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S

This paper generalises four types of disturbance commonly used in univariate time series
analysis to the multivariate case, highlights the differences between univariate and multi-
variate outliers, and investigates dynamic effects of a multivariate outlier on individual
components. The effect of a multivariate outlier depends not only on its size and the
underlying model, but also on the interaction between the size and the dynamic structure
of the model. The latter factor does not appear in the univariate case. A multivariate
outlier can introduce various types of outlier for the marginal component models. By
comparing and contrasting results of univariate and multivariate outlier detections, one
can gain insights into the characteristics of an outlier. We use real examples to demonstrate
the proposed analysis.

Some key words: Additive outlier; Innovational outlier; Level shift; Temporary change.

1. I

In the time series literature, outlier detection plays an important role in modelling,
inference and even data processing because outliers can lead to model misspecification,
biased parameter estimation and poor forecasts. As a specific example, outlier detection
has become a key feature in recent advances in seasonal adjustment and in automatic,
time series model identification; see the new adjustment procedure -12  of Findley
et al. (1998), which is used by the U.S. Government, and the  and  programs,
which were recently adopted by the European Union and which are described in working
papers of the European University Institute, Florence, by V. Gomez and A. Maravall. In
an extension of the work of Fox (1972), four types of outlier have been proposed for
univariate time series analysis. They are additive outliers, innovational outliers, level shifts
and temporary changes. These four types of outlier affect an observed time series and its
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residual process differently; see Chang, Tiao & Chen (1988), Chen & Liu (1993), Tsay
(1988) and the references therein. Several methods are available to detect outliers; see
McCulloch & Tsay (1994) for a Bayesian approach and Chen & Liu (1993) and the
references therein for non-Bayesian methods.

However, most outlier studies in time series analysis focus on a single series. A common
practice for handling outliers in a multivariate process is to apply univariate techniques
to the component series to remove outlier effects, then treat the adjusted series as outlier-
free and model them jointly. This procedure encounters several difficulties. First, in a
multivariate process, an outlier of a component may be caused by an outlier in the other
components. Overlooking such a possibility can easily lead to overspecification of the
number of outliers. Secondly, an outlier of moderate size affecting all the components may
be unnoticed in the univariate analyses because univariate methods fail to combine infor-
mation about the outlier among the component series. This outlier will be more easily
detected in multivariate analysis. Thirdly, univariate detection procedures often use inferior
estimation, because the joint dynamics of the series are not properly taken into account.

Pankratz (1993) considers additive and innovational outliers in a dynamic regression
model with a single input and a single output. He classifies outliers in the input series as
passed and non-passed outliers and uses a weighted average of least squares estimators
to estimate non-passed outliers. The approach becomes complicated when there are
multiple input or multiple output series.

In this paper we study outliers directly under a multivariate framework and analyse
the effects of a multivariate outlier on the joint and marginal models. By comparing and
contrasting results of univariate and multivariate detection methods, we can gain insight
into the characteristics of an outlier. We shall demonstrate this later by a real example.

The paper is organised as follows. We generalise the four types of outlier to the multi-
variate case in § 2 and briefly discuss the effects of multivariate outliers on the joint and
marginal models. The effects depend not only on the outlier size and the model, but also
on the interaction between the two. In § 3 we present an iterative procedure for estimating
multivariate outliers based on two test statistics. The first test statistic is a joint statistic
that combines information across components, and the second test statistic is marginal
and uses information contained in an individual component. In § 4 we use simulation to
obtain finite-sample critical values and power of the test statistics. Section 5 contains two
real examples.

2. O     

2·1. Preliminaries

Let x
t
= (x

1t
, . . . , x

kt
)∞ be a k-dimensional time series that follows a vector autoregressive

integrated moving-average, , model

W (B)x
t
=c+H(B)e

t
, (1)

where

W (B)=I−W1B− . . .−W
p
Bp, H(B)=I−H1B− . . .−H

q
Bq

are k×k matrix polynomials of finite degrees p and q, B is the backshift operator such
that Bx

t
=x

t−1
, c is a k-dimensional constant vector, and {e

t
= (e

1t
, . . . , e

kt
)∞} is a sequence

of independent and identically distributed Gaussian random vectors with zero mean and
positive-definite covariance matrix S. We assume that W (B) and H(B) are left coprime and
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that all of the zeros of the determinants |W (B) | and |H(B) | are on or outside the unit circle.
In addition, if |W (z) |=0 for some |z |=1, we assume that the series x

t
starts at a fixed

time point t
0
with fixed initial values and initial innovations. The series x

t
is asymptotically

stationary if |W (z) |N0 for all |z |=1 and is unit-root nonstationary if |W (1) |=0. Similarly,
x
t
is invertible if |H(z) |N0 for all |z |=1 and is non-invertible otherwise; see Li & Tsay

(1998) for further information. In practice, the unit-root nonstationary case is of major
interest.

For the vector  model in (1), define the autoregressive representation as

P(B)x
t
=c0+e

t
, (2)

where c0={H(1)}−1c if x
t
is invertible and is a function of t, c, H

i
, initial values and initial

innovations if x
t
is non-invertible,

P(B)=I− ∑
2

i=1
P
i
Bi={H(B)}−1W (B),

and it is understood that y
t
=0 if t<t0 , where t0 is the starting time point of the series.

Also, define the moving-average representation as x
t
=c*+Y (B)e

t
, where

Y(B)=I+ ∑
2

i=1
Y
i
Bi={W (B)}−1H(B),

and c*={W(1)}−1c=E(x
t
) if x

t
is stationary and is a function of t, c, W

i
, initial values

and initial innovations if x
t
is unit-root nonstationary. Obviously, we have P (B)Y(B)=

Y (B)P(B)=I, P(1)c*=c0 and Y (1)c0=c* .
Let j(h)

t
be the indicator variable for time index h, that is j(h)

h
=1 and j(h)

t
=0 if tNh.

