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We propose a procedure for computing a fast approximation to regression estimates based on the minimization of a robust scale.
The procedure can be applied with a large number of independent variables where the usual algorithms require an unfeasible or
extremely costly computer time. Also, it can be incorporated in any high-breakdown estimation method and may improve it with
just little additional computer time. The procedure minimizes the robust scale over a set of tentative parameter vectors estimated
by least squares after eliminating a set of possible outliers, which are obtained as follows. We represent each observation by the
vector of changes of the least squares forecasts of the observation when each of the data points is deleted. Then we obtain the sets
of possible outliers as the extreme points in the principal components of these vectors, or as the set of points with large residuals.
The good performance of the procedure allows identification of multiple outliers, avoiding masking effects. We investigate the
procedure’s efficiency for robust estimation and power as an outlier detection tool in a large real dataset and in a simulation study.
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1. INTRODUCTION

Several robust estimates for regression with high break-
down point have been proposed. These include the least
median of squares estimate (LMSE) and the least trimmed
squares estimate (LTSE) proposed by Rousseeuw (1984),
the scale (S) estimates proposed by Rousseeuw and Yohai
(1984) the MM estimates proposed by Yohai (1987), and
the τ estimates proposed by Yohai and Zamar (1988). These
estimates have a very high computational complexity, and
thus the usual algorithms compute only approximate so-
lutions. Rousseeuw (1984) proposed an approximate algo-
rithm based on drawing random subsamples of the same
size as the number of independent variables. Ruppert (1991)
proposed a refinement of this algorithm for S estimates that
seems to be more efficient than Rousseeuw’s. Stromberg
(1991) gave an exact algorithm for computing the LMSE,
but it requires generating all possible subsamples of size
p + 1. A more efficient algorithm that eventually computes
the exact LMSE or the LTSE, the feasible solution algo-
rithm (FSA), was proposed by Hawkins (1993, 1994). How-
ever, all of these algorithms require computation time that
increases exponentially with the number of independent
variables, and thus can be applied only when this number
is not too large.

In this article we propose a different type of approxi-
mate solution to the high–breakdown point estimates just
mentioned that can be applied with a large number of in-
dependent variables. We do not claim that our proposed
approximate procedure keeps the breakdown point of the
original estimates. However, the procedure succeeds in de-
tecting groups of outliers in many situations where, due to
a masking effect, the usual diagnostic procedures fail and
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robust estimates require prohibitive computer time. This
is shown by means of a Monte Carlo study. For small or
moderate datasets and when the computation speed is not
a problem, we recommend combining our procedure with
the solution obtained by a high–breakdown point estimation
method. We can always compare the scales of the residu-
als obtained with both estimates and choose the one giving
the smallest scale. In this way we may improve the solution
of the high–breakdown procedure (never worsening it) with
just a few seconds of additional time.

In the rest of this section we introduce notation and de-
scribe the usual approximations to the high-breakdown es-
timates based on resampling. In Section 2 we define the
principal sensitivity components used for finding outliers.
In Section 3 we present the approximate procedure for the
minimization of a robust scale. In Section 4 we study the
properties of the procedure and prove that when a sam-
ple is contaminated with less than 50% of any identical
high-leverage observations, the solution remains bounded.
In Section 5 we compare the procedure to other previous
procedures for outlier detection. In Section 6 we report the
results of a Monte Carlo study and present an example for
a large dataset. In Section 7 we present some concluding
remarks, and in an Appendix give the proof of the main
result of Section 4.

We assume a regression model with p independent vari-
ables (including the constant if there is intercept) and n
observations (yi, xi,1, . . . , x1,p), 1 ≤ i ≤ n; that is, yi =
β′xi + εi, for i = 1, . . . , n, where xi = (xi,1, . . . , xi,p)′,β
= (β1, . . . , βp)′, and εi is the error of observation i. We call
y = (y1, . . . , yn)′, X is a full rank n×p matrix whose (i, j)
element is xi,j and ε = (ε1, . . . , εn)′. Then the model is

y = Xβ + ε. (1)

All of the robust estimates discussed earlier, with the ex-
emption of the MM estimates, are defined throughout the
minimization of a certain scale S of the residuals; that is,
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they are defined by

β̂ = argmin S(e1(β), . . . , en(β)), (2)

where

ei(β̂) = yi − β̂′xi, 1 ≤ i ≤ n.

