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The kurtosis coe�cient and the linear discriminant function
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Abstract

In this note we analyze the relationship between the direction obtained from the minimization of the kurtosis coe�cient
of the projections of a mixture of multivariate normal distributions and the linear discriminant function. We show that both
directions are closely related and, in particular, that given two vector random variables having symmetric distributions with
unknown means and the same covariance matrix, the direction which minimizes the kurtosis coe�cient of the projection
is the linear discriminant function. This result provides a way to compute the discriminant function between two normal
populations in the case in which means and common covariance matrix are unknown. c© 2000 Elsevier Science B.V. All
rights reserved
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1. Introduction

Given two multivariate normal populations, Ni(�i; V ); i = 1; 2, it is well known that the optimal way to
classify a new element X , coming from any of these two populations with equal a priori probabilities, is to
project the means (�1; �2) of the two populations onto the direction u = V−1(�1 − �2); and to classify the
observation X by considering which of the two projected means, u′�1; u′�2, is closer to the projected value
u′X: This linear discriminant function was �rst obtained by Fisher (1936) and has the two following properties:
(1) it is implied by a decision rule that classi�es the observation by using the Mahalanobis distance between
the point and the two means; (2) it produces the maximum separation between the projected means with
respect to the variance of the projected distribution.
The generalization of this idea when we have p normal populations leads to a best discriminant space

associated with the eigenvalues of the matrix V−1B, where B denotes the between groups matrix (see for
instance, Seber, 1984).
We will show in this note that the direction obtained by minimizing the kurtosis coe�cient of the projected

distributions is closely related to the linear discriminant space, and it coincides with the linear discriminant
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function in the case of two equiprobable populations. This result, in addition to its mathematical interest, has
two interesting implications: The �rst one is to emphasize that the kurtosis coe�cient not only measures the
thickness of the tails of the distribution but it is also a measure of the lack of bimodality in the distribution. In
our case, it reaches its minimum value when the projected observations follow a bimodal univariate distribution.
The second, is to show that, if we have two normal distributions with unknown di�erent means but the same
covariance matrix, by minimizing the kurtosis coe�cient of the projections we can obtain the (Fisher) best
linear discriminant function without knowing neither the means of the two distributions nor their common
covariance matrix, which we believe is a remarkable fact.

2. The model

Consider a random variable x obtained as a mixture of p normal populations Ni(�i; V ) with di�erent mean
vectors �i and the same covariance matrix V , and having mixture coe�cients �i;

∑
i �i = 1. We assume that

the matrix V has full rank.
We are interested in those directions that minimize the kurtosis coe�cient of the projected observations.

Consider a projection direction u; denote the projected observations by z=u′x. For each one of the individual
distributions we will have zi = u′xi, where zi follows a normal distribution Ni(mi; u′Vu); mi = u′�i. Note also
that E(x) = � =

∑
i �i�i.

The mean and variance of the projected observations will be given by

E(z) = �m=
∑
i

�imi = u′�;

E(z − E(z))2 =
∑
i

�iE(zi − mi)2 +
∑
i

�i(mi − �m)2 = u′(V + B)u;

where Bi = (�i − �)(�i − �)′ and B=
∑

i �iBi.
As a consequence, the fourth central moment k ≡ E(z − E(z))4 will be given by
k =

∑
i

�iE(zi − mi + mi − �m)4

=
∑
i

�iE(zi − mi)4 + 6
∑
i

�i(mi − �m)2E(zi − mi)2 +
∑
i

�i(mi − �m)4

= 3(u′Vu)2 + 6(u′Vu)(u′Bu) +
∑
i

�i(mi − �m)4

= 3(u′(V + B)u)2 − 3(u′Bu)2 +
∑
i

�i(u′Biu)2: (1)

In what follows, we will also use the second and fourth moments for the univariate distribution of the
projected means, and its kurtosis coe�cient, that we will denote as

�2m =
∑
i

�i(mi − �m)2 = u′Bu;

km =
∑
i

�i(mi − �m)4 =
∑
i

�i(u′Biu)2;

�m =
km
�4m
=
∑

i �i(u
′Biu)2

(u′Bu)2
:
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We are interested in the projection direction obtained as the solution for the problem

minu k(u)

s:t: u′(V + B)u= 1;
(2)

that is, the direction minimizing the kurtosis coe�cient.
This direction can be characterized in terms of the gradient of k(u). From (1), the gradient will take the

value

∇k(u) = 12(u′(V + B)u)(V + B)u− 12(u′Bu)Bu+ 4
∑
i

�i(u′Biu)Biu: (3)

3. A property of the kurtosis coe�cient

Lemma 1. For a vector random variable x de�ned as a mixture of p multivariate normal distributions
Ni(�i; V ); i=1; : : : ; p with di�erent mean vectors �i; the same covariance matrix V and probabilities �i; the
direction which minimizes the kurtosis coe�cient is given by the eigenvector linked to the largest eigenvalue
of the matrix V−1 �B; where

�B=
∑
i

!iBi;

and

!i = �i

(
3�2m − (mi − �m)2

�4m
+ �m − 3

)
:

Proof. The direction u that minimizes the kurtosis coe�cient of the projections will be the solution of (2),
and must satisfy the corresponding �rst-order condition ∇k(u) = 2�(V + B)u, which from (3) implies

12(u′(V + B)u)(V + B)u− 12(u′Bu)Bu+ 4
∑
i

�i(u′Biu)Biu= 2�(V + B)u: (4)