Denote the observed time series by y
t
= (y

1t
, . . . , y

kt
)∞, and let v=(v1 , . . . , v

k
)∞ be the size

of the initial impact of an outlier on the series x
t
. The four types of univariate outlier can

be generalised to the multivariate case in a direct manner:

y
t
=x

t
+a(B)vj(h)

t
, (3)

where a(B)=Y(B) for a multivariate innovational outlier, a(B)=I for a multivariate addi-
tive outlier, a(B)=(1−B)−1I for a multivariate level shift, and a(B)={D(d )}−1 for a
multivariate temporary change, where D(d ) is a k×k diagonal matrix with diagonal
elements {(1−d1B), . . . , (1−d

k
B)} and 0<d

i
<1. For simplicity, we shall assume that

d1= . . .=d
k
=d.

2·2. EVects of multivariate outliers

The effects of multivariate outliers in (3) are in general similar to those of the univariate
case, but substantial differences exist in some cases. For illustration, consider the case of
a multivariate innovational outlier. Suppose that the true model is x

t
= (I−H1B)e

t
with

|H1 |=0. This vector  (1) model can occur in practice, especially when the dimension k
is large and many of the elements in H1 are zeros. If a multivariate innovational outlier
occurs at time h with size v belonging to the right null space of H1 , then, as H1v=0, the
outlier only affects a single observation at time h, and hence it is equivalent to a multi-
variate additive outlier. For higher-order models, the differences between multivariate and
univariate cases can be more substantial.

Assume next that the model of x
t
is known. Define a filtered series {a

t
} by

a
t
=y

t
− ∑

p

i=1
W
i
y
t−i
−c+ ∑

q

j=1
H
j
a
t−j

(t=t
0
, t
0
+1, . . . ),
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where y
t
=x

t
and a

t
=e

t
for t<t0 . By definition, if there exists no outlier, then a

t
=e

t
. In

the presence of outliers, a
t
Ne

t
for some time points. Multiplying equation (3) on the left

by P(B) and subtracting c0 from both sides of the equation, we have

a
t
=e

t
+P (B)a(B)vj(h)

t
. (4)

In the univariate case the effect of an outlier on the filtered series depends only on
P(B)a(B). However, in the multivariate case the effect also depends on the interaction
between P (B)a(B) and v. Again, we shall illustrate the situation by considering a simple,
but important, model.

Suppose that x
t
follows a unit-root nonstationary vector  ( p) model, which is com-

monly used in macro-economic applications, and that the outlier is a multivariate level
shift at time t=h. In this case, P(B)=W (B) in (1) and a(B)= (1−B)−1I. Equation (4)
then becomes a

t
=e

t
+P*(B)vj(h)

t
, where the coefficient matrices P*

i
of P*(B) are P*

i
=

Wi
j=1

W
j
−I for i=1, . . . , p and P*

i
=P

p
for i>p. In particular, we have P*

p
=−W(1),

which satisfies |W (1) |=0 under the unit-root assumption. If W (1)=0, then all component
series of x

t
are unit-root nonstationary, i.e. there is no cointegration, and the multivariate

level shift only affects a
t
for t=h, . . . , h+p−1. This is similar to the univariate case. If

W (1)N0, then there is cointegration in x
t
and we have W (1)=−cb, where c and b are

k×s and s×k matrices and s is the rank of W (1). Let b
)

be a k×(k−s) full-rank
orthogonal matrix of b such that bb

)
=0. The effect of the multivariate level shift on a

t
then depends on v as follows.

(i) If v is a linear combination of columns of b
)
, then P*

i
v=−W(1)v=0 for all i
p.

The multivariate level shift only affects a
t
for t=h, . . . , h+p−1. This is similar to the

univariate case with a unit root.
(ii ) If v is not a linear combination of columns of b

)
, then W (1)vN0 and hence

P*
i

vN0 for i
p. The multivariate level shift then affects all a
t
for t
h. Consequently,

the unit roots do not affect the impact of the multivariate level shift on a
t
, and the outlier

effect is very different from that of the univariate case.

2·3. Implications for marginal models

From the definitions, a multivariate additive outlier or level shift or temporary change
for x

t
is also an additive outlier or level shift or temporary change for the component

series x
it

provided that v
i
N0. However, a multivariate innovational outlier can introduce

different configurations for the marginal models of individual components. The impli-
cations depend on the vector model in (1), the outlier size v and the interaction between
v and the model. We discuss two special cases.

For a vector moving-average model, a multivariate innovational outlier may introduce
a univariate additive or innovational outlier or a patch of outliers for the marginal models.
For illustration, consider a simple bivariate  (1) model with a multivariate innovational
outlier:

Cy1ty
2t
D=C1−H

11
B −H

12
B

−H
21

B 1−H
22

BD ACe1te
2t
D+Cv1

v
2
D j(h)t B .

The marginal model for x
1t

is a univariate  (1) model, x
1t
=(1−hB)e

1t
, say, where e

1t
is a white noise sequence with mean zero and variance s2

e
and the parameters h and s2

e
are determined by the relationships

(1+H2
11

)s
11
+H2

12
s
22
+2H

11
H
12

s
12
=(1+h2 )s2

e
, −H

11
s
11
−H

12
s
12
=−hs2

e
,
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where s
ij

is the (i, j )th element of cov(e
t
). The marginal model for the observed series y

1t
is then

y
1t
= (1−hB)e

1t
+v

1
j(h)
t
− (H

11
v
1
+H

12
v
2
)j(h)
t−1

, (5)

which may lead to several scenarios as follows.
(i) If H11v1+H12v2=0, the model in (5) reduces to

y
1t
= (1−hB)e

1t
+v

1
j(h)
t
=x

1t
+v

1
j(h)
t

,

and the outlier becomes a univariate additive outlier at time h.
(ii ) If H11v1+H12v2=hv1 , the univariate model for y

1t
becomes

y
1t
= (1−hB)(e

1t
+v1j(h)

t
),

and hence the outlier is a univariate innovational outlier.
(iii ) The parameter v2 in the last term of the right-hand side of equation (5) may

assume values for which the outlier effect on y
1t

cannot be written as (1−hB)v
1
j(h)
t

. In
this case, the multivariate innovational outlier introduces two consecutive outliers at time
indices h and h+1 for the marginal model of y

1t
.