The usual approximate solutions to the estimates defined
by (2) are of the form

β̂ = argmin
β∈A

S((e1(β) · · · en(β)), (3)

where A = {β(1), . . . ,β(N)} is a finite set. Rousseeuw
(1984) proposed obtaining the elements of A by choosing
at random N subsamples of p different data points. If p/n
is small, then it can be shown (see Rousseeuw and Leroy
1987) that the probability of getting a clean subset when
there is a fraction of outliers equal to ε is approximately
given by

1 − (1 − (1 − ε)p)n,

and the number of subsamples required to make this prob-
ability equal to 1 − α is given by

N(ε, α, p) =
log α

log(1 − (1 − ε)p)
' − log α

(1 − ε)p
. (4)

This number increases exponentially with p, and thus the
method based on random subsampling can be applied only
when p is not very large. Rousseeuw (1993) proposed a
modification of the algorithm based on resampling with
a deterministic breakdown point. However, the number of
subsamples required for this algorithm also increases expo-
nentially with p.

Hadi and Simonoff (1993) presented two procedures for
the identification of multiple outliers in linear models and
compared them in a Monte Carlo study. The winner of their
study, M1, is obtained as follows. Starting with the least
squares estimate (LSE) fit to the full data, the n observa-
tions are ordered by an appropriate diagnostic measure, like
the absolute value of the adjusted residual ei/

√
(1 − hii), or

Cook distance. Then the first p observations form the initial
basic subset. A model is fitted to the basic subset, and the
residuals are standardized and ordered. The basic set is in-
creased one by one, by ordering the standardized residuals
and fitting a model to the basic subset. When the basic sub-
set reaches a size equal to the integer part of (n+ p− 1)/2,
the residuals are tested for outlyingness using the t statis-
tics. The key to the success of the method is to obtain a
clean initial subset of data. According to a Monte Carlo
study reported by Peña and Yohai (1996), the procedure
works well for low-leverage outliers but may fail when the
sample contains a set of several high-leverage outliers.

Atkinson (1994) proposed a fast method for the detection
of multiple outliers by using a simple forward search from
random starting points. Instead of drawing N basic subsam-
ples, Atkinson suggested drawing h < N random subsam-
ples and using the LSE to fit subsets of size p, p + 1, . . . , n,
from each subsample. Then outliers are identified as the

points having large residuals from the fit that minimizes
the least median of squares criterion. This procedure re-
quires again that at least one of the h subsamples does not
contain a high-leverage outlier. Then the number of subsam-
ples required to guarantee that this occurs with probability
α is given by (4), and thus the procedure will be not very
effective when the number of variables p is large.

In this article we propose a fast iterative procedure to
estimate β. In each iteration an estimate is defined by (3)
using a suitable set A. Each element of this set is obtained
by using the LSE applied to a subsample. These subsam-
ples are obtained by eliminating blocks of observations that
potentially can produce a masking effect. The procedure
is computationally feasible for very large values of p and
seems to be able to avoid the masking problem in many
situations where other diagnostic procedures fail.

2. PRINCIPAL SENSITIVITY COMPONENTS

In this section we show how to obtain a set of directions
in which masking outliers are expected to appear as extreme
values. The set A = {β(1), . . . ,β(N)} used in (3) is built
by deleting extreme observations on these directions and
computing the regression LSE of the remaining data. To
show this, let

β̂ = (X′X)−1X′y

be the LSE and let ŷ = (ŷ1, . . . , ŷn)′ be the vector of fitted
values given by

ŷ = Xβ̂ = Hy,

where H = X(X′X)−1X′ is the hat matrix and e =
(e1, . . . , en)′ is the vector of least squares residuals given
by

e = y − Xβ̂ = (I − H)y.

We let β̂(i) denote the LSE when the ith data point is
deleted. Then the corresponding change in the LSE is given
by (see Cook and Weisberg 1982, p. 110)

β̂ − β̂(i) =
ei(X′X)−1xi

1 − hii
, (5)

where hij is the ijth element of H, which is the derivative
of the prediction ŷi with respect to yj . Note that as hii =∑

h2
ij , the leverage can be interpreted as the sum of squares

of these derivatives. Call ŷj(i) the forecast corresponding to
observation j when observation i is deleted. Then, from (5)
it is easily derived that

ŷj − ŷj(i) =
hijei

1 − hii
. (6)

There are two ways to look at the outlyingness of the ith
observation. The first way is by measuring its influence on
the forecast of each of the sample points when the obser-
vation is deleted. This leads to the influence vectors

ti = (ŷ1 − ŷ1(i), . . . , ŷn − ŷn(i))′ = hiei/(1 − hii),

where hi is the ith column of the hat matrix. The com-
ponents of this vector are proportional to the derivatives
hij , and its norm is proportional to the square root of the
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Cook (1979) statistic. An analysis based on these vectors
was presented in earlier work (Peña and Yohai 1995) and
is discussed in Section 5.

In this article we discuss a second way to measure the
outlyingness of the ith observation. We consider the sensi-
tivity of the forecast of the ith observation when each of
the sample points is deleted. This leads to the sensitivity
vectors

ri = (ŷi − ŷi(1), . . . , ŷi − ŷi(n))′

= (hi1e1/(1 − h11), . . . , hinen/(1 − hnn)),

in which the hij are weighted by the predicted (out-of-
sample) residuals ej/(1 − hjj). We define the sensitivity
matrix as

R =


 r′

1
· · ·
r′

n


 .

