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Abstract

Data heterogeneity appears when the sample comes from at least two di®erent populations.

We analyze three types of situations. In the ¯rst and simplest case the majority of the

data come from a central model and a few isolated observations come from a contaminating

distribution. The data from the contaminating distribution are called outliers and they have

been studied in depth in the statistical literature. In the second case we still have a central

model but the heterogeneous data may appear in clusters of outliers which mask each other.

This is the multiple outlier problem which is much more di±cult to handle and it has been

analyzed and understood in the last few years. The few Bayesian contributions to this problem

are presented. In the third case we do not have a central model but instead di®erent groups

of data have been generated by di®erent models. For multivariate normal this problem has

been analyzed by mixture models under the name of cluster analysis, but a challenging area

of research is to develop a general methodology for applying this multiple model approach to

other statistical problems. Heterogeneity implies in general an increase in the uncertainty of

predictions, and we present in this paper a procedure to measure this e®ect.

Key Words: cluster analysis; in°uential data; masking; mixture model; outliers; predictive

distributions; robust estimation.
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1. INTRODUCTION

Since the beginning of data analysis it was found that real data are often contaminated by hetero-

geneous observations or outliers. Outliers have been found even in a small set of data coming from

controlled experiments (see for instance Stigler, 1973, 1986). It is well known that the presence

of a few extreme outliers can distort completely the result of the statistical analysis and make

the Bayesian inference very ine±cient. In spite of the seminal paper by Box and Tiao (1968), the

study of outliers has not attracted many interest in the Bayesian literature. For instance in the

1997 Current index of statistics (CIS) out of 1151 references leading with outliers only 67 (5.8 %)

either use Bayesian methods or refer to them.

In the last ten years in which large data sets are becoming more common due to the increasing

computer power available, it has been found that outliers appear often in clusters, and then the

methods derived to deal with a few isolated outliers are unable to detect them. This problem is

called masking and again it has been mainly studied from the frequentist approach. For instance,

going again to the 1997 CIS, out of the 22 papers leading with masking only two use the Bayesian

approach.

Today many data sets are huge and heterogeneous: the computer has made possible to take

measurements of many variables with almost no cost at short intervals in an automatic way. For

instance, we ¯nd data sets of thousands of variables and millions of observations in astronomy

(see Fayyad et al., 1996 for a description of some of these huge data set), quality control (in many

chemical processes data are recorded every second or ten seconds of many production variables),

¯nance (the stock transactions are collected at each pulse), business (all the purchases made in

some period of time by millions of credit car users), and so on. These huge data sets create

new problems for statistical analysis, because none of the usual textbook hypothesis are expected

to be true. We expect clustering of outliers and masking, nonstationarity, dependency among

observations, selection bias, errors in variables, as well as other measurement problems (see Hand,

1998 for an excellent description of these problems). A consequence of this is that di®erent models

are supposed to hold in di®erent regions of the parameter space and also at each point we have

several di®erent models which can generate the data. The Bayesian paradigm is a °exible tool

in order to model this type of situations although it may require some adjustment in order to

represent some of the complicated and messy data set which we will be dealing with in the next

future.

An important consequence of heterogeneity is model uncertainty. If the observations in the

sample can be generated by di®erent models, this will increase the uncertainty of the forecast of a

future observation. To be speci¯c, suppose that we assume that future data can be generated by
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a set of models M1; : : : ; Mm with probabilities w1; : : : ; wm: Then the forecast of a new observation

will be given by

p(y) =
X

wip(y j Mi)

and the variability in the mixture distribution p(y) will be in general larger than the variability of a

central single distribution p(y j M ), which is usually considered in standard statistical applications.

In this work we review the Bayesian contributions to deal with heterogeneity in the linear

regression model. Bernardo and Smith (1994) and O'Hagan (1994) are general references and

good introductions to this problem. The paper is organized as follows. In section 2 we review

brie°y the methods developed for dealing with isolated outliers in linear models; in section 3 we

discuss masking in regression and in section 4 we introduce the general heterogeneity problem

and its relationship to Bayesian clustering. Finally, in section 5 we comment on the implication of

heterogeneity in increasing model uncertainty for forecasting, and we suggest a statistic to measure

this e®ect.

2. SINGLE OUTLIERS AND INFLUENTIAL DATA

We consider the usual regression model

yi = x0
i¯ + ui i = 1; : : : ; n; (2.1)

where y = (y1; : : : ; yn)0 is a vector of responses, X = (x1; : : : ; xn )0 is a full rank n £ p matrix of

independent variables, ¯ is a p-vector of unknown parameters and u is a vector of non observable

random perturbations.

