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Abstract

We propose a Bayesian procedure for multiple outlier detection in linear models which avoids the
masking problem. The posterior probabilities of each data point being an outlier are estimated by using
an adaptive learning Gibbs sampling method. The idea is to modify the initial conditions of the Gibbs
sampler in order to visit the posterior distribution space in a reasonable number of iterations. To 4nd
an appropriate vector of initial values we consider the information extracted from the eigenstructure
of the covariance matrix of a vector of latent variables. These variables are introduced in the model
to capture the heterogeneity in the data. This procedure also overcomes the false convergence of the
Gibbs sampling in problems with strong masking. Our proposal is illustrated with some of the examples
most frequently used in the literature. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Gibbs sampler; Linear regression; Multiple outliers; Sequential learning

1. Introduction

Diagnostic methods for identifying a single outlier or in<uential observation in a
linear model are well established in the statistical literature either from the Bayesian
or classical point of view (see Cook and Weisberg, 1982; Pettit and Smith, 1985; and
Peña and Guttman, 1993). However, the identi4cation of multiple outliers in linear
models is a di?cult problem because of the masking e@ect. The masking problem
has received very little attention in the Bayesian literature. Masking occurs when one
outlier observation is not detected because of the presence of other outliers. Also,
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one good point can be wrongly disregarded due to the e@ect of the outliers, and this
is called the swamping problem.

In this paper we present a Bayesian procedure to overcome the masking problem
in multiple outlier detection for linear models. The posterior probabilities of each
observation being an outlier are computed by an adaptive Gibbs sampling procedure
in three stages. The 4rst stage runs the Gibbs sampling until the Markov chains reach
a stable state. The second stage uses the output from the 4rst stage to compute an
outlier free subset by analyzing the covariance structure of the model parameters. The
third stage runs again the Gibbs sampling by now the initial conditions are adapted
by the information provided by the second stage. The output of this third stage is
used to identify the outliers and to compute robust estimates of the parameters in
the model.

The paper is organized as follows. In Section 2 the Bayesian linear model is
considered and a method is presented to 4nd an outlier free subset. Section 3 develops
the new adaptive procedure. Section 4 shows the performance of this algorithm in
some examples used as a benchmark in the literature. Some 4nal comments appear
in Section 5.

2. Bayesian multiple outlier detection

2.1. Outliers in the Bayesian linear model

Let us consider the Bayesian regression model where the observations y=(y1; : : : ;
yn)′ are generated by

yi = x′i� + ui; i = 1; : : : ; n; (2.1)

where n is the sample size, X =(x1; : : : ; xn)′ is a n×m matrix of nonrandom variables,
� is a m × 1 vector of unknown parameters, and u = (u1; : : : ; un)′ is a vector of
nonobservable perturbations with distribution N(0; �2I). We assume independent and
noninformative prior distributions for the location and scale parameters, P(�; �2)˙
�−2. Bayesian methods for outlier detection can be classi4ed into two groups: (1)
diagnostic methods which propose a null model for the data generation excluding
that outliers may be generated, and (2) robust methods which propose a model for
the generation of all the data set, including the possible outliers.

The most often used diagnostic methods analyse if one observation is compatible
with the rest of the sample by studying the predictive distribution P(yi|y(i)), where
y(i) is the sample when deleting the data yi (see Chaloner and Brant (1988), for
an alternative approach). The robust methods suppose heavy tail distributions for
the errors or mixtures of distributions. The more frequently analysed model is the
normal scale contamination model, where the error distribution is

ui ∼ (1− �) N(0; �2) + � N(0; k2�2); i = 1; : : : ; n: (2.2)

The mixture distribution (2.2) indicates that there exists a probability � of each
data point being spuriously generated from an alternative distribution. Data points
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generated from the alternative distribution will be considered as outliers. Assuming
that k and � are known, the posterior probability that there are exactly nI outliers in
a set indexed by I = {i1; : : : ; inI} and n − nI good points is given by

pI ˙
(

�
1− �

)nI

k−nI

( |X ′X |
|X ′X − �X ′

I XI |
)1=2( s2

s2(I)

)(n−p)=2

; (2.3)

where � = 1 − k−2, XI is the nI × m submatrix of X with the rows indexed by I ,
s2 is the usual unbiased residual variance estimate and s2(I) is the estimate computed
by considering the nI points in I generated from the alternative distribution (for the
detailed expressions, see Box and Tiao, 1968).

