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SUMMARY

This paper generalises four types of disturbance commonly used in univariate time series
analysis to the multivariate case, highlights the differences between univariate and multi-
variate outliers, and investigates dynamic effects of a multivariate outlier on individual
components. The effect of a multivariate outlier depends not only on its size and the
underlying model, but also on the interaction between the size and the dynamic structure
of the model. The latter factor does not appear in the univariate case. A multivariate
outlier can introduce various types of outlier for the marginal component models. By
comparing and contrasting results of univariate and multivariate outlier detections, one
can gain insights into the characteristics of an outlier. We use real examples to demonstrate
the proposed analysis.

Some key words: Additive outlier; Innovational outlier; Level shift; Temporary change.

1. INTRODUCTION

In the time series literature, outlier detection plays an important role in modelling,
inference and even data processing because outliers can lead to model misspecification,
biased parameter estimation and poor forecasts. As a specific example, outlier detection
has become a key feature in recent advances in seasonal adjustment and in automatic,
time series model identification; see the new adjustment procedure X-12 ARIMA of Findley
et al. (1998), which is used by the U.S. Government, and the SEATS and TRAMO programs,
which were recently adopted by the European Union and which are described in working
papers of the European University Institute, Florence, by V. Gomez and A. Maravall. In
an extension of the work of Fox (1972), four types of outlier have been proposed for
univariate time series analysis. They are additive outliers, innovational outliers, level shifts
and temporary changes. These four types of outlier affect an observed time series and its
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residual process differently; see Chang, Tiao & Chen (1988), Chen & Liu (1993), Tsay
(1988) and the references therein. Several methods are available to detect outliers; see
McCulloch & Tsay (1994) for a Bayesian approach and Chen & Liu (1993) and the
references therein for non-Bayesian methods.

However, most outlier studies in time series analysis focus on a single series. A common
practice for handling outliers in a multivariate process is to apply univariate techniques
to the component series to remove outlier effects, then treat the adjusted series as outlier-
free and model them jointly. This procedure encounters several difficulties. First, in a
multivariate process, an outlier of a component may be caused by an outlier in the other
components. Overlooking such a possibility can easily lead to overspecification of the
number of outliers. Secondly, an outlier of moderate size affecting all the components may
be unnoticed in the univariate analyses because univariate methods fail to combine infor-
mation about the outlier among the component series. This outlier will be more easily
detected in multivariate analysis. Thirdly, univariate detection procedures often use inferior
estimation, because the joint dynamics of the series are not properly taken into account.

Pankratz (1993) considers additive and innovational outliers in a dynamic regression
model with a single input and a single output. He classifies outliers in the input series as
passed and non-passed outliers and uses a weighted average of least squares estimators
to estimate non-passed outliers. The approach becomes complicated when there are
multiple input or multiple output series.

In this paper we study outliers directly under a multivariate framework and analyse
the effects of a multivariate outlier on the joint and marginal models. By comparing and
contrasting results of univariate and multivariate detection methods, we can gain insight
into the characteristics of an outlier. We shall demonstrate this later by a real example.

The paper is organised as follows. We generalise the four types of outlier to the multi-
variate case in § 2 and briefly discuss the effects of multivariate outliers on the joint and
marginal models. The effects depend not only on the outlier size and the model, but also
on the interaction between the two. In § 3 we present an iterative procedure for estimating
multivariate outliers based on two test statistics. The first test statistic is a joint statistic
that combines information across components, and the second test statistic is marginal
and uses information contained in an individual component. In § 4 we use simulation to
obtain finite-sample critical values and power of the test statistics. Section 5 contains two
real examples.

2. OUTLIERS IN A VECTOR TIME SERIES

2-1. Preliminaries

Let x, = (xq,, . . -, X;,)" be a k-dimensional time series that follows a vector autoregressive
integrated moving-average, ARIMA, model
®(B)x, =c + O(B)g,, (1)
where
®B)=1-®,B—...-®,B?, OB)=1-0,B—...-0,B*

are k x k matrix polynomials of finite degrees p and ¢, B is the backshift operator such
that Bx, = x,_4, ¢ is a k-dimensional constant vector, and {¢, = (&y,, ..., &)} 1S a sequence
of independent and identically distributed Gaussian random vectors with zero mean and
positive-definite covariance matrix X. We assume that ®(B) and ©(B) are left coprime and
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that all of the zeros of the determinants |®(B)| and |®(B)| are on or outside the unit circle.
In addition, if |®(z)| =0 for some |z| =1, we assume that the series x, starts at a fixed
time point t, with fixed initial values and initial innovations. The series x, is asymptotically
stationary if |®(z)| & O for all | z| = 1 and is unit-root nonstationary if |®(1)| = 0. Similarly,
x, is invertible if |®(z)| + 0 for all |z| =1 and is non-invertible otherwise; see Li & Tsay
(1998) for further information. In practice, the unit-root nonstationary case is of major
interest.
For the vector ARIMA model in (1), define the autoregressive representation as

II(B)x, = ¢y + &, (2)

where ¢, = {®(1)} !¢ if x, is invertible and is a function of t, ¢, ®;, initial values and initial
innovations if x, is non-invertible,

I(B)=1— ) II;B'={©(B)} '®(B),
i=1
and it is understood that y, =0 if t <t,, where t, is the starting time point of the series.
Also, define the moving-average representation as x, = ¢, + ‘¥(B)¢,, where

Y(B)=I+ ) ¥,B'={®(B)} 'O(B),
i=1
and ¢, = {®(1)} 'c = E(x,) if x, is stationary and is a function of ¢, ¢, @;, initial values
and initial innovations if x, is unit-root nonstationary. Obviously, we have I1(B)¥(B) =
Y(B)II(B)=1, II(1)c, =co and ¥ (1)co=c,.