The Bayesian methods for outlier and in°uential data identi¯cation can be classi¯ed into two

groups: i) diagnostic methods; and ii) robust methods. These two approaches di®er in the way

they assume that the data have been generated. The diagnostic methods consider a central model

and try to ¯nd observations which have a small probability of being generated by it. They do not

establish the outlier generation mechanism. The robust methods incorporate an alternative model

which can generate aberrant observations; for instance, the usual hypothesis of normality assumed

in regression is changed to the assumption of a heavy tail error distribution.

2.1. Diagnostic methods

The diagnostic methods assume a central model for the data generation and the outliers are con-

sidered as observations with small probability of being generated by this central model. Therefore

they are identi¯ed by looking at the predictive densities p(yi j y (i)), where y (i) means the data
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point yi is deleted from the sample and analyzed as a new observation. If yi is a single outlier,

the probability to predict yi given the rest of the sample is very low. This procedure for outlier

detection is known as the ordinate of the conditional predictive density method, and was introduced

by Geisser (1980).

The conditional predictive density can be seen as the ratio of two predictive densities,

p(yi j y(i)) =
p(y)

p(y (i))
;

and involves the predictive distribution p(y) that was suggested by Box (1980) as a general diag-

nostic tool for any statistical model. This idea has been also explored by Pettit and Smith (1985)

and Pettit (1990).

The conditional predictive ordinate is connected with the classical studentized residual test for

outlier detection. With non informative priors, Pettit (1990) shows that

p(yi j y (i)) / s¡1
(i)

(1 ¡ hi)
1=2

µ
1 +

t2i
n ¡ p ¡ 1

¶
;
¡ n¡p

2

(2.2)

where ti is the studentized residual

ti =
yi ¡ x0

i
^̄

s(i)(1 ¡ hi)1=2
; (2.3)

^̄ = (X 0X )¡1X 0y is the least square estimate, s2
(i) =

P
(yj ¡ x0

j
^̄

(i))
2=(n ¡ p ¡1) is the unbiased

residual variance estimate when yi is deleted, and hi is the leverage of the observation, that is,

the i ¡ th diagonal element of the matrix H = X(X 0X)¡1X0, given by hi = x0
i(X

0X )¡1xi.

Then data with large studentized residual have a small conditional predictive ordinate (2.2) and

will be detected as outliers. An advantage of the conditional predictive ordinate method is that

observations with high leverage (hi is bounded by 1) will have small conditional predictive ordinate

(2.2), independently that they are outliers or not. This is deduced from the studentized residual

expression

ti =
(1 ¡ hi)1=2ei(i)

s(i)

;

where ei(i) = yi ¡ x0
i
^̄

(i) is the least square residual after deleting yi in the regression estimation.

When hi goes to 1, the studentized residual goes to zero, independently that the i ¡ th data is an

outlier (ei(i) is large) or a good data (ei(i) is small). In this case, the i ¡ th data point is very far

from the rest in the independent variables space, and it is called an in°uential data. Note that

the Bayesian measure is able to detect both outliers and in°uential points whereas the studentized

residual will be unable to detect high leverage outliers.
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The Bayesian approach for the identi¯cation of in°uential points is to measure the change of

a relevant distribution when the point under consideration is deleted. Johnson and Geisser (1983,

1985) and Geisser (1985) proposed the Kullback-Leibler divergence (Kullback and Leibler, 1951) to

measure the distance between the predictive distribution when deleting one data, p(y (i)), and the

predictive with all the sample , p(y), and proved that their measure is asymptotically equivalent

to the sum of the Cook's statistic (Cook, 1977) and a convex function of the studentized residuals.

The relationship between Cook's statistics and the studentized residual (2.3) is given by the formula

Di =
(n ¡ p)

p

t2i
(n ¡ p ¡ 1 + t2i )

hi

1 ¡ hi
:

Then it is easy to see, that the Cook's statistic will be large for in°uential outliers and small for good

data. Another approach is proposed by Pettit and Smith (1985) and by Guttman and Pe~na (1988,

1993). The last two authors proposed to compare the posterior parameter distributions, with and

without the observations, by the Kullback-Leibler divergence. They proved that changes in the

posterior distribution of ¯ are also a function of the Cook's statistic, as are derived from the

expression of the Kullback-Leibler divergence

d(p(¯ j y (i)); p(¯ j y)) =
pD2

(i)

2
+

s2
(i)

2s2

µ
p +

hi

1 ¡ hi

¶
+

s2

2s2
(i)

(p ¡ hi) ¡ p;

where pD(i) = (^̄ ¡ ^̄
(i))

0X 0
(i)X (i)(^̄ ¡ ^̄

(i))=s2
(i)

, and s2 is the unbiased residual variance estimate.

