rH )2

1ÿ r2

( )
: (6:2)

Table I shows the values of r that make íH jAR(1) � 0. Larger values will produce
íH jAR(1) . 0. These values of r increase with H . Therefore, as the horizon
grows, the process needs to be closer to the unit root in order to get some gain
when differencing. The advantage of overdifferencing tends, then, to decrease
when the horizon is large. It can also be seen that as H !1 the limit of (6.2)
is negative. Then, the advantage of the overdifferenced predictor eventually
disappears. If r is close enough to unity, this will happen at a horizon of no
practical interest. This result has an interpretation in terms of the mean reversion
of the true process. Since the process is stationary, its long-term prediction is the
unconditional mean, which in this case is known. Therefore, the AR(1) predictor
wil forecast the long term with no error, whereas the random walk will not.
Manipulating (6.2), we can conclude that, up to terms of small order,
overdifferencing can produce better forecasts if

TABLE I

Values of r to Obtain íH jAR(1) � 0 and íH jAR(1, ì) � 0

AR(1), Horizon AR(1, ì), Horizon

T 1 2 5 10 20 1 2 5 10 20

25 0.923 0.937 0.940 0.951 0.963 0.852 0.862 0.881 0.898 0.913
50 0.961 0.965 0.966 0.970 0.976 0.923 0.926 0.932 0.940 0.948
75 0.974 0.976 0.976 0.978 0.982 0.948 0.949 0.953 0.957 0.962

100 0.980 0.981 0.982 0.983 0.985 0.961 0.962 0.964 0.966 0.970
150 0.987 0.987 0.987 0.988 0.989 0.974 0.974 0.975 0.976 0.978
300 0.993 0.994 0.994 0.994 0.994 0.987 0.987 0.987 0.988 0.988
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r. exp ÿ 2

T � 4H

� �
: (6:3)

This expression can be approximated, omitting the in¯uence of H , as
r. exp(ÿ2=T ). This value of c � 2 agrees with the empirical work of Stock
(1996).

Remark 2. Let yt follow the process yt � á� rytÿ1 � at, jrj, 1. Then
PMSE(�yT�H )ÿ PMSE( ŷT�H ) � íH jAR(1,ì) � o(H2T ÿ3=2), where

íH jAR(1,ì) � ó 2 H2r2( Hÿ1)

T
� (1ÿ rH )2

T (1ÿ r)2
ÿ (1ÿ rH )2

1ÿ r2

( )
: (6:4)

Table I shows the values of r that make íH jAR(1,ì) � 0. From (6.4) it can be
veri®ed that the overdifferenced predictor produces better forecasts, up to terms
of small order, if

r. exp ÿ 4

T � 4H

� �
(6:5)

which can be simpli®ed as r. exp(ÿ4=T). In this case, the limit of (6.4) as
H !1 is still positive if r. exp(ÿ2=T ).

7. A SIMULATION STUDY

In this section, we illustrate the preceding results with a simulation exercise. We
consider three different AR(2) models: M1, (1ÿ 0:5B)(1ÿ rB)yt � 10� at;
M2, (1ÿ 0:5B)(1ÿ rB)yt � at; and M3, (1� 0:8B)(1ÿ rB)yt � 10� at, with
r � 0:9, 0.92, 0.94, 0.96, 0.98, 0.99. Sample sizes are T � 50, 100. Real series
usually have non-zero mean, and models M1 and M3 can illustrate the
consequences of overdifferencing in such series. Also, model M2 can arise when
in doubt about a second difference.

An important aspect in the simulation exercise is the possibility of obtaining
an explosive estimated predictor. There are two main reasons to avoid these
explosive situations. First, they are of limited practical interest. A typical
situation where a practitioner has doubts about differencing, for forecasting
purposes, deals mainly with estimated r close to, but lower than, unity. Second,
the explosive nature of the predictions generated with a predictor with r̂. 1
produces an excessive in¯uence on the averages resulting from the simulations,
because the explosive estimated predictor is easily worse than its over-
differenced counterpart, especially in the long term. Unreported simulations
show that very few explosive estimated predictors can have an extremely large
in¯uence in the computations, given a too optimistic representation of the effect
of overdifferencing. Therefore, in order to obtain a clearer picture of what can
be expected from overdifferencing in a real situation, we have considered only
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those replications in which estimated roots were outside the unit circle. The
percentage of rejected replications is low. For instance, if r � 0:98 and
T � 100 it is 1%, and with T � 50 it is 2.7%.