The predictive ordinates P(yi |y(i)) and the probabilities (2.3) can be easily used
to check for a single outlier in a sample, as well as for checking the presence
of a particular group of outliers. However, the most relevant problem is when the
number and the position of the outliers are unknown, as it is the usual case with
real data. In this case, two ideas may be considered: (1) using the deleting one
observation procedure to detect outliers one by one, and (2) to identify multiple
outliers by computing all the probabilities for the possible group of outliers. These
two possibilities present serious problems in some particular situations. The deleting
one by one observation procedure can be subject to masking in samples with multiple
outliers, whereas the multiple detection using (2.3) may avoid masking, but they
involve the extensive computations of the 2n posterior probabilities which correspond
to all the possible groups. To reduce these computations Peña and Tiao (1992)
propose a method based on strati4ed sampling in the context of building the Bayesian
robustness curves BROC and SEBROC. Alternatively, we consider MCMC methods
to reduce the computations and to propose an unmasking procedure which can be
satisfactorily implemented in moderate and large samples.

2.2. Gibbs sampling for the outlier regression model

Verdinelli and Wasserman (1991) propose to apply the Gibbs sampling to the
detection of univariate outliers in a normal random sample and they show that this
algorithm overcomes the heavy computations needed in this type of problems. Justel
and Peña (1996a) extend the procedure to the outlier detection in linear regression
and show that, when the outliers are isolated, Gibbs sampling works well and avoids
the 2n necessary computation to obtain the marginal posterior probabilities.

In this paper we generalize the normal scale contamination model (2.1) and (2.2)
by assuming for the contamination parameter � a prior distribution Beta(�1; �2) with
expectation �0 = E(�) = �1=(�1 + �2). The application of the Gibbs sampling (see
Gilks et al., 1996) is carried out by augmenting the parameter vector with a set of
classi4cation variables �=(�1; : : : ; �n)′, de4ned as �i =1 when yi is generated by the
alternative distribution N(x′i�; k

2�2), and �i = 0 otherwise. The pair (yi; x′i) will be
called an outlier when the marginal probability pi =P(�i =1 |y) is greater than 0.5.
Thus, � is the prior probability that any observation is an outlier. The full conditional
distributions are: (1) the conditional distribution of � is Nm(�̃; �2(X ′V−1X )−1), where
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�̃=(X ′V−1X )−1X ′V−1y and V is a diagonal matrix with elements vii=1+�i(k2−1);
(2) the conditional distribution of �2 is Inverted-Gamma (n=2;

∑
u∗2

i =2), where u∗
i =

(yi − x′i�)=(1 + �i(k − 1)); (3) the conditional distribution of � only depends on the
vector � and is Beta (�1 +

∑
�i; �2 + n −∑ �i); and (4) the conditional distribution

of �i is Bernoulli with success probability

P(�i = 1 |y; �; �2; �) =
(
1 +

(
1− �

�

)
F10(i)

)−1

; (2.4)

where F10 is the Bayes factor given by

F10(i) = k exp
(
− 1
2�−1�2

u2
i

)

and �= 1− k−2. Note that the conditional probability that the ith observation is an
outlier depends only on u2

i =�
2. If ui is small, F10(i) will be large and the probability

(2.4) will be small. The opposite occurs when u2
i =�

2 is large.
Justel and Peña (1996a) showed in several examples that Gibbs sampling will fail

for outlier detection in data sets with masking problems. The lack of convergence
in these cases seems to be due to the e@ect of the leverage. This fact can be easily
seen in the extreme case in which the sample includes a group indexed by I of nI

identical outliers. Let S0 = (y0; X0) be the set of observations classi4ed as good in
the initial conditions. From now on, the subscript (I) means that the data indexed by
I are deleted. Then we assume the following initial condition dependence property:
(a) if S0 includes several in<uential outliers, the probability of identifying all the

outliers in the sample is small and will be very close to zero if the number
of misspeci4ed outliers is large. To justify this, consider the case in which S0

includes the group of outliers. It can be proved (see Peña and Yohai, 1995) that
the computed error for the outliers, u(0)

i ; can be expressed as

u(0)
i =

yi − x′i�
(0)
(I)

