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Abstract

This paper reviews the applications of classical multivariate techniques for discrimination, clustering and
dimension reduction for time series data. It is shown that the discrimination problem can be seen as a model
selection problem. Some of the results obtained in the time domain are reviewed. Clustering time series
requires the deÞnition of an adequate metric between univariate time series and several possible metrics
are analyzed. Dimension reduction has been a very active line of research in the time series literature and
the dynamic principal components or canonical analysis of Box and Tiao (1977) and the factor model as
developed by Peña and Box (1987) and Peña and Poncela (1998) are analyzed. The relation between the
nonstationary factor model and the cointegration literature is also reviewed.

Key words: Canonical Analysis, Cluster Analysis, ClassiÞcation, Dynamic Factor Model, Discriminant
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1 Introduction

Standard multivariate analysis includes, among others, procedures for discrimination among several populations,
classiÞcation (pattern recognition) of multivariate data into groups, either hierarchical or not, and dimension
reduction. These problems are also important in multivariate time series. The discrimination problem appears
as follows. Suppose that we know that a set of time series can be generated by one of several possible models,Mi,
i = 1, ..., k and we assume that these models are known. Now, we observe a new time series and the problem is
to decide which of the models, Mi, has generated this time series. This problem is an important area of research
in different disciplines. For instance, in seismology it is important to be able to discriminate between data from
earthquakes and nuclear explosions (Dargahi-Noubary, 1992, Dargahi-Noubary and Laycock, 1981, Kakizawa,
et al., 1998, Shumway and Unger, 1974). In medicine the information from the electroencephalographic time
series (EEG) can be used for discriminating between different stages of sleep (Alagón, 1989, Gersch et al., 1979).
In engineering it is important to discriminate between a pattern generated by a signal plus noise and a pattern
generated by a noise alone, for example, to detect a radar signal for determining the position of a moving target.
In Economics we are interested in classifying the economic situation as expansion or depression by considering
the values of some time series economic indicators. Finally, in Business a company can be classiÞed as successful
or in potential trouble by looking at some time series indicators of its economic activity.

The problem of making clusters of set of time series appears also in many scientiÞc Þelds but most of the
published examples of cluster analysis in time series have been made with environmental data. We have time
series from different locations and we want to make groups with locations with the same behavior. See for
instance Bohte et al. (1980), Cowpertwait and Cox (1992), Gantert (1994), Walden (1994) and Macchiato et
al. (1995). There are several problems not completely solved in the application of cluster analysis in time
series. The standard approach for splitting a sample of multivariate data into clusters is to assume that the
multivariate observations have been generated by a mixture of multivariate normal distributions with different
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means and covariance matrices and unknown mixture probabilities. If the number of populations were known,
the parameters can be estimated by the EM algorithm or by MC2 Bayesian methods. As the number of
population is unknown, a model selection procedure, such as the BIC or AIC criteria is applied to select the
number of populations involved. The generalization of these approach to time series is to assume that data has
been generated by some set of possible multivariate time series models or data generating processes,M1, ...,Mk,
with unknown probabilities, and then the cluster problem is closely related to the discrimination problem.
However, this approach has not yet been fully explored.

The problem of dimensionality reduction is very important for dynamic data since for vector ARMA models,
as well as for simultaneous equations econometric models, the number of parameters to estimate grows rapidly
with the number of observed variables. An interesting extension of the idea of principal components for time
series is the canonical analysis of Box and Tiao (1977). Instead of Þnding linear combination of maximum
(or minimum) variability these authors studied the problem of Þnding linear combinations of maximum (or
minimum) predictability. They showed that the canonical variables are useful for understanding and simplifying
the dynamic structure present in the vector of time series. Factor analysis of time series was studied by
Geweke and Singleton (1981), Brillinger (1981), Engle and Watson (1981), Molenaar (1985), Peña and Box
(1987), Molenaar et al. (1992), Peña and Poncela (1998) among others. An alternative approach to dimension
reduction is the reduced rank approach by Velu et al. (1986) and Ahn and Reinsel (1988). In the nonstationary
case estimating the nonstationary factors is equivalent to testing for cointegration in the econometrics Þeld
(whose vast literature we do not pretend to review here), since the number of cointegration relations among
the components of a vector of time series is the dimension of the vector minus the number of nonstationary
common factors (see Escribano and Peña, 1994). An alternative useful approach for model simpliÞcation is the
scalar components approach by Tiao and Tsay (1989). Finally the state space approach to time series includes
procedures for dimension reduction (Hannan and Deistler, 1988, Aoki, 1990).