Let ¢M be the indicator variable for time index h, that is " =1 and M =0 if t + h.
Denote the observed time series by y, = (Vi - - - » Vie)> and let o = (wy, . . ., ;)" be the size
of the initial impact of an outlier on the series x,. The four types of univariate outlier can
be generalised to the multivariate case in a direct manner:

Ve=x, +a(B)w&", (3)

where o(B) = W(B) for a multivariate innovational outlier, «(B) = I for a multivariate addi-
tive outlier, a(B)=(1— B)~'I for a multivariate level shift, and «(B)= {D(5)} ' for a
multivariate temporary change, where D(d) is a k x k diagonal matrix with diagonal
elements {(1 —0,B),...,(1 —J,B)} and 0 <J; < 1. For simplicity, we shall assume that
0y=...=0,=0.

2-2. Effects of multivariate outliers

The effects of multivariate outliers in (3) are in general similar to those of the univariate
case, but substantial differences exist in some cases. For illustration, consider the case of
a multivariate innovational outlier. Suppose that the true model is x, = (I — ®, B)¢, with
|®,| =0. This vector MA(1) model can occur in practice, especially when the dimension k
is large and many of the elements in @, are zeros. If a multivariate innovational outlier
occurs at time h with size @ belonging to the right null space of ®,, then, as @;w =0, the
outlier only affects a single observation at time h, and hence it is equivalent to a multi-
variate additive outlier. For higher-order models, the differences between multivariate and
univariate cases can be more substantial.

Assume next that the model of x, is known. Define a filtered series {a,} by

p q
a=y— ), Qy_i—c+ Y Oua,_; (t=to, to+1,...),
i=1 =1

= J
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where y, = x, and a, = ¢, for t <t,. By definition, if there exists no outlier, then g, =¢,. In
the presence of outliers, a, & ¢, for some time points. Multiplying equation (3) on the left
by II(B) and subtracting ¢, from both sides of the equation, we have

a, =& + H(B)uB)w". (4)

In the univariate case the effect of an outlier on the filtered series depends only on
I1(B)a(B). However, in the multivariate case the effect also depends on the interaction
between I1(B)x(B) and w. Again, we shall illustrate the situation by considering a simple,
but important, model.

Suppose that x, follows a unit-root nonstationary vector AR(p) model, which is com-
monly used in macro-economic applications, and that the outlier is a multivariate level
shift at time ¢t = h. In this case, I1(B)= ®(B) in (1) and «(B)=(1 — B)"'I. Equation (4)
then becomes a, =¢, + IT*(B)wé™, where the coefficient matrices IT# of IT*(B) are ITF =

io @ —1Ifori=1,...,p and II¥ =11, for i > p. In particular, we have IT} = —®(1),
which satisfies |®(1)| = 0 under the unit-root assumption. If ®(1) =0, then all component
series of x, are unit-root nonstationary, i.e. there is no cointegration, and the multivariate
level shift only affects a, for t =h,..., h+ p— 1. This is similar to the univariate case. If
®(1)+ 0, then there is cointegration in x, and we have ®(1)= —vyf, where y and f are
k x s and s x k matrices and s is the rank of ®(1). Let f, be a k x (k—s) full-rank
orthogonal matrix of f such that g, =0. The effect of the multivariate level shift on a,
then depends on w as follows.

(1) If w is a linear combination of columns of §,, then [T¥w = —®(1)w =0 for all i > p.
The multivariate level shift only affects a, for t =h, ..., h+ p — 1. This is similar to the
univariate case with a unit root.

(i1) If @ is not a linear combination of columns of f,, then ®(1)w +0 and hence
IT¥w #+ 0 for i = p. The multivariate level shift then affects all a, for t = h. Consequently,
the unit roots do not affect the impact of the multivariate level shift on a,, and the outlier
effect is very different from that of the univariate case.

2-3. Implications for marginal models

From the definitions, a multivariate additive outlier or level shift or temporary change
for x, is also an additive outlier or level shift or temporary change for the component
series x;, provided that w; + 0. However, a multivariate innovational outlier can introduce
different configurations for the marginal models of individual components. The impli-
cations depend on the vector model in (1), the outlier size w and the interaction between
o and the model. We discuss two special cases.

For a vector moving-average model, a multivariate innovational outlier may introduce
a univariate additive or innovational outlier or a patch of outliers for the marginal models.
For illustration, consider a simple bivariate MA(1) model with a multivariate innovational

outlier:
- )
Vot —0,B 1-0,B &2t Wy '

The marginal model for x;, is a univariate MA(1) model, x;, = (1 — 6B)ey,, say, where ey,
is a white noise sequence with mean zero and variance ¢2 and the parameters 0 and o2
are determined by the relationships

(1+ ®%1)011 + @%2022 +20,;,0;,0;, =(1+ 02)03, — 041011 — O01, = _605,
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where g;; is the (i, j)th element of cov(e,). The marginal model for the observed series y;,
is then

v =(1 _93)3114‘(915:”')_(@11@1 +®12(92)5;h—)1, (3)

which may lead to several scenarios as follows.
(1) If ®;;w, + O;,w, =0, the model in (5) reduces to

v =(1—0B)ey, + 0, &M = x1, + 0, &P,

and the outlier becomes a univariate additive outlier at time h.
(i) If ®;;04 + Oy, w, = w4, the univariate model for y;, becomes

Vie=(1—0B)(ey, + w1ft(h)),

and hence the outlier is a univariate innovational outlier.