Consider next a bivariate  (1) model with a multivariate innovational outlier. The
observed series becomes

C1−W
11

B −W
12

B

−W
21

B 1−W
22

BD Cy1ty
2t
D=Cv1

v
2
D j(h)t +Ce1te

2t
D .

Pre-multiplying the model by the adjoint matrix of the autoregressive matrix polynomial
and after some algebra, one can easily obtain a univariate marginal model for each
component. For instance, we have

y
1t
=x

1t
+

{v
1
+ (W

12
v
2
−W

22
v
1
)B}j(h)

t
1−g

1
B−g

2
B2

,

where g1=W11+W22 , g2=|W1 |, x
1t

follows the  (2, 1) model

(1−g1B−g2B2)x
1t
= (1−h

1
B)e

1t
,

with h1 and var (e
1t

) determined by parameters of the vector (1) model, and {e
1t

} is a
white noise series. The impact of the multivariate innovational outlier on x

1t
can appear

in several forms:
(a) if v1+ (W12v2−W22v1 )B=v1(1−h1B), then x

1t
has an innovational outlier at time

index h;
(b) if {v1+ (W12v2−W22v1)B}/(1−g1B−g2B2 )=v1 , then x

1t
has an additive outlier

at time index h;
(c) if {v1+ (W12v2−W22v1 )B}/(1−g1B−g2B2 )=v1/(1−gB), for some 0<g<1,

then x
1t

has a temporary change at time index h.
In general, the disturbance becomes a special case of the intervention of Box & Tiao (1975).

In summary, a multivariate innovational outlier may introduce various outlier con-
figurations for the component series. In some cases, it leads to a patch of outliers in the
marginal component models with patch length determined by various factors. This result
can help explain the empirical finding that univariate outlier detection often identifies
consecutive outliers; see Example 1 of § 5.

The results of this subsection demonstrate that it is easier and more fruitful to study
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outliers in a multivariate framework. In addition, a vector series, when considered jointly,
contains more information about an outlier than does a univariate series. Consider the
case of a bivariate system (x

1t
, x

2t
) in which x

1t
is the input and x

2t
the output. Suppose

an additive outlier is detected at time h in the univariate analysis of the input series. We
cannot tell from the analysis whether the outlier was due to (I) a recording or measurement
error or (II) an intervention that really changed the value of the series at time index h.
However, if the multivariate analysis also shows significant outlier effects in the output
series at the same time index, then it is more likely that the additive outlier is caused by
an intervention that affects both series. On the other hand, if the multivariate analysis
fails to show any significant outlier effect in the output series at time index h, then the
chance of a recording error increases, because the analysis shows that the output series is
consistent with the outlier-adjusted input series; see Example 2 of § 5 for an illustration.

3. A  

In practice, the number, locations and types of outliers are unknown a priori, and we
use an iterative procedure similar to that of the univariate case to detect multivariate
outliers. Assuming no outlier at the very beginning, we build a multivariate  model
for the series under study and let a@

t
be the estimated residuals and PC

i
the estimated

coefficients of the autoregressive representation. Then at each time point the effect of each
type of outlier can be estimated as follows. For a multivariate innovational outlier at time
index h, all information about the outlier is contained in a@

h
, and we estimate the outlier

size by using v@
I,h
=a@

h
, where the subscript I indicates innovational outlier. For the other

types of outlier, the same estimation idea applies, and we shall give details for the case of
a multivariate additive outlier only. In this case we have

a@
t
=AI− ∑2

i=1
PC
i
BiB j(h)t v+e

t
=Aj(h)t − ∑2

i=1
PC
i
j(h)
t−iB v+e

t
,

where e
t
~N(0, S), and the estimator of v is

v@
A,h
=−A ∑n−h

i=0
PC ∞
i
S−1PC

iB−1 ∑n−h
i=0

PC ∞
i
S−1a@

h+i
(P

0
=−I ),

which can readily be interpreted as a generalised least squares estimator, as in the context
of multivariate seemingly unrelated regression model estimation. In addition, the covari-
ance matrix of the estimator is S

A,h
= (Wn−h

i=0
PC ∞
i
S−1PC

i
)−1.

To test the significance of a multivariate outlier at time index h, we consider the null
hypothesis H

0
: v=0 versus the alternative hypothesis H

a
: vN0. Two test statistics are

used. The first is

J
i,h
=v@ ∞

i,h
S−1
i,h

v@
i,h

,

where i=I, A, L or T , depending on the type of outlier: innovational, additive, level shift
or temporary change. This statistic treats components of v jointly. For a fixed h, and
assuming that the model is known, J

i,h
is distributed as a chi-squared random variable

with k degrees of freedom under the null hypothesis. The second test statistic is the
maximum z-statistic, in absolute value, of the components of v@

i,h
when S

i,h
is known:

C
i,h
= max

1∏j∏k
|v@
j,i,h
|/√s

j,i,h
,

where v@
j,i,h

and s
j,i,h

are the jth element of v@
i,h

and the ( j, j )th element of S
i,h

respectively.
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We define the overall test statistics as

Jmax(i, hi)=max
h

J
i,h

, Cmax (i, h*i )=max
h

C
i,h

(i=I, A, L , T ), (6)

where h
i
denotes the time index when the maximum of test statistic J

i,h
occurs and h*

i
denotes the time index when the maximum of C

i,h
occurs. Under the null hypothesis of

no outlier in the sample and if we assume that the model of x
t
is known, Jmax(I, hI) is the

maximum of a random sample of size n from a chi-squared distribution with k degrees of
freedom. Thus, the asymptotic distribution of Jmax(I, hI ) can be obtained using the extreme
value distribution. Each of the other three joint test statistics in (6) is the maximum of a
dependent sample from a chi-squared distribution with k degrees of freedom. Their asymp-
totic distributions are therefore more complicated, depending on the serial dependence of
{J
i,h

}. From the estimation of the outlier parameter v, it is seen that the serial correlations
of {J

L,h
}n
h=1

are stronger than those of {J
i,h

} for i=I, A and T . This is because of the
nondecaying weights induced by the operator 1/(1−B) so that v@

L,h
contains all of the

filtered values a@
t
for t
h. Consequently, the asymptotic distribution of Jmax(L , h

L
) is more

concentrated than those of the other three joint test statistics. The degree of concentration
depends on the cumulative p-weights in equation (2). Therefore, the critical values of
Jmax(L , h

L
) are in general smaller than those of the other joint test statistics.

