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Abstract. We analyze the effect of overdifferencing a stationary AR(p + 1) process
whose largest root is near unity. It is found that, if the process is nearly nonstationary,
the estimators of the overdifferenced model ARIMA(p, 1, 0) are root-7 consistent. It is
also found that this misspecified ARIMA(p, 1, 0) has lower predictive mean squared
error, to terms of small order, than the properly specified AR(p 4+ 1) model due to its
parsimony. The advantage of the overdifferenced predictor depends on the remaining
roots, the prediction horizon and the mean of the process.

Keywords. Autoregressive processes; near nonstationarity; overdifferencing; parsi-
mony; predictive mean squared error; unit roots.

1. INTRODUCTION

In this paper, we investigate the consequences in estimation and prediction of
overdifferencing a stationary AR(p + 1) with a root close to unity. Differencing
is normally used to transform a homogeneous linear nonstationary time series
into a stationary process that is often modeled as an ARMA(p, ¢q) process. It is
said, then, that the original series follows an ARIMA(p, d, q) process, where d
is the number of differences required to obtain stationarity. We assume that the
process is not a long-memory process (see, for instance, Granger and Joyeux,
1980) and thus 4 is an integer equal to the number of unit roots in the
autoregressive characteristic equation. When a stationary process has an
autoregressive characteristic equation with a root close to unity it is said to be
nearly nonstationary. Given a small or moderate sample of this process, it is very
likely to be concluded, due to the low power of unit root tests in this case, that a
difference should be applied. The differenced series will be noninvertible and the
process is called overdifferenced.

Since the work of Fuller (1976) and Dickey and Fuller (1970), there has been a vast
literature concerning the detection of unit roots in autoregressive polynomials. This
literature notes the difficulty of a correct detection in near nonstationary processes. In
spite of this, relatively little has been written on the consequences of a wrong
detection. Previous work on the effect of overdifferencing can be found in Plosser and
Schwert (1977, 1978), Harvey (1981), Campbell and Perron (1991) and Stock
(1996). Plosser and Schwert (1977) examine, using Monte Carlo techniques, the
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46 I. SANCHEZ AND D. PENA

effect of overdifferencing in two cases: processes with a deterministic linear trend
and stochastic regression models. They conclude that, in these situations, the loss in
efficiency in both parameter estimation and prediction is not substantial, provided a
moving-average parameter is included. Harvey (1981), assuming known parameters,
also concludes that overdifferencing does not need to have serious implications for
prediction, provided a finite-sample prediction procedure is used and a moving-
average parameter is included. Campbell and Perron (1991) and Stock (1996)
compare, using Monte Carlo simulations, the prediction accuracy of an AR(1) and a
random walk. The empirical results of these authors show that the random walk can
produce forecasts with lower prediction mean squared error (PMSE) than the AR(1)
if the root is close to unity.

In this paper, we justify theoretically the advantages of the overdifferenced
predictor, found empirically by Campbell and Perron (1991) and Stock (1996),
in a general autoregression, and analyze the effect of other factors like the
remaining roots, sample size (7') and horizon (H). We will assume that a root
of the AR(p + 1) is close to unity, and thus we will adopt as a more plausible
overdifferenced predictor the ARIMA(p, 1, 0) model, where no moving-average
component is involved.

We will prove that the PMSE of the overdifferenced model ARIMA(p, 1, 0) is
lower, to terms of small order, than the PMSE of the correct model AR(p + 1) if the
root that is closer to unity, p~!, follows p = exp(—c/T?), 8> 1. The advantage of
the overdifferenced predictor is due to its parsimony. Therefore, it is larger if the
AR(p + 1) process has a non-zero mean, since this will vanish in the overdifferenced
model. The remaining roots also affect the advantage of the overdifferenced
predictor. Positive roots increase the advantage of the overdifferenced model,
whereas negative roots have the opposite effect. The avantage of the overdifferenced
model is small in the short term, but can increase with the horizon.

An important consequence of these results is that, for forecasting purposes, it
is better to overdifference than to underdifference. Therefore, the possible low
power of unit root tests in autoregression is not as important in forecasting as
in model identification, since we can still obtain an efficient predictor.

The paper is organized as follows. In Section 2 we introduce the model and
notation. In Section 3 we define nearly nonstationary processes. The
consequences of overdifferencing in estimation are analyzed in Section 4,
and the effect on the PMSE for each predictor is analyzed in Section 5. In
Section 6 we compare the PMSE of the competing models and extract further
results from the AR(1) case. A simulation study is presented in Section 7 to
illustrate the results.

2. THE MODEL AND NOTATION

Let {y,} be the following stationary AR(p + 1) process:
P(B)y; = ¢(B)1 — pB)y, = o+ a 2.1)
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PREDICTORS IN OVERDIFFERENCED AUTOREGRESSION 47

where B is the backshift operator, and @(B) = (1 — > 7" J”ll<piBi) is a polynomial
operator on B such that ¢(B) = 0 has all its roots outside the unit circle, with
p~! being the root closer to unity. Let @, be a sequence of independent
identically distributed random variables with zero mean and variance o2. Let
u = E(y,); then a = up(l). We make the following assumption.

Al. For some s¢>2, E{|a;|*} <oo.