The matrix R can be considered to be a data matrix in
which each observation corresponds to a row r′

i and each
variable corresponds to a column ti. From (6), we get

R = HW, (7)

where W is the diagonal matrix with terms ei/(1 − hii).
The vectors ri belong to the p-dimensional subspace gen-

erated by the columns of X, and thus we may summarize
their information by choosing an appropriate basis on this
space and projecting them over this basis. The first vector
of this basis can be obtained by the condition that the pro-
jection of the ri’s on it have maximum sensitivity. Then it
is given by

v1 = argmax
n∑

i=1

(v′ri)2,

subject to ‖v‖ = 1. The vector v1 is the eigenvector cor-
responding to the largest eigenvalue of the matrix M =∑n

i=1 rir′
i, where, according to (7), this matrix is

M = WHW (8)

and has rank p and its ijth element is

mij =
eiejhij

(1 − hii)(1 − hjj)
.

Let z1 be the vector whose coordinates are the projections
of the ri’s on v1, given by z1 = Rv1. It is straightforward to
show that z1 is an eigenvector corresponding to the largest
eigenvalue of the matrix P defined by

P = HW2H, (9)

with ijth element

pij =
n∑

k=1

e2
k

(1 − hkk)2
hikhjk.

Observe that this expression for pij is similar to the decom-
position hij =

∑
hikhkj . The difference is that each term

of the sum is now weighted by the corresponding predicted
residuals.

In a similar way, we can project the sensitivity vectors,
r′

is, on the directions of the other eigenvectors, v1, . . . ,vn,
of the matrix M, corresponding to the other nonnull eigen-
values λ2 ≥ · · · ≥ λp. The eigenvector vi will have the
following property

vi = argmax
‖v‖=1

n∑
i=1

(r′
iv)2 (10)

subject to

v′
ivh = 0 1 ≤ h ≤ i − 1. (11)

The corresponding projections

zi = Rvi, i = 2, . . . p (12)

will be eigenvectors of P.
The vectors zi, 1 ≤ i ≤ p, which form an orthogonal base

of the p-dimensional subspace generated by the columns of
X, are the principal components of the sensitivity obser-
vations ri, i = 1, . . . , n. We call them principal sensitivity
components.

The principal sensitivity components have two additional
interesting properties. First, they are eigenvectors of the
projection matrix H corresponding to the eigenvalue 1. This
can be shown by using the definition of the zi as eigenvec-
tors of P(i.e., HW2Hzi = λizi) and multiplying this equa-
tion by H. Note that this basis is selected taking into ac-
count information about the predicted residuals ei/(1−hii).
Let B be the n × p matrix with columns zi/

√
λi so that

H = BB′. Put zi = (zi,1, . . . , zi,n); then

hjj =
p∑

i=1

z2
i,j

λi
,

and looking for extreme coordinates of each vector zi im-
plies a finer analysis than looking at the leverages hjj .

The second relevant property of the principal sensitivity
components is that they represent directions of maximum
standardized change on the regression parameters. To show
this, suppose that instead the forecast changes, we look at
the standardized regression parameter changes. For this pur-
pose, we define the standardized effect on the regression
coefficients due to the ith observation by

γi = (X′X)1/2(β̂ − β̂(i)). (13)

Usually, this influence is summarized by the univari-
ate Cook (1977) statistics Di = ‖γi‖2/ps2, where s2 =
(n − p)−1 ∑

e2
i is the residual variance. It is well known

that the statistic Di may fail to detect outliers when mask-
ing is present (see Lawrance 1995). Masked outliers will
have similar effects on the estimated parameter β, and in
some directions in Rp these similarities will appear more
strongly. Therefore, it seems natural to make a finer analy-
sis by considering directions where the γi’s are the largest.
The first of these directions may be defined by

u1 = argmax
‖u‖=1

n∑
i=1

(γ′
iu)2.
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Then u1 is the eigenvector corresponding to the max-
imum eigenvalue λ1 of the p × p uncentered covariance
matrix Q of the γi’s:

Q =
∑

γiγ
′
i.