In each replication, we generate a random sample of the process of size
500� T � 30 with random noise at � N(0, 1). The ®rst 500 observations were
ignored to avoid the effect of initial values, and the last 30 were used to
evaluate the prediction error. By averaging the prediction squared errors of
20 000 valid replications we obtain Vy(H) and Vw(H) as the sampling
estimation of the PMSE of forecasting yT�H using the forecasts generated by
the correct AR(2) model or the overdifferenced ARIMA(1, 1, 0) model
respectively. Figures 1±3 show the ratio fVy(H)ÿ Vw(H)g=Vy(H) for M1
and M3 as a function of T and r. This ratio represents the empirical expected
gain (or loss if negative) of overdifferencing at each horizon. The ®gures reveal
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Figure 1. fVy(H)ÿ Vw(H)g=Vy(H) of Model M1 for horizon H � 1, . . ., 30 and sample size T .
The values of r are (from bottom to top) 0.90, 0.92, 0.94, 0.96, 0.98, 0.99.
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Figure 2. fVy(H)ÿ Vw(H)g=Vy(H) of Model M2 for horizon H � 1, . . ., 30 and sample size T .
The values of r are (from bottom to top) 0.90, 0.92, 0.94, 0.96, 0.98, 0.99.
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that, as expected from the theoretical results, there are situations where
overdifferencing outperformed the true model. The expected gain increases with
the size of r and decreases with T . Also, in agreement with Equation (3.2), the
gain is larger in the model with positive second root (M1) than in the model
with negative root (M3). The gain substantially decreases if á � 0 (M2).

The main feature of these ®gures is the divergence of the curves as the
horizon increases. In the very short term, the difference between the two
predictors is very small, even negligible. Nevertheless, in the medium or long
term the gain or loss can be important. The risk of falling into an important
loss if r is not large enough can be diminished, however, if some ef®cient rule
to decide about differencing is used. A second important aspect of these ®gures
is that in the long run (H � T 1=2) the gain decreases and can be negative.
Also, as proved in the last section, the gain in the model with no constant
always disappears at suf®ciently large H .

Figures 4 and 5 show the absolute values of Vy(H) and Vw(H) for selected
values of r. These ®gures also contain the population PMSE of the process
(dotted lines). These population values can be obtained from the ®rst term on
the right-hand side of expression (5.1). The distance from these population
curves to each solid line is the PMSE due to the estimation of the unknown
parameters. It can be seen that the sampling variability of the nondifferenced
predictor (line with symbol �) increases noticeably when the number of
parameters increases (models M1 and M3 with respect to M2). This increment
of the PMSE due to the estimation of the parameters causes that the
overdifferenced predictor (line with symbol s) can outperform its competitor
when the process approaches nonstationarity.

It can be seen that the theoretical results accurately explain this ®nite sample
performance. Since these results depend mainly on the size of the roots rather
than on their number, it is reasonable to foresee similar conclusions in larger
autoregressions.
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Figure 3. fVy(H)ÿ Vw(H)g=Vy(H) of Model M3 for horizon H � 1, . . ., 30 and sample size T .
The values of r are (from bottom to top) 0.90, 0.92, 0.94, 0.96, 0.98, 0.99.
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APPENDIX

Lemmas

We present some lemmas used for the proof of theorems in subsequent sections. For an
arbitrary p 3 1 vector x and a p 3 p matrix M , let kxk � (x9x)1=2 be the Euclidean norm
of x and kMk � supkxk<1(x9M9Mx)1=2 be the matrix norm of M .

Lemma A1. Assume A1 and A2, with s0 � 2k and k > 1. Then, as T !1,

E(kÃ̂w ÿ Ã̂wj pkk) � O
1ÿ r
1� r
� �

k=2

� �
and

E(kã̂w ÿ ã̂wj pkk) � O
1ÿ r
1� r
� �

k=2

� �
: (A1)

Proof. Let mij be a generic element of M . Since E(kMkk) � Ofmaxi, j E(jmijjk)g,
i, j � 1, . . ., p, and by Minkowski's inequality, E(kÃ̂w ÿ Ã̂wj pkk) � O(max t,s Ejwtwtÿs ÿ
wtj pwtÿsj pjk). A similar result applies to (A1). Using the decomposition (4.1), and by
Minkowski's inequality,