For the component test statistics Cmax (i, h*i ), the critical values should be close to those
commonly used in the univariate outlier detection provided that k is not too large, because
these statistics are based on individual components. The only difference in the multivariate
case is that the maximisation is evaluated across the k components as well as over the
time indices. As with the joint test statistics, asymptotic distributions of Cmax (i, h*i ) also
depend on the serial correlations of {C

i,h
}. In practice, the true model is unknown, the

above distributional properties are only approximations, and we use simulation to generate
finite sample critical values of the two test statistics.

As in the univariate case, if a single joint statistic Jmax(i, h0) is significant at time index
h0 , we identify a multivariate outlier of type i at h0 , where i=I, A, L , T . In the case of
multiple significant joint test statistics, we identify the outlier type based on the test that
has the smallest empirical p-value. For example, if Jmax(A, h

A
) has the smallest p-value at

time index h0 and the p-value is smaller than 0·05, then we identify an additive outlier at
time index h0 at the 5% significance level. When all of the four joint statistics are non-
significant at a given level, we use the component statistics Cmax(i, h*i ) to check for
additional outliers. This step ensures that no component outlier is overlooked. In some
cases, the estimated outlier parameter v@ may also suggest that the identified outlier only
affects some of the components.

Once an outlier is identified, its impact on the underlying time series is removed, using
the results of § 2. The adjusted series is treated as a new dataset and the detecting procedure
is iterated. We terminate the detection procedure when no significant outlier is detected.
Then we recommend a joint estimation of the model parameters and detected outliers. If
some outlier parameters are found to be nonsignificant in this joint estimation, they are
deleted. The joint estimation is repeated until all the detected outliers are significant at
the given level.

Some remarks on the proposed procedure are in order. First, as in the univariate case,
a major contribution of the procedure is to identify data points that need further attention.
If the percentage of outliers exceeds substantially the significance level used in the detec-
tion, then the entertained model may be inadequate and should be changed. For instance,
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a variance change or existence of conditional heteroscedasticity, which is not considered
in this paper, may lead to a large number of outliers and one should consider such a
model if necessary. Secondly, the proposed procedure detects a single outlier in an iteration
to avoid overspecification of the number of outliers. Thirdly, when multiple outliers exist,
the proposed procedure may encounter masking or smearing effects of the outliers. The
final joint estimation of the proposed procedure is designed to reduce the chance of
misidentification and the masking or smearing effects of multiple outliers. Fourthly, it
could happen that an outlier affects different components differently in a vector time series,
and this possibility is allowed in the proposed procedure. For instance, a strike can appear
as an additive outlier on a production series but as a level shift on a sales series if it
permanently affects the firm’s market share. In this case at the time point of strike we
may detect first a multivariate additive outlier that affects primarily the first component.
We may also identify a multivariate level shift at the same time point in a subsequent
iteration with a significant outlier parameter in the second component. Fifthly, some
refinements of the proposed procedure are possible. For example, under the current pro-
cedure an identified outlier is assumed to have effects on all components of a time series
and the estimated outlier effect v@ is used to remove outlier effects. It might be better to
adjust only those components which have a significant t ratio in v@

i
. For simplicity we do

not adopt such a procedure.
Finally, instead of considering the four types of outlier separately, it is tempting to use

a multivariate regression to detect jointly the existence of an outlier at a given time index
h. The existence of an outlier at time index h can then be detected by testing jointly all
v
i
=0. However, such an approach encounters serious multicollinearity, or identifiability,

problems. First, as discussed in § 2, the marginal effect of a multivariate outlier may be
equivalent to that of another type of outlier. In this case, the corresponding components
in v

i
are not identifiable. Secondly, the interaction between outlier size and the model

can also result in multicollinearity. Thirdly, there exists insufficient observations to esti-
mate all v

i
when h is close to the end of the data span. Fourthly, the multivariate model

structure can also lead to multicollinearity in outlier parameters. For instance, as discussed
in Tiao & Tsay (1989), some linear combination of the component series may become
white noise for which innovational outlier and additive outlier are equivalent. Such a
linear combination leads to multicollinearity in the above multivariate regression.

4. S 

In this section we investigate finite-sample critical values and power of the test statistics
in (6) via simulation. We employ two vector  (1) and (6) models to obtain empirical
quantiles of the test statistics for k=2, 3 and for sample sizes n=100, 200 and 400. The
two vector  (1) models are in the form x

t
=Wx

t−1
+e

t
, with parameters given by

W=C 0·2 0·3

−0·6 1·1D , S=C1·0 0·2

0·2 1·0D , W=C 0·2 0·3 0·0

−0·6 1·1 0·0

0·2 0·3 0·6D , S=C1·0 0·2 0·2

0·2 1·0 0·2

0·2 0·2 1·0D .
(7)

As a result of the normalisation by the matrix S−D, the proposed detection statistics in (6)
are scale-invariant. Therefore, the choice of covariance matrix is not critical in the simu-
lation. The two coefficient matrices used in the simulation have eigenvalues (0·5, 0·8) and
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(0·5, 0·6, 0·8) respectively. We chose these eigenvalues based on the results of Chang et al.
(1988), who show that for univariate  (1) models outlier effects on parameter estimation
are larger when the coefficient is around 0·6.