(i) The parameter w, in the last term of the right-hand side of equation (5) may
assume values for which the outlier effect on y;, cannot be written as (1 — 0B)w, (™. In
this case, the multivariate innovational outlier introduces two consecutive outliers at time
indices h and h + 1 for the marginal model of y,,.

Consider next a bivariate AR(1) model with a multivariate innovational outlier. The
observed series becomes

|:1 -®,B —0,B :| |:J’1z:| _ |:CU1:| £ 4 |:81tj|‘
—0 B 1—-0y,B || yy W; €
Pre-multiplying the model by the adjoint matrix of the autoregressive matrix polynomial

and after some algebra, one can easily obtain a univariate marginal model for each
component. For instance, we have

{0y + (@05 — Dpy0;)BFEP
1—-g,B _ngz

Yiu=Xu+

b

where g, = ®,, + ®,,, g, =| D], x;, follows the ARMA (2, 1) model
(1—gB—g,B%)x;,=(1—0,B)ey,,

with 0; and var(e;,) determined by parameters of the vector AR(1) model, and {e;,} is a
white noise series. The impact of the multivariate innovational outlier on Xx;, can appear
in several forms:
(a) if oy + (@, 0, — Dy, w1)B=w,(1 — 0, B), then x,, has an innovational outlier at time
index h;
(b) if {w, + (P, — Dyyw,)B}/(1 — g, B — g,B?) = w,, then x,, has an additive outlier
at time index h;
(©) if {w, + (@0, — Dpy0,)B} (1 —g;B—g,B*) =, /(1 —yB), for some 0<n<1,
then x;, has a temporary change at time index h.
In general, the disturbance becomes a special case of the intervention of Box & Tiao (1975).
In summary, a multivariate innovational outlier may introduce various outlier con-
figurations for the component series. In some cases, it leads to a patch of outliers in the
marginal component models with patch length determined by various factors. This result
can help explain the empirical finding that univariate outlier detection often identifies
consecutive outliers; see Example 1 of § 5.
The results of this subsection demonstrate that it is easier and more fruitful to study
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outliers in a multivariate framework. In addition, a vector series, when considered jointly,
contains more information about an outlier than does a univariate series. Consider the
case of a bivariate system (xy,, X,,) in which x;, is the input and x,, the output. Suppose
an additive outlier is detected at time & in the univariate analysis of the input series. We
cannot tell from the analysis whether the outlier was due to (I) a recording or measurement
error or (II) an intervention that really changed the value of the series at time index h.
However, if the multivariate analysis also shows significant outlier effects in the output
series at the same time index, then it is more likely that the additive outlier is caused by
an intervention that affects both series. On the other hand, if the multivariate analysis
fails to show any significant outlier effect in the output series at time index h, then the
chance of a recording error increases, because the analysis shows that the output series is
consistent with the outlier-adjusted input series; see Example 2 of § 5 for an illustration.

3. A DETECTION PROCEDURE

In practice, the number, locations and types of outliers are unknown a priori, and we
use an iterative procedure similar to that of the univariate case to detect multivariate
outliers. Assuming no outlier at the very beginning, we build a multivariate ARIMA model
for the series under study and let 4, be the estimated residuals and II; the estimated
coefficients of the autoregressive representation. Then at each time point the effect of each
type of outlier can be estimated as follows. For a multivariate innovational outlier at time
index h, all information about the outlier is contained in &,, and we estimate the outlier
size by using @, , = d,, where the subscript I indicates innovational outlier. For the other
types of outlier, the same estimation idea applies, and we shall give details for the case of
a multivariate additive outlier only. In this case we have

= (1= % ) do+a= (- § e orva,
i=1 i=1
where ¢, ~ N(0, ), and the estimator of w is

n—h —1lp—n
Dyn=— < Z Hleni> Z IZ 'y, (o= —1),
i=0 i=0
which can readily be interpreted as a generalised least squares estimator, as in the context
of multivariate seemingly unrelated regression model estimation. In addition, the covari-
ance matrix of the estimator is X, , = (X/_¢ TI;X '1T;) .
To test the significance of a multivariate outlier at time index h, we consider the null

hypothesis Hy:w =0 versus the alternative hypothesis H,:w + 0. Two test statistics are
used. The first is

Ji,h = d)l{,hzijhld)i,h:
where i =1, A, L or T, depending on the type of outlier: innovational, additive, level shift
or temporary change. This statistic treats components of w jointly. For a fixed h, and
assuming that the model is known, J;, is distributed as a chi-squared random variable

with k degrees of freedom under the null hypothesis. The second test statistic is the
maximum z-statistic, in absolute value, of the components of &, , when X, , is known:

C;,= max |d)j,i,h|/\/6j,i,ha
1<j<k

where @; ; , and g;; ,, are the jth element of &, , and the (j, j)th element of X, , respectively.
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We define the overall test statistics as

Jmax(i9 hl) = max Ji,h: Cmax(i9 hl*) = max Ci,h (l = Ia A: L, T)a (6)
h h

where h; denotes the time index when the maximum of test statistic J;;, occurs and hf
denotes the time index when the maximum of C;, occurs. Under the null hypothesis of
no outlier in the sample and if we assume that the model of x, is known, J,,,. (I, h;) is the
maximum of a random sample of size n from a chi-squared distribution with k degrees of
freedom. Thus, the asymptotic distribution of J,,, (I, ;) can be obtained using the extreme
value distribution. Each of the other three joint test statistics in (6) is the maximum of a
dependent sample from a chi-squared distribution with k degrees of freedom. Their asymp-
totic distributions are therefore more complicated, depending on the serial dependence of
{J;.n}. From the estimation of the outlier parameter w, it is seen that the serial correlations
of {Jp,}h=1 are stronger than those of {J;,} for i=1, A and T. This is because of the
nondecaying weights induced by the operator 1/(1 — B) so that &, , contains all of the
filtered values g, for t = h. Consequently, the asymptotic distribution of J,, (L, ;) is more
concentrated than those of the other three joint test statistics. The degree of concentration
depends on the cumulative n-weights in equation (2). Therefore, the critical values of
Joax (L, hy) are in general smaller than those of the other joint test statistics.

