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This article describes a procedure to identify clusters in multivariate data using information obtained from the univariate projections
of the sample data onto certain directions. The directions are chosen as those that minimize and maximize the kurtosis coef� cient of
the projected data. It is shown that, under certain conditions, these directions provide the largest separation for the different clusters.
The projected univariate data are used to group the observations according to the values of the gaps or spacings between consecutive-
ordered observations . These groupings are then combined over all projection directions. The behavior of the method is tested on several
examples, and compared to k-means, MCLUST, and the procedure proposed by Jones and Sibson in 1987. The proposed algorithm is
iterative, af� ne equivariant, � exible, robust to outliers, fast to implement, and seems to work well in practice.
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1. INTRODUCTION

Let us suppose we have a sample of multivariate observa-
tions generated from several different populations. One of the
most important problems of cluster analysis is the partitioning
of the points of this sample into nonoverlapping clusters. The
most commonly used algorithms assume that the number of
clusters, G, is known and the partition of the data is carried out
by maximizing some optimality criterion. These algorithms
start with an initial classi� cation of the points into clusters and
then reassign each point in turn to increase the criterion. The
process is repeated until a local optimum of the criterion is
reached. The most often used criteria can be derived from the
application of likelihood ratio tests to mixtures of multivari-
ate normal populations with different means. It is well known
that (i) when all the covariance matrices are assumed to be
equal to the identity matrix, the criterion obtained corresponds
to minimizing tr4W5, where W is the within-groups covari-
ance matrix, this is the criterion used in the standard k-means
procedure; (ii) when the covariance matrices are assumed to
be equal, without other restrictions, the criterion obtained is
minimizing —W— (Friedman and Rubin 1967); (iii) when the
covariance matrices are allowed to be different, the criterion
obtained is minimizing

PG
jD1 nj log Wj=nj , where Wj is the

sample cross-product matrix for the jth cluster (see Seber
1984, and Gordon 1994, for other criteria). These algorithms
may present two main limitations: (i) we have to choose the
criterion a priori, without knowing the covariance structure
of the data and different criteria can lead to very different
answers; and (ii) they usually require large amounts of com-
puter time, which makes them dif� cult to apply to large data
sets.

Ban� eld and Raftery (1993), and Dasgupta and Raftery
(1998) have proposed a model-based approach to clustering
that has several advantages over previous procedures. They
assume a mixture model and use the EM algorithm to estimate
the parameters. The initial estimation is made by hierarchical
agglomeration. They make use of the spectral decomposition
of the covariance matrices of the G populations to allow some
groups to share characteristics in their covariance matrices
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(orientation, size, and shape). The number of groups is cho-
sen by the B IC criterion. However, the procedure has several
limitations. First, the initial values have all the limitations of
agglomerative hierarchical clustering methods (see Bensmail
and Celeux 1997). Second, the shape matrix has to be speci-
� ed by the user. Third, the method for choosing the number
of groups relies on regularity conditions that do not hold for
� nite mixture models.

More � exibility is possible by approaching the problem
from the Bayesian point of view using normal mixtures
(Binder 1978) and estimating the parameters by Markov Chain
Monte Carlo methods (see Lavine and West 1992). These pro-
cedures are very promising, but they are subject to the label
switching problem (see Stephens 2000 and Celeux, Hurn, and
Robert 2000 for recent analysis of this problem) and more
research is needed to avoid the convergence problems owing
to masking (see Justel and Peña 1996) and to develop better
algorithms to reduce the computational time. The normality
assumption can be avoided by using nonparametric methods
to estimate the joint density of the observations and identi-
fying the high density regions to split this joint distribution.
Although this idea is natural and attractive, nonparametric
density estimation suffers from the curse of dimensionality
and the available procedures depend on a number of param-
eters that have to be chosen a priori without clear guidance.
Other authors (see Hardy 1996) have proposed a hypervolume
criterion obtained by assuming that the points are a realization
of a homogeneous Poisson process in a set that is the union of
G disjoint and convex sets. The procedure is implemented in
a dynamic programming setting and is again computationally
very demanding.

An alternative approach to cluster analysis is projection
pursuit (Friedman and Tukey 1974). In this approach, low-
dimensional projections of the multivariate data are used to
provide the most interesting views of the full-dimensional
data. Huber (1985) emphasized that interesting projections
are those that produce nonnormal distributions (or minimum
entropy) and, therefore, any test statistic for testing nonnor-
mality could be used as a projection index. In particular, he
suggested that the standardized absolute cumulants can be use-
ful for cluster detection. This approach was followed by Jones
and Sibson (1987) who proposed to search for clusters by
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maximizing the projection index

I4d5 D Š2
34 d5 C Š2

44 d5=41

where Šj4 d5 is the jth cumulant of the projected data in the
direction d. These authors assumed that the data had � rst
been centered, scaled, and sphered so that Š14 d5 D 0 and
Š24d5 D 1. Friedman (1987) indicated that the use of stan-
dardized cumulants is not useful for � nding clusters because
they heavily emphasize departure from normality in the tails
of the distribution. As the use of univariate projections based
on this projection index has not been completely successful,
Jones and Sibson (1987) proposed two-dimensional projec-
tions, see also Posse (1995). Nason (1995) has investigated
three-dimensional projections, see also Cook, Buja, Cabrera,
and Hurley (1995).

In this article, we propose a one-dimensional projection pur-
suit algorithm based on directions obtained by both maximiz-
ing and minimizing the kurtosis coef� cient of the projected
data. We show that minimizing the kurtosis coef� cient implies
maximizing the bimodality of the projections, whereas max-
imizing the kurtosis coef� cient implies detecting groups of
outliers in the projections. Searching for bimodality will lead
to breaking the sample into two large clusters that will be fur-
ther analyzed. Searching for groups of outliers with respect
to a central distribution will lead to the identi� cation of clus-
ters that are clearly separated from the rest along some spe-
ci� c projections. In this article it is shown that through this
way we obtain a clustering algorithm that avoids the curse of
dimensionality, is iterative, af� ne equivariant, � exible, fast to
implement, and seems to work well in practice.

The rest of this article is organized as follows. In Section 2,
we present the theoretical foundations of the method, dis-
cuss criteria to � nd clusters by looking at projections, and
prove that if we have a mixture of elliptical distributions the
extremes of the kurtosis coef� cient provide directions that
belong to the set of admissible linear rules. In the particular
case of a mixture of two multivariate normal distributions, the
direction obtained include the Fisher linear discriminant func-
tion. In Section 3, a cluster algorithm based on these ideas
is presented. Section 4 presents some examples and compu-
tational results, and a Monte Carlo experiment to compare
the proposed algorithm with k-means, the Mclust algorithm
of Fraley and Raftery (1999) and the procedure proposed by
Jones and Sibson (1987).

2. CRITERIA FOR PROJECTIONS

We are interested in � nding a cluster procedure that can
be applied for exploratory analysis in large data sets. This
implies that the criteria must be easy to compute, even if the
dimension of the multivariate data, p, and the sample size, n,
are large. Suppose that we initially have a set of data S D
4X11 : : : 1 Xn5. We want to apply an iterative procedure where
the data are projected onto some directions and a unidimen-
sional search for clusters is carried out along these directions.
That is, we � rst choose a direction, project the sample onto
this direction, and we analyze if the projected points can be
split into clusters along this � rst direction. Assuming that the
set S is split into k nonoverlapping sets S D S1 [ S2 [ ¢ ¢ ¢[Sk,

where Si \ Sj D ™ 8 i1 j , the sample data is projected over a
second direction and we check if each cluster Si1 i D 11 : : : 1 k,
can be further split. The procedure is repeated until the data
is � nally split into m sets. Formal testing procedures can then
be used to check if two groups can be combined into one. For
instance, in the normal case we check if the two groups have
the same mean and covariance matrices. In this article, we
are mainly interested in � nding interesting directions useful to
identify clusters.