The two vector (6) models are obtained as follows. For the bivariate case, we use
the vector (6) model fitted to the gas-furnace series of Box, Jenkins & Reinsel (1994,
p. 419); see also Example 1 of § 5. For the trivariate case, we add a third component that
is independent of the bivariate model and follows the model

(1+0·78B+0·57B2+0·30B3+0·20B4+0·15B5+0·03B6)x
3t
=e

3t
,

with s33=0·05.
For a given model and sample size n, we generate 10 000 realisations. For each realis-

ation, we estimate a vector autoregressive model with proper order by ordinary least
squares, obtain the residuals and SC , and compute the test statistics in (6) using the esti-
mated parameters. Tables 1 and 2 provide some empirical quantiles for the joint and
component test statistics under the null hypothesis of no outlier in the data. From Tables 1
and 2, we make the following observations. First, as expected, empirical quantiles of
Jmax(L , h

L
) are much smaller than those of the other three joint test statistics. This is

Table 1. Simulation study. Empirical quantiles of the Jmax(i, hi ) statistics in (6) based on
10 000 realisations. T he models used are given in § 4

Sample Probability
size Test 50% 90% 95% 97·5% 99% 50% 90% 95% 97·5% 99%

Vector  (1) Vector  (6)

Bivariate case
100 Jmax(I, hI ) 9·74 13·03 14·35 15·60 17·34 9·76 13·08 14·43 15·61 17·23

Jmax(A, h
A
) 9·70 13·07 14·32 15·57 16·96 9·74 13·63 15·08 16·63 18·59

Jmax(L , h
L
) 7·61 11·13 12·37 13·50 14·82 6·31 9·33 10·44 11·63 13·30

Jmax(T , h
T
) 9·58 12·95 14·27 15·43 17·05 9·33 12·92 14·34 15·65 17·58

200 Jmax(I, hI ) 11·20 14·66 16·01 17·47 19·06 10·80 14·24 15·54 16·82 18·41

Jmax(A, h
A
) 11·13 14·66 15·95 17·37 19·18 10·70 14·57 16·08 17·70 19·38

Jmax(L , h
L
) 8·37 12·18 13·49 14·81 16·40 6·20 9·15 10·36 11·53 13·17

Jmax(T , h
T
) 11·04 14·55 15·87 17·19 18·67 10·12 13·72 15·14 16·47 18·17

400 Jmax(I, hI ) 12·60 16·19 17·63 19·06 20·81 11·79 15·12 16·47 17·75 19·54
Jmax(A, h

A
) 12·56 16·21 17·64 18·86 20·81 11·47 15·26 16·71 18·25 20·16

Jmax(L , h
L
) 9·62 13·48 14·88 16·20 18·05 6·37 9·16 10·25 11·31 13·05

Jmax(T , h
T
) 12·57 16·13 17·53 18·96 20·83 10·58 14·18 15·53 17·02 18·80

Trivariate case
100 Jmax(I, hI ) 15·55 25·00 29·56 34·23 41·43 14·43 23·75 28·10 32·50 38·82

Jmax(A, h
A
) 15·50 25·08 20·49 34·00 41·81 14·66 25·10 30·14 34·98 42·23

Jmax(L , h
L
) 10·64 18·09 21·56 25·46 32·06 8·62 15·94 19·85 24·39 27·75

Jmax(T , h
T
) 15·48 25·14 30·05 34·81 42·18 14·03 24·14 29·24 36·61 41·12

200 Jmax(I, hI ) 19·20 28·45 32·10 36·72 42·10 16·44 26·94 31·85 36·77 43·16

Jmax(A, h
A
) 19·10 28·90 33·04 37·28 43·02 16·40 27·96 33·31 38·90 45·49

Jmax(L , h
L
) 12·12 19·99 23·24 26·43 31·51 8·71 16·22 20·28 24·13 29·81

Jmax(T , h
T
) 19·12 28·86 32·85 37·18 43·29 15·56 27·18 32·48 37·68 44·88

400 Jmax(I, hI ) 22·86 32·24 36·12 40·04 45·09 18·78 30·54 35·69 40·95 47·32
Jmax(A, h

A
) 22·96 32·66 36·49 40·32 45·77 18·11 30·70 36·11 41·61 48·89

Jmax(L , h
L
) 14·50 22·89 26·39 30·27 34·56 9·20 17·16 20·90 24·68 29·50

Jmax(T , h
T
) 23·10 32·79 36·67 40·67 45·47 17·11 30·01 35·08 40·66 48·01
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particularly so for the vector  (6) models, because the models have large cumulative p-
weights. Secondly, quantiles of Jmax(i, hi) for i=I, A, T are closer to each other and are
less sensitive to the autoregressive order, implying that a common critical value can be
used for these three test statistics. Thirdly, empirical quantiles of the component statistics
Cmax (i, h*i ) are less affected by the autoregressive order, but seem more variable when the
dimension increases. The quantiles of Cmax (L , h*

L
) are also smaller than those of the other

component statistics for k=2, especially for the vector  (6) models. Our simulation
suggests that, except for level shift, 3·75 may serve as an approximate critical value at the
5% significance level for all sample sizes used in the bivariate study. This critical value is
larger than the 3·0 or 3·5 used in univariate outlier detection; see Chen & Liu (1993) and
the references therein. For the trivariate case, the variation in the empirical 95th percentiles
of Cmax (i, h*i ) is relatively large, indicating that the critical values of Cmax (i, h*i ) depend on
the dimension of x

t
and should be adjusted accordingly in practice. In summary, the

empirical critical values of the joint test statistics, especially Jmax (L , h
L
), depend on sample

size, dimension and the model structure. Those of component test statistics Cmax(i, hi) are
more stable. Theory and properties of these test statistics need further investigation. In
practice, one can use simulation to obtain finite-sample critical values if necessary.