From (5) and (13), we have that the matrix whose rows
are the γi’s is given by

Γ = WX(X′X)−1/2, (14)

and thus

Q = (X′X)−1/2(X′W2X)(X′X)−1/2. (15)

We can also define directions u2, . . . ,up by the eigenvec-
tors corresponding to the other eigenvalues λ2 ≥ · · · ≥ λp

of the matrix Q. These directions will also have a property
analogous to (10) and (11). The eigenvectors of Q repre-
sent the directions of maximum variability of the standard-
ized effects γi. To transform the effects γi into changes
of forecast, we must multiply the γi by the standardized
matrix X(X′X)−1/2. Therefore, the directions of maxi-
mum forecast change are obtained by multiplying the ui

by X(X′X)−1/2. Then, let us define

Zi = X(X′X)−1/2ui, (16)

which represents the forecast change for each observation
in the direction ui. Note that although the eigenvectors of Q
are defined up to an orthogonal transformation (this prop-
erty is inherited from the similar property of (X′X)−1/2),
the vectors Zi are uniquely determined (except for a scalar
factor), and, moreover, they are invariant for affine trans-
formations of the xi’s.

We now show that the Zi’s are also the eigenvectors of
the P matrix defined in (9) and then are equal (except by
a scalar factor) to the principal sensitivity components zi’s.
Because ui is an eigenvector of Q, using (15) we get

(X′X)−1/2(X′W2X)(X′X)−1/2ui = λiui. (17)

Multiplying this equation by X(X′X)−1/2, we get that
Zi is an eigenvector of HW2. Therefore,

HW2Zi = λiZi, (18)

and multiplying this last equation by H, we obtain

HW2Zi = λiHZi. (19)

Comparing (18) and (19), Zi = HZi. Replacing this result
on the left side of (18), we obtain that Zi is the eigenvector
of HW2H corresponding to the eigenvalue λi.

This relationship provides a convenient way to compute
the principal sensitivity components. Instead of computing
the eigenvectors zj’s of the n×n matrix P, we can compute
the eigenvectors uj’s of the p × p matrix Q. Then the Zj’s
will be computed by (16). This makes the method faster for
large numbers of observations.

3. THE PROCEDURE

The main idea of the procedure is to use a robust scale
for evaluating a set of possible solutions. These solutions

are determined by applying LSE to subsamples in which
sets of potentially outlier observations have been deleted.

The proposed procedure has two stages. The first stage
is iterative, and in each iteration a robust estimate is found
using the criterion of minimizing a robust scale of the resid-
uals over a finite set A according to (3). The elements of A
are obtained in each iteration as follows. We start by delet-
ing all of the observations with large residuals according to
the current best estimate and computing the principal sen-
sitivity components for the remaining sample. For each of
these components, extreme points are deleted, and an ele-
ment of A is obtained as the LSE on the remaining sample.
The iterations continue until convergence.

In the second stage we improve the efficiency of the ro-
bust estimate obtained in the first stage. The residuals based
on the estimate found in the first stage are computed, all ob-
servations with large residuals are eliminated, and the points
deleted are tested one by one by using the studentized resid-
ual for outlyingness. The final estimate is computed by LSE
using the cleaned sample.

According to the previous section, high-leverage outliers
are expected to appear as extreme coordinates in at least one
of the principal sensitivity components. The fact that good
high-leverage points may also appear as extreme points on
these directions can only affect the efficiency of the solu-
tion of the first stage. However, the efficiency of the final
estimate is improved by testing each potential outlier one
by one in the second stage of the procedure. Low-leverage
outliers are detected by their large residuals. We present the
details of the procedure in following sections.

Stage 1. In this stage we find a robust estimate of β by
an iterative procedure. In each iteration, an estimate β̂(i) is
defined by

β̂(i) = argmin
β∈Ai

S(e1(β), . . . , en(β)). (20)

In the first iteration, the set A1 has 3p + 1 elements. One
of these elements is the LSE, and for each principal sen-
sitivity component zj , j = 1, . . . , p we compute three es-
timates by LS as follows: the first eliminating the half of
observations corresponding to the smallest coordinates of
zj , the second eliminating the half corresponding to the
largest coordinates of zj , and the third eliminating the half
corresponding to the largest absolute values.

For the next iterations, i > 1, we start computing the

residuals e(i) = y − Xβ̂
(i−1)

and let s(i−1) be its corre-
sponding robust scale. Then we delete all of the observa-
tions j such that

|e(i)
j | ≥ C1s

(i−1). (21)

Then, with the remaining observations we compute the
LSE, β̂

(i)
LS, and the principal sensitivity components. The set

Ai will contain 3p+2 elements: the β̂
(i)
LS, β̂(i−1), and 3p es-

timates obtained by deleting extreme values in the principal
sensitivity components as in the first iteration.

The procedure ends when β̂(i+1) = β̂(i), and the estimate
that minimizes the robust scale on this stage is called β̂1.
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Comments on Stage 1. As the objective of this stage
is to obtain a preliminary robust estimate, the value of C1
in (21) is taken relatively low to increase the power of the
procedure. We have found that C1 = 2 works well, and this
value has been used in the simulations and the examples.