These authors also proved that changes in the posterior distribution of ¾2 can be interpreted as

an outlier measure depending on the studentized residuals ti and the standardized residuals ri:

Finally, the changes in the joint posterior distribution of the two parameters are combinations

of the in°uence measures on the posterior distribution of ¯ and of the outlier measure. Gir¶on,

Mart¶³nez and Morcillo (1992) proposed to consider an observation as in°uential when it does not

belong to the highest predictive density region p(y j y(i)), and estimation in°uential with respect

to a set of parameters when it does not belong to the highest posterior distribution region. They

applied these ideas to regression models and showed the relationship of the proposed procedure

with the Kalman Filter. Kass, Tierney and Kadane (1989) also suggested some in°uence measures

based on deleting one observation. They use asymptotic methods to study the changes in some

functions of interest. Using Decision Theory ideas Kempthorne (1986) and Carlin and Polson (1991)

analyzed changes in the Bayes risk to identify in°uential points.

Note that all the proposals mentioned for the single outlier and in°uential data identi¯cation

can be easily extended to the problem of group identī cation, but they require that the number

and the position of the outliers are known.
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2.2. Robust methods

Robust methods propose a model for the generation of all the data, including possible outliers.

Then the estimation is carried out using all the sample, but in such a way that the weight of the

outliers in the estimation is reduced. There are two ways to obtain this e®ect. The ¯rst one is to

assume a heavy tail distribution. The second is to assume a mixture of distributions: a central one,

which generates the good points, and an alternative one, which is responsible for the outliers. In

practice, both approaches lead to similar results because when the central model is contaminated

by an unspecī ed distribution with heavy tails, this property is transmitted to the ¯nal mixture

distribution.

Several heavy tail distribution have been suggested for regression problems. Box and Tiao (1973)

proposed the power exponential family. West (1984) suggested to use heavy tail distributions that

can be decomposed in a mixture of normal with di®erent scales. It includes some well known

families like the Student-t, the stables, the logistic and the double exponential. This family has

the advantage of making possible to study the posterior parameter distributions by exploring

some properties of the errors, which is not always the case with general heavy tail distributions.

Fern¶andez and Steel (1998) have proposed skewed student distributions which can also be used for

this purpose.

The second way is to accept the normality assumption for most of the data and assume an

alternative distribution for the outliers. Then the lack of homogeneity in the sample is modeled

with a mixture of distributions. In this model, it is assumed that the data may come from a

central distribution with high probability, (1 ¡ ®), and from a contaminated distribution with low

probability, ®. Two main outlier identi¯cation tools are used : 1) the posterior distribution for

each point coming from the alternative distribution, given a particular generation mechanism for

the rest of the sample; and 2) the Bayes factor to compare predictive distributions with di®erent

models. The most studied cases are those introduced by Tukey (1960) of mixtures of normals for

the error distribution. The ¯rst one is the normal scale contamination model, Box and Tiao (1968)

(SC model), where the data follow a model with error distributions

ui » (1 ¡ ®) N (0; ¾2) + ® N (0; k2¾2) i = 1; : : : ; n:

The second one is the normal level-shift model, by Guttman (1973) and Abraham and Box (1978)

(LS model), where the error distributions are

ui » (1 ¡ ®) N (0; ¾2) + ® N ( ;̧ ¾2) i = 1; : : : ;n:

The third is the additive model with m outliers, by Guttman, Dutter and Freeman (1978) (AD

model). It supposes that there are m outliers in the sample (m is ¯xed by analyzing the model for
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m = 0; 1; : : :) and the error distributions are uij » N (¸j ; ¾
2), for j = 1; : : : ; m, and

uij » N (0; ¾2), otherwise. These models can be combined and, for instance, Eddy (1980) has

proposed a combination of the Box and Tiao (1968) and Abraham and Box (1978) models.

In general, such proposals assume that the regression model is written as

yi j xi » (1 ¡ ®) f1(yi) + ®f2(yi);

where f1 is the central model and f2 is a contaminating one. If we assume that ® is known,

the ML estimation of this model can be carried out by the EM algorithm, as shown by Aitkin

and Tunnicli®e-Wilson (1980). The EM algorithm can be seen as introducing a set of unobserved

classī cation variables ± = (±1; : : : ;±n )0, de¯ned as ±i = 1 when yi is generated by the alternative

distribution, otherwise as ±i = 0. Then we substitute these variables for their expectations and

estimate the parameters given the values of these variables.