This paper describes some of the development of these procedures in the time domain. The reader interested
in the devepment in the frequency domain is advised to read chapter 5 of Shumway and Stoffer (2000), which
contains a good review of this Þeld. The article is organized as follows. In the next section the problem of
discrimination in time series is presented. The standard discriminat analysis is seen as a model Þtting exercise
and it is shown that in practice, when the parameters are unkonwn, discriminat analysis for time series is closely
related to the model selection problem that has been the subject of an important area of research in time series.
In Section 3 we present the clustering problem and discuss some of the measures of distance among time series
that have been proposed in the literature. Some suggestions for further research in this Þeld are also included.
We have decided to consider only in Section 4 the extensions of standard multivariate methods, as the literature
on model simpliÞcation and dimension reduction is very large. Thus, in the section we present the extension of
the principal component idea of Box and Tiao (1977) and the Dynamic factor model. The relationship between
both approaches is discussed and we also relate the nonstationary factor model and the cointegration literature.
Section 5 presents some concluding remarks.

2 Discrimination in time series

2.1 Linear Discrimination

Discriminant analysis has been mainly studied for Gaussian processes. The classical approach is as follows.
Suppose a series with T observations, denoted by x = (x1, ..., xT )

0
, which follows a Gaussian process with

vector of marginal means µj =
¡
µj1, ..., µjT

¢0
for j = 1, 2. Assume that the process x − µj is a zero mean

stationary process with covariance matrix Σj = {σj (s− t) : s, t = 1, ..., T} . Thus, under the hypothesis Hj ,
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x ∼ NT
¡
µj ,Σj

¢
, for j = 1, 2. Then, the probability density function for this process is,

p (x/Hj) = (2π)
−T

2 |Σj |−
1
2 exp

µ
−1
2

¡
x− µj

¢0
Σ−1j

¡
x− µj

¢¶
, (1)

The classical approach suppose that both covariance matrices are equal, Σ1 = Σ2 = Σ, but the means are
unequal. Thus, we assume that the difference between the two marginal means is due to some deterministic
function. For instance, if µji = boj + b1ji, the series have a different deterministic trend and if b1j = 0 the
series have a different marginal mean. The Neyman-Pearson lemma for the hypothesis H1 : x ∈ M1 versus
H2 : x ∈M2, leads to the following rule for accepting H1 :

p (x/H1)

p (x/H2)
> K, (2)

for some value K that takes into account the probabilities of misclassifying the time series. Assuming that the
costs of missclassiÞcation are the same and that the a priori probabilities of each model are also the same, we
will classify the observation in the model that have the maximum likelihood. This is equivalent to accept the
hypothesis H1 if

(x− µ1)0 Σ−1 (x− µ1) < (x− µ2)0Σ−1 (x− µ2)

that is, if we denote by Di = (x− µi)0Σ−1 (x− µi) to the Mahalanobis distance between the data and the
vector of marginal means, x is classiÞed in the Þrst population if D2 > D1. An alternative interpretation of this
rule can be obtained by writing this equation as:

(µ1 − µ2)0Σ−1x > (µ1 − µ2)0Σ−1
1

2
(µ1 + µ2), (3)

that implies that the scalar measure v = α0x is built, where

α = Σ−1 (µ1 − µ2)

calling m1 = α0µ1 and m2 = α0µ2 the series is classiÞed in M1 if v >
(m1+m2)

2 . If we denote for D12, the
Mahalanobis distance between the means of both populations,

D12 = (µ1 − µ2)0Σ−1 (µ1 − µ2) =m1 −m2 (4)

then, the linear discrimination function, v, is normally distributed with mean m1 under H1, and m2 under H2.
The variance is D12 in both cases. Thus we classify on M1 if the scalar variable v is closer to m1 than to m2.

Note that this rule, obtained by the likelihood ratio test, it is equivalent to Þtting the time series by both
models and then choosing the model that leads to a smaller residual variance. This result is clear from (1)
because note that ej = x − µj , j = 1, 2 are the residuals from the deterministic Þt bx = µj and aj = Σ−1/2ej
corresponds to the residuals taking into account the stationary structure. Note that the errors aj have an
identity covariance matrix. Thus

a0jaj = e
0
jΣ

−1ej = (x− µi)0Σ−1 (x− µi) (5)

and minimum Mahalanobis distance is equivalent to minimum residual sum of squares. Another way to look at
this property is by noting that if ej follows a zero mean linear process the likelihood f(ej) can be written, by
using the prediction error decomposition, as

f(ej) = f(ej1)f(ej2/ej1)....f(ejT/ej1....ejT−1)
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and the likelihood will only depend on the one-step ahead forecasting errors that are equal to the residuals a.
Note that for linear time series we can write the zero mean process π (B) et = ²t, where π (B) = 1 − π1B −
π2B

2 − .... as Πe = ², where :

1 0 · · · · · · 0
...

. . .
. . .

. . .
...

−πp . . .
. . .

. . .
...

. . .
. . .

. . .
. . . 0

−πT−1 . . . −πp · · · 1


 e1

...
eT

 =

 ²1
...
²T

 .