An interesting direction is one where the projected points
cluster around different means and these means are well sep-
arated with respect to the mean variability of the distribu-
tion of the points around their means. In this case we have
a bimodal distribution, and therefore a useful criterion is to
search for directions which maximize the bimodality prop-
erty of the projections. This point was suggested by Switzer
(1985). For instance, a univariate sample of zero-mean vari-
ables 4x11 : : : 1 xn5 will have maximum bimodality if it is com-
posed of n/2 points equal to ƒa and n/2 points equal to a, for
any value a. It is straightforward to show that this is the con-
dition required to minimize the kurtosis coef� cient, as in this
case it will take a value of one. Now assume that the sample
of size n is concentrated around two values but with differ-
ent probabilities, for instance, n1 observations take the value
ƒa and n2 take the value a, with n D n1 C n2. Let r D n1=n2,
the kurtosis coef� cient will be 41 C r 35=r41 C r5. This func-
tion has its minimum value at r D 1 and grows without limit
either when r ! 0 or when r ! ˆ. This result suggests that
searching for directions where the kurtosis coef� cient is min-
imized will tend to produce projections in which the sample
is split into two bimodal distributions of about the same size.
Note that the kurtosis coef� cient is af� ne invariant and veri-
� es the condition set by Huber (1985) for a good projection
index for � nding clusters. On the other hand, maximizing the
kurtosis coef� cient will produce projections in which the data
is split among groups of very different size: we have a cen-
tral distribution with heavy tails owing to the small clusters
of outliers. For instance, Peña and Prieto (2001) have shown
that maximizing the kurtosis coef� cient of the projections is a
powerful method for searching for outliers and building robust
estimators for covariance matrices. This intuitive explanation
is in agreement with the dual properties of the kurtosis coef-
� cient for measuring bimodality and concentration around the
mean, see Balanda and MacGillivray (1988).

To formalize this intuition, we need to introduce some def-
initions. We say that two random variables on òp1 4X11X25,
with distribution functions F1 and F2, can be linearly sep-
arated with power 1 ƒ ˜ if we can � nd a partition of the
space into two convex regions, A1 and A2, such that P4X1 2
A15 ¶ 1 ƒ ˜, and P4X2 2 A25 ¶ 1 ƒ ˜. This is equivalent to
saying that we can � nd a unit vector d 2 òp , d0 d D 1, and
a scalar c D c4F11F25 such that P4X0

1 d µ c5 ¶ 1 ƒ ˜ and
P4X0

2 d ¶ c5 ¶ 1 ƒ ˜. For example, given a hyperplane sepa-
rating A1 and A2, one such vector d would be the unit vector
orthogonal to this separating hyperplane. From the preceding
de� nition it is clear that (trivially) any two distributions can
be linearly separated with power 0.

Now assume that the observed multivariate data, S D
4X11 : : : 1 Xn5 where X 2 òp , have been generated from a mix-
ture de� ned by a set of distribution functions F D 4F11 : : : 1 Fk5
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with � nite means, Œi D E4X—X Fi5 and covariance matri-
ces Vi D Var4X—X Fi5, and mixture probabilities � D
4�11 : : : 1 �k5, where � i ¶ 0 and

Pk
iD1 � i D 1. Generalizing the

previous de� nition, we say that a distribution function Fi can
be linearly separated with power 1 ƒ ˜i from the other com-
ponents of a mixture 4F 1�5 if given ˜i > 0 we can � nd a unit
vector di 2 òp , d0

i di D 1, and a scalar ci D gi4F1 �1 ˜i5 such
that

P4X0 di µ ci—X Fi5 ¶ 1 ƒ ˜i

and
P4X0 di ¶ ci—X F4i55 ¶ 1ƒ ˜i1

where F4i5 D P
j 6Di � jFj=�i . De� ning ˜ D maxi ˜i, we say that

the set is linearly separable with power 1ƒ ˜.
For instance, suppose that Fi is Np4Œi1Vi5, i D 11 : : : 1 k.

Then, if ê denotes the distribution function of the standard
normal, the distributions can be linearly separated at level
005 if for i D 11 : : : 1 k, we can � nd ci such that 1 ƒ ê44ci ƒ
mi5‘

ƒ1
i 5 µ 005 and

Pk
j 6Di ê44cj ƒ mj5‘

ƒ1
j 5�i�

ƒ1
j µ 005, where

mj D d0
jŒj and ‘ 2

j D d0
jVj dj .

Consider the projections of the observed data onto a direc-
tion d. This direction will be interesting if the projected obser-
vations show the presence of at least two clusters, indicating
that the data comes from two or more distributions. Thus,
on this direction, the data shall look as a sample of uni-
variate data from a mixture of unimodal distributions. Con-
sider the scalar random variable z D X0 d, with distribution
function 41 ƒ �5G1 C �G2 having � nite moments. Let us call
mi D

R
zdGi D d0Œi and mi4k5 D

R
4z ƒ mi5

kdGi, and in par-
ticular mi425 D d0Vi d for i D 11 2. It is easy to see that these
two distributions can be linearly separated with high power if
the ratio

w D
4m2 ƒ m15

2

m
1
2
1 425 C m

1
2
2 425

2
(1)

is large. To prove this result we let c1 D m1 C m1=2
1 425=

p
˜ and

from Chebychev inequality we have that

P4zµc1—z G15¶P4—zƒm1—µc1 ƒm1—z G15¶1ƒ˜0

In the same way, taking c2 D m2 ƒ m1=2
2 425=

p
˜ we have that

P4z ¶ c2—z G25 ¶ 1ƒ ˜. The condition c1 D c2 then implies
w D ˜ƒ2 and the power will be large if w is large.

In particular, if (1) is maximized, the corresponding extreme
directions would satisfy

d D ˜ƒ1 4 d0V1 d5ƒ 1
2 V1 C 4d0V2 d5ƒ 1

2 V2

ƒ1
4Œ2 ƒ Œ150 (2)

To compute these directions we would need to make use
of the parameters of the two distributions, that are, in gen-
eral, unknown. We are interested in deriving equivalent crite-
ria that provide directions that can be computed without any
knowledge of the individual distributions. We consider criteria
de� ned by a measure of the distance between the two pro-
jected distributions of the form

D4f11 f25 D
4 d04Œ2 ƒ Œ155

2

‹1 d0V1 d C ‹2 d0V2 d
0

For this criterion we would have the extreme direction

d D 4‹1V1 C ‹2V25
ƒ14Œ2 ƒ Œ151 (3)

that, as shown in Anderson and Bahadur (1962), has the form
required for any admissible linear classi� cation rule for multi-
variate normal populations with different covariance matrices.
The following result indicates that, under certain conditions,
the directions with extreme kurtosis coef� cient would � t the
preceding rule, for speci� c values of ‹1 and ‹2.

Theorem 1. Consider a p-dimensional random variable X
distributed as 41 ƒ �5f14X5 C �f24X5, with � 2 401 15. We
assume that X has � nite moments up to order 4 for any �,
and we denote by Œi , Vi the vector of means and the covari-
ance matrix under fi1 i D 11 2. Let d be a unit vector on òp

and let z D d0X, mi D d0Œi. The directions that maximize or
minimize the kurtosis coef� cient of z are of the form

Vm d D ‹34Œ2 ƒ Œ15 C ‹4441 ƒ �5”1 C �”25 C ‹54’ 2 ƒ ’151

where Vm D ‹1V1 C‹2V21‹i are scalars, ”i D 4
R

òp 4zƒmi5
3�

4X ƒ Œi5fi4X5 dX and ’ i D 3
R

òp 4zƒ mi5
24X ƒ Œi5fi4X5 dX.