In the Bayesian approach we want to compute the posterior distribution of the parameters

given the data. This is also simpli¯ed if we introduce the classi¯cation variables and compute

the posterior distribution p(¯; ¾2; ± j y). The data yi will be called an outlier when the marginal

probability pi = p(±i = 1 j y) is greater than 0.5. Thus, ® is the prior probability that any

observation is an outlier. Calling A(r) to the event \r particular ±i variables are equal to one and

the remaining n ¡ r are zero", the posterior distribution of ¯ is

p(¯ j y) =
X

r

p(A(r) j y) p(¯ j A(r); y);

where the weights p(A(r) j y) are the posterior probabilities of all the possible con¯gurations A(r).

With the usual reference priors for ¯ and ¾2, p(¯; ¾2)/¾¡2, and assuming that k and ® in the SC

model or ® and ¸ in the LS model, are known, these probabilities can be found in Freeman (1980).

Eddy (1980) indicated that the mean of the distribution of p(¯ j A(r); y) in the three models can

be seen as weighted least square estimates.

To identify the outliers we can use the weights p(A(r) j y). In the particular case of a single

outlier in the sample, the probabilities are

p(Ai(1) j y) / !j X0V (1)X j¡1=2
s¡À

(i) ; (2.4)

where Ai(r) means that ±i is equal to one, that is, yi is one of the r contaminated data. The

matrix V (1) and the values of À and ! depend on the model (see Eddy, 1980). In the general

case the probability of an observation to be an outlier is given by pi =
P

r p(Ai(r) j y). This

probability requires to compute the probabilities for all the 2n possible combinations. We will

see in the next subsection an alternative and feasible way to compute these probabilities by using

MCMC methods.

6



The second method to identify outliers is to use Bayes factors. With the Bayes factor, and

applying the Je®reys rule (Je®reys, 1961), it is possible to compare the predictive distribution for

a model with only one outlier with the predictive distribution for an outlier free model. In this

case the Bayes factor can be expressed as

F10(i) =
p(y j Ai(1))

p(y j A(0))
:

Pettit (1992) extended the use of the Bayes factor to improper prior distributions by using the

Spiegelhalter and Smith (1982) method of ¯nding imaginary observations subsets of minimum size.

Pe~na and Guttman (1993) compared these approaches and showed that the posterior probability

of a particular set of data to be outlier with the LS or AD model is inversely proportional to the

ordinate of the predictive density, so that both approaches can be considered as equivalent.

2.3. Outlier detection with Gibbs Sampling

Bayesian analysis of outlier problems using the Gibbs sampler was initialized by Verdinelli and

Wasserman (1991) for i.i.d. data. Their procedure was generalized by Justel and Pe~na (1996a) to

the case of outliers in regression models. They considered the Box and Tiao (1968) model with

the reference priors mentioned before, but assume that the contamination parameter ® is unknown

and use a Beta(°1; °2) as a prior distribution for this parameter. Gibbs sampling avoids the 2n

necessary computations to obtain the marginal posterior probabilities pi.

The application of the Gibbs sampling (see Gelfand and Smith, 1990) is carried out by aug-

menting the parameter vector with a set of latent (unobserved) classi¯cation variables (±1; : : : ; ±n).

Then the objective of the procedure is to obtain samples from the joint posterior p(¯; ±; ¾2; ® j y).

Starting from an arbitrary vector of initial values, the Gibbs sampler provides a sample of the

posterior distribution for all the parameters in the model. It means that when the algorithm con-

verges a sample will be obtained to be used for the computation of an estimate of p(±i = 1 j y),

for i = 1; : : : ; n. The basic requirement for the Gibbs sampler is to be able to draw samples from

all the conditional parameter distributions, conditional to the sample and to the other parame-

ters. Justel and Pe~na (1996a) computed all the necessary conditionals and showed that generation

from these distributions is very easy by using random number generators, as the ones described in

Devroye (1986) or Ripley (1987).