Suppose that the covariance matrix of ² is σ2I. Then, calling Σ to the covariance matrix of e, we have,

ΠΣΠ0 = σ2I

and, therefore,

Σ−1 =
1

σ2
Π0Π

and

e0Σ−1e = e0
1

σ2
(Π0Π) e =

1

σ2

nX
i=1

²2i =
nX
i=1

a2i

in agreement with (5). Thus, discriminant analysis can be viewed as assigning the observed time series x to the
model (population) that when Þtted to the time series produces the smallest one step ahead squared forecast
error.

2.2 Unequal Covariance Matrices

A more relevant case in time series discrimination is when the covariance matrices are unequal. Suppose that
we want to discriminate between two time series models. Both imply Gaussian populations but with different
covariance matrices and, for simplicity, we will assume that the marginal means are in both cases equal to 0.
Then, the rule (2) says that we accept H1 if

Q(x) = x0
¡
Σ−12 −Σ−11

¢
x > K

which is a quadratic form. This discriminant rule has a simple interpretation in term of prediction errors,
because, as before, x0Σ−1i x is the residual sum of squares of the Þtted model. Thus, the likelihood ratio test
leads to Þtting the observed time series with both models and choosing the one with the smallest one step ahead
forecast error.

An alternative interesting interpretation of the discriminant rule is that it assigns the series to the model
producing the smallest interpolation error. The best linear interpolator of a time series is given by (see for
instance Peña and Maravall, 1991)

bxs = E [xs|xt, t 6= s] = − ∞X
i=1

ρDi (xs−i + xs+i)
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where ρDi are the coefficients of the dual autocorrelation function of the model given by:

ρD(B) = σ2
π (B)π (F )

vD

with π (B) , the autoregressive form of the model, vD = σ2
∞P
i=0
π2i and F = B

−1, the forward operator. Then,

Galeano and Peña (2000) showed that :

x0Σ−1x x =
(x− bx)0(x− bx)
MSE(bx)

where MSE(bx) denotes the mean square interpolation error. That is, the series xt is assigned to the model
that produces the smallest interpolation error or, in other words, the model that better adjusts the data.

As the distribution of Q(x) is difficult to Þnd, Shumway (1982) suggests that under Hj , j = 1, 2, and for
large values of T, Q(x) can be approximated by a normal distribution with mean tr

¡¡
Σ−12 −Σ−11

¢
Σj
¢
and

variance 2 · tr ¡¡Σ−12 −Σ−12
¢
Σj
¢2
, where tr denotes trace. This method has the principal inconvenient that

the eigenvalues must be obtained numerically, being the matrices
¡
Σ−12 −Σ−12

¢
Σj very large, which makes a

numerical solution very difficult to obtain.

When the covariance matrix are different the optimum discriminant rule is not linear. An alternative
approach in these situations is to obtain a good linear discriminant rule according to some criteria. This is the
idea of admissible linear procedures introduced by Anderson and Bahadur (1962). For Gaussian populations,
under Hi, a linear discriminant rule, α0x, has a univariate normal distribution with mean α0µi and variance
α0Σiα . Therefore the probability of misclassifying an observation are given by

Pr (α0x < K|x ∈M1) = Φ

µ
K − α0µ1√
α0Σ1α

¶
Pr (α0x > K|x ∈M2) = Φ

µ
α0µ2 −K√
α0Σ2α

¶
where Φ (x) is the cdf of the N(0, 1) distribution. The objective is to make these values as small as possible, and
this is equivalent to make the values, y1 =

K−α0µ1√
α0Σ1α

and y2 =
α0µ2−K√
α0Σ2α

, small. The set of desirable procedures are
those that: (1) minimize the probability of one error when the other is speciÞed, or (2) minimize the maximum
probability of error, or (3) minimize the probability of error when a priori probabilities of the two populations
are speciÞed. The solutions to these problems are the set of admissible linear procedures. The set of solutions
that minimizes y1 for each given y2 is characterized by,

α = (t1Σ1 + t2Σ2)
−1 (µ2 − µ1) (6)

where the values t1 and t2 verify that K = α0µ1 + t1α0Σ1α = α0µ2 − t2α0Σ2α.
Information measures usually leads to admissible linear procedures. For instance, Kullback (1959) considered

the Kullback-Leibler discrimination information for discriminating in favor of H1 over H2. It is given by,

I (1 : 2,α0x) =
1

T
E1

µ
log

p1 (α
0x)

p2 (α0x)

¶
=

=
1

2T

·
Tr
¡
Σ1Σ

−1
2

¢− log |Σ1||Σ2| − T + (µ1 − µ2)
0Σ−12 (µ1 − µ2)