It is well known that this model can be represented in first-order vector
autoregressive form as follows:

Y, = AeYio1 + Uppiz 2.2)

with Y, = (v, ..o, Yieps 1), U pya = (a1, 0, ..., 0)’, where the subindex p + 2
indicates the dimension of the vector and

P P2 o Qp QPpr1 A
1 o --- 0 0 0
0 1 - 0 0 0
Aa=| . oo : : :
o o --- 1 0 0
o o0 --- 0 0 1

Then y, = ep2Y;, with e,n =(1,0,...,0)'. Let I', = E(Y,Y;) and y, =
E(Y;y.11). If we represent the process in deviations from the mean, we obtain
Yi=A0Y1 + Uspr1, where Yi = (s, Vi1s - Vip)'s Ve = Y1 — Uy and~AQ is
the first (p + 1) X (p + 1) submatrix of 4,. We will also denote I';, = E(Y,Y}).
If a difference is applied to yy, the series obtained, w; = (1 — B)y;, can be
represented as

P(B)1 — pB)yw; = (1 — B)a, (2:3)

which is noninvertible. The process w; has the following vector representation
(Liitkepohl, 1991, p. 223):

Zi=MZa+UT,, (2.4)

Wlth Zt = (W;, at),, Wr = (Wt, ey Wt—p),ﬁ Utp+2 = (at, 0, c ey 0, at)’ aIld

_ Ao —€p+1
Al_(()...() 0 )

with w; = e Z;. Let I',, = E(W,W7) and y,, = E(W;w;1). In what follows,
we will use a circumflex " to denote estimates from a sample of the
overdifferenced process {w,} and the check symbol V' for estimates from a
sample of the original process {y;}. The least squares estimator of the
AR(p + 1) parameter vector @ = (@1, ..., ¢ p+1,0)", fitted to a sample of size T
of the original process, is 7(])_1: F;lj'/y, where I', = (T — p — 1)’12;:;HYJY}
and y, =(T — p— 1)‘121.:1!,+1 Y;yji1. Similarly, the least squares estimator of
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the parameter vector ¢ = (¢, ..., ¢,)" of a misspecified AR(p) ﬁtted to a

sample of size T — 1 of the overdifferenced process (2.3), is ¢ 1 I, yw, where
r,=({T—-p-1) 12 pHW Wiand y,, = (T —p— 1)~ ‘Z,, A Wiwji. We
also make the followmg assumptlons where || - || denotes the Euclidean norm.

A2, E(|IF*) (k=1,2, ..., ko) is bounded for all finite and sufficiently
large 7 and some k.

A3. E(||f"v_vl||2k) (k=1,2,..., ko) is bounded for all finite and sufficiently
large 7 and some k.

Assumptions A2 and A3 are similar to Assumption A3 of Kunitomo and
Yamamoto (1985). They are also equivalent to Assumption A3 of Bhansali
(1981). It should be noted that they are satisfied if the distribution is normal (see
Fuller and Hasza, 1981). These assumptions are needed in several parts of this
work, especially in application to the results of Kunitomo and Yamamoto (1985)
and Bhansali (1981). They imply that, for a large enough sample size, the
estimations of the covariance matrices are sufficiently near the true values
(Bhansali, 1981, p. 590).

3. NEARLY NONSTATIONARY AUTOREGRESSIONS

A process is said to be nearly nonstationary (near integrated) if its autoregressive
characteristic equation has a root, p~!, very close to unity. If p is close enough
to unity, the term 1 — pB in (2.3) will be similar to 1 — B. Therefore, although
the overdifferenced process w; is strictly a noninvertible ARMA(p + 1, 1), an
average correlogram of w; will suggest estimating by an AR(p) instead.

The similarity between w, and a true AR(p) process does not only depend on
p but is influenced by the remaining roots. In order to see this point, let 7;

be the coefficients of the polynomial m(B)=1—mB — m,B*> — ---, where
¢@(B) = (B)(1 — B). These coefficients follow
n.:{¢j+<p—1)(1—ziz‘1¢k) if j<p G1)
’ (p =D =37100) if j>p
with ¢, =0 if k<1. If we denote as ri‘l, i=1,..., p, the roots of the

characteristic equation ¢(B) = 0, then

P P
(1 - Zm) =1Ja-m. (32)
k=1

i=1

Therefore, negative values of 7; increase the value of 7;, j > p, and decrease the
similarity of w, and an AR(p).

Thus, the definition of a nearly nonstationary process needs (i) a
parameterization that converges to the unit root with the sample size and (ii)
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a constant term that can reflect the influence of the remaining roots in finite
samples. Phillips (1987) and Chan and Wei (1987) define a nearly nonstationary
process for the AR(1) case by reparameterizing p = exp(—c¢/T)=1—¢/T +
o(T~"), where c is a fixed constant. In this definition, the convergence rate to
unity is fixed to be O(T~!'). These authors use this definition to provide
asymptotic theory for the estimation of p. The formulation is justified by
Phillips (1987) because this is the order of consistency of the least squares
estimator, and by Chan and Wei (1987) because this is the order of the
observed Fisher information of p under normality. In order to analyze the
consequences of overdifferencing with different convergence rates we will
define p as

p = exp (— %) (3.3)

with ¢ and S being fixed constants. We deal only with stationary processes, and
hence ¢, > 0. Time series generated by (2.1) and (3.3) formally constitute a
triangular array of the type {yr:t=1,..,7T;,T=1,2,...}. Since this
formulation is not essential in this paper, we will still use the notation {y;} to
refer to this process. It has to be noted that, since o = E(y,)(1 — p)¢p(1), the
process has no constant term if p = 1.

Given a sample from a process generated by (2.1) and (3.3), the analyst has
to decide whether to estimate p or to impose the value p = 1. By the properties
of least squares estimators it can be proved that the least squares estimator of p
satisfies p = p + Op(T~(P*1/2) whereas imposing unity has the property
1 = p+O(T~P). Then, for S>> 1, the convergence rate when imposing unity is
faster than estimating by least squares. This result helps to explain why
processes with 3> 1 are, for some purposes, better modeled in differences.