1 + nIhi
for i ∈ I; (2.5)

where hi = x′i(X
′
0(I)X0(I))−1xi is the leverage of the outliers and �(0)

(I) is the mean
of the conditional distribution given �(0), both computed when the data indexed
by I are deleted. For large k, �(0)

(I) is approximately the least-squares estimate
with the subsample S0 where the observations indexed by I are deleted. As hi

is unbounded, u(0)
i will be small if hi is large and this e@ect increases with the

number of outliers nI . Therefore, for high leverage outliers u(0)
i will be close to

zero and so will be the probability (2.4).
(b) if S0 includes no outliers, the existing outliers are always identi4ed, and the

good data are not misspeci4ed. This will happen because if the set S0 does not
contain outliers, u(0)

i = yi − x′i�
(0) will be large for i ∈ I , and the probability

(2.4) will be close to one.
Therefore, a clear objective is to 4nd a set S0 that is outlier free. This idea is similar
to the one used in robust estimation procedures based on resampling (Rousseeuw,
1984; Hawkins et al., 1984).



A. Justel, D. Peña / Computational Statistics & Data Analysis 36 (2001) 69–84 73

2.3. Finding an outlier free subset

Two outliers are masked when they need to be identi4ed as such jointly. Suppose
that the sample includes two or more very strongly masked outliers. This means
that the probability of identifying the ith observation as an outlier subject to the
condition that the jth observation is an outlier must be close to one, because either
all the outliers are identi4ed jointly or none of them is detected as an outlier. Hence,
P(�i =1 | �j =1; y) � 1, where �i, �j are the classi4cation variables corresponding to
these two outliers. Let us call p=P(�j=1 |y); and let us assume that, approximately,
also P(�i =1 |y) =p. This implies that P(�i =1; �j =1 |y) � P(�j =1 |y) =p, and
the covariance between the binary variables �i and �j is

cij = P(�i = 1; �j = 1 |y)− P(�i = 1 |y)P(�j = 1 |y) = p − p2

and if p is small this covariance will be of order p. Suppose now that �i, �j

correspond to two good points. Then we expect that P(�i=1 | �j=1; y) � P(�i=1 |y)
and, therefore, cij will be close to zero. Finally, if �i is an outlier and �j a good
observation, as P(�i = 1 | �j = 1; y) � P(�i = 1 |y), again the covariance cij will be
close to zero.

Consider now the estimation with the Gibbs sampling. Suppose that we select the
initial conditions S0 in such a way that the probability that S0 is outlier free is q
(we will discuss how to do it in Section 3). Then we run R parallel sequences and
let us call �̂

r
= (�̂

r

1; : : : ; �̂
r

n)
′, r = 1; : : : ; R, to the vectors of last generated values for

the classi4cation variables, which are used to estimate the marginal outlier posterior
probabilities by

p̂i =
1
R

R∑
r=1

�̂
r

i ;

and the joint probabilities by

p̂ij =
1
R

R∑
r=1

�̂
r

i �̂
r

j :

In the general case with nI masked outliers, the sample covariance between two

classi4cation variables, �̂i=(�̂
1

i ; : : : ; �̂
R

i )
′ and �̂j=(�̂

1

j ; : : : ; �̂
R

j )
′, will also be large. This

is so because �̂
r

i and �̂
r

j will only be 1 when all the other classi4cation variables for
the rest of the outliers are also 1, and both will be zero otherwise. Then the sample
covariance ĉij = p̂ij − p̂ip̂j will be higher for masked outliers than for good data
points or combinations of one good point and an outlier.