This stage includes two mechanisms for the elimination
of the outlier effects. The low-leverage outliers, which may
not appear as extreme points in the zi’s vectors, will be
deleted due to their large residuals. The high-leverage out-
liers will correspond to the extreme values of principal
sensitivity components zi’s. The iterations are similar to
a reweighting algorithm for computing M estimators.

The estimate at the ith iteration, β̂(i), is used to identify
outliers that will be omitted in construction of the set Ai+1
for the next iteration. Because in the first iteration we do
not have yet an estimate with some degree of robustness,
this step is not carried out in the first iteration, to avoid
swamping.

The fraction of extreme observations on the principal sen-
sitivity components to be deleted may be different from .5.
For instance, if the model contains many dummies vari-
ables, then deleting half of the observation may easily pro-
duce a singular matrix. In this case we recommend deleting
a smaller fraction of the data, although of course this will
affect the robustness of the procedure.

It is also possible to use this first-stage estimate as the
starting value in the reweighted least squares algorithm
to compute an S estimate (see, e.g., the algorithm pro-
posed in Yohai, Stahel, and Zamar 1991). The resulting es-
timate will have the asymptotic normal distribution found
by Rousseeuw and Yohai (1984) for S estimators, assuming
regression errors with finite variance, and it will be the one
to use in the second stage.

Stage 2. Following a suggestion by Rousseeuw (1984),
to gain efficiency we define a new estimator as a one-
step iteration of the initial one computed in stage 1. We
compute the residuals ej = yj − β̂′

1xj , 1 ≤ j ≤ n, and
a robust scale s of the ej’s. Then we eliminate all of
the observations j such that |ej | > C2s. Let n1 be the
number of observations eliminated and let (y2,X2) be
the sample with the n − n1 remaining observations. We
compute the LSE, β̂2 = (X′

2X2)−1X′
2y2, and test the n1

points previously eliminated by using the studentized out-
of-sample residual tj = (yj − β̂′

2xj)/ŝ2
√

(1 + hj), where
ŝ2
2 =

∑
(yj − β̂′

2xj)2/(n−n1 −p) and hj = x′
j(X

′
2X2)−1xj .

Each observation in the set of n1 points is finally eliminated
and considered as an outlier if |tj | > C3. With the obser-
vations that are not deleted, we compute the LSE, β̂, that
will be the final estimate.

Comments on Stage 2. In our Monte Carlo study of
Section 5, in which the sample size is small, we have used
C2 = C3 = 2.5. In general, for large sample sizes we rec-
ommend increasing these constants. Note that the results
of He and Portnoy (1990) show that one-step reweighting
does not change the order of convergence of the initial es-
timate. In our case the initial estimate is an S estimate with
order of convergence n−1/2 and normal asymptotic distri-

bution. Therefore, the one-step reweighted distribution also
converges to a normal distribution with order of conver-
gence n−1/2. However, the asymptotic variances of both
estimates may be very different. In our case the asymptotic
efficiency of the initial estimate (with respect to the least
squares estimate) is .24. The asymptotic covariance matrix
of the one-step reweighted estimate can be computed using
straightforward Taylor expansions. It was found that the
asymptotic relative efficiency of this estimate for normal
errors is .88.

4. PROPERTIES OF THE PROCEDURE

The estimate computed by the procedure is affine, regres-
sion, and scale equivariant. That is, consider a vector of
responses y and a matrix of explanatory variables X, and
suppose that we transform these variables by y∗ = ay +
Xγ and X∗ = XE, where a is a scalar, γ ∈ Rp, and E is
an p×p nonsingular matrix. Let β̂ be the estimate based on
y and X and β̂∗ be the estimate based on y∗ and X∗; then
β̂ = aE−1(β̂ + γ).

The following theorem, proved in the Appendix, estab-
lishes that if m < n − p + 1 high-leverage identical outliers
are added to the good n data points, then either the LSE β̂ is
bounded or the proposed procedure will detect the outliers.
In fact, according to the theorem, either the LSE is bounded
or, at least for one eigenvector, the coordinates correspond-
ing to the outliers will have absolute value larger than the
median. Then a fraction of any high-leverage identical out-
liers smaller than (n − p + 1)/(2n − p + 1) will keep the
estimate uniformly bounded.

Theorem 1. Consider a set of regression observa-
tions z1 = (y1,x1), . . . , zn = (yn,xn), where xi =
(xi,1, . . . xi,p)′, 1 ≤ i ≤ n, are in general position; that
is, any p arbitrary points xi1 , . . . ,xip

are linearly indepen-
dent. Suppose that we add to the sample m identical ar-
bitrary data points zn+i = (yn+i,xn+i) = (y∗,x∗),x∗ =
(x∗

1, . . . , x
∗
p)

′, i = 1, . . . , m. Then, given m < n − p + 1,
there exists M such that ‖β̂‖ > M and ‖x∗‖ > M imply
that for any set V = {v1, . . . ,vp},vi = (vi,1, . . . , vi,n, v∗

i ,
. . . , v∗

i ) of orthogonal eigenvectors of HW2, we have

max
1≤i≤p

#{j: 1 ≤ j ≤ n, |vi,j | < |v∗
j |} >

m + n

2
.