¸
Another useful measure is the divergence that for discriminating is deÞned by,

J (1 : 2,α0x) = I (1 : 2,α0x) + I (2 : 1,α0x)
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The values of α that maximize I(1 : 2,α0x), I(2 : 1,α0x) or J(1 : 2,α0x) are of the form Σ1α− λΣ2α = γδ,
where δ = (µ1 − µ2) , for some values of the scalars λ and γ. As a consequence of this, the procedures based
in the Kullback-Leibler information and in the divergence are admissible linear procedures. Chaudhuri, et
al. (1991) obtain linear discriminant procedures through the maximization of the Bhattacharyya distance for
Gaussian processes with unequal covariance matrices. If (Ω,β, υ) is a measure space and ℘ is the set of all the
probability measures on β which are absolutely continuous with respect to υ, then the Bhattacharyya distance
between two probability measures with density functions p1 and p2 belonging to ℘, is deÞned by,

− ln ρ (p1, p2) = − ln
Z
Ω

√
p1p2dυ

Under H1 : x ∈ N (µ1,Σ1) and H2 : x ∈ N (µ2,Σ2) , the linear discriminant function obtained maximizing
− ln ρ (p1, p2) is,

α0x = (µ1 − µ2)0 (Σ1 −Σ2)−1 x

Chaudhuri (1992) considered the problem of classifying a complex normal time series through the maximiza-
tion of the previous distance.

When the parameters of the models are unknown they must be estimated from the data. Although in
principle we can plug in the estimates and use the same criteria that in the known parameter case this is not a
good solution when the number of parameters in both models are very different. For instance, suppose that one
of the possible model is an AR(1) and the other is an AR(5) with four complex roots, that is, we are checking if
an observed time series presents pseudo-cycles. Then if we use the plug in procedure of obtaining the estimates
and introducing them in the discriminant function we will always get that the model with a larger number of
parameters provides a better Þt. Thus we have to take into account the difference between in sample Þt and
out of sample forecast.

Several criteria has been proposed for selecting time series models since the seminal work of Akaike (1969,
1974). Among them are the Bayesian Information criteria BIC of Schwarz (1978) and Akaike (1979), the penalty
methods of Hannan and Quinn (1979), the predictive least squares criterion of Rissanen (1986), extended by
Lai and Lee (1997), and the modiÞed AIC of Hurvich and Tsai (1989) and Cavanaugh and Shumway (1997).
Surveys on the performance of these criteria for ARMA order selection can be found in Bhansali (1993) and
Postcher and Srinivasan (1994).

These criteria have the general form

C = −2(logmax imized likelihood)+f(number of parameters) (7)

where the function f depend on the criteria. For instance, for ARMA models the AIC of Akaike is

AIC = n log bσ2 + 2(p+ q)
where (p+ q) is the number of parameters in the model. The BIC criteria due to Schwarz (1978) is

BIC = −2(logmax imized likelihood)+(logn)(number of parameters). (8)

This last criterion has been showed to have a very good performance in many model selection problems.

Some Bayesian approaches have been proposed that do not adopt a formal Bayes rules via a loss function.
For example, Broemeling and Son (1987) consider how to assign an observed time series to one of several possible
autoregressive sources with a common known order and unknown parameters and error variance. Using a vague
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prior density for the parameters and the variance, the observed time series data is assigned to one class by using
the marginal posterior mass function of a classiÞcation vector,

λ = (λ1, ...,λk)
0

with k mass points (1, 0, ...,0)0,..., (0, ..., 0, 1)0. The realization is assigned to the process i if the posterior mass
function of λ has its largest value at the i− th mass point. Marco, et al. (1988) consider the case of different
autoregressive classes. The data is assigned to the class k, if it has the greater predictive probability.

Finally, there exist other approaches for discrimination in which discriminant functions are not used. For
instance Kedem and Slud (1982) proposed transform a stationary time series into binary arrays that retain only
the signs of the j − th difference series. This binary series are used for discriminating among different models.
Li (1996) proposed a generalization of this method through the use of parametric Þltering, i.e., using a family
of Þlters indexes by a parameter. The series is Þltered and the information provided by the autocorrelation
function is used for discriminate the series into different models.

3 Clustering time series

Suppose that we have a large set of time series following different models. In a nonparametric approach each
series is considered as a point in <T , where T is the length of the series. A straightforward generalization of the
standard cluster methods is to obtain groups of series by looking at the distance between these points in the
space. In order to identify groups we can work directly with a distance metric in <T , or we can try to work in a
smaller space by projecting the points according to some optimality criterion. This criterion should be related
to the possibility of identifying clusters in the projected cloud of points.

A parametric approach would proceed by Þrst Þtting time series models to the data and then representing the
series by the vector of estimated parameters. If the dimension of the vector of parameters is p these parameter
vectors will be points in <p, and again we can try to Þnd points that are close in this space. In both cases we
can deÞne a measure of distance and then use a standard k-means type algorithm. Thus, an important Þrst
step is obtaining an appropriate metric for measuring the similarity between points.