Proof. If we introduce the notation

ã D m2 ƒ m11

‘ 2
m D 41ƒ �5m1425 C �m24251

Q‘ 2
m D �m1425 C 41 ƒ �5m24251

r2 D ã2=‘ 2
m1

the kurtosis coef� cient for the projected data can be written as

ƒz4 d5 D 441ƒ �5m1445 C �m2445 C �41 ƒ �5

� ã44m2435 ƒ 4m1435 C 6ã Q‘ 2
m

C ã34�3 C 41 ƒ �53555=4‘ 2
m C �41ƒ �5ã2521 (4)

where mi4k5 D Efi
4zƒ mi5

k. The details of the derivation are
given in Appendix A. Any solution of the problem

maxd ƒz4 d5

s.t. d0 d D 1

must satisfy ïƒz4 d5 D 0, where ïƒz4 d5 is the gradient of
ƒz4 d5 and d0 d D 1. We have used that ƒz is homogeneous
in d to simplify the � rst-order condition. The same condition
is necessary for a solution of the corresponding minimization
problem. From (4), this condition can be written as

4‹1V1 C ‹2V25 d D ‹34Œ2 ƒ Œ15 C ‹4441ƒ �5”1

C �”25 C ‹54’2 ƒ ’151 (5)
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where the scalars ‹i , dependent on d, are given by

‹1 D 41 ƒ �5 ƒz C �r 2441ƒ �5ƒz ƒ 3�5 1

‹2 D � ƒz C 41 ƒ �5r 24�ƒz ƒ 341ƒ �55 1

‹3 D �41ƒ �5‘m 4m2435 ƒ m14355=‘ 3
m

C r 3 Q‘ 2
m=‘ 2

m ƒ ƒz C r 34�3 C 41ƒ �53

ƒ �41ƒ �5ƒz5 1

‹4 D 1=44‘ 2
m51

‹5 D �41ƒ �5r=‘m0 (6)

See Appendix A for its derivation.

To gain some additional insight on the behavior of the kur-
tosis coef� cient, consider the expression given in (4). If ã
grows without bound (and the moments remain bounded), then

ƒz !
�3 C 1 ƒ �

3

�41ƒ �5
0

In the limit, if � D 05, then the kurtosis coef� cient of the
observed data will be equal to one, the minimum possible
value. On the other hand, if � ! 0, then the kurtosis coef� -
cient will increase without bound. Thus, when the data pro-
jected onto a given direction is split into two groups of very
different size, we expect that the kurtosis coef� cient will be
large. On the other hand, if the groups are of similar size, then
the kurtosis coef� cient will be small. Therefore, it would seem
reasonable to look for interesting directions among those with
maximum and minimum kurtosis coef� cient, and not just the
maximizers of the coef� cient.

From the discussion in the preceding paragraphs, a direc-
tion satisfying (5), although closely related to the acceptable
directions de� ned by (3), is not equivalent to them. To ensure
that a direction maximizing or minimizing the kurtosis coef� -
cient is acceptable, we would need that both ”i and ’i should
be proportional to Vi d. Next we show that this will be true
for a mixture of elliptical distributions.

Corollary 1. Consider a p-dimensional random variable X
distributed as 41 ƒ �5f14X5 C �f24X5, with � 2 40115 and fi ,
i D 11 2, is an elliptical distribution with mean Œi and covari-
ance matrix Vi . Let d be a unit vector on òp and z D d0X. The
directions that maximize or minimize the kurtosis coef� cient
of z are of the form

4 N‹1V1 C N‹2V25 d D N‹34Œ2 ƒ Œ150 (7)

Proof. From Theorem 1, these directions will satisfy (5).
The values of ”i and ’i are the gradients of the central
moments mi4k5 for k D 314. We � rst show that these values
can be obtained (in the continuous case) from integrals of the
form

Z
¢ ¢ ¢

Z
4 d0Y5kYf4Y5 dY1

for k D 213, where Y is a vector random variable with zero-
mean in òp . If the characteristic function of the vector random

variable Y is denoted by

�4t5 D
Z

¢ ¢ ¢
Z

exp4it0Y5f 4Y5 dY1

for t 2 òp , the characteristic function of its univariate projec-
tions onto the direction d will be given by �4t d5, where t 2 ò
and d 2 òp . It is straightforward to show that

” D 4
d3ë 4t1 d5

i3dt3
tD0

1 ’ D 3
d2ë 4t1 d5

i2dt2
tD0

1

where
ë 4t1 d5 D

1
it

ï�4t d51

and ï�4t d5 is the gradient of � with respect to its argument.
The characteristic function of a member Y of the family of
elliptical symmetric distributions with zero-mean and covari-
ance matrix V is (see for instance Muirhead, 1982)

�4t5 D g4ƒ 1
2
t0Vt50

Letting Yi D Xi ƒ Œi and zi D d0Yi, the univariate random
variables zi would have characteristic functions

�i4t d5 D gi4ƒ 1
2
t2 d0Vi d50

It is easy to verify that ë 4t d5 D g 04u5itV d, where u D
ƒ 1

2
t2 d0V d, and

mi435 D 01

’i D 01

”i D 12g00
i 405 d0Vi d Vi d0

From (5) it follows that the direction that maximizes (or
minimizes) the kurtosis coef� cient has the form indicated in
(7), where

N‹1 D ‹1 ƒ 341ƒ �5g 00
1 405m1425=‘ 2

m1

N‹2 D ‹2 ƒ 3�g 00
2 405m2425=‘ 2

m1

N‹3 D �41ƒ �5r‘ m 3 Q‘ 2
m=‘ 2

m ƒ ƒz

C r 24�3 C 41ƒ �53 ƒ �41ƒ �5ƒz5 1

and ‹1, ‹2 are given in (6).

If the distributions are multivariate normal with the same
covariance matrix, then we can be more precise in our char-
acterization of the directions that maximize (or minimize) the
kurtosis coef� cient.

Corollary 2. Consider a p-dimensional random variable
X distributed as 41 ƒ �5f14X5 C �f24X5, with � 2 40115 and
fi1 i D 112 is a normal distribution with mean Œi and covari-
ance matrix Vi D V, the same for both distributions. Let d be
a unit vector on òp and z D d0X. If d satis� es