We could not prove a similar result for moderate- or low-
leverage outliers. However, the results of the simulations in
Section 6 indicate that the procedure is able to cope with
these types of outliers as well.

5. COMPARISON WITH RELATED PROCEDURES

Peña and Yohai (1995) proposed a procedure to identify
outliers in regression based on the eigenvectors of the ma-
trix M (using a matrix that includes an scalar that does not
affect the analysis based on eigenvectors) defined by (8).
The eigenvectors zi, 1 ≤ i ≤ n, of P proposed in this arti-
cle are related to the eigenvectors vi, 1 ≤ i ≤ n of M used
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in the our earlier procedure (Peña and Yohai 1995) by

vi = R′zi,

where R = HW. Because Hzi = zi, we have that

vi = Wzi. (22)

It can be shown that if instead of looking for projections
where the ri’s are largest (as we proposed in Section 2),
when we do the same analysis but using the vectors ti’s or
γi’s, we will get the directions vi’s. This result is immediate
for the ti’s. To show this result for the γi’s, consider the
eigenvectors ui that satisfy (17). The projections of the γj’s
on ui give the vector gi = Γui, where Γ is given by (14).
Multiplying (17) by Γ, we get

WHWgi = λigi,

and the gi’s are the eigenvectors of the matrix M; that is,
they are the same as the vi except for a scalar factor. There-
fore, the our earlier procedure (Peña and Yohai 1995) can
be interpreted as (a) finding the uncentered covariance ma-
trix of the standardized effects on the regression coefficients
γi, (Q) or the corresponding one for the ti(M); (b) obtain-
ing the eigenvectors of any of these covariance matrices;
(c) projecting the γi or the ti on these principal directions;
and (d) searching for extreme coordinates on these pro-
jections.

The procedure proposed in this article can be seen in two
alternative ways. The first interpretation includes the four
steps (a)–(d) above using the ri. The second involves steps
(a) and (b) with the γi, but in step (c) the xi vectors are pro-
jected over the directions u found in step (b). By projecting
the X variables over the directions of maximum change on
the regression coefficients, we analyze observations whose
forecasts are more sensitive to changes in the parameters.
As masking is especially produced by high-leverage obser-
vations, this may explain the better results obtained in the
simulations and the examples with the procedure proposed
in this article.

The relationship between the eigenvectors of M and P
given by (22) indicates why our procedure (Peña and Yohai
1995) may fail when the number of outliers is high. Sup-
pose that we have a set of identical high leverage outliers.
Then, as we showed (Peña and Yohai 1995), the individual
leverage of each point may be small, whereas the residual
may be very close to 0. This implies that the absolute value
of Wi = ei/(1 − hii) corresponding to these points may be
very small. Then, according to (22), they may not appear as
extremes in the vi vectors, whereas they can be clearly ex-
treme points in the principal directions zi. Peña and Yohai
(1995) showed that inspection of the vi’s allows the detec-
tion of outliers in a case of extreme masking. By (22), we
can conclude that the zi’s will also reveal the groups of
outliers in this case.

Cook and Weisberg (1982) also considered the vector β̂
− β̂(i) as a sample of p-dimensional vectors and suggested
using Wilk’s (1963) criterion for detecting a single outlier
in a multivariate sample. They found that according to this
criterion, the observations can be ordered by (Cook and

Weisberg 1982, p. 130)

δ2
i =

e2
i

(1 − hii)2
x′

i

[∑ e2
j

(1 − hjj)2
xjx′

j

]−1

xi;

that is, their procedure is equivalent to finding the largest
element in the vector

δ = W2 diag(X(X′W2X)−1X′),

where diag (A) is a vector with the diagonal elements of A
as components.

Finally, Jorgensen (1992) has studied a related problem
using the eigenvectors of a modified H matrix. He proposed
finding rank leverage subsets by looking at the eigenvectors
of the matrix L = HS−1H, where S = diag(h11, . . . , hnn).
The method is exploratory, and Jorgensen did not intend to
present a procedure for detecting outliers.

6. EXAMPLES AND MONTE CARLO RESULTS

6.1 Examples

The procedure proposed in this article has been tested
with many examples. We tried it with all of the examples
of Rousseeuw and Leroy (1987); in all the cases we got an
estimate very close to the LMSE. We have presented some
of these examples in earlier work (Peña and Yohai 1996).