Let D=(�̂
1
; : : : ; �̂

R
)′ be the data matrix for the classi4cation variables. The covari-

ance matrix Ĉ is

Ĉ =
1
R
D′MRD;

where MR = I − 1R1′R=R, and 1′R = (1; : : : ; 1). Let us consider the expected behaviour
of the eigenvectors and eigenvalues of Ĉ in the limit case in which the 4rst nG ¿ 0
observations correspond to good data, the next nH ≥ 0 to good data that are swamped
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and the last nI ¿ 0 to the set of outliers. Also let us assume that the 4rst Q runs
correspond to the runs in which the set S0 is outlier free and therefore the outliers are
correctly identi4ed. Then �̂

r
=(0′; 0′; 1′I)

′ for r=1; : : : ; Q; where the 4rst nG correspond
to the good data, the next nH to the swamped data, and the 4nal nI to the outliers
that are correctly identi4ed. Also, �̂

r
= (g′

r ; 1
′
H ; 0′)′ for r = Q + 1; : : : ; R, where the

swamped good data are identi4ed as outliers and the vector gr may contains a few
nonnull elements because the outlier probability for good data is small, but not zero.
We may suppose that there are not important di@erences between these columns in
the proportion of ones (misspeci4cations), and that this number is bounded by some
small value -, such that

1
R

R−Q∑
i=1

gij ≤ - for all j = 1; : : : ; nG: (2.6)

In summary, the matrix D will be

D =




0
... 0

... 1Q1′nI· · · · · · · · · · · · · · · · · · · · ·
G

... 1 PQ1
′
nH

... 0


 ;

where PQ=R−Q and G= (gQ+1; : : : ; gR)′ is a matrix PQ× nG. The covariance matrix
Ĉ can be written as

Ĉ =




1
R

G′M PQG
...

Q
R2

G′1 PQ1
′
nH

− Q
R2

G′1 PQ1
′
nI

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Q
R2

1nH1
′
PQG

...
Q PQ
R2

1nH1
′
nH

−Q PQ
R2

1nH1
′
nI

− Q
R2

1nI1
′
PQG

... −Q PQ
R2

1nI1
′
nH

Q PQ
R2

1nI1
′
nI




:

Assuming that - is small, this matrix can be approximated by

Ĉ =




1
R

G′G
... 0

· · · · · · · · · · · · · · ·
0

... Ĉ22


 ;

where Ĉ22 is the (nH + nI)× (nH + nI) matrix

Ĉ22 =
Q PQ
R2




1nH1
′
nH

... −1nH1
′
nI· · · · · · · · · · · · · · · · · ·

−1nI1
′
nH

... 1nI1
′
nI


 :

The eigenvalues of Ĉ are the eigenvalues of the matrices G′G=R and Ĉ22. By
Eq. (2.6) the eigenvalues of G′G=R satisfy

nG∑
j=1

.j = tr
(
1
R
G′G

)
=

1
R

nG∑
j=1

PQ∑
i=1

g2
ij ≤ - nG:
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The matrix Ĉ22 has only one nonnull eigenvalue, given by

.I = q(1− q)(nH + nI): (2.7)

Then the matrix Ĉ has an eigenvalue .I and nG additional eigenvalues such that
their sum is less or equal than -nG, where - is very close to zero. In addition,
va = (0′nG

; a1′nH
;−a1′nI

)′ is an eigenvector of the matrix Ĉ associated with .I , for all
nonnull values of a.

The .I eigenvalue, given by (2.7) in the case of only one group of outliers, may
be close to zero (the group is unidenti4ed) when the probability q of outlier-free
initial conditions is close to zero or one. A value q close to zero corresponds to
the strong contamination case. A value q close to one corresponds to the case in
which there are no outliers in the sample or only very few. In this case, the outliers
will not be masked and they can be directly detected by the Gibbs sampling. The
interesting case is when 0¡q¡ 1 and nI (and maybe nH) is large. This corresponds
to the most di?cult case in which outliers are not identi4ed in most runs. Then .I

will be relatively large and the eigenvector linked to this eigenvalue will indicate
correctly the masked and swamped data. The observations having relatively large
coe?cients (in absolute value) on the eigenvector va are potentially outlier candidates.
As a result, we may split the data into two subsets: (1) the set that contains the
observations with nonnull coe?cients on the eigenvector va or with a high individual
probability p̂i; and (2) the set of the remaining observations. We call the 4rst set
the potential outlier set (PO).
When the sample data contains several sets of outliers they can produce m di@erent

independent e@ects in Rm. Therefore, the maximum number of eigenvalues to be
scrutinized is m. A straightforward generalization of the previous analysis shows that
these independent e@ects will appear in m eigenvectors of the estimated covariance
matrix Ĉ. This result is the basis of the procedure presented in the next section.