For the component test statistics C,,, (i, h¥), the critical values should be close to those
commonly used in the univariate outlier detection provided that k is not too large, because
these statistics are based on individual components. The only difference in the multivariate
case is that the maximisation is evaluated across the k components as well as over the
time indices. As with the joint test statistics, asymptotic distributions of C, (i, h¥) also
depend on the serial correlations of {C;,}. In practice, the true model is unknown, the
above distributional properties are only approximations, and we use simulation to generate
finite sample critical values of the two test statistics.

As in the univariate case, if a single joint statistic J,,, (i, h) is significant at time index
hy, we identify a multivariate outlier of type i at h,, where i=1, A, L, T. In the case of
multiple significant joint test statistics, we identify the outlier type based on the test that
has the smallest empirical p-value. For example, if J,,,,(A, h,) has the smallest p-value at
time index h, and the p-value is smaller than 0-05, then we identify an additive outlier at
time index h, at the 5% significance level. When all of the four joint statistics are non-
significant at a given level, we use the component statistics C,,.(i, h*) to check for
additional outliers. This step ensures that no component outlier is overlooked. In some
cases, the estimated outlier parameter & may also suggest that the identified outlier only
affects some of the components.

Once an outlier is identified, its impact on the underlying time series is removed, using
the results of § 2. The adjusted series is treated as a new dataset and the detecting procedure
is iterated. We terminate the detection procedure when no significant outlier is detected.
Then we recommend a joint estimation of the model parameters and detected outliers. If
some outlier parameters are found to be nonsignificant in this joint estimation, they are
deleted. The joint estimation is repeated until all the detected outliers are significant at
the given level.

Some remarks on the proposed procedure are in order. First, as in the univariate case,
a major contribution of the procedure is to identify data points that need further attention.
If the percentage of outliers exceeds substantially the significance level used in the detec-
tion, then the entertained model may be inadequate and should be changed. For instance,
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a variance change or existence of conditional heteroscedasticity, which is not considered
in this paper, may lead to a large number of outliers and one should consider such a
model if necessary. Secondly, the proposed procedure detects a single outlier in an iteration
to avoid overspecification of the number of outliers. Thirdly, when multiple outliers exist,
the proposed procedure may encounter masking or smearing effects of the outliers. The
final joint estimation of the proposed procedure is designed to reduce the chance of
misidentification and the masking or smearing effects of multiple outliers. Fourthly, it
could happen that an outlier affects different components differently in a vector time series,
and this possibility is allowed in the proposed procedure. For instance, a strike can appear
as an additive outlier on a production series but as a level shift on a sales series if it
permanently affects the firm’s market share. In this case at the time point of strike we
may detect first a multivariate additive outlier that affects primarily the first component.
We may also identify a multivariate level shift at the same time point in a subsequent
iteration with a significant outlier parameter in the second component. Fifthly, some
refinements of the proposed procedure are possible. For example, under the current pro-
cedure an identified outlier is assumed to have effects on all components of a time series
and the estimated outlier effect @ is used to remove outlier effects. It might be better to
adjust only those components which have a significant ¢ ratio in @;. For simplicity we do
not adopt such a procedure.

Finally, instead of considering the four types of outlier separately, it is tempting to use
a multivariate regression to detect jointly the existence of an outlier at a given time index
h. The existence of an outlier at time index h can then be detected by testing jointly all
; = 0. However, such an approach encounters serious multicollinearity, or identifiability,
problems. First, as discussed in § 2, the marginal effect of a multivariate outlier may be
equivalent to that of another type of outlier. In this case, the corresponding components
in w; are not identifiable. Secondly, the interaction between outlier size and the model
can also result in multicollinearity. Thirdly, there exists insufficient observations to esti-
mate all w; when h is close to the end of the data span. Fourthly, the multivariate model
structure can also lead to multicollinearity in outlier parameters. For instance, as discussed
in Tiao & Tsay (1989), some linear combination of the component series may become
white noise for which innovational outlier and additive outlier are equivalent. Such a
linear combination leads to multicollinearity in the above multivariate regression.

4. SIMULATION STUDY

In this section we investigate finite-sample critical values and power of the test statistics
in (6) via simulation. We employ two vector AR(1) and AR(6) models to obtain empirical
quantiles of the test statistics for k =2, 3 and for sample sizes n =100, 200 and 400. The
two vector AR(1) models are in the form x, = ®x, ; + ¢, with parameters given by

02 03 00 10 02 02
o—| 02 U3 S OO b o6 11 00| T=|02 10 02
|l —06 11| T |o2 1ol | T
02 03 06 02 02 10
(7)

As a result of the normalisation by the matrix X~ %, the proposed detection statistics in (6)
are scale-invariant. Therefore, the choice of covariance matrix is not critical in the simu-
lation. The two coefficient matrices used in the simulation have eigenvalues (0-5, 0-8) and
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(0-5, 0-6, 0-8) respectively. We chose these eigenvalues based on the results of Chang et al.
(1988), who show that for univariate AR(1) models outlier effects on parameter estimation
are larger when the coefficient is around 0-6.