4. PROPERTIES OF ESTIMATORS IN THE OVERDIFFERENCED PROCESS

4.1. Root-T consistency

Let {w,} be the true AR(p) process ¢(B)w, = a;,. This process follows the
Markovian representation W, = A,W, 1, + U, . The p X p matrix 4, has
the same structure as 4o with the coefficients (¢1, ..., ¢,) in the first row and
Wip = Wips - s Wi—py1)p)"- Then, from (2.3),

1-p)B =
W = ¢1<B){1 R } =wip = > Y= Pz @D
p =

where ; are the coefficients of ¢ Y(B), and (1 — pB)z; = a,. Let us denote
Lyp=EW ,Wip) and vy, = EW,,w.,). We define the sampling
autocovariar}c_els as Iy,=(T-p- 1)712]':7;“ W/‘\PW}IP’ ?w‘p =(T —
p— 1)‘121.:p+1 Wi pWjt1)p> and also make the following assumption.
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50 I. SANCHEZ AND D. PENA

A4, E(||f;‘1p||2k) (k=1,2, ..., ko) is bounded for all finite and sufficiently
large T and some k.

The distance between the sampling second-order moments of w, and w, is
determined in the following theorem.

THEOREM 1. Let {w,} be the process (2.3) and let wy, ..., wr be a sample
from this process. Let p be defined as in (3.3) with B = 1. Then

@  [w="Ty,+0)T"'?

B)  Fw=Tup + Op(T ).
The proof is given in the Appendix. Since w,, is a stationary process, then
Vwlp = Ywip + Op(T~'/?). Applying this result and Theorem 1, the following
corollary holds.

COROLLARY 1. Assume the conditions of Theorem 1 hold. Then

@@  Tw=T,,+0,(T'?)
(b) )A/w =Ywlp + Op(Til/z)-

We can now prove root-7 consistency of éﬁ See the proof in the Appendix.

THEOREM 2. Assume the conditions of Theorem 1 hold. Then

¢ =¢+0,(T"7).

4.2. Bias and mean squared error

Let g?)| » be the least squares estimator of ¢ from a sample from a true AR(p)
process. The bias and mean squared error (MSE) of this estimator, of a properly
specified autoregression, have been widely investigated (see, for instance,
Bhansali, 1981; Kunitomo and Yamamoto, 1985; Shaman and Stine, 1988; and
references therein). Since the similarlity between the estimator ¢, of the
ARIMA(p + 1, 1, 1) misspecified as an AR(p), and ¢, depends on the near
nonstationarity hypothesis, we will express their differences in terms of p. The
following theorems formulate the first- and second-order moments of the least
squares estimator ¢ around the true parameter ¢ as the respective moments of
@), plus an error term depending on p.

THEOREM 3. Assume Al (with sy =8), A2, A3 and A4. Then

R X N2
B~ 9) = E @), — 9+ 0{ (i) } @2)

The proof is given in the Appendix. Since (1 — p)/(1 + p) = O(T ~#) and given
that E(¢), — @) = O(T ~1) (see, for instance, Bhansali, 1981) we need a value

© Blackwell Publishers Ltd 2001



PREDICTORS IN OVERDIFFERENCED AUTOREGRESSION 51
B> 2 for the biases to be equal up to terms of order O(7 '), whereas for root-T
consistency we only need § = 1.
THEOREM 4. Assume Al (with so = 8), A2, A3 and A4. Then
E{(9— )¢ —9)'} = E{(9), — 9)9), — 9)'}

1—p\'/2 1—
max ol T*I/z,ip .
1+p I+p

See the proof in the Appendix. We can see from this theorem that the MSEs are
closer to each other than the biases. If p is such that fS>1 then the two
expressions for the MSE are equal up to terms O(T ).

+ 0

5. MSE OF H-STEPS-AHEAD PREDICTION

In this section, we obtain the MSE of predicting yr; y for t = T. The PMSE of
a properly specified autoregression is (see, for instance, Kunitomo and
Yamamoto, 1985)

Hol 2 H-1 H-1
~ ’ o ! !
PMSE(y7+ 1) = 07 E (epidlepin)” + + (epidhepia)(€piadle, )
=0 =0 k=0
H-1—h TH=1-k 1 -3/2
X (AT AR o(r ), (5.1)

This expression is inconvenient however, to compare the PMSE of the
AR(p+1) model (PMSE(yryy)) with the PMSE of the misspecified
ARIMA(p, 1, 0) model (PMSE(yrig)). We will rewrite the estimated H-
steps-ahead predictions in terms of their estlmated increments (w, and wt,
respectively). Hence, PMSE(jripm) =), IPMSE(wT+h)+2Zh le f +1
{Wrsn — Wrin)Wrik — Wrir)}, where w, = y, — ;. A similar expression
applies for PMSE(yr. i)

5.1. PMSE of the properly specified AR(p + 1) predictor

Let A, be the least squares estimator of A, using the properly specified model
(2.2). The estimated increment wry, defined as a function of the estimated
coefficients A, is

Wrih = €Al Ay — 1 pi2)Yr (5.2)
where 7 ,,, is the identity matrix. The observed value wr, is

Wrin = €p Al (Ao — 1 p2) Y1 + Ly
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. h—1 k h—1
where Ly= 1Ly — Ly, with Ly =) ;g€ 2A,Urih—ipio and Ly =), 1epi2

A Ur ek pra-

The PMSE(Wr4,) and E{(Wri+s — wren)(Wrir — wrix)} are shown in the
following theorem (see the proof in the Appendix). The assumptions about s
in Theorems 5 and 6 are needed in order to apply the results of Kunitomo and
Yamamoto (1985) in the proof of the theorems.