2.4. Example

The arti4cial data set proposed by Hawkins et al. (1984) is a well-known example
of masking. We will call this dataset the HBK data and it is represented by a
matrix plot in Fig. 1. Out of the 75 observations in four dimensions, data from
1 to 10 are high-leverage outliers. The traditional outlier identi4cation procedures
based on least-squares estimation are not able to identify these outliers due to their
high leverage. In addition, observations 11–14 are good data wrongly identi4ed as
outliers. Justel and Peña (1996a) show that Gibbs sampling fails with this data set.
The 10 outliers are not identi4ed and the Gibbs sampling su@ers the same problems
as traditional methods for outlier detection.

The covariance matrix for the HBK data is shown in Table 1. As expected, the
covariance is large and positive for the masked outliers and the swamped good data.
The covariance is large and negative between one masked outlier and one swamped
good data. The largest eigenvalues of this matrix are .1 = 3:4297 and .2 = 0:0391.
The large di@erence between these values is corroborated by the percentages of
variance explained by the eigenvalues, these are 78.5% for .1 and 0.9% for .2. The
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Fig. 1. Matrix plot of the HBK data.

Table 1
Covariance matrix with HBK data. Values greater than 0.01 and less than −0:01 are printed

2 0.22
3 0.23 0.22
4 0.22 0.22 0.22
5 0.22 0.22 0.23 0.22
6 0.23 0.22 0.23 0.22 0.23
7 0.22 0.22 0.22 0.21 0.22 0.22
8 0.22 0.22 0.22 0.22 0.22 0.22 0.21
9 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22
10 0.23 0.22 0.23 0.22 0.23 0.23 0.22 0.22 0.22

11 −0:22 −0:22 −0:22 −0:22 −0:22 −0:22 −0:22 −0:22 −0:22 −0:22
12 −0:22 −0:22 −0:22 −0:22 −0:22 −0:22 −0:22 −0:22 −0:22 −0:22 0.22
13 −0:22 −0:22 −0:22 −0:22 −0:22 −0:22 −0:21 −0:22 −0:22 −0:22 0.22 0.22
14 −0:22 −0:22 −0:22 −0:22 −0:22 −0:22 −0:22 −0:22 −0:22 −0:22 0.22 0.22 0.22

15 . . . . . . . . . . . . .
16 . . . . . . . . . . . . . .
17 . . . . . . . . . . . . . . . .
18 . . . . . . . . . . . . . . . . .

components of the eigenvector associated with the highest eigenvalue are shown in
Fig. 2. As a result, we shall include in PO the observations 1–14.

The matrix Ĉ was built with the estimated probabilities after 500 iterations of
R= 300 parallel sequences of the Gibbs sampling. Each sequence started with a set
S0 of four observations considered as good data points. Note that here nI =10, nH =4
and the probability of no outliers in S0 is

q =
(
10
0

) (
65
4

)/(
75
4

)
= 0:557:
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Fig. 2. Coe?cients of the eigenvector associated with the eigenvalue .1 of the covariance matrix with
HBK data.

Therefore, the expected value of the largest eigenvalue is, according to (2.7) equal
to 3.45, that is very similar to the real observed value.

3. Posterior probabilities sampling algorithm

We propose an Adaptive Gibbs Sampling Algorithm in which the initial conditions
of the Gibbs sampler are changed according to a three-stage procedure. In the 4rst
stage, the Gibbs sampling is initialized by using a small set of observations classi4ed
to be good. Then the algorithm is run for a few iterations. In the second stage, the
dependency among the classi4cation variables computed from the run is taken into
account in order to 4nd the potential outlier set (PO). In the third stage the Gibbs
sampler is initialized giving value 1 to the classi4cation variables in PO, and it is
again run for a few iterations. Using the values in the last iterations of only one
sequence, inference from this sample allows us to identify the outliers and to estimate
the parameters in the model. Accordingly, we suggest to follow these stages:

Stage 1 (Standard Gibbs sampler): Run the Gibbs sampling in parallel until the
Markov chains reach a stable state. The initial conditions for each sequence are
selected as follows:
(i) Let n0 be the maximum integer such that the probability of 4nding at most one

outlier in any data subset of size n0 is greater than c1. Then select randomly ‘
data points yi1 ; : : : ; yi‘ , where ‘ =max{n0; m}. The initial set is

S0 = {(yi1 ; x
′
i1); : : : ; (yi‘ ; x

′
i‘)} \ {single outliers detected by diagnostic tools}:

(ii) The initial conditions are:
(a) �(0)

j = 1 for all (yj; x′j) ∈ S0, and �(0)
j = 0 otherwise.