The two vector AR(6) models are obtained as follows. For the bivariate case, we use
the vector AR(6) model fitted to the gas-furnace series of Box, Jenkins & Reinsel (1994,
p. 419); see also Example 1 of § 5. For the trivariate case, we add a third component that
is independent of the bivariate model and follows the model

(1+078B + 0-57B% + 0-30B + 0-20B* + 0-15B° + 0-03B°)x, = ¢3,,

with g33 = 0-05.

For a given model and sample size n, we generate 10000 realisations. For each realis-
ation, we estimate a vector autoregressive model with proper order by ordinary least
squares, obtain the residuals and £, and compute the test statistics in (6) using the esti-
mated parameters. Tables 1 and 2 provide some empirical quantiles for the joint and
component test statistics under the null hypothesis of no outlier in the data. From Tables 1
and 2, we make the following observations. First, as expected, empirical quantiles of
Joax(L, hy) are much smaller than those of the other three joint test statistics. This is

Table 1. Simulation study. Empirical quantiles of the J.,.(i, h;) statistics in (6) based on
10 000 realisations. The models used are given in § 4

Sample Probability
size Test 50%  90%  95%  975% 99% 50%  90%  95%  975% 99%

Vector AR(1) Vector AR(6)

Bivariate case

100 Jou(L hy) 974 1303 1435 1560 17-34 976 1308 1443 1561 1723
T (A, 1) 970 1307 1432 1557 1696 974 1363 1508 1663 1859
Joan(Ly 1y 761 1113 1237 1350 1482 631 933 1044 1163 1330
T (T, i) 958 1295 1427 1543 1705 933 1292 1434 1565 17-58
200 Jou () 1120 1466 1601 1747 1906 1080 1424 1554 1682 1841
Joax(Ahy) 11113 1466 1595 1737 1918 1070 1457 1608 1770 1938
Joan(Ly 1y 837 1218 1349 1481 1640 620 915 1036 11-53 1317
Joun(Tohy) 1104 1455 1587 1719 1867 1012 1372 1514 1647 1817
400 (L hy) 1260 1619 1763 1906 2081 1179 1512 1647 1775 19-54
Jo(A hy) 1256 1621 1764 1886 2081 1147 1526 1671 1825 20-16
Joan(Ly 1y 962 1348 1488 1620 1805 637 916 1025 1131 1305
(

Jnax(T, hr) 12:57 16:13 1753 1896  20-83 10-58 1418 1553 1702 1880

Trivariate case

100 Jo. (L hy) 1555 2500 29-56 3423 4143 1443 2375 2810 32:50 3882
Joux(A hy) 1550 2508 2049 3400 4181 1466 2510 30-14 3498 4223
Joax(L hy) 1064 1809 2156 2546  32:06 862 1594 1985 2439 2775
Jo(Tohy) 1548 2514 3005 3481 4218 1403 2414 2924 3661 4112
200 Jou (i) 1920 2845 3210 3672 4210 1644 2694 3185 3677 4316
Joux(Ahy) 1910 2890 3304 3728 4302 1640 2796 3331 3890 4549
Jowe(L hy) 1212 1999 2324 2643  31-51 871 1622 2028 2413 2981
Joo(Tohy) 1912 2886 3285 3718 4329 1556 2718 3248 3768 44-88
400 Joue(L hy) 2286 3224 3612 4004 4509 1878 3054 3569 4095 4732
Jo(Ahy) 2296 3266 3649 4032 4577 1811 3070 3611 4161 4889
Joue(L hy) 1450 2289 2639 3027  34:56 920 1716 2090 2468 29-50
Joax(Tohy) 2310 3279 3667 4067 4547 1711 3001 3508 4066 4801
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particularly so for the vector AR(6) models, because the models have large cumulative -
weights. Secondly, quantiles of J, (i, h;) for i=1, A, T are closer to each other and are
less sensitive to the autoregressive order, implying that a common critical value can be
used for these three test statistics. Thirdly, empirical quantiles of the component statistics
C.nax (i, h¥) are less affected by the autoregressive order, but seem more variable when the
dimension increases. The quantiles of C,, (L, h¥) are also smaller than those of the other
component statistics for k =2, especially for the vector AR(6) models. Our simulation
suggests that, except for level shift, 3-75 may serve as an approximate critical value at the
5% significance level for all sample sizes used in the bivariate study. This critical value is
larger than the 3-0 or 3-5 used in univariate outlier detection; see Chen & Liu (1993) and
the references therein. For the trivariate case, the variation in the empirical 95th percentiles
of C,..x(i, h¥) is relatively large, indicating that the critical values of C,,, (i, h¥) depend on
the dimension of x, and should be adjusted accordingly in practice. In summary, the
empirical critical values of the joint test statistics, especially Jy,.,(L, h;), depend on sample
size, dimension and the model structure. Those of component test statistics C,,, (i, h;) are
more stable. Theory and properties of these test statistics need further investigation. In
practice, one can use simulation to obtain finite-sample critical values if necessary.