In the parametric ARIMA approach each time series is represented by the vector of parameters models. For
instance, if the series are Þtted by

φi (B) (1−B)dxit = θi (B) ²it, i = 1, ..., k

where φi (B) = 1− φi1B − ...− φipBp, and θi (B) = 1− θi1B − ...− θiqBq, we can represent the series by the
autoregressive and moving-average parameters including all of them in a vector

βi =
¡
φi1, ....,φip, θi1, ..., θiq

¢T
and then deÞning a measure of distance by

D(xi, xj) = (βi − βj)0Σ−1β (βi − βj)

where Σβ is an appropriate matrix to deÞne the metric that, in particular, it can be the identity. Bruce and
Martin (1989) consider a similar measure of distance between ARIMA models. However, as indicated by Peña
(1989) this measure has three main principal problems. The Þrst is that it cannot compare ARIMA models with
different degrees of differencing. The second is that it does not take into account the possibility of cancellation
between AR and MA. For instance the models (1 − .9B)xt = (1 − .89B)²t is almost exactly the same as the
model xt = ²t whereas with this metric both will seem very different. The third is that it does not allow for
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the duality between the AR and MA forms. A more convenient measure is deÞned through the comparison
between the coefficients of the polynomial π (B) , obtained from θ (B)π (B) = φ (B) (1−B)d.
Piccolo (1990) introduced a metric for ARIMA models that can be used for classifying and clustering time

series. Let xt is a zero mean stochastic processes following an ARIMA(p, d, q) model in the usual notation,
φ (B)xt = θ (B) ²t, where ²t is Gaussian white noise. When xt is invertible, it is possible to deÞne the autore-
gressive operator π (B) = θ−1 (B)φ (B) = 1 − π1B − π2B2 − .... The coefficients of π (B) conveys all usual
information about the stochastic structure given initial values and the order of the process. If £ denotes the set
of invertible processes, we can deÞne a measure of structural diversity between processes in £ comparing their
respective π sequences. The metric on £ is deÞned by the distance,

d(x, y) =


∞X
j=1

(πj,x − πj,y)2


1
2

which always exists for every x, y ∈ £, and being the zero element the sequence (0, ...,0).We notice that a dual
metric can be deÞned by:

d(x, y) =


∞X
j=1

¡
ψj,x − ψj,y

¢2
1
2

where the ψ sequence deÞnes the MA(∞) operator as ψ(B) = φ (B)−1 θ (B) = π−1(B). However this metric
can not be computed for integrated processes.

This deÞnition of distance allows to perform applications to clustering algorithms, through the study of
similarities between time series. Piccolo (1990) applies the following method to study a possible similarity in
the behavior of industrial production series in different sectors. The algorithm starts deÞning a model for each
series considered and in base of this model the distances between all the time series are computed. Then a
dendrogram based on the similarities is built and that gives us the different clusters formed by the models.
An alternative procedure, also used in the paper, is the classical solution of multidimensional scaling to the
distance matrix previously obtained, that is, obtaining a conÞguration of points in a convenient space where
the interpoint distance reproduces the similarity matrix. The results found in the two ways are very similar.

Nonparametric clustering techniques for time series have been less studied because of the difficulties of
deÞning a general measure of distance between stationary time series sequences. In order to illustrate a possible
procedure suppose that we have n zero mean and unit variance stationary time series sequences, X1, ...,Xn.
We assume Þrst that the data has been centered and scaled. A possible distance metric among the points Xi
is the euclidean metric. However, this metric is invariant to transformations which modify the order of the
observation over time in the two series that are compared and, therefore, it does not take into account the
correlation structure of the stationary data. That is, given the original set of time series Xi = (xi1, ...., xiT )
for i = 1, ..., k, if we know built a new set of time series sequences X∗

i = (x∗i1, ...., x
∗
iT ) by using the same

permutation of the time observation for all the series the euclidean distance between the elements in the second
set are identical to those in the Þrst, whereas the correlation structure of the second set can be arbitrarily
distorted. Thus, the euclidean distance does not take into account the autocorrelation structure.

The distance measure to be used depends on the kind of similarities we are interested in. We may be
interested in (a) Finding series with a similar correlation structure or (b) Finding series with a similar noise
structure. In case (a) a straightforward measure of distance is to compute the autocorrelation coefficients
ri = (ri(1), ...., ri(h)) for some h such that ri(j) ' 0 for j > h and then use

D(Xi,Xj) = (ri − rj)0Wr(ri − rj)
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for some weighting function Wr that can be used to give weights to the coefficients that decrease with the lag.
This measure is related to the parametric approach as the parameters of the autoregressive approximation are
computed from the autocorrelation coefficients.