(b) �(0) = (X ′V (0)−1
X )−1X ′V (0)−1

y, where V (0) is a diagonal matrix with v(0)jj =
1 + �(0)

j (k2 − 1).
The initial conditions of Stage 1 are such that with high probability the initial set S0

is outlier free. The decision about the size of S0 is a trade-o@ between sensitivity,
that requires the selection of few data points as good data, and power, that depends
on having enough data points to estimate the parameters. In any case, we need to
take at least an elemental set (Hawkins et al., 1984), that is a set of size m. To
compute n0 we must consider that � is the prior probability of each observation
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being an outlier, then n(1− �) observations in the sample are expected to be good
and n� to be outliers. Let q1 be the probability that the set S0 contains at most one
outlier, then

q1 =
(

Pn�

n0

)(
n
n0

)−1

+
(

Pn�

n0 − 1

)(
n�

1

)(
n
n0

)−1

;

where n� is the nearest integer to n�0 (in case of tie, it is the higher one) and
Pn� = n − n�. Note that �0 is the prior expectation of the parameter �, and given
�0 and n0 we can compute q1. The value n0 is chosen so that q1 ¿c1: Finally,
the single outliers can be easily detected and then rejected by individual standard
diagnostic procedures, as the Bayes factor that a particular observation comes from
the alternative distribution against all the data come from the central distribution.
The weight of evidence can be done by using Je@reys (1961, Appendix B) scale of
evidence.

Stage 2 (Outlier identi9cation): Estimate the probabilities p̂j and the covariance
matrix Ĉ with the values of the classi4cation parameters from the last iteration
of each sequence. Compute the largest c2 eigenvalues and associated eigenvectors
(11; 12; : : :). Then the potential outlier set PO contains the data (yj; x′j) such that
p̂j ¿ 0:5, or |1ij|¿c3 mi, for any i = 1; : : : ; c2, where mi = medianj{|1ij|}=0:6475.
(The value 0:6475 is chosen in agreement with standard practice in robust statistics
in order to make the robust scale estimate consistent for the normal distribution, see
Huber, 1981.)

Stage 3 (Estimation): Reset the algorithm and run the Gibbs sampling once, until
the Markov chain reaches a stable state. The initial conditions are:
(a) �(0)

j = 1 for all (yj; x′j) ∈ PO, and �(0)
j = 0 otherwise.

(b) �(0) = (X ′V (0)−1
X )−1X ′V (0)−1

y, where V (0) is a diagonal matrix with v(0)jj = 1+
�(0)

j (k2 − 1).
The output of the Gibbs sampling is used to estimate the posterior probabilities of
all parameters in the model.

The bounds c1 and c2 and the constant c3 must be chosen. As c1 is a bound for
the probability that the initial set is outlier-free we suggest values around 0.95 in
order to consider both sensitivity and power. For c2 we choose the minimum value
of (m; c∗2 ), where c∗2 is the number of eigenvalues greater than 4ve times a robust
dispersion measure of the eigenvalues .i of Ĉ, that can be median{.i}=0:6475. For
the constant c3 we have chosen the value 3, so that we consider interesting points
those that are larger than three standard deviations. We have checked that small
changes of these two last constants do not a@ect the results of the algorithm. The
number of iterations needed to reach the stabilization in both stages may be decided
by the methods for monitoring convergence proposed by Gelman and Rubin (1992)
or Robert (1995, 1998), among others. We suggest an easier procedure that in this
particular application of the Gibbs sampling seems to work well. The Gibbs sampler
is run until the iteration S, such that, given 3¿ 0, |p̂(S−1)

i −p̂(S)
i |¡3 for all i=1; : : : ; n.

Finally, in Stage 2 the initial conditions are always the same and we run only one
sequence to reduce the computational e@ort.
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Fig. 3. Results of the Gibbs sampler with HBK data: (a) probabilities of each data point to be outlier
in the Stage 1; (b) posterior outlier probabilities in the Stage 3.