Table 2. Simulation study. Empirical quantiles of the statistics Co,,(i, hF) in (6) based on
10 000 realisations. The models used are given in § 4

Sample Probability
size Test 50% 90% 95% 975%  99% 50% 90% 95% 975% 99%

Vector AR(1) Vector AR(6)

Bivariate case
100 Croax (L, 1i¥) 289 339 358 374 3:96 2:89 337 354 3-69 3-87
Crrax(4, B%) 289 339 357 373 3-94 299 358 378 3-98 422
Chnax(L, h¥) 261 318 335 352 371 2441 293 310 3-26 3-50
Cooax(T, h%) 287 337 355 374 395 276 329 347 3-64 3-86
200 Crax (L, h¥) 311 360 378 395 415 305 352 369 3-84 403
Croax(4, h%) 311 360 378 393 415 316 374 392 412 434
Croax(L, hf) 274 333 350 3-68 3-88 238 289 306 3-22 3-46
Cooax(T, %) 309 358 376 393 411 290 340 358 373 3:96
400 Crax(L, h¥) 332 380 396 413 4-35 320 365 381 3-96 417
Croax(4, h%) 3-31 380 397 412 432 330 383 401 421 443
Croax (L, hf) 294 351 369 3-86 4-06 239 2:84 300 3-16 3-34
Crrax(T, h%) 331 378 395 412 434 300 348 366 3-84 405

Trivariate case

100 Cou(l, h¥) 301 348 364 379 396 303 350 367 384 403
Coax (A, 1%) 324 393 418 444 474 335 428 466 504 552
Conax (L, 1) 277 354 383 411 452 266 361 405 444 497
Copan (T, %) 323 394 418 445 478 318 415 454 491 541
200  Cyoy (I, h¥) 322 369 385 402 420 319 366 382 398 415
Conax (A4, 1%) 356 424 450 472 497 356 445 481 520 568
Coax (L, 1) 290 367 393 418 449 264 363 405 440 487
Copan (T, %) 355 428 452 477 506 336 435 478 516 563
400 Coax(L hF) 343 390 407 421 438 335 381 397 414 432
Conax (A, 1%) 386 456 480 503 534 376 472 507 540 581
Coax (L, 1) 308 384 413 439 467 263 362 398 435 479
Conax(T, h%) 387 464 489 512 541 357 460 497 532 575
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Next, we use simulation to study the power of the proposed joint test statistics. The
model used in the power study is a bivariate AR(1) model with ® given in (7). However,
the innovational covariance matrix is modified so that the variance of the individual
innovation is unity and the correlation between innovations is —0-2. The sample size used
is 200. For each realisation, a single outlier is introduced at the time index ¢t = 100 with
outlier parameter w = (3-5, 3-5)". For each type of outlier, we use the empirical 5% critical
value from Table 1 and tabulate the number of realisations in which the corresponding
test statistic exceeds the critical value. The powers based on 10 000 realisations are 89-1%,
96:9%, 100% and 92-1%, respectively, for multivariate innovational outlier, additive
outlier, level shift and temporary change.

5. APPLICATIONS

Example 1. The first example is the well-known gas furnace series of Box et al. (1994,
p. 548). Denote the input gas rate in cubic feet per minute by X, and the percentage of
CO, in outlet gas by Y,, both measured in 9-second time intervals. This series is commonly
used in the literature as an example of transfer function models. There are 296 observations.
For comparison, we also employ the univariate and transfer function models of Box et al.
(1994, Ch. 11). Using the joint estimation and detection procedure of Chen & Liu (1993)
and a critical value of 3-5, we obtain the models

(1-2273B+ 19238 — 0618B%)X, = —0002 + ay,, &, =0129 (8)
V53084 ~0636B7 —0264B° —0439B° 1 3, = 0195
o 1_0570B t 1_ 1511B+0579B2 a2t7 02_ 5

)

where 6, and 6, are the residual standard error of the input and output series respectively,
after outlier adjustment. The detected outliers are given in Table 3. There are 7 and 6
outliers for models (8) and (9) respectively. If the critical value for outlier detection is set
to 3:0, then there are 17 and 10 outliers, respectively, for the two models. A critical value
of 3-5 corresponds approximately to an asymptotic 2-5% significance level. Note that the
two temporary-change outliers at times 113 and 117 in the input series, which show
opposite effects, may suggest a patch of outliers in the period 113—-116. Similarly, there
may be a patch of outliers from 265 to 269 in the output series.

Table 3. Example 1. Outliers detected for the gas-furnace series
using a univariate method with critical value 3-5, which is
approximately at the 2-:5% level

Input series: gas rate Transfer function for CO,
Time Size t ratio  Type Time Size t ratio  Type

43 0-770 1220  TC 199 0915 6-08 LS

55 —0718 —11-38 TC 236 —0863 —442 10

91 0-286 4-53 TC 265 1-481 7-59 10
113 —0479 —7-59 TC 266 0-729 374 10
117 0-248 392 TC 267 0-454 423 AO
198  —0534 —4-15 10 269 —129% —633 10
262 0-607 472 10

A0, additive outlier; 10, innovational outlier; LS, level shift; TC, temporary
change.
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We now turn to multivariate modelling. Using the chi-squared statistic of Tiao & Box
(1981) and the Akaike information criterion, we adopt a bivariate AR(6) model for the
series. The first component is the gas rate and the second component is the output CO,
concentration. Applying the proposed detection procedure and, for comparison purposes,
using 2-:5% critical values obtained by interpolation from Tables 1 and 2, we summarise
the detection results in Table 4. Twelve outliers are detected by the procedure. Once an
outlier was detected, we removed its effects on the data and re-estimated the bivariate
AR(6) model. The estimated outlier parameters @& = (&4, @,)" of the 12 outliers are given
in Table 5 along with ¢ ratios of the estimates. Note that the detected multivariate tempor-
ary changes at t =43 and 55 introduce large J,,.(4, h,) statistics at t =42 and 54. This
is understandable because, for a vector AR(6) model, the test statistic J, , involves filtered
values @, fort=h,h+1,...,h+6.