THEOREM 5. Let w; follow (2.3), where p = exp(—c/T?) and B> 1. Assume
A2, A3, A4 and Al with sy =32 when h=1,2, and s) = 16h when h = 3.
Then

h—1 2 h—1 h—1
. , i o . ,
PMSE(Wr 1) = 02 Y (epadcpia) + - > (epaie,)epAte,)
j=0 Jj=0 k=0
X (Al T, 4 )+ O(T ) (5.3)
and, for k= h
h—1
E{(WT+h —wrin)(Wrik — WT+k)} =0 Z(ep+2A cp+2)(ep+2Al+( )Cp+2)
i=0
g2 k1l .
Tt > 7O(e;A;ep)(e},A;ep)
X (Al AT T + o1 )

(5.4)
where c,.5 = (1,0,...,0,1)".

The terms on the right-hand side of (5.3) and (5.4) have two components. The
first component includes the variance of the prediction errors and the covariance
between prediction errors at different horizons, respectively, of the noninvertible
ARMA(p + 1, 1) process. The second component is the sampling error, due to
the estimation of the p + 2 parameters of the vector ¢.

5.2. PMSE of the overdifferenced ARIMA(p, 1, 0) predictor

Assume that we predict wT+h with the predictor derived from the estimated
AR(p), i.e. Wwryp=ce pA Wr, where A4 p is the least squares estimator of A,,.
Then

Wrn = epAb Wr + efp(Al — AMYWr = E(wron | T) + ep(Al — abywy.

The true value wr, is, from (2.4), wryp, = e}HzA{qZT + Ly, = E(wryn|T) + L.
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Then the h-steps-ahead prediction error is wyyj — Wryp = Ly — e},(;lz — AZ)
Wr — vy, where, by (4.1),

00 h—2
Uy = E(Wryn — Wy p|T) = Z Yl —p)zrin-1-;+ Z%(l —p)p" Iz
s =0

(5.5)

The following theorem gives an approximation of order o(7~!) of the
expectation of the lead-# mean squared prediction error (see the proof in the
Appendix).

THEOREM 6. Let w, follow (2.3), where p = eXp(—c/Tﬂ) and B> 1. Assume
A2, A3, A4 and Al with so =32 when h=1,2 and sy = 16h when h = 3.
Then

h=1 2 h=1 h=1
A~ ’ o ’ j '
PMSE(74) = 0 ) (epadfcpia) + - (epAley)(epdtey)
=0 =0 k=0
17
Xtr(Ah 1 jrw\p WlP)+0(T ) (56)
and, for k = h,
h—1 e
E{(ivrsn — wran)(Wrp — wrpn)} =02 Y (€piad] cpi)epadi e, )
i=0
0_2 k—1 h—1 .
+= O zoj(e;A;ep)(e;,A;,ep)
n=0 i=

X (A Iy, A L) 4+ o(T Y

(5.7)

where c,15 = (1,0,...,0,1)".

The terms on the right-hand side of (5.6) and (5.7) have two components. The
first one, the variance of the prediction errors and their covariance between
different horizons of the true ARIMA(p + 1, 1, 1) process, is the same as in
Theorem 5. The second one is the sampling error due to the estimation of the p
parameters ¢, in contrast with the estimation of the p 4 2 parameters of the
AR(p + 1) model. It should be observed that this second component differs from
that in the previous subsection only in the elements inside the trace operators.
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6. COMPARING PREDICTION ACCURACY

In this section, we compare the PMSEs found in the last section for the two
models. We prove that, under the assumption of near nonstationarity exposed in
(3.3), with 5 > 1, overdifferencing may produce lower PMSE (to terms of small
order). The expressions in Theorems 5 and 6 reveal that the only difference
between PMSE(y7, ) and PMSE(y7, ) is in the elements inside the trace
operators. These traces can be compared using the following two lemmas:
Lemma 1 compares such a trace in processes with and without a constant term;
Lemma 2 compares the trace in nearly nonstationary processes with no constant
term and the trace in the overdifferenced model. The proofs of these lemmas can
be found in the Appendix.

LEMMA 1. Let y; follow process (2.1). Then
tr(AL T, Ad T,y = 1+ (45T 54, T3,

LEMMA 2. Let y, follow process (2.1) with p = exp(—c/Tﬁ) and > 1. Then

(A T34y T5Y) = p™ (A Ty AL T ) + o(T 7).

Now we can prove the advantage of overdifferencing when the process is nearly
nonstationary.

THEOREM 7. Let y, follow process (2.1) with p = exp(—c/T?) and p>1,
and let the conditions of Theorems 5 and 6 hold. Then, for H = 1,

PMSE(jr4 1) — PMSE(ry 1) = vy + o(HT ™)

where
2

2 0,2 H h-1
: — ph1=7 ) >0 6.1
Y + T ;;W (6.1)

H h-1
0.2

’VH:7 Z

h=1 j=0

with 1 ; = (e},Aféep),j =1,..., H.

The proof is a direct application of Lemmas 1 and 2 to the differnces between
(5.3) and (5.6) and between expressions (5.7) and (5.4).

Expression (6.1) shows that the advantage of the overdifferenced model can
be decomposed into two parts. The first term at the right-hand side of (6.1) is
the result of applying Lemma 1 and therefore is due to the MSE of estimating
the constant term a in the AR(p + 1) model. The second term is the result of
applying Lemma 2 and then is due to the MSE of estimating an extra
parameter in the AR(p + 1). Thus, the superior forecasting performance of the
model ARIMA(p, 1, 0) is due to its more parsimonious representation. For
H =1 the difference is 262/ T if a constant is needed, and ¢2/T if a = 0 and
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PREDICTORS IN OVERDIFFERENCED AUTOREGRESSION 55

no constant is estimated. This result is similar to that of Ledolter and Abraham
(1981) for overspecified models, where they state that each unnecessary
estimated parameter increases the one-step-ahead PMSE by o2/T.