V d D N‹4Œ2 ƒ Œ151 (8)

for some scalar N‹, then it maximizes or minimizes the kurtosis
coef� cient of z. Furthermore, these directions minimize the
kurtosis coef� cient if —� ƒ 1=2— < 1=

p
12, and maximize it

otherwise.
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Proof. The normal mixture under consideration is a partic-
ular case of Corollary 1. In this case gi4x5 D exp4x5, g 00

i 405 D 1,
m1425 D m2425 D ‘ 2

m D Q‘ 2
m and as a consequence (7) holds

with the following expression

Q‹1V d D Q‹24Œ2 ƒ Œ151 (9)

where the values of the parameters are

Q‹1 D 4ƒz ƒ 3541 C �41 ƒ �5r 25

Q‹2 D r�41 ƒ �5‘m 3 ƒ ƒz C r 24�3 C 41ƒ �53 ƒ �41ƒ �5ƒz5 0

Also, from (4), for this case we have that

ƒz D 3 C r 4 �41 ƒ �541 ƒ 6� C 6�25

41 C �41 ƒ �5r 252
0 (10)

Replacing this value in Q‹1 we obtain

Q‹1 D r 4 �41ƒ �541ƒ 6� C 6�25

1 C �41 ƒ �5r2

Q‹2 D r�41 ƒ �5‘m 3ƒ ƒz C r 24�3 C 41ƒ �53

ƒ �41ƒ �5ƒz5 0

From (9), a direction that maximizes or minimizes the
kurtosis coef� cient must satisfy that either (i) Q‹1 6D 0 and
d D N‹Vƒ14Œ2 ƒ Œ15 for N‹ D Q‹2= Q‹1, and we obtain the Fisher
linear discriminant function, or (ii) Q‹1 D Q‹2 D 0, implying
r D 0, that is, the direction is orthogonal to Œ2 ƒ Œ1. From
(10) we have that if d is such that r D 0, then ƒz D 3, and if
d D N‹Vƒ14Œ2 ƒ Œ15, then r2 D 1 and

ƒz D 3C
�41ƒ �541ƒ 6� C 6�25

41 C �41 ƒ �552
0

This function of � is smaller than 3 whenever —� ƒ 1=2— <

1=
p

12, and larger than 3 if —� ƒ 1=2— > 1=
p

12.

This corollary generalizes the result by Peña and Prieto
(2000) which showed that if the distributions fi are multivari-
ate normal with the same covariance matrix V1 D V2 D V and
� D 05, the direction that minimizes the kurtosis coef� cient
corresponds to the Fisher best linear discriminant function.

We conclude that in the normal case there exists a close link
between the directions obtained by maximizing or minimiz-
ing the kurtosis coef� cient and the optimal linear discriminant
rule. Also, in other cases where the optimal rule is not in gen-
eral linear, as is the case for symmetric elliptical distributions
with different means and covariance matrices, the directions
obtained from the maximization of the kurtosis coef� cient
have the same structure as the admissible linear rules. Thus
maximizing and minimizing the kurtosis coef� cient of the pro-
jections seems to provide a sensible way to obtain directions
that have good properties in these situations.

3. THE CLUSTER IDENTIFICATION PROCEDURE

If the projections were computed for only one direction,
then some clusters might mask the presence of others. For
example, the projection direction might signi� cantly separate
one cluster, but force others to be projected onto each other,
effectively masking them. To avoid this situation, we propose
to analyze a full set of 2p orthogonal directions, such that each
direction minimizes or maximizes the kurtosis coef� cient on a
subspace “orthogonal” to all preceding directions. Once these
directions have been computed, the observations are projected
onto them, and the resulting 2p sets of univariate observa-
tions are analyzed to determine the existence of clusters of
observations.

The criteria used to identify the clusters rely on the analysis
of the sample spacings or � rst-order gaps between the ordered
statistics of the projections. If the univariate observations come
from a unimodal distribution, then the gaps should exhibit a
very speci� c pattern, with large gaps near the extremes of
the distribution and small gaps near the center. This pattern
would be altered by the presence of clusters. For example, if
two clusters are present, it should be possible to observe a
group of large gaps separating the clusters, towards the center
of the observations. Whenever these kinds of unusual patterns
are detected, the observations are classi� ed into groups by
� nding anomalously large gaps, and assigning the observations
on different sides of these gaps to different groups. We now
develop and formalize these ideas.

3.1 The Computation of the Projection Directions

Assume that we are given a sample of size n from a p-
dimensional random variable xi , i D 11 : : : 1 n. The projection
directions dk are obtained through the following steps. Start
with k D 1, let y415

i D xi and de� ne

Ny4k5 D
1

n

nX
iD1

y4k5
i 1

Sk D
1

4n ƒ 15

nX
iD1

y4k5

i ƒ Ny4k5 y4k5

i ƒ Ny4k5 0
1

1. Find a direction dk that solves the problem

max k4dk5 D
1
n

nX

iD1

d0
k y4k5

i ƒ d0
k Nyk

4

s.t. d0
kSkdk D 11

(11)

that is, a direction that maximizes the kurtosis coef� cient
of the projected data.

2. Project the observations onto a subspace that is Sk-
orthogonal to the directions d11 : : : 1dk . If k < p, de� ne

y4kC15
i D Iƒ

1

d0
kSk dk

dk d0
kSk y4k5

i 1

let k D k C 1 and compute a new direction by repeating
step 1. Otherwise, stop.

3. Compute another set of p directions dpC11 : : : 1 d2p by
repeating steps 1 and 2, except that now the objective
function in (11) is minimized instead of maximized.
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Several aspects of this procedure may need further
clari� cation.

Remark 1. The optimization problem (11) normalizes the
projection direction by requiring that the projected variance
along the direction is equal to one. The motivation for this
condition is twofold: it simpli� es the objective function and its
derivatives, as the problem is now reduced to optimizing the
fourth central moment, and it preserves the af� ne invariance of
the procedure. Preserving af� ne invariance would imply com-
puting equivalent directions for observations that have been
modi� ed through an af� ne transformation. This seems a rea-
sonable property for a cluster detection procedure, as the rel-
ative positions of these observations are not modi� ed by the
transformation, and as a consequence, the same clusters should
be present for both the sets of data.

Remark 2. The sets of p directions that are obtained from
either the minimization or the maximization of the kurto-
sis coef� cient are de� ned to be Sk-orthogonal to each other
(rather than just orthogonal). This choice is again made to
ensure that the algorithm is af� ne equivariant.

Remark 3. The computation of the projection directions
as solutions of the minimization and maximization problems
(11) represents the main computational effort incurred in the
algorithm. Two ef� cient procedures can be used: (a) applying
a modi� ed version of Newton’s method, or (b) solving directly
the � rst-order optimality conditions for problem (11). As the
computational ef� ciency of the procedure is one of its most
important requirements, we brie� y describe our implementa-
tion of both approaches.

1. The computational results shown later in this article have
been obtained by applying a modi� ed Newton method to
(11) and the corresponding minimization problem. Tak-
ing derivatives in (11), the � rst-order optimality condi-
tions for these problems are

ïk4 d5 ƒ 2‹Sk d D 01

d0Sk d ƒ 1 D 00

Newton’s method computes search directions for the
variables d and constraint multiplier ‹ at the current esti-
mates 4 dl1‹l5 from the solution of a linear approxima-
tion for these conditions around the current iterate. The
resulting linear system has the form

Hl 2Sk dl

2 d0
lSk 0

ãdl

ƒã‹l

ƒïk4dl5 C 2‹lSk dl

1 ƒ d0
lSk dl

1

where ãdl and ã‹l denote the directions of movement
for the variables and the multiplier respectively, and Hl

is an approximation to ï 2L4 dl1‹l5 ² ï 2k4 dl5 ƒ 2‹lSk,
the Hessian of the Lagrangian function at the current
iterate. To ensure convergence to a local optimizer, the
variables are updated by taking a step along the search
directions ãdl and ã‹l that ensures that the value of an
augmented Lagrangian merit function

k4 dl5 ƒ ‹l d0
lSk dl ƒ 1 C

�

2
d0

lSk dl ƒ 1
2
1

decreases suf� ciently in each iteration, for the mini-
mization case. To ensure that the search directions are
descent directions for this merit function, and a decreas-
ing step can be taken, the matrix Hl is computed to
be positive de� nite in the subspace of interest from a
modi� ed Cholesky decomposition of the reduced Hes-
sian matrix Z0

lï
2LlZl, where Zl denotes a basis for the

null-space of Sk dl , see Gill, Murray, and Wright (1981)
for additional details. It also may be necessary to adjust
the penalty parameter �; in each iteration, if the direc-
tional derivative of the merit function is not suf� ciently
negative (again, for the minimization case), the penalty
parameter is increased to ensure suf� cient local descent.
This method requires a very small number of iterations
for convergence to a local solution, and we have found
it to perform much better than other suggestions in the
literature, such as the gradient and conjugate gradient
procedures mentioned in Jones and Sibson (1987). In
fact, even if the cost per iteration is higher, the total
cost is much lower as the number of iterations is greatly
reduced, and the procedure is more robust.