Ejwt wtÿs ÿ wtj pwtÿsj pjk < f(Ejwtj p rtÿsjk)1=k � (Ejwtÿsj p rtjk)1=k � (Ejrt rtÿsjk)1=kgk

(A2)

where rt �
P1

j�0ø j(1ÿ r)ztÿ1ÿ j. By HoÈlder's inequality, E9wtj p rtÿsjk < (Ejwtj pj2k

Ejrtÿsj2k)1=2. Also, by Assumption A1, Ejwtj pj2k � O(1). Similarly, Ejrtÿsj2k <
fP1j�0jø j(1ÿ r)j(Ejztÿsÿ1ÿ jj2k)1=2kg2k , where it can be veri®ed that

Ejztj2k < E
X1
j�0

jr2 ja2
tÿ jj

 !
k <

X1
j�0

(Ejr2 ja2
tÿ jjk)1=k

( )k

� O
1

1ÿ r2

� �
k

� �
:

Therefore,

Ejrtÿsj2k � O
1ÿ r
1� r
� �

k

� �
(A3)

and hence

Ejwtj p rtÿsjk � O
1ÿ r
1� r
� �

k=2

� �
:

A similar result applies to the second term in (A2). The third term in (A2) can also be
solved following the previous arguments. It can be shown that

Ejrt rtÿsjk � O
1ÿ r
1� r
� �

k

� �
:

Applying these results to (A2) proves the lemma.

Lemma A2. Assume A1, A2, A3 and A4, with s0 � 2k. Then, as T !1,

E(kÃ̂ÿ1
w ÿ Ã̂ÿ1

wj pkk) � O
1ÿ r
1� r
� �

k=2

� �
:
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Proof. It can be veri®ed that kÃ̂ÿ1
w ÿ Ã̂ÿ1

wj pkk � kÃ̂ÿ1
w (Ã̂w ÿ Ã̂wj p)Ã̂ÿ1

wj pkk . By
HoÈlder's inequality and Lemma A1 the result follows.

Lemma A3. Assume A1, A2, A3 and A4, with s0 � 4k. Then, as T !1,

E(kö̂ÿ ö̂j pkk) � O
1ÿ r
1� r
� �

k=2

� �
(A4)

E(kö̂ÿ ökk) � O max
1ÿ r
1� r
� �

k=2, T ÿk=2

� �� �
: (A5)

Proof. The estimator ö̂ can be expressed as

ö̂ � (Ã̂ÿ1
w ÿ Ã̂ÿ1

wj p)(ã̂w ÿ ã̂wj p)� (Ã̂ÿ1
w ÿ Ã̂ÿ1

wj p)ã̂wj p � Ã̂ÿ1
wj p(ã̂w ÿ ã̂wj p)� ö̂j p

where ö̂j p � Ã̂ÿ1
wj pã̂wj p. By Minkowski's inequality we obtain

E(kö̂ÿ ö̂j pkk) < ([Efk(Ã̂ÿ1
w ÿ Ã̂ÿ1

wj p)(ã̂w ÿ ã̂wj p)kkg]1=k

� [Efk(Ã̂ÿ1
w ÿ Ã̂ÿ1

wj p)ã̂wj pkkg]1=k � [EfkÃ̂ÿ1
wj p(ã̂w ÿ ã̂wj p)kkg]1=k)k :

By HoÈlder's inequality and applying Lemmas A1 and A2, expression (A4) holds. In order
to prove (A5) we use the decomposition ö̂ÿ ö � Ãÿ1

wj p(ã̂w ÿ ãwj p)� (Ã̂ÿ1
w ÿ Ãÿ1

wj p)ã̂w,
and also the decompositions ã̂w ÿ ãwj p � (ã̂w ÿ ã̂wj p)� (ã̂wj p ÿ ãwj p) and Ã̂ÿ1

w ÿ Ãÿ1
wj p �

(Ã̂ÿ1
w ÿ Ã̂ÿ1

wj p)� (Ã̂ÿ1
wj p ÿ Ãÿ1

wj p). Applying that E(kã̂wj p ÿ ãwj pk2k) � O(Tÿk) and
E(kÃ̂ÿ1

wj p ÿ Ãÿ1
wj pk2k) � O(Tÿk) (see, for instance, Lemma 3.3 of Bhansali, 1981), and

using the same arguments as before, completes the result.