Table 2. Simulation study. Empirical quantiles of the statistics Cmax(i, h*i ) in (6) based on
10 000 realisations. T he models used are given in § 4

Sample Probability
size Test 50% 90% 95% 97·5% 99% 50% 90% 95% 97·5% 99%

Vector  (1) Vector (6)

Bivariate case
100 Cmax(I, h*I ) 2·89 3·39 3·58 3·74 3·96 2·89 3·37 3·54 3·69 3·87

Cmax(A, h*
A
) 2·89 3·39 3·57 3·73 3·94 2·99 3·58 3·78 3·98 4·22

Cmax(L , h*
L
) 2·61 3·18 3·35 3·52 3·71 2·41 2·93 3·10 3·26 3·50

Cmax(T , h*
T
) 2·87 3·37 3·55 3·74 3·95 2·76 3·29 3·47 3·64 3·86

200 Cmax(I, h*I ) 3·11 3·60 3·78 3·95 4·15 3·05 3·52 3·69 3·84 4·03

Cmax(A, h*
A
) 3·11 3·60 3·78 3·93 4·15 3·16 3·74 3·92 4·12 4·34

Cmax(L , h*
L
) 2·74 3·33 3·50 3·68 3·88 2·38 2·89 3·06 3·22 3·46

Cmax(T , h*
T
) 3·09 3·58 3·76 3·93 4·11 2·90 3·40 3·58 3·73 3·96

400 Cmax(I, h*I ) 3·32 3·80 3·96 4·13 4·35 3·20 3·65 3·81 3·96 4·17
Cmax(A, h*

A
) 3·31 3·80 3·97 4·12 4·32 3·30 3·83 4·01 4·21 4·43

Cmax(L , h*
L
) 2·94 3·51 3·69 3·86 4·06 2·39 2·84 3·00 3·16 3·34

Cmax(T , h*
T
) 3·31 3·78 3·95 4·12 4·34 3·00 3·48 3·66 3·84 4·05

Trivariate case
100 Cmax(I, h*I ) 3·01 3·48 3·64 3·79 3·96 3·03 3·50 3·67 3·84 4·03

Cmax(A, h*
A
) 3·24 3·93 4·18 4·44 4·74 3·35 4·28 4·66 5·04 5·52

Cmax(L , h*
L
) 2·77 3·54 3·83 4·11 4·52 2·66 3·61 4·05 4·44 4·97

Cmax(T , h*
T
) 3·23 3·94 4·18 4·45 4·78 3·18 4·15 4·54 4·91 5·41

200 Cmax(I, h*I ) 3·22 3·69 3·85 4·02 4·20 3·19 3·66 3·82 3·98 4·15

Cmax(A, h*
A
) 3·56 4·24 4·50 4·72 4·97 3·56 4·45 4·81 5·20 5·68

Cmax(L , h*
L
) 2·90 3·67 3·93 4·18 4·49 2·64 3·63 4·05 4·40 4·87

Cmax(T , h*
T
) 3·55 4·28 4·52 4·77 5·06 3·36 4·35 4·78 5·16 5·63

400 Cmax(I, h*I ) 3·43 3·90 4·07 4·21 4·38 3·35 3·81 3·97 4·14 4·32
Cmax(A, h*

A
) 3·86 4·56 4·80 5·03 5·34 3·76 4·72 5·07 5·40 5·81

Cmax(L , h*
L
) 3·08 3·84 4·13 4·39 4·67 2·63 3·62 3·98 4·35 4·79

Cmax(T , h*
T
) 3·87 4·64 4·89 5·12 5·41 3·57 4·60 4·97 5·32 5·75
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Next, we use simulation to study the power of the proposed joint test statistics. The
model used in the power study is a bivariate  (1) model with W given in (7). However,
the innovational covariance matrix is modified so that the variance of the individual
innovation is unity and the correlation between innovations is−0·2. The sample size used
is 200. For each realisation, a single outlier is introduced at the time index t=100 with
outlier parameter v= (3·5, 3·5)∞. For each type of outlier, we use the empirical 5% critical
value from Table 1 and tabulate the number of realisations in which the corresponding
test statistic exceeds the critical value. The powers based on 10 000 realisations are 89·1%,
96·9%, 100% and 92·1%, respectively, for multivariate innovational outlier, additive
outlier, level shift and temporary change.

5. A

Example 1. The first example is the well-known gas furnace series of Box et al. (1994,
p. 548). Denote the input gas rate in cubic feet per minute by X

t
and the percentage of

CO2 in outlet gas by Y
t
, both measured in 9-second time intervals. This series is commonly

used in the literature as an example of transfer function models. There are 296 observations.
For comparison, we also employ the univariate and transfer function models of Box et al.
(1994, Ch. 11). Using the joint estimation and detection procedure of Chen & Liu (1993)
and a critical value of 3·5, we obtain the models

(1−2·273B+1·923B2−0·618B3 )X
t
=−0·002+a

1t
, s@

1
=0·129 (8)

Y
t
=53·08+

−0·636B3−0·264B4−0·439B5

1−0·570B
X
t
+

1

1−1·511B+0·579B2
a
2t

, s@2=0·195,

(9)

where s@1 and s@2 are the residual standard error of the input and output series respectively,
after outlier adjustment. The detected outliers are given in Table 3. There are 7 and 6
outliers for models (8) and (9) respectively. If the critical value for outlier detection is set
to 3·0, then there are 17 and 10 outliers, respectively, for the two models. A critical value
of 3·5 corresponds approximately to an asymptotic 2·5% significance level. Note that the
two temporary-change outliers at times 113 and 117 in the input series, which show
opposite effects, may suggest a patch of outliers in the period 113–116. Similarly, there
may be a patch of outliers from 265 to 269 in the output series.

Table 3. Example 1. Outliers detected for the gas-furnace series
using a univariate method with critical value 3·5, which is

approximately at the 2·5% level

Input series: gas rate Transfer function for CO2
Time Size t ratio Type Time Size t ratio Type

43 0·770 12·20  199 0·915 6·08 

55 −0·718 −11·38  236 −0·863 −4·42 
91 0·286 4·53  265 1·481 7·59 

113 −0·479 −7·59  266 0·729 3·74 

117 0·248 3·92  267 0·454 4·23 
198 −0·534 −4·15  269 −1·296 −6·33 
262 0·607 4·72 

, additive outlier; , innovational outlier; , level shift; , temporary

change.
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We now turn to multivariate modelling. Using the chi-squared statistic of Tiao & Box
(1981) and the Akaike information criterion, we adopt a bivariate  (6) model for the
series. The first component is the gas rate and the second component is the output CO2
concentration. Applying the proposed detection procedure and, for comparison purposes,
using 2·5% critical values obtained by interpolation from Tables 1 and 2, we summarise
the detection results in Table 4. Twelve outliers are detected by the procedure. Once an
outlier was detected, we removed its effects on the data and re-estimated the bivariate
 (6) model. The estimated outlier parameters v@= (v@ 1 , v@ 2 )∞ of the 12 outliers are given
in Table 5 along with t ratios of the estimates. Note that the detected multivariate tempor-
ary changes at t=43 and 55 introduce large Jmax (A, h

A
) statistics at t=42 and 54. This

is understandable because, for a vector  (6) model, the test statistic J
A,h

involves filtered
values a@

t
for t=h, h+1, . . . , h+6.