2. The second approach mentioned above is slightly less
ef� cient, particularly when the sample space dimension
p increases, although running times are quite reasonable
for moderate sample space dimensions. It computes dk

by solving the system of nonlinear equations

4
nX

iD1

4d0
k y4k5

i 53 y4k5
i ƒ 2‹ dk D 01

d0 d D 10 (12)

These equations assume that the data have been stan-
dardized in advance, a reasonable � rst step given the
af� ne equivariance of the procedure. From (12),

nX
iD1

4d0
k y4k5

i 52 y4k5

i y4k50
i dk D

1
2

‹ dk1

implies that the optimal d is the unit eigenvector associ-
ated with the largest eigenvalue (the eigenvalue provides
the corresponding value for the objective function) of the
matrix

M4d5 ²
nX

iD1

d0 y4k5
i

2
y4k5

i y4k50
i 1

that is, of a weighted covariance matrix for the sample,
with positive weights (depending on d). The procedure
starts with an initial estimate for dk, d0, computes the
weights based on this estimate and obtains the next esti-
mate dlC1 as the eigenvector associated with the largest
eigenvalue of the matrix M4 dl5. Computing the largest
eigenvector is reasonably inexpensive for problems of
moderate size (dimensions up to a few hundreds, for
example), and the procedure converges at a linear rate
(slower than Newton’s method) to a local solution.

3. It is important to notice that the values computed from
any of the two procedures are just local solutions, and
perhaps not the global optimizers. From our computa-
tional experiments, as shown in a latter section, this
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does not seem to be a signi� cant drawback, as the com-
puted values provide directions that are adequate for the
study of the separation of the observations into clusters.
Also, we have conducted other experiments showing that
the proportion of times in which the global optimizer
is obtained increases signi� cantly with both the sample
size and the dimension of the sample space.

3.2 The Analysis of the Univariate Projections

The procedure presented in this article assumes that a lack
of clusters in the data implies that the data have been generated
from a common unimodal multivariate distribution Fp4X5. As
the procedure is based on projections, we must also assume
that F is such that the distribution of the univariate random
variable obtained from any projection z D d0X is also uni-
modal. It is shown in Appendix B that this property holds
for the class of multivariate unimodal distributions with a
density that is a nonincreasing function of the distance to
the mode, that is, ïf 4m5 D 0 and if 4x1 ƒ m50M4x1 ƒ m5 µ
4x2 ƒm50M4x2 ƒm5 for some de� nite positive matrix M, then
f4x15 ¶ f4x25. This condition is veri� ed for instance by any
elliptical distribution.

Once the univariate projections are computed for each one
of the 2p projection directions, the problem is reduced to � nd-
ing clusters in unidimensional samples, where these clusters
are de� ned by regions of high-probability density. When the
dimension of the data p is small, a promising procedure would
be to estimate a univariate nonparametric density function for
each projection and then de� ne the number of clusters by the
regions of high density. However, as the number of projections
to examine grows with p, if p is large then it would be con-
venient to have an automatic criterion to de� ne the clusters.
Also, we have found that the allocation of the extreme points
in each cluster depends very much on the choice of window
parameter and there being no clear guide to choose it, we
present in this article the results from an alternative approach
that seems more useful in practice.

The procedure we propose uses the sampling spacing of
the projected points to detect patterns that may indicate the
presence of clusters. We consider that a set of observations
can be split into two clusters when we � nd a suf� ciently large
� rst-order gap in the sample. Let zki D x0

i dk for k D 11 : : : 12p,
and let zk4i5 be the order statistics of this univariate sample.
The � rst-order gaps or spacings of the sample, wki, are de� ned
as the successive differences between two consecutive order
statistics

wki D zk4iC15 ƒ zk4i51 i D 11 0001n ƒ 10

Properties of spacings or gaps can be found in Pyke (1965)
and Read (1988). These statistics have been used for building
goodness-of-� t tests (see for instance Lockhart, O’Reilly, and
Stephens 1986) and for extreme values analysis (see Kochar
and Korwar 1996), but they do not seem to have been used
for � nding clusters. As the expected value of the gap wi is
the difference between the expected values of two consecutive
order statistics, it will be in general a function of i and the
distribution of the observations. In fact, it is well known that
when the data is a random sample from a distribution F4x5

with continuous density f 4x5, the expected value of the ith
sample gap is given by

E4wi5 D n
i

Z ˆ

ƒˆ
F4x5i41ƒ F4x55nƒi dx0 (13)

For instance, if f is an uniform distribution, then E4wi5 D
1=4n C 15 and all the gaps are expected to be equal, whereas
if f is exponential then E4wi5 D 1=4n ƒ i5 and the gaps are
expected to increase in the tail of the distribution. In gen-
eral, for a unimodal symmetric distribution, it is proved in
Appendix C that the largest gaps in the sample are expected
to appear at the extremes, w1 and wnƒ1, whereas the smallest
ones should be those corresponding to the center of the dis-
tribution. Therefore, if the projection of the data onto dk pro-
duces a unimodal distribution then we would expect the plot of
wki with respect to k to decrease until a minimum is reached
(at the mode of the distribution) and then to increase again.
The presence of a bimodal distribution in the projection would
be shown by a new decreasing of the gaps after some point.
To further illustrate this behavior, consider a sample obtained
from the projection of a mixture of three normal multivariate
populations; this projection is composed of 200 observations,
50 of these observations have been generated from a univari-
ate N 4ƒ6115 distribution, another 50 are from a N 46115 dis-
tribution, and the remaining 100 have been generated from a
N 401 15. Figure 3.1(a) shows the histogram for this sample.
Figure 3.1(b) presents the values of the gaps for these obser-
vations. Note how the largest gaps appear around observations
50 and 150, and these local maxima correctly split the sample
into the three groups.

The procedure will identify clusters by looking at the gaps
wki and determining if there are values that exceed a certain
threshold. A suf� ciently large value in these gaps would pro-
vide indication of the presence of groups in the data. As the
distribution of the projections is, in general, not known in
advance, we suggest de� ning these thresholds from a heuris-
tic procedure. A gap will be considered to be signi� cant if it
has a very low probability of appearing in that position under
a univariate normal distribution. As we see in our computa-
tional results, we found that this choice is suf� ciently robust
to cover a variety of practical situations, in addition to being
simple to implement.

Before testing for a signi� cant value in the gaps, we � rst
standardize the projected data and transform these observa-
tions using the inverse of the standard univariate normal distri-
bution function ê. In this manner, if the projected data would
follow a normal distribution, then the transformed data would
be uniformly distributed. We can then use the fact that for
uniform data, the spacings are identically distributed with dis-
tribution function F 4w5 D 1 ƒ 41 ƒ w5n and mean 1=4nC 15,
see Pyke (1965).