Proofs of results in Section 4

Proof of Theorem 1. Since E(z2
t ) � ó 2=(1ÿ r2), and by Chebyshev's inequality, we

obtain zt � Opf(1ÿ r2)ÿ1=2g. Hence,

rt � Op

1ÿ r
1� r
� �1=2

( )
: (A6)

Since (1ÿ r)=(1� r) � O(T ÿâ), then wt � wtj p � op(T ÿ1=2).
The elements of Ã̂w and ã̂w can be decomposed asPTÿ1

j� p�1w jÿ tw jÿs

T ÿ pÿ 1
�
PTÿ1

j� p�1w jÿ tj pw jÿsj p
T ÿ pÿ 1

ÿ
PTÿ1

j� p�1w jÿ tj p r jÿs

T ÿ pÿ 1

ÿ
PTÿ1

j� p�1w jÿsj p r jÿ t

T ÿ pÿ 1
�
PTÿ1

j� p�1 r jÿ t r jÿ t

T ÿ pÿ 1
:

Applying (A6) and the result that wtj p � Op(1), it can be veri®ed thatPTÿ1
j� p�1w jÿ tw jÿs

T ÿ pÿ 1
�
PTÿ1

j� p�1w jÿ tj pw jÿsj p
T ÿ pÿ 1

� op(T ÿ1=2)

and the theorem follows.

Proof of Theorem 2. Using the decomposition ö̂ÿ ö � Ãÿ1
wj p(ã̂w ÿ ãwj p) �

(Ã̂ÿ1
w ÿ Ãÿ1

wj p)ã̂w, and by stationarity of fwtj pg, we have Ãÿ1
wj p � O(1). Also, if
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Ã̂ÿ1
w exists, we have Ã̂ÿ1

w ÿ Ãÿ1
wj p � Ã̂ÿ1

w (Ãwj p ÿ Ã̂w)Ãÿ1
wj p. Therefore, applying Corollary 1,

ö̂ÿ ö � Op(T ÿ1=2).

Proof of Theorem 3. It can be veri®ed that E(ö̂ÿ ö̂j p) � Ef(Ã̂ÿ1
w ÿ Ã̂ÿ1

wj p)ã̂wj pg �
EfÃ̂ÿ1

w (ã̂w ÿ ã̂wj p)g. Applying HoÈlder's inequality and Lemmas A2 and A1, the theorem
follows.

Poof of Theorem 4. We can decompose

MSE(ö̂) � MSE(ö̂j p)� Ef(ö̂ÿ ö̂j p)(ö̂j p ÿ ö)9g

� Ef(ö̂j p ÿ ö)(ö̂ÿ ö̂j p)9g � Ef(ö̂ÿ ö̂j p)(ö̂j p ÿ ö)9g:
Since kMk < ftr(M9M)g1=2, and applying Lemma A3,

Efk(ö̂ÿ ö̂j p)(ö̂ÿ ö̂j p)9kg < E(kö̂ÿ ö̂j pk2) � O
1ÿ r
1� r
� �

:

Analogously, and applying the result that E(kö̂j p ÿ ök2) � O(T ÿ1) (see, for instance,
Bhansali, 1981), it can be veri®ed that

Efk(ö̂j p ÿ ö)(ö̂ÿ ö̂j p)9kg � O
1ÿ r
1� r
� �1=2

Tÿ1=2

( )

Efk(ö̂ÿ ö̂j p)(ö̂j p ÿ ö)9kg � O
1ÿ r
1� r
� �1=2

Tÿ1=2

( )
and the theorem follows.

Proofs of results in Section 5

Proof of Theorem 5. The Taylor expansions of �Ah
á and �Ahÿ1

á around Aá are

�Ak
á � Ak

á

Xkÿ1

j�0

A j
á(�Aá ÿ Aá)Akÿ1ÿ j

á � Op(Tÿ1) k � h, hÿ 1:

Then, using
Phÿ2

j�0 A j
á(�Aá ÿ Aá)Ahÿ2ÿ j

á �Phÿ1
j�1 A jÿ1

á (�Aá ÿ Aá)Ahÿ1ÿ j
á , and given that

�Aá ÿ Aá � e p�2(�jjÿ jj)9, we have

E(�wT�h ÿ wT�h)2 � E(L1 ÿ L2)2 � E(C9h,1YT Y 9T Ch,1)� E(C9h,2YT Y 9T Ch,2)