For (b), a model is Þtted to each series and the residuals b² are obtained. Then a measure of distance between
them is built by

D(Xi,Xj) = (b²i −b²j)0W (b²i −b²j),
where, for instance, the matrixW can be used to give more weight to the recent values than to the oldest values
in the time series. Both procedures can be combined to deÞne a measure of distance that takes into account
both sources of variability by

D(Xi,Xj) = λ1(ri − rj)0Wr(ri − rj) + λ2(b²i −b²j)0W(b²i −b²j)
where λi, i = 1, 2 are normalizing constants. This idea does not seem to have been yet explored in the literature.

4 Dimension reduction

4.1 Canonical Analysis

The canonical analysis of time series was introduced by Box and Tiao (1977) and can be considered as a principal
component analysis of time series. This work was very important because (1) it leads to a clear solution of the
dimension reduction problem in terms of prediction, (2) it introduces, for the Þrst time, the idea that linear
combination of nonstationary time series can be stationary, that is, the idea of cointegration.

Suppose a m× 1 vector xt that follows a stationary VAR(p) model
φ (B)xt = εt,

we can always write the orthogonal decomposition

xt = bxt−1(1) + εt
where bxt−1(1) is the one step ahead prediction. Corresponding to this decomposition we can also split the
covariance matrix, E

h
xtx

0
t

i
= Γx(0), as

Γx(0) = Fx(0) +Σ

where E(εtε0t) = Σ and E [bxt−1(1)bxt−1(1)] = Fx(0). We are interested in Þnding a linear combination of xt
z1t = m

0xt

such that it has maximum predictability. The variance of this linear combination is m0Γx(0)m and this variance
is decomposed into an explained variability, m0Fx(0)m, and a residual variability, m0Σm.We want to maximize

λ =
m0Fx(0)m
m0Γx(0)m

and the value that maximize this equation is

Γx(0)
−1Fx(0)m = λm.
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Thus, m must be the largest eigenvector of the matrix obtained as product of the matrix of explained variability
and the inverse of the matrix of total variability,

Q = Γx(0)
−1Fx(0) = Γx(0)−1 (Γx(0)−Σ) .

The procedure can be extended to Þnd other linear combinations by choosing as m the ordered eigenvectors of
the matrix Q. Thus, in practice the canonical decomposition consists in Þnding the eigenvalues and eigenvectors
of the matrix

Qmi = λimi,

the eigenvectors provide the required linear combination and the eigenvalues the predictability of these linear
combinations. Building the matrix M = [m1...mp], where λ1 ≥ λ2 ≥ ... ≥ λp and the transformation

zt =M
0xt

a new vector of time series is obtained with components ordered from most to least predictable. The components
are contemporaneously uncorrelated because it is easy to show that the matrices M 0Γ0M andM 0ΣM are both
diagonal.

4.2 The Dynamic Factor model

The factor model has a straightforward extension to the dynamic case. Considered the possible nonstationary
vector process xt. The dynamic factor model assumes that this time series vector, which we assume has dimension
m, has been generated by the equation

xt = Pft + nt, (9)

where P is a m × r loading matrix that we assumed is normalized in such a way that P 0P = I. Thus, all
the common dynamic structure comes through the common factors, ft, and the nt includes the independent
idiosyncratic components. We suppose that the vector of common factors follows a VARIMA(p, q) model

Φ (B) ft = Θ(B)at (10)

where Φ (B) = I − φ1B − ...− φpBp and Θ(B) = I − θ1B − ... − θqBq are polynomial matrices r × r and the
roots of |Φ (B)| are on or outside the unit circle and those of |Θ (B)| are outside the unit circle. The sequence
at is serially uncorrelated with zero mean and covariance matrix Σa. The components of the vector of common
factors can be either stationary or nonstationary.

The speciÞc dynamic structure associated with each of the observed series is included in the vector nt of
idiosyncratic components. Some components of this vector can be white noise, while other ones can have
stationary dynamic structure. In general, we assume that nt follows the vector ARMA model

Φn(B)nt = Θn(B)et, (11)

where Φn(B) and Θn(B) include m × m diagonal matrices. The sequence of vectors et are normally dis-
tributed, have zero mean and diagonal covariance matrix Σe. Therefore, each component follows an univariate
ARMA(pi, qi), i = 1, 2, · · · ,m, being p=max(pi) and q=max(qi), i = 1, 2, · · · ,m. We assume that the noises
from the common factors and speciÞc components are also uncorrelated for all lags, E(ate0t−h) = 0, ∀h.
The model as stated is not identiÞed, because for any r × r non singular matrix H the observed series can

be expressed in terms of a new set of factors,

xt = PH
−1Hft + nt = P ∗f∗t + nt

10



where f∗t = Hft, and

Φ∗(B)f∗t = Θ
∗(B)a∗t

where a∗t = Hat. With this transformation the old system matrices are related to the new system matrices by