Table 4. Example 1. Results of multivariate outlier detection for the gas-furnace
series using a bivariate (6) model and 2·5% critical values. T he number in par-
entheses for joint tests is the corresponding time index whereas those for component

tests are time index and component index

(a) Joint test statistics
Outlier

Iterations Jmax (I, hI ) Jmax (A, h
A
) Jmax (L , h

L
) Jmax (T , h

T
) Time Type

1 39·23 (265) 35·70 (42) 27·84 (199) 41·05 (43) 43 

2 38·54 (265) 43·90 (54) 26·22 (199) 46·15 (55) 55 
3 39·29 (265) 27·15 (264) 24·46 (199) 28·09 (264) 265 
4 16·94 (199) 26·27 (113) 24·29 (199) 26·70 (113) 199 

5 16·01 (269) 25·85 (113) 16·56 (113) 26·24 (113) 113 
6 16·34 (262) 16·71 (235) 14·49 (288) 14·44 (261) 288 

7 16·29 (262) 17·56 (235) 13·91 (287) 14·55 (91) 287 
8 16·51 (236) 19·70 (235) 14·78 (236) 16·52 (235) 236 
9 15·81 (262) 14·25 (197) 10·61 (82) 15·19 (91) — —

Crit. 17·29 17·98 11·42 16·73

(b) Component test statistics
Outlier

Iterations Cmax (I, h*I ) Cmax (A, h*
A
) Cmax (L , h*

L
) Cmax (T , h*

T
) Time Type

9 3·95 (262, 1) 3·76 (197, 1) −3·23 (82, 1) 3·85 (91, 1) 82 
10 4·34 (262, 1) 4·09 (91, 1) 3·29 (262, 1) 4·24 (91, 1) 262 
11 3·69 (198, 1) 3·96 (91, 1) <3·19 4·10 (91, 1) 91 

12 3·80 (198, 1) 4·07 (197, 1) <3·19 4·11 (197, 1) 197 
13 3·26 (266, 2) −3·25 (116, 1) <3·19 3·45 (117, 1) — —

Crit. 3·90 4·17 3·19 3·79

, multivariate innovational outlier; , multivariate level shift; , multivariate temporary

change; Crit., critical value.

As shown by Tiao & Box (1981), the marginal models of the bivariate (6) model
employed are close to those of equations (8) and (9). Therefore, the comparison of outlier
detection between univariate and multivariate models can be made fairly, and we obtain
some interesting results.

First, the multivariate method detects fewer outliers than the univariate methods. In
addition, the outliers detected by the multivariate method are not a subset of those detected
by univariate methods. For example, the level shifts at t=287 and 288 are not detected
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by the univariate methods. This demonstrates that multivariate joint detection could be
more powerful than univariate methods.

Secondly, the multivariate innovational outlier detected at t=265 clearly highlights the
discussion of § 2·3. Specifically, we observe the following: the t ratios of estimated outlier
parameters in Table 5 show that the outlier occurred simultaneously to both components;
as expected, this multivariate innovational outlier introduces a patch of outliers in the
marginal model of the output series at time indices 266–269; the estimated outlier effect
is negative in the input series and the transfer function model shows a negative relationship
between the input and output series with a delay of 3 time periods, with the consequence
that the outlier effects at time indices 266 and 267 of the output series are positive; as
expected, the patch of outliers disappears under the multivariate framework.

Table 5. Example 1. Estimates of outlier parameters for the gas-furnace series using a
multivariate model

Time Type v@ 1 (t ratio) v@ 2 (t ratio) Time Type v@ 1 (t ratio) v@ 2 (t ratio)

43  0·683 (6·41) −0·019 (−0·11) 55  −0·613 (−6·79) 0·049 (0·27)
265  −0·362 (−3·40) 1·396 (5·86) 199  −0·098 (−1·51) 0·866 (4·93)
113  −0·376 (−5·12) −0·067 (−0·42) 288  0·154 (2·04) 0·587 (3·23)

287  0·130 (1·74) 0·578 (3·28) 236  0·069 (1·17) −0·595 (−3·83)

82  −0·166 (−3·23) 262  0·565 (4·34)
91  0·249 (4·10) 197  0·239 (4·11)

, multivariate innovational outlier: , multivariate level shift; , multivariate temporary change.

Thirdly, highly significant outliers detected by the univariate methods are also detected
by the multivariate method; see the outliers at t=43, 55, 113 and 265. Fourthly, the
classification of outliers is rather consistent between univariate and multivariate methods.
Fifthly, some minor time differences may occur between univariate and multivariate
methods. For example, the univariate innovational outlier at t=198 is shown as a tempor-
ary change at t=197 in the multivariate case. Finally, t ratios in Table 5 show that no
outlier occurred in the output series at t=43 and 55. The significant temporary changes
in the input series at these two time points suggest that the outlier effects are carried over
from the input series to the output series. Consequently, the residuals of the output series
do not contain additional information about these two outlying observations. These two
multivariate temporary changes are referred to as passed outliers in Pankratz (1993).

Young (1974) and Subba Rao & Tong (1974) analysed this dataset and suggested that
the system is time-dependent. We did not consider time-dependent models in this paper.