The full conditional distributions are:

i) The conditional distribution of the vector ¯ is Np

³
~̄ ;¾ 2(X0V ¡1X)¡1

´
; where

~̄ = (X 0V ¡1X )¡1X 0V ¡1y and V is a diagonal matrix with elements vii = 1 + ±i(k
2 ¡ 1).
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ii) The conditional distribution of ¾2 is Inverted ¡ Gamma
¡
n=2;

P
u?

i
2=2

¢
, where u¤

i = (yi ¡
x0

i¯)=(1 + ±i(k ¡ 1)).

iii) The conditional distribution of ® is Beta (°1 +
P

±i; °2 + n ¡ P
±i).

iv) The conditional probability of ±i = 1 is

P (±i = 1 j y;¯ ; ¾2; ®) =

µ
1 +

µ
1 ¡ ®

®

¶
F10(i)

¶¡1

; (2.5)

where F10 = k ¢ exp
¡
¡u2

i =2Á¡1¾2
¢

is the Bayes factor and Á = 1 ¡ k¡2.

Note that the conditional probability that observation ith is an outlier depends only on the

standardized residual u2
i =¾2. If the residual is small, F10(i) will be large and the probability (2.5)

will be small. The opposite occurs when u2
i =¾2 is large.

Although the Gibbs sampler allows for easy computations of the marginal probabilities for each

data to be an outlier, Justel and Pe~na (1996a) showed in several examples that Gibbs sampling

fails for outlier detection in some data sets with multiple outliers. This case will be discussed in

the next section.

3. MULTIPLE OUTLIERS

The formulas (2.2) and (2.4) can be easily used for single outlier detection, as well as generalized

for checking the presence of a particular group of outliers (i.e., see Pe~na and Guttman, 1993).

However, the most relevant problem appears when the number and the position of the outliers are

unknown, as it is the usual case with real data. In this case, two ideas may be considered: (1) to

detect multiple outliers one by one, using single outlier detection procedures; and (2) to identify

multiple outliers by computing all the probabilities for the possible outlier groups.

These two possibilities present serious problems in some particular, but not unusual, situations.

In one hand, the deleting one by one observation procedures with multiple outliers can be subject

to masking. Masking occurs when one outlier observation is not detected because of the presence

of other outliers. Also, one good point can be wrongly identi¯ed as outlier due to the e®ect of the

outliers, and this is called the swamping problem. The masking appears when there are several

very similar outliers, which are also high leverage data. In this case, the studentized residuals tend

to be small when they are not all deleted at the same time. Moreover, when the size of the outlier

group is large the leverages of these data tend to be small, although they are very far away. Then

the conditional predictive ordinate is large and outliers are not identi¯ed. Pe~na and Yohai (1995)

proved this fact in the limit case of a group I of nI outliers, (ya; x
0
a), where ha = x0

a(X 0
(I)X (I))

1x0
a.

Then the residuals are

ea =
ya ¡ x0

a
^̄

(I)

1 + nI ha
:
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If ha is large, the residuals are small and they do not change if only one data is deleted (nI is

substituted by nI ¡ 1). The leverages for all the data in the group I are ha=(1 + nIha), that tend

to be small when nI increases.

On the other hand, the generalization of (2.4) for a particular group of outliers may avoid

the masking, but they involve the extensive computations of the 2n posterior probabilities which

correspond to all the possible con¯gurations for the generation of the data.

Some proposals have been suggested to solve the masking problem from a Classical point of

view, as the LMS of Rousseeuw (1984), or the methods of Rousseeuw and Zomeren (1990), Hadi

and Simono® (1993), Atkinson (1994), and Pe~na and Yohai (1995, 1999). However, the masking

problem has received little attention in the Bayesian literature. We only have found the works of

Pe~na and Tiao (1992) and Justel and Pe~na (1996b).

3.1. Bayesian robustness curves

Pe~na and Tiao (1992) proposed a method based on stratī ed sampling to reduce the heavy com-

putations on the multiple outlier detection problem. They suggested two new diagnostic tools: the

Bayesian robustness curves BROC and SEBROC. Using the SC model, these curves compare the

model with h outliers (Mh) with the outlier free model (M0). The BROC is de¯ned as the ratio

of the posterior probabilities of model Mh and M0, for di®erent values of the number of outliers

h, that is

Ph0 =
P (Mh j y)

P (M0 j y)
=

µ
n

h

¶ µ
®

1 ¡ ®

¶h

Fh;0;

where the Bayes factor is

Fh;0 =

µ
n

h

¶¡1

k¡h
X

r

jX 0X j1=2

jX 0X ¡ ÁX 0
(r)X (r)j1=2

Ã
s2

s2
(r )

!
:

(n¡p)=2

(3.1)