Φ∗(B) = HΦ(B)H−1

Θ∗(B) = HΘ(B)H−1

Σ∗a = HΣaH
0

To solve this identiÞcation problem, we can always choose either Σa = I or P 0P = I. Note that as

P∗
0
P ∗ = (H−1)0P 0PH−1

if P 0P = I then P ∗
0
P∗ = (H−1)0H−1 that will only be tha identity matrix if H is orthogonal. Therefore the

model is not yet identiÞed under rotations, and we need to introduce a restriction to estimate the model. The
standard restriction used to solve this problem in static factor analysis is that P 0Σ−1n P should be diagonal.
Harvey (1989) imposes that pij = 0, for j > i, where P = [pij ]. This condition is not restrictive, since the factor
model can be rotated for a better interpretation when needed (see Harvey, 1989, for a brief discussion about it).

Peña and Poncela (1998) showed that the model presented is fairly general and includes also the case where
lagged factors are present in equation (9). For instance, for ease of exposition assume a stationary model with
no speciÞc components, but with lagged factors on the observation equation, such as

xt = Pv(B)Ft + nt

where v(B) = I + v1B + · · ·+ vlBl, l <∞ and Ft follows a VARMA model

Ft = Ψ(B)at, Ψ0 = I

This model can be rewritten in the standard form presented in (9) with

ft = Ft + v1Ft−1 + · · ·+ vlFt−l

following the VARMA model ft = eΨ(B)at where eΨ(B) = P∞
i=1

eΨiBi and eΨi satisÞes eΨi = Ψi + v1Ψi−1 +
· · · + vlΨi−l with Ψj = 0r×r if j < 0 and eΨ0 = I. Since matrices vi are of constants coefficients, kvik < ∞
and equation ft = eΨ(B)at also represents a VARMA stationary process. Therefore the standard formulation
presented in (9) can include important complex relationships between the series and the factors.

In the particular case that all the factors are stationary and the component nt is white noise, ², the dynamic
factor model reduces to the model studied by Peña and Box (1987). In this case, assuming E(xt) = 0 and

calling Γx (k) = E
h
xtx

0
t−k
i
and Γf (k) = E

£
ftf

0
t−k
¤
we have that

Γx (0) = PΓf (0)P
0 +Σ²

Γx (k) = PΓf (k)P
0, k ≥ 1

which implies that the columns of P are eigenvectors of the matrix Γx (k) for all k ≥ 1. To show this note that

E
h
xtx

0
t−k
i
= E

£
(Pft + ²t) (Pft−k + ²t−k)

0¤
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and,

E
£
Pftf

0
t−kP

0 + ²t²0t−k + Pft²
0
t−k + ²tf

0
t−kP

0¤ = PE £ftf 0t−k¤P 0 = PΓf (k)P 0
Thus, the eigenvalues of Γx (k) are the covariance of the factors, k ≥ 1. Peña and Box (1987) proposed the
following procedure to recover the factors:

(1) Compute eigenvalues and eigenvectors of Γx (k) for k ≥ 1.
(2) Obtain the number of common factors by the rank of the matrices Γx (k) . Assume that the common

rank is r, the number of common factors.

(3) Use the non zero eigenvectors of Γx (k) , for k ≥ 1, in order to estimate the loading matrix P .
(4) Build the transformation M = [P V ], where P 0V = 0, V belong to the null space of P and apply it to

the xt in order to recover the factors. As P 0P = I we have

P 0xt = ft + P 0²t

and

V 0xt = V 0²t

then, the transformation

zt =M
0xt

gives r linear combinations of the time series components that will recover the factors and m− r combinations
that will be white noise.

This model has been estudied in the nonstationary case by Peña and Poncela (1998). They showed that
the identiÞcation of the nonstationary I(d) factors can be made through the common eigenstructure of some
generalized covariance matrices, properly normalized. The number of common nonstationary factors is the
number of nonzero eigenvalues, Thus, a similar identiÞcation procedure can be applied in the stationary and in
the nonstationary case. Once we have a preliminar estimation of the dimension of the system we can estimate
the factor loading matrix and the parameters of the VARIMA factor representation by writing the model in the
state space from and use the EM algorithm.

4.3 Relationship between Canonical Analysis and the Dynamic factor model

Let us show the relationship between the dynamic principal components or canonical analysis and the standard
principal component approach that considers the eigenstructure of Γx(0). In the canonical analysis we obtain
eigenvectors from Q = Γx(0)−1 (Γx(0)−Σ) = I − Γx(0)−1Σ. Note that:
(1) Q, Γx(0)−1Σ, and Σ−1Γx(0) have the same eigenvectors;

(2) The largest eigenvalue of I − Γx(0)−1Σ is the smallest of Γx(0)−1Σ;
(3) The smallest eigenvalue of Γ−1x (0)Σ is the largest of Σ−1Γx(0).