Table 4. Example 1. Results of multivariate outlier detection for the gas-furnace

series using a bivariate AR(6) model and 2-5% critical values. The number in par-

entheses for joint tests is the corresponding time index whereas those for component
tests are time index and component index

(a) Joint test statistics

Outlier

Iterations Imax(L, hr) Imax(A; hy) Imax(L, hy) Jmax (T’ hr) Time  Type
1 3923 (265) 3570 (42) 2784 (199)  41:05 (43) 43 MTC

2 3854 (265) 4390 (54) 2622 (199) 4615 (55) 55 MTC

3 39-29 (265) 27-15 (264) 24-46 (199) 28-09 (264) 265 MIO

4 1694 (199) 2627 (113) 2429 (199) 2670 (113) 199 MLs

5 1601 (269) 2585 (113) 16:56 (113) 2624 (113) 113 mtC

6 16-34 (262) 16:71 (235) 14-49 (288) 14-44 (261) 288 MLS

7 1629 (262)  17-56 (235) 1391 (287)  14:55 (91) 287 MLS

8 16:51 (236) 1970 (235) 1478 (236)  16:52 (235) 236 MLS

9 1581 (262) 1425 (197) 10-61 (82) 1519 (91) S

Crit. 17-29 17-98 11-42 16:73
(b) Component test statistics
Outlier
9 395(262,1) 376 (197,1) —323(82,1)  385(91, 1) 82 MLs
10 434 (262,1) 409 (91, 1) 329 (262,1) 424 (91, 1) 262 M0
1 369 (198,1) 396 (91,1) <319 410 (91, 1) 91 MTC
12 380 (198,1) 407 (197,1) <319 411 (197, 1) 197 mTC
13 326 (266,2) —325(116,1) <319 345 (117,1) — —
Crit. 390 4-17 319 379

MI0, multivariate innovational outlier; MLS, multivariate level shift; MTC, multivariate temporary
change; Crit., critical value.

As shown by Tiao & Box (1981), the marginal models of the bivariate AR(6) model
employed are close to those of equations (8) and (9). Therefore, the comparison of outlier
detection between univariate and multivariate models can be made fairly, and we obtain
some interesting results.

First, the multivariate method detects fewer outliers than the univariate methods. In
addition, the outliers detected by the multivariate method are not a subset of those detected
by univariate methods. For example, the level shifts at t =287 and 288 are not detected
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by the univariate methods. This demonstrates that multivariate joint detection could be
more powerful than univariate methods.

Secondly, the multivariate innovational outlier detected at ¢ = 265 clearly highlights the
discussion of § 2-3. Specifically, we observe the following: the ¢ ratios of estimated outlier
parameters in Table 5 show that the outlier occurred simultaneously to both components;
as expected, this multivariate innovational outlier introduces a patch of outliers in the
marginal model of the output series at time indices 266—269; the estimated outlier effect
is negative in the input series and the transfer function model shows a negative relationship
between the input and output series with a delay of 3 time periods, with the consequence
that the outlier effects at time indices 266 and 267 of the output series are positive; as
expected, the patch of outliers disappears under the multivariate framework.

Table 5. Example 1. Estimates of outlier parameters for the gas-furnace series using a
multivariate model

Time Type @, (t ratio @, (t ratio) Time Type @, (t ratio

) ) @, (t ratio)
43 MTC 0683 (641) —0-019 (—0-11) 55 MTC  —0613 (—679) 0049 (0-27)
265  MIO —0-362 (—3-40) 1:396  (5-86) 199 MLS —0-098 (—1-51) 0-866 (493)
113 MTC  —0376 (—512) —0-067 (—0-42) 288 MLS 0-154 (2:04) 0-587 (3:23)
287 MLS 0-130 (1:74) 0-578  (3-28) 236 MLS 0069 (1:17) —0-595 (—3-83)
82 MLS —0-166 (—3-23) 262  MIO 0565 (4-34)
91 MTC 0249 (4-10) 197 MTC 0239 (4-11)

MI0, multivariate innovational outlier: MLs, multivariate level shift; MTC, multivariate temporary change.

Thirdly, highly significant outliers detected by the univariate methods are also detected
by the multivariate method; see the outliers at t =43, 55, 113 and 265. Fourthly, the
classification of outliers is rather consistent between univariate and multivariate methods.
Fifthly, some minor time differences may occur between univariate and multivariate
methods. For example, the univariate innovational outlier at ¢t = 198 is shown as a tempor-
ary change at t =197 in the multivariate case. Finally, ¢ ratios in Table 5 show that no
outlier occurred in the output series at t =43 and 55. The significant temporary changes
in the input series at these two time points suggest that the outlier effects are carried over
from the input series to the output series. Consequently, the residuals of the output series
do not contain additional information about these two outlying observations. These two
multivariate temporary changes are referred to as passed outliers in Pankratz (1993).

Young (1974) and Subba Rao & Tong (1974) analysed this dataset and suggested that
the system is time-dependent. We did not consider time-dependent models in this paper.

Example 2. In this example, we consider the U.S. quarterly seasonally adjusted initial
jobless claims and unemployment rate from 1948 to 1993. The initial jobless claims were
divided by 100. Figure 1 shows the time plots of the data, which consist of 184 observations.
Using the same models as in Montgomery et al. (1998) and the joint estimation-detection
procedure of Chen & Liu (1993), we obtain the univariate models

(1—0-30B)(1 —0:36B*)(1 — B)y,, = (1 —0-75B%)a,,, &, = 0222,
(1—0-66B)(1 —0-27B*)(1 — B)y,, = (1 —0-81B%)a,,, 6, =0271,

where y;, and y,, are the initial claims and unemployment rate, respectively. The seasonal
parameters in both models are highly significant, even though the data were seasonally



802 R. S. Tsay, D. PENA AND A. E. PANKRATZ

adjusted. The detected outliers of the two models are given in Table 6. There are 4 and 2
outliers for y;, and y,,, respectively.