The sum in (3.1) is over the
¡

n
h

¢
possible con¯gurations of h outliers and n ¡ h good data, and s2

(r)

is a residual sum of squares given in Box and Tiao (1968). The BROC curve provides information

about the number of outliers, however it is not able to identify masked outliers. The alternative

in these cases is to use the Sequential Bayesian Robustness Curve (SEBROC) that is, for each h,

the ratio

Sh;h¡1 =
Ph;0

Ph¡1;0
:

The key point of the proposal in Pe~na and Tiao (1992) is to use stratī ed sampling ideas to

reduce the
¡

n
h

¢
computations for Ph;0, or the

¡
n

h¡1

¢
+

¡
n
h

¢
for Sh;h¡1, without loss of e±ciency. The

method consists on:
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1. If the i ¡ th observation is an outlier, all the elements

d(i; j) =
p(Ai;j (2) j y)

p(A(0) j y)
¡ p(Ai(1) j y)

p(A(0) j y)

p(Aj (1) j y)

p(A(0) j y)

will take high values. Divide the sample in two parts, one of size n1 that holds the potential

outliers and another of size n ¡ n1 that holds the possible good data.

2. Using that µ
n

h

¶
=

hX

r=0

µ
n1

r

¶µ
n ¡ n1

h ¡ r

¶
;

compute the
¡

n
h

¢
combinations in which h of the n data are deleted by computing all the

combinations on the group of size n1, but only a small sample on the group of size n¡n1. For

instance, if n1 = 10, n2 = 20 and h = 3, compute the
¡10

3

¢
combinations in which three data

are deleted from the n1, the
¡

10
2

¢
combinations in which two data are deleted from the n1

and one randomly selected from the n2 , the
¡
10
1

¢
combinations in which one data is deleted

from the n1 combined with a random sample of the
¡
20
2

¢
combinations of good data, and one

small random sample of the
¡20

3

¢
possibilities of deleting good data.

3.2. Adaptive Gibbs Sampling

The proposal of Justel and Pe~na (1996b) is based on an adaptive Gibbs sampling algorithm

(AGSA). When the outliers are isolated the Gibbs sampler works very well, however in strong

masking cases the algorithm fails and outliers may not be detected when the convergence seems to

be reached. A key factor to explain the lack of convergence in these cases seems to be the e®ect of

the leverage in the estimation of linear regression models. When high leverage outliers which cause

masking are classi¯ed as good data in the initial vector ± (0), the probabilities that these points are

identi¯ed as outliers depend on the initial residuals u
(0)
i = yi ¡ x0

i¯
(0), where ¯(0) is the mean of

the conditional distribution given ±(0). For large k, the residuals u(0)
i will be small if the leverages

are high, and these decrease with the number of outliers. Therefore, for high leverage outliers the

residuals u
(0)
i will be close to zero and the probabilities (2.5) will also be close to zero. On the

other hand, when the masked outliers are not classi¯ed as good data in the initial vector ±(0), the

out-of-sample residuals u
(0)
i will be large and the probability (2.5) will be close to one. Therefore,

the set of outliers will be detected in the next iteration only when all of them are classi¯ed as such

in the drawing from the conditional distribution (2.5).

The solution to this problem begins with the correct initial classi¯cation of the group of masked

outliers. Justel and Pe~na (1996b) proposed to compute the posterior probabilities of each observa-

tion being an outlier with the AGSA. The idea is to use the Gibbs sampler to ¯nd an outlier free

subset. Then to split the sample and adapt the initial conditions to incorporate this information
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about possible outliers. When running the Gibbs sampling with these initial conditions it converges

very quickly to the posterior distributions. The splitting mechanism is based on the eigenstructure

of the ± 's covariance matrix estimated with the Gibbs sampler output. This matrix exploits the

dependency structure among the observations generated by masking. The eigenvectors associated

to the non zero eigenvalues provide information about which data are outlier candidates. The

result is an adaptive method divided in three stages:

i) Standard Gibbs sampler: The Gibbs sampling is initialized by classifying a few data as good

observations. Then the algorithm is run until the outlier probability series are stable.

ii) Outlier free subset identī cation: The covariance matrix of the classi¯cation variables is es-

timated with the Gibbs output from the ¯rst stage. The outlier free subset contains the

observations with non null coe±cients on the eigenvectors associated to the non zero eigen-

values and the observations with high marginal probability.

iii) Estimation: The Gibbs sampling is initialized by classifying the data in the outlier free subset

as good data. Then the algorithm is run until the outlier probability series are stable and all

the posterior distributions are estimated with the Gibbs sampling output.