Then the canonical analysis can be interpreted as obtaining eigenvectors from Σ−1Γx(0), whereas the stan-
dard principal component approach uses directly the matrix Γx(0).

To understand better this difference, suppose that the factorial model hold and

Γx(0) = PΓf (0)P
0 +Σ

12



then

Σ−1Γx(0) = Σ−1PΓf (0)P 0 + I

and if V is such that P 0V = 0 then

Σ−1Γx(0)V = V

and therefore a transformation based on the eigenvectors of Σ−1Γx(0) will also separate the factors from white
noise.

Let us consider now the relationship between the canonical analysis and the identiÞcation procedure in the
factor model as developed by Peña and Box (1987) and Peña and Poncela (1998). Consider the stationary case
to simplify. Then the factor are initially estiamted by computing eigenvalues and eigenvectors of Γx (k) for
k ≥ 1. Thus this identiÞcation depends only on P. whereas in the canonical analysis the components obtained
depend on both P and Σ.

4.4 Cointegration and the factor model

Suppose that xt follows a nonstationary model φ (B)∇xt = εt. Then we say that xt is I(1). There will be
cointegration among the components if we can Þnd linear combinations that are stationary. That is, we will say
that the components of xt are cointegrated if there exits a m× p matrix β such that

β0xt = stationary

that is, xt ∼ I (1) but β0xt ∼ I (0). The matrix β is called the cointegration matrix and there will be p linear
combinations that lead to stationary processes. In order to see the implications of this property, suppose the
simplest I(1) model xt = xt−1 + εt. We can write this model as

∇xt = Πxt−1 + ²t (12)

and note that if xt follows the multivariate random walk the value of Π in this equation is cero and this implies
no cointegration. However, if the process is a stationary VAR(1) process we can write the model as

xt = (Π− I)xt−1 + ²t
in this equation Π is a full rank matrix becasues Π = φ+I where φ is the AR matrix that must have eigenvalues
smaller than one for the process to be stationary. Thus saying that Π is a full rank matrix implies that xt
follows and VAR(1), all the components are stationary, or they are I(0). A third intermediate possibility is that
Π is neither a zero matrix nor a full rank matrix but it has rank p. Let us show that this implies cointegration,
that is, in this case some linear combinations of the vector of time series are stationary whereas some others
will be nonstationary. To show this property note that if Π has rank p it can be written as

Π = αβ0

where α and β are m× p matrices of rank p < m. Now if we multiply (12) by β0 , we have
∇β0xt = (β0α)β0xt−1 + β0²t

13



and calling zt = β
0xt we have that

∇zt = Π∗zt−1 + ut
and Π∗ is a full rank matrix and zt stationary. Thus, the p linear combinations β0xt will be stationary whereas
if the matrix m× (m−p), α⊥ belongs to the null space of α, that is, it veriÞes α0⊥α = 0, we have that the m−p
combinations α0⊥xt are nonstationary.

There is a close connection between cointegration and the factor model. Escribano and Peña (1994) showed
that the following two proposition are equivalent:

(1) The individual components of xt are I (1) but there are p cointegration relationships, β
0xt, that are I (0).

(2) xt can be written as generated by m− p common factors that are I (1) .
Thus, cointegration implies common factor and common nonstationary factors implies cointegration. From

the practical point of view if the dimension m is large it is simpler to look for a few factors than for many
cointegration relations.

5 Conclusions

As any stationary time series is a sample from some multivariate distribution one could expect that multivariate
classical methods will be widely applied in time series. However, in practice the time series analysis is made
without any reference to multivariate analysis by using the special structure implied by the ordering of the ob-
servations on time. Some univariate time series identiÞcation methods have been based on canonical correlation
analysis (see Tiao and Tsay, 1985) but in general the use of multivariate methods in univariate time series is
small. However, with vector time series multivariate techniques are of key importance. Discrimination is related
to the problem of model selection, clustering methods appear in a natural way when working with large set of
time series and methods for dimension reduction are a clear need for practical model building. In fact, it was
shown by Peña and Box (1987) that building a VARMA model ignoring the possible common factors is a sure
method to look for trouble: the MA and AR parameter matrices are not identiÞed when common factors are
present and so we could end up building a very complicated multivariate VARMA model when in fact the data
generating process is very simple. Also Tiao and Tsay (1989) have shown the usefulness of linear combinations
of the vector of observed time series for model simpliÞcation.

We have seen that the discrimination problem is closely related to the model selection problem, and the
criteria to choose models can be applied to select the data generating process in discriminant analysis. In
time series cluster methods, more research is needed in order to have meanful procedures that search for useful
conÞgurations taking into account the autocorrelation structure and new algorithms need to be developed to
implement them. Although research in model simpliÞcation and dimension reduction has been very large, still
more research is needed in order to compare the advantages and drawbacks of the different procedures available.
We expect that this review can stimulate further developments in this area in the future.
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