Although these results are applicable to a general stationary autoregression, it
is interesting to analyze the AR(1) case. First, its simplicity avoids the use of
some asymptotic approximations. Second, the results will not be affected by
any other root, as shown in (3.2), and they can be considered as a neutral
benchmark. The PMSE of the proper predictor in this case can be evaulated
with (5.1), whereas the PMSE in the overdifferenced model is easily evaluated
using a random walk as predictor. The following remarks summarize the results
for both the AR(1) case with no intercept (AR(1)) and the AR(1) case with
intercept (AR(1, w)).

REMARK 1. Let y, follow the process y;=py;—1+a;, |p|<l. Then
PMSE(j71 1) — PMSE(¥r4 1) = ¥ jarqry + o(H>T /%), where

H2p2H-1) (] — pHY
¥ HIARQ) :02{ pT _( 1 _ppz) . (6.2)

Table I shows the values of p that make v yjar(1) = 0. Larger values will produce
vuar() > 0. These values of p increase with H. Therefore, as the horizon
grows, the process needs to be closer to the unit root in order to get some gain
when differencing. The advantage of overdifferencing tends, then, to decrease
when the horizon is large. It can also be seen that as H — oo the limit of (6.2)
is negative. Then, the advantage of the overdifferenced predictor eventually
disappears. If p is close enough to unity, this will happen at a horizon of no
practical interest. This result has an interpretation in terms of the mean reversion
of the true process. Since the process is stationary, its long-term prediction is the
unconditional mean, which in this case is known. Therefore, the AR(1) predictor
wil forecast the long term with no error, whereas the random walk will not.
Manipulating (6.2), we can conclude that, up to terms of small order,
overdifferencing can produce better forecasts if

TABLE 1
VALUES OF p TO OBTAIN v gjarqy = 0 AND vy|AR(1, ) =0
AR(1), Horizon AR(1, u), Horizon

T 1 2 5 10 20 1 2 5 10 20
25 0.923 0937 0940 0.951 0963 0.852 0.862 0.881 0.898 0.913
50 0.961 0.965 0966 0.970 0976 0.923 0926 0.932 0.940 0.948
75 0974 0976 0976 0.978 0982 0.948 0949 0.953 0.957 0.962
100 0980 0.981 0982 0.983 0985 0.961 0962 0.964 0.966 0.970
150 0.987 0.987 0987 0.988 0989 0.974 0974 0.975 0976 0.978
300 0.993 0.994 0994 0.994 0994 0987 0.987 0987 0.988 0.988
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56 I. SANCHEZ AND D. PENA

2
> — . .
p mw( T+4H> 6.3)

This expression can be approximated, omitting the influence of H, as
p>exp(—2/T). This value of ¢ =2 agrees with the empirical work of Stock
(1996).

REMARK 2. Let y, follow the process y, = a+ py,—1 + a;, |p| <1. Then
PMSE(jr+ 1) — PMSE(ir4 1) = Vijar(ip + 0o(H*T /%), where
H2p2(H71) (1 _ pH)2 (1 _ pH)Z
_ 2 _
VHIAR(Lw) = O { T + (- py —p2 [

Table I shows the values of p that make v pyjar(i,,) = 0. From (6.4) it can be
verified that the overdifferenced predictor produces better forecasts, up to terms

of small order, if
> 4 (6.5)
exp| — .
P\ "1 a4m

which can be simplified as p >exp(—4/7T). In this case, the limit of (6.4) as
H — oo is still positive if p >exp(—2/T).

(6.4)

7. A SIMULATION STUDY

In this section, we illustrate the preceding results with a simulation exercise. We
consider three different AR(2) models: M1, (1 —0.5B)(1 — pB)y, =10 + a;;
M2, (1 — 0.5B)(1 — pB)y; = a;; and M3, (1 +0.8B)(1 — pB)y; = 10 + a,, with
p = 0.9, 0.92, 0.94, 0.96, 0.98, 0.99. Sample sizes are 7 = 50, 100. Real series
usually have non-zero mean, and models M1 and M3 can illustrate the
consequences of overdifferencing in such series. Also, model M2 can arise when
in doubt about a second difference.

An important aspect in the simulation exercise is the possibility of obtaining
an explosive estimated predictor. There are two main reasons to avoid these
explosive situations. First, they are of limited practical interest. A typical
situation where a practitioner has doubts about differencing, for forecasting
purposes, deals mainly with estimated p close to, but lower than, unity. Second,
the explosive nature of the predictions generated with a predictor with p>1
produces an excessive influence on the averages resulting from the simulations,
because the explosive estimated predictor is easily worse than its over-
differenced counterpart, especially in the long term. Unreported simulations
show that very few explosive estimated predictors can have an extremely large
influence in the computations, given a too optimistic representation of the effect
of overdifferencing. Therefore, in order to obtain a clearer picture of what can
be expected from overdifferencing in a real situation, we have considered only
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those replications in which estimated roots were outside the unit circle. The
percentage of rejected replications is low. For instance, if p = 0.98 and
T =100 it is 1%, and with 7 = 50 it is 2.7%.