In this section we apply the procedure to a large dataset
from the Spanish household budget survey, Encuesta de Pre-
supuestos Familiares (EPF) collected from the Spanish Sta-
tistical Office (INE). This illustrates the procedure’s perfor-
mance with a large number of explanatory variables. The
household members included in the sample are supposed
to record all expenditures during a sample week. In the
last EPF, April 1990–March 1991, the INE collected infor-
mation about bulk food purchases on or during the three
previous weeks. For some households no bulk purchases
were observed, whereas for others bulk purchases were ob-
served in the sample week and/or during the three previous
weeks. The INE did not take into account the information
about bulk purchases on the three previous weeks to the
sample week, to estimate the household’s annual food ex-
penditures. Therefore, the food expenditure will be under-
estimated for some groups of households and overestimated
for others, and this effect may produce groups of masked
outliers. Peña and Ruiz-Castillo (1998) applied the proce-
dure of Peña and Yohai (1995) to identify groups of outliers
in a regression in which the proportion of expenditure allo-
cated to food is explained by a set of 55 household variables
(many of them dummy variables that take into account the
age structure, education, location of the household, and so
on), and they proposed better estimation methods for an-
nual food expenditure. The analysis was made in the whole
EPF sample data, which includes 21,067 households.

To provide a more manageable set of data that can be
used easily on a PC to check our procedure and compare
it with other methods, we have taken a random sample of
4,000 households from the original dataset. (This dataset,
S1, is available on request from the authors.) Then we have
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Table 1. Percentage of Samples With All of the Outliers Detected for p = 3

x0 = 1 x0 = 5 x0 = 10

Outliers (%) Estimate m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4

5 PR1 .20 21.20 87.20 98.40 86.20 100.00 100.0 100.0 90.80 100.00 100.00 100.00
PR2 0 25.20 88.80 99.40 78.00 99.60 100.0 100.0 81.40 99.40 100.00 100.00
PR3 2.40 45.80 92.80 99.40 81.20 99.40 100.0 100.0 85.60 99.40 100.00 100.00
PR4 1.40 28.20 84.60 97.40 77.00 99.00 99.60 100.0 81.40 98.60 100.0 100.00

10 PR1 0 12.60 76.80 97.60 70.60 99.40 100.0 100.0 63.20 99.20 100.00 100.00
PR2 0 12.80 77.60 97.60 58.00 96.20 99.80 100.0 51.40 97.80 100.00 100.00
PR3 1.40 32.20 86.60 98.80 47.00 94.00 99.40 100.0 49.40 96.20 99.60 100.00
PR4 .40 17.40 76.00 95.80 38.00 92.60 99.00 99.80 39.80 93.40 98.60 100.00

15 PR1 0 4.80 62.00 95.60 35.00 95.60 99.80 100.0 25.60 95.00 99.40 100.00
PR2 0 6.80 61.80 94.60 21.20 88.00 98.60 100.0 15.00 84.60 98.20 100.00
PR3 .40 16.20 70.40 94.80 11.00 71.60 95.20 99.20 12.00 71.20 95.20 98.80
PR4 0 8.60 57.20 91.00 7.60 60.00 94.20 97.80 7.60 60.40 91.40 98.60

20 PR1 0 2.80 39.60 89.80 8.40 77.80 97.60 99.80 7.40 75.80 97.00 99.80
PR2 0 2.60 39.20 87.00 3.00 54.60 92.60 98.80 4.60 50.80 90.80 99.60
PR3 0 3.80 31.00 67.20 .60 25.80 66.40 91.40 1.20 27.40 73.40 93.40
PR4 0 2.00 21.00 57.00 .20 19.20 60.00 88.60 .60 18.20 63.60 90.40

fitted the regression model

SF = β0 + β1 ln PC + θ′z + e

where SF is the food expenditure share, PC is the per capita
household total expenditure, and z is a vector of 53 addi-
tional explanatory variables (described in Peña and Ruiz-
Castillo 1998). The LSE of β1 is −.10, and if a search for
outliers is carried out using the predicted univariate resid-
uals from this regression, 77 points are found with values
of this statistic larger than 2.5. However, when we used the
estimation procedure proposed in this article, the number
of possible outliers almost multiply by 2, because now 151
points have predicted residuals from the robust fit larger
than 2.5.