4. Procedure performance

The Adaptive Gibbs Sampling Algorithm (AGSA) has been tested with many real
datasets presented in the literature of outliers and all cases it has led to the expected
good solution (some of these examples are presented in Justel and Peña, 1996b). In
order to show that it can also work on very di?cult data sets we have considered
two well known simulated examples that are often used as benchmark to judge the
power of outlier detection procedures. These examples are the HBK data, presented in
Section 2.4 and the Rousseeuw (1984) data presented in the introduction. In the two
examples, a Gibbs sampler with 300 sequences is used and the number of iterations
is decided with 3 = 0:002. In all the examples �0 = 0:2 and �1 + �2 = n, that imply
E(� | �) = 1

2E(�) +
1
2
P�, and k = 10.

4.1. HBK data

The procedure is applied to the HBK data discussed in Section 2.4. The observa-
tions 1–10 are outliers which swamp the good data 11–14.

The initial conditions in the Stage 1 include a set of four observations consid-
ered as good, that is the size of the elemental set. The number of eigenvalues of
the covariance matrix to be examined by the algorithm is one, and the associated
eigenvector is shown in Fig. 2. In this example the estimates of the individual proba-
bilities, shown in Fig. 3(a), and the eigenstructure of the covariance matrix, discussed
in Section 2.4, lead to the same conclusion: the group of potential outliers PO in-
cludes the observations 1–14, that are the masked outliers and the swamped good
data. In Stage 3, these data points are considered outliers in the initial conditions
and the outliers are correctly identi4ed with probability equal to one (see Fig. 3(b)
for the posterior outlier probabilities). Note that the probabilities are very low for
the four previously swamped data.

4.2. Rousseeuw-type data

The set of simulated data proposed by Rousseeuw (1984) is generated in two
groups, that can be seen in the scatter plot of Fig. 4. See Table 2 for the numerical
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Fig. 4. Rousseeuw-type data.

Table 2
Rousseeuw type data

x 7.46 6.90 6.99 6.79 7.01 7.03 7.10 6.97 7.27 6.83
y 1.68 1.90 2.27 2.97 1.89 1.53 2.01 1.51 1.32 1.56

x 6.56 7.22 6.70 7.68 6.80 6.30 6.43 6.69 7.66 7.20
y 2.24 1.05 1.43 2.60 1.61 3.41 2.01 1.77 1.06 2.41

x 2.74 2.24 2.61 1.72 1.23 2.25 1.46 1.88 2.74 2.28
y 5.05 3.84 4.73 4.04 2.89 4.09 3.61 3.94 4.68 3.75

x 2.58 3.71 3.89 1.96 1.01 2.76 2.10 1.59 3.23 1.39
y 4.32 5.88 6.10 3.89 3.04 4.58 4.27 3.66 5.33 3.61

x 1.24 1.71 2.94 1.09 3.29 2.21 2.32 1.27 1.87 2.28
y 3.31 3.38 5.02 2.87 5.14 4.22 4.39 3.03 4.15 4.22

results. One group follows the linear model yi=2+xi+ui with error standard deviation
0.2, whereas the other group comes from a bivariate normal with mean (7; 2) and
covariance matrix 0:5I . Then out of the 50 data points, 20 are high-leverage outliers
(data 1–20) and 30 are good observations (data 21–50).

This is a di?cult example since the contamination is 40%, and many times it is
used as a benchmark for the robust estimation methods and the diagnostic proce-
dures for outlier detection. The usual diagnostic procedures identify as outliers the
observations 32 and 33, which are good data with large least squares residuals. The
solid line in the Fig. 4 is the least-squares estimator of the regression line. Also the
standard Gibbs sampler does not identify the outliers, as shown by Justel and Peña
(1996a).

The AGSA proposed in this paper works very well. Starting with a set of four
good observations, the outlier probabilities in Stage 1 for the 20 outliers are low
(see Fig. 5a), but the covariance matrix has two nonnull eigenvalues .1 = 0:53 and
.2 = 0:31. The coordinates of the associated eigenvectors are shown in Fig. 6. In
the 4rst eigenvector the results are as expected: (1) the coordinates are nonnull for
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Fig. 5. Results of the Gibbs sampler with Rousseeuw-type data: (a) probabilities of each data point to
be outlier in the Stage 1; (b) posterior outlier probabilities in the Stage 3.