� E(C9h,1YT Y 9T Ch,2)� E(C9h,2YT Y 9T Ch,1)� O(Tÿ3=2) (A7)

where C9h,1 � e9p�2 A0
áe p�2(�jjÿ jj)9Ahÿ1

á and C9h,2 �
Phÿ1

j�1 e9p�2 A jÿ1
á (Aá ÿ I p�2)e p�2(�jj

ÿ jj)9Ahÿ1ÿ j
á , and where we have used the result that E(k�Aá ÿ Aákk) � O(T ÿk=2) (see,

for instance, Bhansali, 1981, or Kunitomo and Yamamoto, 1985).
If we denote the kth coef®cient of j(B)ÿ1 by øk[AR( p�1)] and the kth coef®cient of

j(B)ÿ1(1ÿ B) by øk[ARMA( p�1,1)], then e9p�2 Akÿ1
á (Aá ÿ I p�2)e p�2 � øh[AR( p�1)] ÿ

økÿ1[AR( p�1)] � øk[ARMA( p�1,1)] � e9p�2 Ak
1 c p�2, and hence

E(L2
h) � Ef(L1 ÿ L2)2g � ó 2

Xhÿ1

k�0

(e p�2 Ah
1 c p�2)2: (A8)

Since the effect of the dependence between YT and �jj in the PMSE is O(Tÿ3=2)
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(Kunitomo and Yamamoto, 1985) and applying that MSE(�jj) � ó 2Ãÿ1
y =T � O(T ÿ3=2), we

®nd

E(C9h,2YT Y 9T Ch,2) � ó 2

T

Xhÿ1

j�1

Xhÿ1

k�1

(e9p�2 A
jÿ1
1 c p�2)(e9p�2 Akÿ1

1 c p�2)

3 tr(Ahÿ1ÿ j
á Ã y A9hÿ1ÿk

á Ãÿ1
y )� O(T ÿ3=2):

Applying the same arguments to the remaining terms of (A8) we obtain

Ef(�wT�h ÿ wT�h)2g � ó 2
Xhÿ1

k�0

(e9p�2 Ak
1 c p�2)2 � ó 2

T

Xhÿ1

j�0

Xhÿ1

k�0

(e9p�2 A
j
1c p�2)(e9p�2 Ak

1 c p�2)

3 tr(Ahÿ1ÿ j
á Ã y A9hÿ1

á Ãÿ1
y )� O(Tÿ3=2):

If we denote the kth coef®cient of ö(B)ÿ1 by øk[AR( p)], then øk[ARMA( p�1,1)] �
øk[AR( p)] � O(1ÿ r), and therefore e9p�2 Ak

1 c p�2 � e9p Ak
pep � O(1ÿ r). Then, if â. 1,

expression (5.3) holds. Similarly, using the previous arguments, the proof of (5.4) follows.

Proof of Theorem 6. The expectation of the square of wT�h ÿ ŵT h is

Ef(wT�h ÿ ŵT�h)2g � E(L2
h)� Efe9p(Âh

p ÿ Ah
p)WT W 9T (Âh

p ÿ Ah
p)9epg

� E(v2
T )� 2Efe9p(Âh

p ÿ Ah
p)WT vTg (A9)

where the term E(L2
h) is the same as (A8). Applying (A3) with k � 1 and HoÈlder's

inequality, then E(v2
T ) � o(T ÿ1). In order to solve the remaining terms of (A9), we will

use a Taylor expansion of Â p around Ap. The magnitude of the remainder term is
detremined by the root-T consistency of Â p. Then

Âh
p � Ah

p �
Xhÿ1

j�0

A j
p(Â p ÿ Ap)Ahÿ1ÿ j

p

�
Xhÿ1

j�1

Xjÿ1

k�0

Ak
p(Â p ÿ Ap)A jÿ1ÿk

p

( )
3 (Â p ÿ Ap)Ahÿ1ÿ j

p � Op(Tÿ3=2):

Thus, by Lemma A3, Efe9p(Âh
p ÿ Ah

p)WT vTg � O[Efk(ö̂ÿ ö)9WT vTkg] � o(T ÿ1). Let
us denote B9h,1 � e9p

Phÿ1
j�0 A j

p(Â p ÿ Ap)Ahÿ1ÿ j
p . Then, by HoÈlder's inequality,

Efe9p(Âh
p ÿ Ah

p)WT W 9T (Âh
p ÿ Ah

p)9epg � E(B9h,1WT W 9T Bh,1)� O(T ÿ3=2). Applying Theo-
rem 4 and the result that the effect in the PMSE of the dependency between ö̂j p and WT

is O(T ÿ3=2) (Kunitomo and Yamamoto, 1985), it follows that

E(B9h,1WT W 9T Bh,1) � ó 2

T

Xhÿ1

j�0

Xjÿ1

k�0

(e9p A j
pep)(e9p Ak

pep)