(a)

6
w5
£
O 3
2
1950 1960 1970 1980 1990
Year
(b)
10
o 8
£ 6
4
1950 1960 1970 1980 1990
Year

Fig. 1. Example 2. Time plots of (a) U.S. quarterly initial jobless
claims, divided by 100, and (b) unemployment rate for 1948—1993.
The data were seasonally adjusted.

Table 6. Example 2. Outliers detected for initial jobless
claims and unemployment rates using univariate method with
critical value 3-5

Initial jobless claims Unemployment rates
Time Size t ratio  Type Time Size tratio Type
108 1-137 513 10 109 1097 404 10
130 1-493 9-08 TC 140 0417 430 AO

136 0-999 543 LS
141 —-0971 —525 LS

A0, additive outlier; 10, innovational outlier; Ls, level shift; Tc, tempor-
ary change.

Turning to multivariate detection, we employ a bivariate ARIMA model of the form
(1_®1B_®2B2)(I—®4B4)yt:C+(1_®4B4)Sl. (10)

The detection results are summarised in Table 7 based on the 5% empirical critical values
from Table 1 for a vector AR(1) model and a sample size of 200. Only three outliers are
detected. The estimated outlier parameters and their ¢ ratios, in parentheses, are

[1:249 (6:16), 0-334 (1-84)], [1-080 (4-35), 0-563 (222)], [0-968 (4-14), 0-653 (2:62)]

for the outliers at t =130, 108, 136, respectively. An examination of residual cross-
correlation matrices indicates some minor significant correlations at lag 8, but
these serial correlations disappear when the moving-average part is modified to
(I — ©,B* — OgB®)¢,. The parameter estimates of model (10) before and after outlier
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adjustment are shown in Table 8. The three detected outliers have marked effects on the
seasonal parameters and the residual covariance matrix.

Table 7. Example 2. Results of multivariate outlier detection for the initial jobless

claim and unemployment using a bivariate seasonal ARIMA model and 5% critical

values. The number in parentheses for joint tests is the corresponding time index
whereas those for component tests are time index and component index

(a) Joint test statistics

Outlier
Iterations Jmax(Is hI) Jmax(Aa hA) Jmax(Ls hL) Jmax(Ts hT) Tlme Type
1 31-66 (130) 36-35 (130) <1350 40-33 (130) 130 MTC
2 2008 (108) <1350 <1350 1665 (141) 108 MIO
3 1725 (136) <1350 <1350 <1350 136 MIO
4 15-53 (25) <1350 <1350 14-05 (141) — —
Crit. 16:01 1595 13-49 15-87
(b) Component test statistics
Outlier
4 3-59 (25, 2) <350 <350 361 (141,1) — —
Crit. 378 378 3:50 376

MIO0, multivariate innovational outlier; MTC, multivariate temporary change; Crit., critical value.

Table 8. Example 2. Parameter estimates of model (10) before and after multivariate outlier
detection. The values in parentheses are standard errors

¢ @, D, D, 0, z
Before outlier adjustment
0-139 1-31 —017 —025 0-11 013 —-019 0-02 0-17 0-081 0-056
(0-089) (0-10)  (0-09) (0-11)  (0:07) (0-18)  (0-08) (022)  (0-15)
0-054 0-59 116 —-031 —036 0-06 —0-08 —-007 —009 0-056 0-073

(0086)  (0:09)  (0:09) (0-11)  (0-09) (0-13)  (021) (017)  (023)

After outlier adjustment

0331 136 —022  —032 015 —021 —012  —055 018 0049 0036
(013) (0:09)  (0:07) (0-11)  (0:06) (0-16)  (0:07) (017)  (012)
0151 065 112  —034 —033  —006 —028  —022 —013 0036 0060

(013) (0-10)  (008) (0-12)  (008) (0-15)  (0-17) (0-18)  (0-20)

Note that the multivariate model identifies only three outliers whereas the univariate
models detect six outliers. In this example, the multivariate outliers form a subset of those
identified by univariate methods. Secondly, the innovational outlier in the unemployment
rate at time ¢t = 109 is caused by the innovational outlier in the initial jobless claims at
t = 108, because there exists no outlier at t = 109 in the multivariate case. This example
clearly demonstrates that an outlier in a component series may be induced by that of
another component, and that detecting outliers separately for each individual component
using a marginal model may result in overspecification of the number of outliers. Thirdly,
the significance of the outlier parameters in both components at ¢t = 108 and 136 indicates
that some external disturbances occurred in the U.S. economy at these two time points
that affected both the initial jobless claims and unemployment rate. In other words, the
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impact of these disturbances on the unemployment rate cannot be fully accounted for by
that on the initial claims. These two time points were the fourth quarters of 1974 and
1981, respectively, in which the U.S. economy was in recession as classified by the National
Bureau of Economic Research. Thus, the significance of the positive estimates & at these
two periods shows that the economic slow-downs in 1974 and 1981 caused both the initial
jobless claims and unemployment rate to rise. In addition, the estimated effect on unem-
ployment rate, @,, represents the additional effect of economic slow-down on unemploy-
ment rate beyond that induced by the impact on initial jobless claims. Such information
is not evident if one only uses univariate outlier detection. Finally, the significance of both
components of @ at t = 108 and 136 also indicates a possible joint structural break of the
series at these two points.
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