Fig. 6. Coe?cients of the eigenvectors associated with the eigenvalues .1 (in (a)) and .2 (in (b)) of
the covariance matrix with Rousseeuw-type data.

the 20 outliers and the swamped good data; and (2) the signs are opposite for the
group of outliers and for the swamped data. Then the PO group includes the 20
outliers and observations 32 and 33. The posterior outlier probabilities estimated in
the second stage (see Fig. 5b) are such that the outliers are correctly identi4ed in a
few iterations and also the swamping e@ect disappears.

In this example, the outliers could be identi4ed because they have larger variability
compared to the good data. Let us analyse what happens if the cluster of 20 “bad”
data is generated from a bivariate normal with the same mean as before but now the
standard deviation is 0:2I . The data in Table 3 have maintained the same variability
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Table 3
Rousseeuw-type modi4ed data

x 2.74 2.24 2.61 1.72 1.23 2.25 1.46 1.88 2.74 2.28
y 5.05 3.84 4.73 4.04 2.89 4.09 3.61 3.94 4.68 3.75

x 2.58 3.71 3.89 1.96 1.01 2.76 2.10 1.59 3.23 1.39
y 4.32 5.88 6.10 3.89 3.04 4.58 4.27 3.66 5.33 3.61

x 1.24 1.71 2.94 1.09 3.29 2.21 2.32 1.27 1.87 2.28
y 3.31 3.38 5.02 2.87 5.14 4.22 4.39 3.03 4.15 4.22

x 6.89 7.17 6.95 6.85 6.91 6.87 6.95 7.11 6.78 7.07
y 2.07 2.12 2.17 2.35 1.93 1.97 2.12 2.19 1.77 1.88

x 7.22 7.02 7.14 6.98 7.40 7.18 6.63 7.00 6.63 7.20
y 2.00 1.50 2.23 1.79 2.23 1.84 2.12 2.16 1.96 2.11

Fig. 7. Rousseeuw modi4ed data, true regression line, LS estimate, LMS estimate, AGSA estimate.

for the good points and the cluster of outliers. Fig. 7 shows the data, the true line
y=2+x, the least-squares line (LS), the least median of square line (LMS) computed
from 105 replications, and the line obtained by the AGSA.

Fig. 7 shows that the procedure proposed in this paper is not a@ected by this
change. We observe that the outlier probabilities in the 4rst stage do not allow us
to identify the outliers and the nonnull eigenvalues of the covariance matrix are
now .1 = 2:2 and .2 = 0:77. In the 4rst eigenvalues the results are as before and
again the outliers are identi4ed in the third stage and we obtain a robust regression
estimation. Note that the bad performance of LMS does not depend on the number
of replications because the median of the squared residuals is 0.0992 for the true
line, 0.0959 for our procedure, and 0.0622 for the LMS regression line.

5. Concluding remarks

The Bayesian procedure for outlier detection in linear models presented in this
paper combines a sequential learning procedure for Gibbs sampling with the infor-
mation from an estimate of the covariance matrix of the classi4cation variables. The
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eigenvectors associated to the nonzero eigenvalues of this matrix provide information
about which observations are outlier candidates. The procedure can be used automat-
ically and includes: (1) a criterion for initial conditions selection without any prior
information; and (2) a method used for grouping data based on the covariance ma-
trix. Its application to some of the most frequently used examples in multiple outlier
detection shows that it is able to unmask outliers in samples where other methods
fail.

We have assumed k as known but the procedure can be easily extended by: (a)
assuming k unknown and introducing a prior distribution over its possible values,
or (b) considering �1 = � and �2 = k�, with �1 ¡�2 (to avoid label-switching). In
this case we should assume proper prior distributions, as the conjugate priors, to
avoid improper posterior distributions. Other simple possibility is to do a sensitivity
analysis changing the value of k. We have found that in real datasets the results are
fairly robust to a sensible value of k in the range (5; 15).

There are other procedures which use the eigenstructure of some matrix in order
to identify outliers avoiding the masking problem (see, for instance, Jorgensen, 1992;
Peña and Yohai, 1995). Our procedure has the advantage of using the covariance
matrix of the identifying variables, which has a clear justi4cation as indicated in
Section 2.2.
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