3 tr(Ahÿ1ÿ j
p Ãw A9hÿ1ÿk

p Ãÿ1
w )� o(Tÿ1)

and the proof of (5.6) is completed. Similarly, by the same arguments, expression (5.7)
can be obtained.
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Proofs of Section 6

Proof of Lemma 1. Let us decompose Yt as Yt � (~Y 9t, 0)9� ì, where ì �
(ì, ì, . . ., ì, 1)9. Since á � ì(1ÿP p�1

i�1 ji), it can be shown that Ai
áìA9 j

á � ì, where
ì � ìì9. Then Ai

áÃ y A9 j
á � Ai

áÃ
�
~y A9 j

á � ì, where Ã�~y is a ( p� 2) 3 ( p� 2) matrix with
Ã ~y in the ®rst ( p� 1) 3 ( p� 1) submatrix and zero elsewhere. Also, the covariance
matrix Ã y has the following block structure:

Ã y � Ã0 ì0

ì90 1

� �
where Ã0 � E(Y0 tY 90 t), with Y0 t � (yt, ytÿ1, . . ., ytÿp)9 and ì0 � E(Y0 t). Using the
properties of the inverses of block matrices, we can partition Ãÿ1

y as

Ãÿ1
y �

B11 B12

B21 B22

� �
where B11 � (Ã0 ÿ ì0ì90)ÿ1 � Ãÿ1

~y . Then it is veri®ed that tr(Ai
áÃ
�
~y A9 j

á Ã
ÿ1
y ) �

tr(Ai
0Ã ~y A9 j

0 Ã
ÿ1
~y ). Hence, tr(Ai

áÃ y A9 j
á Ã
ÿ1
y ) � tr(Ai

0Ã ~y A9 j

0 Ã
ÿ1
~y )� tr(ìÃÿ1

y ). Given that
tr(ìÃÿ1

y ) � ì9Ãÿ1
y ì, and applying a result of Searle (1984, p. 258), it can be seen that

ì9Ãÿ1
y ì � 1ÿ jÃ y ÿ ìì9j = jÃ yj � 1, since the last column and row of Ã y ÿ ìì9 are zero

and Ã y is invertible.

Proof of Lemma 2. Let C be the following nonsingular matrix:

C �

1 ÿr 0 � � � 0 0

0 1 ÿr � � � 0 0

..

. ..
. ..

. ..
. ..

.

0 0 0 � � � 1 ÿr
1 ÿö1 ÿö2 � � � ÿö pÿ1 ÿö p

0BBBBB@

1CCCCCA:
Then

D � CA0Cÿ1 � Ap 0

0 r

� �
:

Let ëk be an eigenvalue of the matrix Q � Ãÿ1
~y Ai

0Ã ~y A9 j

0 . Then

jDiÃC D9 j ÿ ëÃC j � 0 (A10)

where ÃC � CÃ ~yC9. This matrix ÃC can be considered as the covariance matrix of the
transformed series Zt � CYt, where Z t � (z1, t, z1, tÿ1, . . ., z1, tÿ p�1, z2, t)9 and

Z t � DZ tÿ1 � atc p�1: (A11)

Therefore, the ®rst p 3 p submatrix of ÃC is the covariance matrix of a process z1, t

following the coef®cient matrix Ap and noise at; namely, the matrix Ãwj p. Denoting by
V12, V21 and V22 the remaining submatrices of this partitioning, we can rewrite (A10) as

Ai
pÃwj p A9 j

p ÿ ëÃwj p (Ai
pV12r j ÿ ëV12)V

ÿ1=2
22

(riV21 A9i
p ÿ ëV21)V

ÿ1=2
22 ri� j ÿ ë

�����
����� � 0:

From (A11), the term V22 is the variance of an AR(1) process with coef®cient r.
Therefore Vÿ1

22 � O(1ÿ r). Hence, using the rule to evaluate the determinant of a
partitioned matrix (see, for instance, Searle, 1984)

jQÿ ëI j � jAi
pÃwj p A9 j

p ÿ ëÃwj pjfri� j � O(1ÿ r)ÿ ëg � 0:

Since the trace of a matrix equals the sum of its eigenvalues, the lemma follows.
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