Example 2. In this example, we consider the U.S. quarterly seasonally adjusted initial
jobless claims and unemployment rate from 1948 to 1993. The initial jobless claims were
divided by 100. Figure 1 shows the time plots of the data, which consist of 184 observations.
Using the same models as in Montgomery et al. (1998) and the joint estimation-detection
procedure of Chen & Liu (1993), we obtain the univariate models

(1−0·30B)(1−0·36B4 )(1−B)y
1t
= (1−0·75B4)a

1t
, s@

1
=0·222,

(1−0·66B)(1−0·27B4 )(1−B)y
2t
= (1−0·81B4)a

2t
, s@

2
=0·271,

where y
1t

and y
2t

are the initial claims and unemployment rate, respectively. The seasonal
parameters in both models are highly significant, even though the data were seasonally
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adjusted. The detected outliers of the two models are given in Table 6. There are 4 and 2
outliers for y

1t
and y

2t
, respectively.
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Fig. 1. Example 2. Time plots of (a) U.S. quarterly initial jobless
claims, divided by 100, and (b) unemployment rate for 1948–1993.

The data were seasonally adjusted.

Table 6. Example 2. Outliers detected for initial jobless
claims and unemployment rates using univariate method with

critical value 3·5

Initial jobless claims Unemployment rates

Time Size t ratio Type Time Size t ratio Type

108 1·137 5·13  109 1·097 4·04 
130 1·493 9·08  140 0·417 4·30 
136 0·999 5·43 

141 −0·971 −5·25 

, additive outlier; , innovational outlier; , level shift; , tempor-
ary change.

Turning to multivariate detection, we employ a bivariate  model of the form

(I−W1B−W2B2 )(I−W4B4)y
t
=c+(I−H4B4)e

t
. (10)

The detection results are summarised in Table 7 based on the 5% empirical critical values
from Table 1 for a vector  (1) model and a sample size of 200. Only three outliers are
detected. The estimated outlier parameters and their t ratios, in parentheses, are

[1·249 (6·16), 0·334 (1·84)], [1·080 (4·35), 0·563 (2·22)], [0·968 (4·14), 0·653 (2·62)]

for the outliers at t=130, 108, 136, respectively. An examination of residual cross-
correlation matrices indicates some minor significant correlations at lag 8, but
these serial correlations disappear when the moving-average part is modified to
(I−H4B4−H8B8)e

t
. The parameter estimates of model (10) before and after outlier
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adjustment are shown in Table 8. The three detected outliers have marked effects on the
seasonal parameters and the residual covariance matrix.

Table 7. Example 2. Results of multivariate outlier detection for the initial jobless
claim and unemployment using a bivariate seasonal  model and 5% critical
values. T he number in parentheses for joint tests is the corresponding time index

whereas those for component tests are time index and component index

(a) Joint test statistics
Outlier

Iterations Jmax (I, hI ) Jmax (A, h
A
) Jmax (L , h

L
) Jmax (T , h

T
) Time Type

1 31·66 (130) 36·35 (130) <13·50 40·33 (130) 130 
2 20·08 (108) <13·50 <13·50 16·65 (141) 108 

3 17·25 (136) <13·50 <13·50 <13·50 136 
4 15·53 (25) <13·50 <13·50 14·05 (141) — —

Crit. 16·01 15·95 13·49 15·87

(b) Component test statistics
Outlier

Iterations Cmax(I, h*I ) Cmax(A, h*
A
) Cmax (L , h*

L
) Cmax (T , h*

T
) Time Type

4 3·59 (25, 2) <3·50 <3·50 3·61 (141, 1) — —

Crit. 3·78 3·78 3·50 3·76

, multivariate innovational outlier; , multivariate temporary change; Crit., critical value.

Table 8. Example 2. Parameter estimates of model (10) before and after multivariate outlier
detection. T he values in parentheses are standard errors

c∞ W1 W2 W4 H4 S

Before outlier adjustment

0·139 1·31 −0·17 −0·25 0·11 0·13 −0·19 0·02 0·17 0·081 0·056
(0·089) (0·10) (0·09) (0·11) (0·07) (0·18) (0·08) (0·22) (0·15)

0·054 0·59 1·16 −0·31 −0·36 0·06 −0·08 −0·07 −0·09 0·056 0·073

(0·086) (0·09) (0·09) (0·11) (0·09) (0·13) (0·21) (0·17) (0·23)

After outlier adjustment

0·331 1·36 −0·22 −0·32 0·15 −0·21 −0·12 −0·55 0·18 0·049 0·036
(0·13) (0·09) (0·07) (0·11) (0·06) (0·16) (0·07) (0·17) (0·12)

0·151 0·65 1·12 −0·34 −0·33 −0·06 −0·28 −0·22 −0·13 0·036 0·060

(0·13) (0·10) (0·08) (0·12) (0·08) (0·15) (0·17) (0·18) (0·20)

Note that the multivariate model identifies only three outliers whereas the univariate
models detect six outliers. In this example, the multivariate outliers form a subset of those
identified by univariate methods. Secondly, the innovational outlier in the unemployment
rate at time t=109 is caused by the innovational outlier in the initial jobless claims at
t=108, because there exists no outlier at t=109 in the multivariate case. This example
clearly demonstrates that an outlier in a component series may be induced by that of
another component, and that detecting outliers separately for each individual component
using a marginal model may result in overspecification of the number of outliers. Thirdly,
the significance of the outlier parameters in both components at t=108 and 136 indicates
that some external disturbances occurred in the U.S. economy at these two time points
that affected both the initial jobless claims and unemployment rate. In other words, the
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impact of these disturbances on the unemployment rate cannot be fully accounted for by
that on the initial claims. These two time points were the fourth quarters of 1974 and
1981, respectively, in which the U.S. economy was in recession as classified by the National
Bureau of Economic Research. Thus, the significance of the positive estimates v@ at these
two periods shows that the economic slow-downs in 1974 and 1981 caused both the initial
jobless claims and unemployment rate to rise. In addition, the estimated effect on unem-
ployment rate, v@ 2 , represents the additional effect of economic slow-down on unemploy-
ment rate beyond that induced by the impact on initial jobless claims. Such information
is not evident if one only uses univariate outlier detection. Finally, the significance of both
components of v@ at t=108 and 136 also indicates a possible joint structural break of the
series at these two points.
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