The resulting algorithm to identify signi� cant gaps has been
implemented as follows:

1. For each one of the directions dk, k D 11 : : : 12p, com-
pute the univariate projections of the original observa-
tions uki D x0

i dk.
2. Standardize these observations, zki D 4uki ƒ mk5=sk,

where mk D P
i uki=n and sk D P

i4uki ƒ mk52=4nƒ 15.
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Figure 1. (a) Histogram for a Set of 200 Observations From Three Normal Univariate Distributions. (b) Gaps for the Set of 200 observations.

3. Sort out the projections zki for each value of k, to
obtain the order statistics zk4i5 and then transform using
the inverse of the standard normal distribution function
Nzki D êƒ14zk4i55.

4. Compute the gaps between consecutive values, wki D
Nzk1iC1 ƒ Nzki.

5. Search for the presence of signi� cant gaps in wki. These
large gaps will be indications of the presence of more
than one cluster. In particular, we introduce a threshold
Š D �4c5, where �4c5 D 1 ƒ 41 ƒ c51=n denotes the cth
percentile of the distribution of the spacings, de� ne i0k D
0 and

r D inf
j

8n > j > i0k 2 wkj > Š90

If r < ˆ, the presence of several possible clusters has
been detected. Otherwise, go to the next projection direc-
tion.

6. Label all observations l with Nzkl µ Nzkr as belonging to
clusters different to those having Nzkl > Nzkr . Let i0k D r

and repeat the procedure.

Some remarks on the procedure are in order. The preced-
ing steps make use of a parameter c to compute the value
Š D �4c5, that is used in step 5 to decide if more than one
cluster is present. From our simulation experiments, we have
de� ned log41 ƒ c5 D log001 ƒ 10 logp=3, and consequently
Š D 1 ƒ 0011=n=p10=43n5, as this value works well on a wide
range of values of the sample size n and sample dimension p.
The dependence on p is a consequence of the repeated com-
parisons carried out for each of the 2p directions computed
by the algorithm.

Also note that the directions dk are a function of the data.
As a consequence, it is not obvious that the result obtained in
Appendix C applies here. However, according to Appendix B,
the projections onto any direction of a continuous unimodal
multivariate random variable will produce a univariate uni-
modal distribution. We have checked by Monte Carlo simula-
tion that the projections of a multivariate elliptical distribution

onto the directions that maximize or minimize the kurtosis
coef� cient have this property.

3.3 The Analysis of the Mahalanobis Distances

After completing the analysis of the gaps, the algorithm car-
ries out a � nal step to assign observations within the clusters
identi� ed in the data. As the labeling algorithm, as described
above, tends to � nd suspected outliers, but the projection
directions are dependent on the data, it is reasonable to check
if these observations are really outliers or just a product of
the choice of directions. We thus test in this last step if they
can be assigned to one of the existing clusters, and if some of
the smaller clusters can be incorporated into one of the larger
ones.

This readjustment procedure is based on standard multi-
variate tests using the Mahalanobis distance, see Barnett and
Lewis (1978), and the procedure proposed by Peña and Tiao
(2001) to check for data heterogeneity. It takes the following
steps:

1. Determine the number of clusters identi� ed in the data,
k, and sort out these clusters by a descending number
of observations (cluster 1 is the largest and cluster k is
the smallest). Assume that the observations have been
labeled so that observations ilƒ1 C 1 to il are assigned to
cluster l (i0 D 0 and ik D n).

2. For each cluster l D 11 : : : 1 k carry out the following
steps:

(a) Compute the mean ml and covariance matrix Sl

of the observations assigned to cluster l, if the
number of observations in the cluster is at least
p C 1. Otherwise, end.

(b) Compute the Mahalanobis distances for all obser-
vations not assigned to cluster l,

„j D 4xj ƒ ml5
0Sƒ1

l 4xj ƒ ml51 j µ ilƒ11 j > il0
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Figure 2. Plots Indicating the Original Observations, Their Assignment to Different Clusters, and the Projection Directions Used by the Algorithm
for: (a) the Ruspini Example, and (b) the Maronna Example.

(c) Assign to cluster l all observations satisfying „j µ
�2

p10099.
(d) If no observations were assigned in the preceding

step, increase l by one and repeat the procedure
for the new cluster. Otherwise, relabel the obser-
vations as in step 1, and repeat this procedure for
the same l.

4. COMPUTATIONAL RESULTS

We start by illustrating the behavior of the algorithm
on some well-known examples from the literature, those of
Ruspini (1970) and Maronna and Jacovkis (1974). Both cases
correspond to two-dimensional data grouped into four clus-
ters. Figure 2 shows the clusters detected by the algorithm for
both the test problems, after two iterations of the procedure.
Each plot represents the observations, labeled with a letter
according to the cluster they have been assigned to. Also, the
2p D 4 projection directions are represented in each plot. Note
that the algorithm is able to identify every cluster present in
all cases. It also tends to separate some observations from the
clusters, observations that might be considered as outliers for
the corresponding cluster.

The properties of the algorithm have been studied through
a computational experiment on randomly generated samples.
Sets of 20p random observations in dimensions p D
41 81151 30 have been generated from a mixture of k multi-
variate normal distributions. The number of observations from
each distribution has been determined randomly, but ensuring
that each cluster contains a minimum of p C 1 observations.
The means for each normal distribution are chosen as values
from a multivariate normal distribution N 401 f I5, for a factor
f (see Table 1) selected to be as small as possible whereas
ensuring that the probability of overlapping between groups
is roughly equal to 1%. The covariance matrices are gener-
ated as S D UDU0, using a random orthogonal matrix U and
a diagonal matrix D with entries generated from a uniform
distribution on 610ƒ315

p
p7.

Table 2 gives the average percentage of the observations
that have been labeled incorrectly, obtained from 100 repli-
cations for each value. When comparing the labels generated
by the algorithm with the original labels, the following pro-
cedure has been used to determine if a generated label is
incorrect: (i) we � nd those clusters in the original data hav-
ing most observations in each of the clusters generated by the
algorithm; (ii) we associate each cluster in the output data
with the corresponding cluster from the original data, accord-
ing to the preceding criterion, except when several clusters
would be associated with the same original cluster; in this case
only the largest cluster from the output data is associated with
that original cluster; (iii) an observation is considered to be
incorrectly labeled if it belongs to an output cluster associated
with the wrong original cluster for that observation; (iv) as
the data generating mechanism allows for some overlapping
between clusters with small probability, the previous rule is
only applied if for a given cluster in the output data the num-
ber of observations with a wrong label is larger than 5% of
the size of that output cluster.

Table 1. Factors f Used to
Generate the Samples for the

Simulation Experiment

p k f

4 2 14
4 20
8 28

8 2 12
4 18
8 26

15 2 10
4 16
8 24

30 2 8
4 14
8 22
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Table 2. Percentages of Mislabeled Observations for the Suggested
Procedure, the k-means and Mclust Algorithms, and the Jones and

Sibson Procedure (normal observations)

p k Kurtosis k means Mclust J&S

4 2 006 036 003 019
4 009 006 007 029
8 011 001 040 030

8 2 009 040 007 025
4 010 007 015 047
8 008 001 032 024

15 2 015 053 009 030
4 032 020 025 058
8 009 004 047 027

30 2 027 065 032 033
4 060 033 061 061
8 066 028 081 074

Average 022 025 030 038

To provide better understanding of the behavior of the
procedure, the resulting data sets have been analyzed using
both the proposed method (“Kurtosis”) and the k-means
(see Hartigan and Wong, 1979) and Mclust (see Fraley and
Raftery, 1999) algorithms as implemented in S-plus ver-
sion 4.5. The rule used to decide the number of clusters
in the k-means procedure has been the one proposed by
Hartigan (1975, pp. 90–91). For the Mclust algorithm, it
has been run with the option “VVV” (general parameters
for the distributions). As an additional test on the choice
of projection directions, we have implemented a procedure
[column (Jones and Sibson) (J&S) in Table 2] that generates
p directions using the Jones and Sibson (1987) projection
pursuit criterion, although keeping all other steps from the
proposed procedure. The Matlab codes that implement the
Kurtosis algorithm, as described in this article, and the Jones
and Sibson implementation are available for download at
http://halweb.uc3m.es/fjp/download.html