The procedure can be used automatically and includes: (1) a criterion for initial conditions

selection without any prior information; and (2) a method to be used for grouping data based on

the covariance matrix. Its application to some of the most frequently used examples in multiple

outlier detection shows that it is able to unmask outliers in samples where other methods fail.

4. THE GENERAL CASE

The general heterogeneity case corresponds to a situation in which each point can be generated by

a di®erent model. To be speci¯c, suppose that we have a set of models M1;:::; Mm such that Mj

implies that F (y j x) is N (¯ 0
jx; ¾2

j ), that is, the data come from di®erent regression models with

di®erent regression parameters and error variances. Associated with each of these models are prior

probabilities !j , where
P

!j = 1. When we know which model generates each observation, and

we assume the prior covariances between coe±cients of di®erent equations are zero, we have the

seemingly unrelated regression of Zellner (1971). When the prior covariance matrix is not block

diagonal, then we have the shrinkage estimates by Lindley and Smith (1972).

Model heterogeneity may seem to be related to the problem of model selection, where we have a

set (M1; M2; :::; Mm) of possible models and we want to select the one which is the most compatible

with the data. The problem has a straightforward solution achieved by computing the posterior

probabilities

p(Mi j D) =
p(D j Mi)p(Mi)P
p(D j Mi)p(Mi)
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where D is the sample data. The speci¯cation of p(Mi) requires that we have a partition of the

model space, that is, models must be incompatible, and this is not so in general. This is obvious

when some models are nested, as when selecting between a linear or a quadratic regression. In

general, the alternative non nested models that we are considering have some degree of overlapping,

because they have been chosen to explain the same data set. However, the problem of overlapping

models does not appear in the heterogeneity case in which we do not intend to select a model,

rather we assume that we have several models and the problem is to identify the observations

generated from each model and to use this information for estimation and forecasting.

A particular case of model heterogeneity is the one in which the response y is a r-dimensional

vector, we do not have explanatory variables in the model, and the distributions F are known or

are known up to a parameter vector µ. This is the standard clustering problem. The application

of mixture models to clustering has a long tradition. See Binder (1978), Titterington et al. (1985),

McLachlan and Basford (1998), Bernardo and Gir¶on (1988, 1989), Lavine and West (1992) and

Bernardo (1994). In the standard application of cluster analysis the number of components in the

mixture, m, is assumed to be known. Then the model can be estimated by MCMC by introducing

latent (unobserved) variables ±j (1 � j � n) which indicate the label of the group from which

observation j is drawn. Of course, a priori

p(±j = i) = !i ; for i = 1; : : : ; m:

This model has been studied by Diebolt and Robert (1994) who proposed a data augmentation

algorithm to carry out the estimation and proved that it converges geometrically. They also studied

the convergence of Gibbs sampling.

In practice the number of components in the mixture is unknown. Then we have four possible

approaches. The ¯rst one estimates m by a Schwarz criterion (Raftery, 1996). The second one use

a Kullblack-Leibler estimate (Mengersen and Robert, 1996). The third one (Nobile, 1994) assumes

a prior distribution for m , evaluates the likelihood of the data under each mixture model p(y j m)

and then uses Bayes Theorem to compute the posterior p(m j y). Finally, the fourth and more

direct approach is to assume that the value of m is unknown and so it is included as an additional

parameter to be estimated: we have a problem of Bayesian analysis of mixtures with an unknown

number of components. A problem recently analyzed by Richardson and Green (1997). These

authors proposed a model in which the joint distribution of all the variables of interest is given by

p(m; ±; !; µ; y) = p(m)p(! j m)p(± j !; m)p(µ j m)p(y j ± ; µ);

which is similar to the model considered by Binder (1978). Brie°y, we have a hierarchical model in

which ¯rst we specify the number of components, m, then the probability of each component, !,

12



then we decide how many observations we take from each component by specifying the values of

the latent variables, ± , then we ¯x the values of the parameters, µ, given the model m and ¯nally

we set the values of the sample given the model from which they are generated.

The authors apply this model to univariate normal mixtures. The prior distribution for the

number of components is assumed to be uniform between 1 and a given value mmax . The prior

probabilities for ! and the parameters µ = (¹; ¾) are the usual ones: for ! a Dirichlet distribution,

for the mean a normal prior and an inverted gamma for the variance.

The estimation of this model is carried out by a reversible jump MCMC, (Green, 1995) which

is a Metropolis-Hasting algorithm in which, in addition to the usual Gibbs sampling updating of

the parameters ±; !; µ, two further moves are introduced.

(1) Splitting one mixture component into two, or merging two mixture components into one;

(2) The birth or death of an empty component.