The value of � can be obtained after multiplying the equation by u and using the constraint, and is given by

�= 6− 6(u′Bu)2 + 2
∑
i

�i(u′Biu)2:

Replacing this value, using the constraint on u in (4) and rearranging terms we have(
3u′Bu− 3(u′Bu)2 +

∑
j

�j(u′Bju)2
)
Bu−

∑
i

�i(u′Biu)Biu=

(
3(u′Bu)2 −

∑
j

�j(u′Bju)2
)
Vu:

Premultiplying this equation by V−1, and replacing the de�nitions of B and the moments for the distribution
of the means, we obtain that the solution of (2) must satisfy

V−1∑
i

[
�i

(
3
�2m

− 3 + �m − pi
)]
Biu= (3− �m)u (5)

for pi = (u′Biu)=�4m= (mi − �m)2=�4m: Note that from (1), the kurtosis coe�cient of the projected variables can
be written as a function of the distributions of the means as

k = 3− �4m(3− �m);
which implies that in order to minimize k, as �4m is always positive, we must make �

4
m as large as possible

and �m as small as possible. Thus, the direction u in (5) is the eigenvector linked to the largest eigenvalue
of the matrix V−1 �B; proving the result.
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Lemma 2. For the vector random variable x in Lemma 1; if the direction which minimizes the kurtosis
coe�cient of the projections u satis�es for some scalar �(u) that

u′Biu= �(u) ∀i; (6)

then u is proportional to the largest eigenvector of the matrix V−1B.

Proof. This is an immediate consequence of Lemma 1. From (5), if (6) holds then it must hold that pi=�=�4m
and

V−1∑
i

�i

(
3
�2m

− 3 + �m − �
�4m

)
Biu= (3− �m)u

and this implies that

V−1Bu= !u;

for != �4m(3− �m)(3�2m − � − �4m(3− �m))−1, and this proves the desired result.

Theorem 1. For a random variable corresponding to the mixture of two normal populations Ni(�i; V ); i=1; 2;
having di�erent mean vectors �i; the same covariance matrix V and equal probabilities �i= 1

2 ; the direction
which minimizes the kurtosis coe�cient is the linear discriminant function V−1(�1 − �2).

Proof. For a mixture of two normal random variables with weights �1 = �2 = 1=2 it holds that

�1 − � = 1
2(�1 − �2); �2 − � =− 1

2 (�1 − �2)
and also

u′B1u= (u′(�1 − �))2 = u′B2u:
This implies the satisfaction of condition (6), and from Lemma 2, the direction that minimizes the kurtosis
coe�cient is the largest eigenvector of V−1B.
In our case, B has the form

B= 1
4(�1 − �2)(�1 − �2)′;

and the eigenvectors of the matrix V−1B are either proportional to v = V−1(�1 − �2)=�, where �2 =
(�1 − �2)′V−1(V + B)V−1(�1 − �2) is chosen to ensure the satisfaction of the constraint in (2), or are
vectors w orthogonal to �1 − �2 that also satisfy the constraint w′(V + B)w = 1.
To analyze which solutions are minimizers, we consider the objective function of (2). Using (1) and taking

into account that Biw = 0,

k(w) = 3:

For v, replacing the expressions for B and Bi in terms of �1 − �2,

k(v) = 3− 3(v′Bv)2 + 1
2

∑
i

(v′Biv)2 = 3− 3
16
(v′(�1 − �2))4 + 1

16
(v′(�1 − �2))4

= 3− 1
8�4

((�1 − �2)′V−1(�1 − �2))4¡ 3:

This shows that the linear discriminant direction V−1(�1−�2) is the minimizer of the kurtosis coe�cient.

Finally, we show that these results do not depend on the hypothesis of normality for the data.
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Corollary 1. The results stated in Lemmas 1; 2 and Theorem 1 also stand if the vector random variable x is
de�ned as a mixture of multivariate ellipsoidal distributions with di�erent means �i and the same covariance
matrix V; having a su�ciently large (univariate) kurtosis coe�cient b.

Proof. The main change in the preceding relationships corresponds to the expression for the fourth central
moment (1), that now takes the form

k = b(u′Vu)2 + 6(u′Vu)(u′Bu) +
∑
i

�i(u′Biu)2

= b(u′(V + B)u)2 − b(u′Bu)2 + (6− 2b)(u′Vu)(u′Bu) +
∑
i

�i(u′Biu)2:

for some constant b¿1, independent of u.
The results in Lemmas 1 and 2 follow from the fact that b is independent of u, as they do not depend on

the particular value of b.
For Theorem 1, the only change is in the value of the objective function for the di�erent eigenvectors of

the matrix V−1B. Using the same notation as in Theorem 1 we now have k(w) = b and

k(v) = b+ (6− 2b)(v′Vv)1
4
(v′(�1 − �2))2 + 1

16
(v′(�1 − �2))4 − b

16
(v′(�1 − �2))4

= b+
�3

16�4
(24− 8b+ (1− b)�);

where �= (�1 − �2)′V−1(�1 − �2).
This implies k(w)¿k(v) as long as 24− 8b+(1− b)�¡ 0, or equivalently as long as b¿ 3− 2�=(8+ �).

Note that for b= 3 this condition always holds, and also that if b is smaller than 3− 2�=(8 + �), we have a
maximizer along the linear discriminant function.
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