As some of the steps in the procedure are based on distri-
bution dependent heuristics, such as the determination of the
cutoff for the gaps, we have also tested if these results would
hold under different distributions in the data. The preceding
experiment was repeated for the same data sets as above, with
the difference that the observations in each group were gen-

Table 3. Percentages of Mislabeled Observations for the Suggested Procedure, the k-means and
Mclust Algorithms, and the Jones and Sibson Procedure (uniform and student-t observations)

Uniform Student-t

p k Kurtosis k means Mclust J&S Kurtosis k means Mclust J&S

4 2 005 041 001 023 010 039 004 020
4 004 013 002 021 013 015 012 028
8 007 001 041 017 016 024 041 036

8 2 002 048 002 025 009 036 011 029
4 006 012 006 043 022 011 017 044
8 005 000 018 010 013 020 032 034

15 2 008 053 001 026 016 042 010 027
4 012 012 012 053 036 016 025 057
8 006 000 036 014 016 013 051 037

30 2 021 057 009 027 028 050 030 030
4 028 018 039 060 057 014 062 062
8 007 000 065 051 070 016 080 077

Average 009 021 019 031 025 025 031 040

Table 4. Percentages of Mislabeled Observations for the Suggested
Procedure, the k-means and Mclust Algorithms, and the Jones and

Sibson Procedure (different overlaps between clusters)

Kurtosis k means Mclust J&S

Normal
1% overlap 009 015 017 029
8% overlap 015 017 022 036

Uniform
1% overlap 005 019 012 023
8% overlap 007 019 013 027

Student-t
1% overlap 014 016 019 032
8% overlap 019 021 023 037

erated from a multivariate uniform distribution and a multi-
variate Student-t distribution with p degrees of freedom. The
corresponding results are shown in Table 3.

From the results in Tables 2 and 3, the proposed proce-
dure behaves quite well, given the data used for the compari-
son. The number of mislabeled observations increases with the
number of clusters for Mclust, whereas it decreases in general
for k means. For kurtosis and J&S there is not a clear pat-
tern because although in general the errors increase with the
number of clusters and the dimension of the space, this is not
always the case (see Tables 2, 3, and 5). It is important to
note that, owing to the proximity between randomly generated
groups, the generating process produces many cases where it
might be reasonable to conclude that the number of clusters
is lower than the value of k (this would help to explain the
high rate of failure for all algorithms). The criterion based on
the minimization and maximization of the kurtosis coef� cient
behaves better than the k means algorithm, particularly when
the number of clusters present in the data is small. This seems
to be mostly owing to the dif� culty of deciding the number of
clusters present in the data, and this dif� culty is more marked
when the actual number of clusters is small. On the other
hand, the proposed method has a performance similar to that
of Mclust, although it tends to do better when the number of
clusters is large. Although for both algorithms there are cases
in which the proposed algorithm does worse, it is important
to note that it does better on the average than both of them,

http://halweb.uc3m.es/fjp/download.html
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Table 5. Percentages of Mislabeled Observations for the Suggested
Procedure, the k-means and Mclust Algorithms, and the Jones and

Sibson Procedure. Normal observations with outliers

p k Kurtosis k means Mclust J&S

4 2 006 019 008 017
4 008 006 008 023
8 011 007 041 029

8 2 005 013 011 013
4 009 005 015 043
8 009 005 040 023

15 2 005 019 012 010
4 012 010 023 053
8 013 007 051 034

30 2 003 029 011 006
4 010 021 058 044
8 055 022 077 077

Average 012 014 030 031

and also that there are only 4 cases out of 36 where it does
worse than both of them. It should also be pointed out that its
computational requirements are signi� cantly lower. Regarding
the Jones and Sibson criterion, the proposed use of the direc-
tions minimizing and maximizing the kurtosis comes out as
far more ef� cient in all these cases.

We have also analyzed the impact of increasing the over-
lapping of the clusters on the success rates. The values of the
factors f used to determine the distances between the cen-
ters of the clusters have been reduced by 20% (equivalent to
an average overlap of 8% for the normal case) and the simu-
lation experiments have been repeated for the smallest cases
(dimensions 4 and 8). The values in Table 4 indicate the aver-
age percentage of mislabeled observations both for the origi-
nal and the larger overlap in these cases. The results show the
expected increase in the error rates corresponding to the higher
overlap between clusters, and broadly the same remarks apply
to this case.

A � nal simulation study has been conducted to determine
the behavior of the methods in the presence of outliers. For
this study, the data have been generated as indicated above
for the normal case, but 10% of the data are now outliers.
For each cluster in the data, 10% of its observations have
been generated as a group of outliers at a distance 4�2

p1 0099 in
a group along a random direction, and a single outlier along
another random direction. The observations have been placed
slightly further away to avoid overlapping; the values of f in
Table 1 have now been increased by two. Table 5 presents the
numbers of misclassi� ed observations in this case.

The results are very similar to those in Table 2, in the sense
that the proposed procedure does better than k-means for small
numbers of clusters, and better than Mclust when many clus-
ters are present. It also does better than both procedures on the
average. Again, the Jones and Sibson criterion behaves very
poorly in these simulations. Nevertheless, the improvement in
the k-means procedure is signi� cant. It seems to be owing to
its better performance as the number of clusters increases, and
the fact that most of the outliers have been introduced as clus-
ters. Its performance is not so good for the small number of
isolated outliers.

APPENDIX A: PROOF OF THEOREM 1

To derive (4), note that E4z5 D 41ƒ�5m1 C�m2 and E4z25 D 41ƒ
�5m1425 C �m2425 C 41 ƒ �5m2

1 C �m2
2; therefore mz425 D E4z25 ƒ

4E4z552 D‘ 2
m C�41ƒ�5ã2 , where ‘ 2

m D 41ƒ�5m1425C�m2425 and
ã D m2 ƒ m1. The fourth moment is given by

mz445 D 41 ƒ�5Ef1
4zƒm1 ƒ �ã54 C�Ef2

4zƒ m2 C 41 ƒ�5ã54 1

and the � rst integral is equal to m1445 ƒ4�ãm1435C6�2ã2m1425C
�4ã4, whereas the second is m2445 C 441 ƒ �5ãm2435 C 641 ƒ
�52ã2m2425 C 41 ƒ�54ã4 . Using these two results, we obtain that

mz445 D 41ƒ�5m1445C�m2445C4�41ƒ�5ã4m2435

ƒm14355C6�41ƒ�5ã2 Q‘ 2
m C�41ƒ�5ã44�3 C41ƒ�5350

Consider now (6). From (4) we can write ƒz4 d5 D N 4 d5=D4d52,
where N4 d5 D mz445 and D4 d5 D‘ 2

m C�41ƒ�5ã2. Note that D 6D 0
unless both projected distributions are degenerate and have the same
mean; we ignore this trivial case. We have

ïN D 41 ƒ �5”1 C�”2 C4�41 ƒ�5ã4’ 2 ƒ’ 15

C 12�41 ƒ�5ã24�V1 C 41 ƒ �5V25d

C 4�41 ƒ �5 m2435 ƒm1435C 3ã Q‘ 2
m

C 4�3 C 41 ƒ�535ã3 4Œ2 ƒ Œ151

ïD D 2441 ƒ �5V1 C�V25 d C2�41ƒ �5ã4Œ2 ƒ Œ151

and from the optimality condition ïƒz4d5 D 0, for the optimal direc-
tion d we must have

ï N 4 d 5 D 2ƒz4 d 5D4d 5ï D4 d 50

Replacing the expressions for the derivatives, this condition is
equivalent to

441 ƒ�54Dƒz ƒ3�2ã25V1 d C 4�4Dƒz ƒ341 ƒ�52ã25V2 d

D 41 ƒ �5”1 C�”2 C4�41 ƒ�5

� ã4’ 2 ƒ ’15 C m2435 ƒm1435

C 3ã Q‘ 2
m C 4�3 C 41ƒ �535ã3 ƒDãƒz 4Œ2 ƒ Œ15 1

and the result in (6) follows after substituting the value of D, dividing
both sides by 4‘ 2

m and regrouping terms.