At each step a random choice is made between attempting to split or combine. This is done

with equal probabilities unless we have just one group (then we always split) or we have reached

the maximum number of groups (then we always combine). The combining is carried out by

choosing at random two adjacent groups in terms of the current value of their means and merging

the observations of both groups into a new group. Splitting is made by random selection of a

group and splitting it into two, also at random. The decision between birth and death is also taken

randomly with equal probabilities and either a new group is created by sampling the parameters

from the prior distribution or it is deleted.

The application of this scheme to the regression case presents several problems. First, as in the

normal mean case there is an identi¯cation problem, because the whole model is invariant to the

permutation of the level of the groups. For univariate data this is solved by using an increasing

order for the means, but in the regression case it is not obvious how to order the regression

parameter vectors ¯j , j = 1; : : : ; m. Second, the splitting and merging of the groups use the

natural adjacent idea in the univariate case, but there is not a clear way to extend this approach

to the vector case in regression. Third we wonder if the same type of problems of convergence for

the Gibbs Sampling that we have found in the multiple outlier case can appear here again. In the

univariate case strong masking for leverage e®ects cannot appear, but in the regression set up the

algorithm may fail for the same reasons shown in Justel and Pe~na (1996a). Further research is

needed to discover if the reversible jump MCMC algorithm can be used with success in regression

problems.
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5. HETEROGENEITY AND MODEL UNCERTAINTY

Model heterogeneity implies that if we want to forecast the value of a future observation y and: (1)

we know that it can be generated by a set of models M1;:::; Mm with probabilities w1; :::; wm , (2)

we do not know which one will be the correct model, then we have to use the marginal predictive

density given by

p(y j D) =
X

wip(y j Mi ; D):

where D stands for data. In standard statistical applications either we have a central model or

a model is selected from the sample. Let us call M0 to this central model and p(y j M0; D)

to the predictive distribution derived from it. Using p(y j M0; D) instead of p(y j D) will in

general underestimate the uncertainty in the forecast. We de¯ne the increase in uncertainty due

to model heterogeneity by the Kullblack-Leibler distance between the distributions p(y j D) and

p(y j M0; D)

U =

Z
log

p(y j D; M0)

p(y j D)
p(y j D; M0)dy

This measure is positive if both distribution are di®erent and will be equal to zero if they are

equal. For instance, let us consider the simplest case of isolated outliers in the Box and Tiao

(1968) regression model. Then if we want to forecast the value of a new response variable, y, given

the values of the explanatory variables x, the predictive distribution p(y j D; M0) is a Student t

distribution with mean m0 and variance v0. The distribution p(y j D) will be a mixture of two

Student t distributions with the same mean, m0, variances v0 and v1 = v0k
2 and mixing proportions

(1 ¡ ®), and ®. In order to compute the KL distance we can approximate these distributions by

normals with the same mean and variance to obtain

U =
1

2

µ
log

µ
v2

v0

¶
+

v0

v2
¡ 1

¶
;

where v2 is the variance of the mixture distribution p(y j D). Note that as both distributions have

the same mean, the KL distance is just the average of the two measures of the relative change in

the variances, log(v2=v0) and (v0 ¡ v2)=v2. Using that in this model v2 = v0(1 + ®(k2 ¡ 1)) we

obtain that

U =
1

2
log(1 + ®(k2 ¡ 1)) ¡ ®(k2 ¡ 1)

2(1 + ®(k2 ¡ 1))
;

and so the increase in uncertainty in the forecast is a monotonic increasing function in ® and

k2: We see that the increase in uncertainty depends on the parameter ¸ = ®(k2 ¡ 1): The ¯rst

derivative of U with respect to ¸ is
dU

d¸
=

¸

2(1 + ¸)2
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which is always positive and is zero at ¸ = 0; indicating that a small model heterogeneity has

no e®ect on the uncertainty of the prediction. The in°exion point of the U(¸) function can be

obtained from
d2U

d¸2
=

1 ¡ ¸

2(1 + ¸)3

and it is reached for ¸ = 1 which corresponds, for instance, to the case ® = :05 and k ¼ 4:6:

From this point, increasing k and/or ® by a ¯xed amount will produce smaller increases in the

uncertainty of the prediction.

In the general heterogeneity case, the mean of the distributions p(y j D) and p(y j M0; D) will

also be di®erent and the KL distance will depends on the standardized mean di®erence as well as

on the variance changes. An approximation to the KL measure can be computed in closed form

by approximating the Student t distributions by normal distributions.
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