In each replication, we generate a random sample of the process of size
500 + T + 30 with random noise a, ~ N(0, 1). The first 500 observations were
ignored to avoid the effect of initial values, and the last 30 were used to
evaluate the prediction error. By averaging the prediction squared errors of
20000 valid replications we obtain V,(H) and V,(H) as the sampling
estimation of the PMSE of forecasting yr. 5 using the forecasts generated by
the correct AR(2) model or the overdifferenced ARIMA(IL, 1, 0) model
respectively. Figures 1-3 show the ratio {V,(H)— V.(H)}/V,(H) for Ml
and M3 as a function of 7 and p. This ratio represents the empirical expected
gain (or loss if negative) of overdifferencing at each horizon. The figures reveal

7=150 7 =100
0.2 0.2
0.1 /"_’_\\
; Q
=] =
g = —0.1
5 S
E E —-0.2
|5} o _
g g 0.3
s 5 —0.4
-0.5
-0.6
. . -0.7
5 10 15 20 25 30 0 5 10 15 20 25 30
Horizon Horizon

FGURE 1. {V,(H)— V,,(H)}/V,(H) of Model M1 for horizon H =1, ..., 30 and sample size T.
The values of p are (from bottom to top) 0.90, 0.92, 0.94, 0.96, 0.98, 0.99.

T=150 T =100
0.1 0.2
0,
-0.1
g —02r =
& —03} &
T 04} g
Q Q
2. 0.5} §
& 0.6 4 —0.6
-0.7 08
-0.8
-0.9 -1 .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Horizon Horizon

RIGURE 2. {Vy,(H) — V,,(H)}/V,(H) of Model M2 for horizon H =1, ..., 30 and sample size T.
The values of p are (from bottom to top) 0.90, 0.92, 0.94, 0.96, 0.98, 0.99.

© Blackwell Publishers Ltd 2001



58 I. SANCHEZ AND D. PENA

T=150 T=100
0.15 0.2 .
0.1t W 01
0.05 ' P
< —0.05 = —0.1
2 2
g —0.1 8 —0.2
= —0.15 =
54 . 53 —-03
—-0.2
~0.25 —04
—-0.3 -0.5
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Horizon Horizon

FIGURE 3. {Vy,(H) — V,,(H)}/V,(H) of Model M3 for horizon H =1, ..., 30 and sample size 7.
The values of p are (from bottom to top) 0.90, 0.92, 0.94, 0.96, 0.98, 0.99.

that, as expected from the theoretical results, there are situations where
overdifferencing outperformed the true model. The expected gain increases with
the size of p and decreases with 7. Also, in agreement with Equation (3.2), the
gain is larger in the model with positive second root (M1) than in the model
with negative root (M3). The gain substantially decreases if a = 0 (M2).

The main feature of these figures is the divergence of the curves as the
horizon increases. In the very short term, the difference between the two
predictors is very small, even negligible. Nevertheless, in the medium or long
term the gain or loss can be important. The risk of falling into an important
loss if p is not large enough can be diminished, however, if some efficient rule
to decide about differencing is used. A second important aspect of these figures
is that in the long run (H > T'/?) the gain decreases and can be negative.
Also, as proved in the last section, the gain in the model with no constant
always disappears at sufficiently large H.

Figures 4 and 5 show the absolute values of V,(H) and V,,(H) for selected
values of p. These figures also contain the population PMSE of the process
(dotted lines). These population values can be obtained from the first term on
the right-hand side of expression (5.1). The distance from these population
curves to each solid line is the PMSE due to the estimation of the unknown
parameters. It can be seen that the sampling variability of the nondifferenced
predictor (line with symbol +) increases noticeably when the number of
parameters increases (models M1 and M3 with respect to M2). This increment
of the PMSE due to the estimation of the parameters causes that the
overdifferenced predictor (line with symbol ©) can outperform its competitor
when the process approaches nonstationarity.

It can be seen that the theoretical results accurately explain this finite sample
performance. Since these results depend mainly on the size of the roots rather
than on their number, it is reasonable to foresee similar conclusions in larger
autoregressions.
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Model M1
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FIGURE 4. Values of V, (+), V), (0) and population PMSE (------ ). Sample size T = 50.
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FIGURE 5. Values of V, (+), V,, (0) and population PMSE (------ ). Sample size 7 = 100.
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APPENDIX

Lemmas

We present some lemmas used for the proof of theorems in subsequent sections. For an
arbitrary p X 1 vector x and a p X p matrix M, let ||x|| = (x'x)"/? be the Euclidean norm
of x and |[M|| = supjy<i(x'M'Mx)'/* be the matrix norm of M.

LEMMA Al. Assume Al and A2, with so =2k and k= 1. Then, as T — oo,

~ 7 ky l—p k/2
E(HFW FW\pH )—O{<1+p) }

S ek 1 =p\ip
Bl =l = of (172)2}. (A1

and

PROOF. Let m;; be a generic element of M. Since E(||Muk) = O{max; ; E(|m;|")},
i,j=1,..., p, and by Minkowski’s inequality, E(||I",, — FW“,H ) = O(max,  E|ww, 5 —
wt|Pw,_S‘p|k). A similar result applies to (Al). Using the decomposition (4.1), and by
Minkowski’s inequality,

Elww,_ s — w,‘pwt,qp\k < {(E|w,‘pr,,s\k)l/k + (E|w,,5‘pr,\k)'/k + (E|r,r,,s\k)'/k}k

(A2)
where 1, = Z;’iot/}j(l — p)zi—1—;. By Holder’s ine?uality, E’w,‘pr,_5|k < (E|w,£p\2k
E|r._s|*)/2. "Also, by Assumption Al, E|w,,|** =0(1). Similarly, E|r,_,** <
D" olw;(1 — P|(E|zi—s—1-;**)1/2k}2k where it can be verified that

k
E|Zt|2k$E Z|p2/aij| k< Z(E|pzja%—j|k)l/k =0 — K\
j=0 j=0 t=r
l—p
Elri*=0{ [—=)F A3
Il {<1+p) (A9

1-—
et =0{ (i5)}

A similar result applies to the second term in (A2). The third term in (A2) can also be
solved following the previous arguments. It can be shown that

17
et =of (75)' )

Applying these results to (A2) proves the lemma.