APPENDIX B: PROJECTIONS OF
UNIMODAL DENSITIES

Assume a random variable X with continuous unimodal den-
sity fX4x5 with mode at m. We show that its projections onto any
direction d, d0 X, are also unimodal, provided that fX is a nonin-
creasing function of the distance to the mode, that is, whenever
4x1 ƒ m50 M4x1 ƒm5 µ 4x2 ƒ m50 M4x2 ƒ m5 for some positive de� -
nite matrix M, then fX4x15 ¶ fX4x25.

To simplify the derivation and without loss of generality we work
with a random variable Y satisfying the preceding properties for m D
0 and M D I. Note that the projections of X would be unimodal
if and only if the projections of Y D M1=24X ƒ m5 are unimodal.
This statement follows immediately from d0 X D d0 m C d0 Mƒ1=2 Y,
implying the equivalence of the two densities, except for a constant.

From our assumption we have fY 4 y15 ¶ fY 4 y25 whenever ˜ y1˜ µ
˜ y2˜; note that this property implies that fY 4 y5 D �4˜ y˜5, that is,
the density is constant on each hypersphere with center as the origin.
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As a consequence, for any projection direction d, the density function
of the projected random variable, z D d0 Y, will be given by

fz4z5 dz D
Z

zµd0yµzCdz
fY 4 y5 dy D

Z

zµw1µzCdz
fY 4U0w5 dw1

where we have introduced the change of variables w D U y for an
orthogonal matrix U such that d D U0e1 , where e1 denotes the � rst
unit vector, and d0 y D e0

1U y D e0
1w D w1. Also note that fY 4U0w5 D

�4˜w˜5 D fY 4w5, and as a consequence the density of z will be given
by

fz4z5 D
Z

D
fY 4z1w21 : : : 1wp5 dw2: : : dwp1

where the integration domain D is the set of all possible values
of w21 : : : 1wp . As for any � xed values of w21 : : : 1wp , we have
fY 4z11w21 : : : 1wp5 ¶ fY 4z21w21 : : : 1wp5 for any —z1— µ —z2—, it fol-
lows that

fz4z15 D
Z

D
fY 4z11w2: : : wp5 dw2: : : dwp

¶
Z

D
fY 4z21w21 : : : 1wp5 dw2: : : dwp

D fz4z251

for any —z1— µ —z2—, proving the unimodality of fz.

APPENDIX C: PROPERTIES OF THE GAPS FOR
SYMMETRIC DISTRIBUTIONS

We now justify the statement that for a unimodal symmetric dis-
tribution the largest gaps in the sample are expected to appear at the
extremes. Under the symmetry assumption, and using (13) for the
expected value of the gap, we would need to prove that for i > n=2,

E4wiC15 ƒE4wi5 D
nC 1
i C 1

n

i

Z ˆ

ƒˆ
F 4x5i41 ƒF 4x55nƒiƒ1

� F4x5ƒ
i C1

nC 1
dx ¶ 01

Letting g4x5 ² F4x5i41 ƒF 4x55nƒiƒ1 F4x5 ƒ 4i C 15=4nC 15 this is
equivalent to proving that

Z ˆ

ƒˆ
g4x5dx ¶ 00 (C.1)

To show that this inequality holds, we use the following property of
the Beta function: for any i,

1
nC 1

D n

i

Z ˆ

ƒˆ
F4x5i41 ƒF 4x55nƒif 4x5dx0

Taking the difference between the integrals for i C1 and i, it follows
that

0 D
n C1

i C1
n

i

Z ˆ

ƒˆ
g4x5f4x5dx

,
Z ˆ

ƒˆ
g4x5f4x5dx D 00 (C.2)

This integral is very similar to the one in (C.1), except for the
presence of f 4x5. To relate the values of both integrals, the inte-
gration interval 4ƒˆ1ˆ5 will be divided into several zones. Let
a D F ƒ144i C 15=4nC 155, implying that F4x5 ƒ 4i C 15=4nC 15 µ 0
and g4x5 µ 0 for all x µ a. As we have assumed the distribution to be
symmetric and unimodal, and without loss of generality, we may sup-
pose the mode to be at zero, the density will satisfy f 4x5 ¶ f 4a5 for

any x 2 6ƒa1a7, and f 4x5 µ f 4a5 for x 2 4ƒˆ1ƒa7 and x 2 6a1ˆ5.
As a consequence,

Z a

ƒa
g4x5

f 4x5

f 4a5
dx µ

Z a

ƒa
g4x5dx0 (C.3)

To � nd similar bounds for the integral in the intervals 4ƒˆ1ƒa7

and 6a1ˆ5 we introduce the change of variables y D ƒx and use the
symmetry of the distribution to obtain the equivalent representation

Z ƒa

ƒˆ
g4x5

f 4x5

f 4a5
dx D ƒ

Z ˆ

a
F4x5nƒiƒ141 ƒF 4x55i

� F 4x5ƒ1 C
i C1
n C1

f 4x5

f 4a5
dx0

From this equation it will hold that

Z ˆ

ƒˆ
g4x5

f 4x5

f 4a5
dx D

Z a

ƒa
g4x5

f 4x5

f 4a5
dx C

Z ˆ

a
h4x5

f 4x5

f 4a5
dx1 (C.4)

where

h4x5 ² g4x5ƒ F4x5nƒiƒ141 ƒF 4x55i F4x5ƒ 1C
i C1
nC 1

D F4x5i41 ƒF 4x55nƒiƒ1 F4x5ƒ
i C1

nC 1

ƒ
1 ƒ F4x5

F4x5

2iC1ƒn

F 4x5ƒ1 C
i C1

n C1
0

If i > n=2, it holds that h4a5 < 0, then the function has a zero at
b 2 6a1ˆ5, and this zero is unique in the interval. As f is decreasing
on 6a1ˆ5, h4x5 µ 0 for a µ x µ b and h4x5 ¶ 0 for x ¶ b, it must
follow that

Z b

a
h4x5dx ¶

Z b

a
h4x5

f 4x5

f 4b5
dx1

Z ˆ

b
h4x5dx ¶

Z ˆ

b
h4x5

f 4x5

f 4b5
dx

)
Z ˆ

a
h4x5dx

¶
Z ˆ

a
h4x5

f 4x5

f 4b5
dx0

This inequality together with (C.4), (C.3), and (C.2) yield

Z ˆ

ƒˆ
g4x5dx ¶

Z ˆ

ƒˆ
g4x5

f 4x5

f 4a5
dx D 01

and this bound implies (C.1) and the monotonicity of the expected
gaps.

[Received July 1999. Revised December 2000.]
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