Therefore,

and hence

LEMMA A2. Assume Al, A2, A3 and A4, with so = 2k. Then, as T — 00,

. A 1 —p\s
E(L 1_[' 1|1k -0 - Pk .
(H w w\p“ ) 1 +p
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PROOF. It can be verified that |I,' — I, I1F = TN — Ty )0 115 By
Holder’s inequality and Lemma Al the result follows.
LEMMA A3. Assume Al, A2, A3 and A4, with so = 4k. Then, as T — oo,
Elo — o1,11") = 0{ (1;—’;)”2} (A4)
E(H&>—¢Hk>=0{max{ (i%ﬁ)"/z, T*WH. (A5)

PROOF. The estimator ¢ can be expressed as
o=, =T )G —Tup) + T =Tl )0 + TG = Puip) + 915
where g}&‘ p= I ;‘lpf/u‘ »- By Minkowski’s inequality we obtain
E(l = 1,1 < (B! = Ty, )i = 7)1

+LEI = Fot )il 1Y+ B G = )9

By Hoélder’s inequality and applying Lemmas Al and A2, expression (A4) | holds In order
to prove (AS5) we use the decomposmon O—¢= FW Pw— yu‘p)—&—(F lep?yw,
and also the decomposmons Vw = Vwlp = Pw—Vwp) + E‘yw|p ) and I} wip =
(P (L~ Tl Avdline "B, y B = S " hnd
E(HI“_ w‘p||2") = O(T %) (see, for instance, Lemma 3.3 of Bhansali, 1981), and
using the same arguments as before, completes the result.

Proofs of results in Section 4

PROOF OF THEOREMI Since E(zz) =02/(1 — p?), and by Chebyshev’s inequality, we
obtain z, = O,{(1 — p?)~'/?}. Hence,

12
# = op{ CTZ) } (A6)

Since (1 — p)/(1+ p) = O(TF), then w;, = w,j, + 0,(T /).
The elements of I',, and y,, can be decomposed as

YIRS S IO RURIS o/ R
J=pt\WimtWi=s _ 2ij=patWi—tlpWi-slp 2o j=p+1Wj—ilpTi-s

T—p-—-1 T—p—1 T—p-1
T-1 -1
i priWisslpTit | 2jmpra Tl
T—-—p-1 T—-—p-1

Applying (A6) and the result that wy, = Oy(1), it can be verified that

T-1 T-1
D prt Wi—tWi—s _ 2=t WimtlpWislp oy (T
T—p—1 T—p—1 P

and the theorem follows.

APROOF OF THEOREM 2. Using the decomposition ¢

21 w\ (yw_yw\p) +
a, —rI, p)yw, and by stationarity of {w,,}, we have 6

Also, if

W
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f" Wl exists, we have I’ Ml r V_V‘lp =r ;1(1" wlp — r wl V_V‘lp. Therefore, applying Corollary 1,
$—¢ =0, (T,

PROOF oF THEOREM 3. It can be verified that E(¢p — ¢|p) = E{(I"}} w‘p)yw‘p} +
E{F v (yw Vwip)}- Applying Holder’s inequality and Lemmas A2 and Al the theorem
follows.

POOF OF THEOREM 4. We can decompose

MSE(¢) = MSE(@|,) + E{(¢ — ¢,)(@|, — 9)'}

+ E{(@, — NP — 9,)'} + E{(9 — 9,)(D), — 9)'}-
Since ||M|| < {tr(M'M)}'/?, and applying Lemma A3,

E{l@ — $1,)9 — 91,)'I} = B¢ — d1,]") = O (ﬁ)

Analogously, and applying the result that E(||(;)‘ »— @) =O0(T™") (see, for instance,
Bhansali, 1981), it can be verified that

. S 1=\ 12
E{|[(¢), — 9)P — ¢),)|I} = O{ (ﬁ) TI/Z}

~ ~ ~ 1— 1/2
E{|(¢ — ¢,)(@, — @)} = 0{ <ﬁ) Tl/z}

and the theorem follows.

Proofs of results in Section 5

PROOF OF THEOREM 5. The Taylor expansions of ;12 and 21271 around A4, are
~ k71 . ~ .
AL =AY AN Ay — A)ALTT 0T k=h h—1.
j=0
Then, using Zh 2AJ(A Ag)A"2 /—Z Af "4y — A)A"7J, and given that
Ay — A = e!,+2(/(p ®)', we have

E(Wrin — wren)® = E(Ly — L)* + E(Ch Y7 Y7Ch1) + E(Cha Y7 Y5 Ch2)

+ E(Cia YrY7Cho) + E(Ci2YrY7Chy) + O(T ) (A7)

where Chfl =eh24%,2(p — @) A" and C;,z—ZFl 2 A2 Ay — 1 pi2)e pia(@

— @)'4"17/, and where we have used the result that E(||Aq — Aq ||k) O(T %% (see,
for 1nstance Bhansali, 1981, or Kunitomo and Yamamoto, 1985).

If we denote the kth coefﬁc1ent of @(B)~! by Wk[AR( p+1y) and the kth coefficient of
@(B)"'(1 = B) by Yuarmap+tly then  ehiady (Aa — I pi2)epir = Phiar(p+1)] —
WE—1[AR(p+1)] = VAARMA(p+1,1] = €p+24] Ccpi2, and hence

h-1
E(Ly) = E{(Li — L)’} = 07> (eppadic,2). (A8)
k=0
Since the effect of the dependence between Y7 and ¢ in the PMSE is O(T3/)
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(Kunitomo and Yamamoto, 1985) and applying that MSE(p) = oI ;1 /T +0O(T3/%), we
find ’

’ ’ 02 X ’ j— ’ —
E(CipYrY7Chp) = T Z Z(€p+2A{ ' p)(epiadiTe, 1)

—1 h-1
J=1 k=1

h—1—k

X (A4, Y (T ).

Applying the same arguments to the remaining terms of (A8) we obtain

A1 2 h-1 -1
0 .
. P 2 k 2 r
E{(Wreh —wren)'} =0 E (ep+2dicpra)” + T (€2 A]cpia)epiadicpir)
=0 = =0

X (Al 0,4 T+ O(T .

If we denote the kth coefficient of ¢(B)~ 1 by Wk[AR(p)], then Y iARMA(p+1,1)] =
Yiar(py + O(1 — p), and therefore epd) Cpy2 = epA e, +O(1 — p). Then, if >1,
expression (5.3) holds. Similarly, using the previous arguments the proof of (5.4) follows.

PROOF OF THEOREM 6. The expectation of the square of wry, — Wy, is
E{(wrn — Wrn)'} = E(L}) + E{ejp(A" — AbYwrw'i(4h — 4%) e}
+ E(v}) + 2E{ep(A’ — A")Wrvr} (A9)

where the term E(Lz) is the same as (A8). Applying (A3) with k=1 and Holder’s
inequality, then E(v% )=o(T" 1. In order to solve the remaining terms of (A9), we will
use a Taylor expansion of A » around 4,. The magnitude of the remainder term is
detremined by the root-7 consistency of A Then

h—1

By AN, — A)Ah

J=0

h—1 j—1
+ Z{Z Ak, - Ap)Afplk} X (A — A) A1+ 0173

=1

Thus, by Lemma A3, E{ }f(Ah A" )WTUT; O[E{||(¢ ®) Wror|}] = o(T7Y). Let
us  denote B;,l =e ; (4, . Then, by Holder’s inequality,
E{ey(dh — AW Wi AL — Aty e,} = E(B[;,IWTWTBM)—&—O(T 3/2). Applying Theo-
rem 4 and the result that the effpect in the PMSE of the dependency between ¢, and Wr
is O(T~3/?) (Kunitomo and Yamamoto, 1985), it follows that

2 h—1 j—1
’ ’ o ’ j ’
E(Bh,l Wr WTBh,l) = 7 Z(epA{yep)(epA];ep)
Jj=0 k=0

h—1—k

X (A% A, T +o(T

and the proof of (5.6) is completed. Similarly, by the same arguments, expression (5.7)
can be obtained.
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Proofs of Section 6

PROOF OF LEMMA 1. Let us decompose Y, as Y, = (Y} 0) +u, g ‘where u =
(u, m, ..., u, 1)'. Since, a= w(l — Z: (p) it can be shown that Aa,uAu = u, where
i = ,uy Then A, I" Aa =4, F* —|—/1, where T~ is a (p+2) X (p+ 2) matrix with
I'; in the first (p+ 1) X (p+ IV) submatrix and zero elsewhere. Also, the covariance
matrix I, has the following block structure:

Iy po
r,=("¢
g (ﬂo 1)

where I'o = E(Yo,Yor), with Yo, = (s, yi—1, ..., ¥+—p)' and my = E(Yy,). Using the
properties of the inverses of block matrices, we can partition I 5

B B
= 1 b
Y (le By
where By, = (FO — poud) ' = Then it s ve,rlﬁed that tr(A F}‘ /I“yl) =
tr(A4, F¥A F ). Hence, tr(A F Aal" )—tr(A r’; A0 r; )—l—tr(,ul"y ). Given  that
tr(,uF )=u ! u, and applymg a result of Searle (1984, p 258), it can be seen that

wr, ,u =1- \f —pu'| /|| =1, since the last column and row of I', — pp’ are zero
and T y is invertible.

PROOF OF LEMMA 2. Let C be the following nonsingular matrix:

1 —p o - 0 0
0 1 —-p - 0 0
C=|: : : :
0 0 0o - 1 —p
L =1 —¢2 -+ —Qp1 —¢,
Then
_ -1 _ Ap 0
D= CA4,C™" = ( 0 o)
Let A be an cigenvalue of the matrix Q = I';' 45T 345 . Then
|D'TeD" —Al¢| =0 (A10)
where I'c = CI'3C’'. This matrix I'c can be considered as the covariance matrix of the
transformed series Z;, = CY,, where Z, = (21, Z1,i~1, - - -» Z1,1— p+1, 22,1)" and
Z,=DZ, |+ accpy1. (A11)

Therefore, the first p X p submatrix of I'¢ is the covariance matrix of a process zj,
following the coefficient matrix 4, and noise a,; namely, the matrix I',,,. Denoting by
Via, V21 and V5, the remaining submatrices of this partitioning, we can rewrite (A10) as

A FW‘p /ll’w‘p (Aiqupj —/1V12)V;2|/
(p V21A —/1V21)V22 pi+j —/1

From (All), the term V5, is the variance of an AR(1) process with coefficient p.
Therefore V22 = O(1 — p). Hence, using the rule to evaluate the determinant of a
partitioned matrix (see, for instance, Searle, 1984)

10 = M| = |4, Ty A} = AT, [{p™ + 01 = p) — A} = 0.

Since the trace of a matrix equals the sum of its eigenvalues, the lemma follows.

=0.
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