To check the performance of the procedure presented in
this article in large datasets with many explanatory vari-
ables, we have now modified 3% of the observations as
follows. The first 120 data points have been transformed

into outliers by changing in these observations the response,
SF , and the first explanatory variable, ln PC. In the initial
dataset S1, the response variable, SF , has a mean of .31
and a standard deviation of .14, and its .0025 percentile
is .02. To change these 120 points as outliers, the value
of the response has been modified in all of them to .02.
A similar modification has been applied to the explana-
tory variable ln PC. This variable has in the set S1 a mean
of 13.35 and a standard deviation of .587, and its .0025
percentile is roughly 11.5, which is the value chosen for
this variable in the 120 modified points. As the relation-
ship between both variables is negative, changing the vari-
ables in the same direction will generate a set of outliers.
Note that the rest of the 53 explanatory variables in the re-
gression have been kept as the original ones, and thus the
outlier sizes generally will be different. The application of
the standard univariate outlier detection techniques to this
contaminated dataset leads to the detection of 75 points
with predicted residuals larger than 2.5. Neither of them

Table 2. Average of False Outliers for p = 3

x0 = 1 x0 = 5 x0 = 10

Outliers (%) Estimate m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4

5 PR1 1.72 1.19 1.46 1.26 1.45 1.30 1.27 1.30 1.55 1.29 1.41 1.30
PR2 1.98 1.39 1.51 1.41 1.83 1.47 1.40 1.40 1.83 1.47 1.57 1.41
PR3 3.96 3.20 3.25 3.21 3.78 3.22 3.14 3.04 3.54 3.12 3.31 3.21
PR4 2.29 1.87 1.94 1.79 2.33 1.96 1.91 1.79 2.20 1.91 1.96 1.81

10 PR1 2.06 .90 .99 .83 1.47 .94 .85 .79 1.98 .95 .88 1.03
PR2 2.48 1.25 1.16 .99 1.90 1.23 .98 .92 2.57 1.14 .97 1.10
PR3 5.08 3.43 2.55 2.32 4.46 2.64 2.24 2.19 4.89 2.61 2.35 2.38
PR4 3.25 2.20 1.56 1.28 2.91 1.64 1.32 1.25 3.57 1.72 1.44 1.37

15 PR1 3.22 1.44 .65 .59 2.95 .81 .58 .49 3.55 .82 .50 .62
PR2 3.89 2.06 1.05 .68 3.93 1.34 .71 .56 4.46 1.52 .66 .65
PR3 7.19 5.39 3.29 1.98 7.35 4.02 1.95 1.48 7.45 4.02 1.94 1.84
PR4 5.02 3.73 2.39 1.23 5.44 3.43 1.34 .91 5.63 3.43 1.46 1.17

20 PR1 5.14 2.70 .96 .34 5.22 1.64 .54 .35 5.56 1.99 .55 .33
PR2 6.20 4.25 2.29 .82 6.61 3.48 .96 .49 6.42 3.89 1.20 .34
PR3 9.76 8.50 6.76 4.22 10.06 8.06 4.52 1.97 9.97 7.82 3.93 1.78
PR4 7.61 6.48 5.36 3.60 8.07 6.73 3.98 1.60 8.11 7.15 3.81 1.56
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Table 3. Mean Squared Errors for p = 3

x0 = 1 x0 = 5 x0 = 10

Outliers (%) Estimate m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4

5 PR1 .17 .18 .17 .17 .24 .16 .16 .15 .25 .15 .16 .17
PR2 .19 .20 .18 .17 .30 .17 .17 .15 .33 .18 .17 .18
PR3 .27 .28 .24 .23 .37 .26 .23 .21 .36 .25 .23 .23
PR4 .20 .23 .20 .19 .33 .22 .21 .17 .34 .24 .18 .18
LSE .12 .14 .16 .22 .48 1.63 3.53 6.14 .86 3.21 7.12 12.65

10 PR1 .23 .27 .23 .17 .40 .19 .16 .16 .55 .20 .16 .15
PR2 .24 .32 .24 .19 .52 .32 .18 .16 .70 .28 .16 .16
PR3 .39 .50 .34 .24 .77 .44 .28 .21 .86 .42 .26 .21
PR4 .29 .43 .30 .22 .72 .45 .29 .20 .89 .50 .33 .17
LSE .14 .20 .30 .48 .71 2.56 5.60 9.87 1.02 3.80 8.40 14.83

15 PR1 .36 .52 .35 .24 .83 .35 .18 .16 1.04 .39 .23 .16
PR2 .40 .61 .46 .26 .97 .68 .30 .17 1.17 .93 .35 .16
PR3 .61 1.09 1.00 .51 1.36 1.55 .72 .33 1.46 1.78 .79 .50
PR4 .46 .87 .89 .50 1.22 1.95 .78 .54 1.36 2.16 1.15 .50
LSE .16 .30 .51 .85 .84 3.08 6.74 11.88 1.07 4.03 9.02 15.89

20 PR1 .52 .86 .84 .30 1.32 1.20 .42 .19 1.39 1.45 .47 .20
PR2 .61 1.13 1.34 .63 1.46 2.31 .95 .39 1.47 2.74 1.15 .24
PR3 .88 1.99 3.01 2.76 1.77 4.32 4.05 1.93 1.81 4.49 3.32 1.71
PR4 .75 1.53 2.49 2.71 1.60 4.15 4.55 2.45 1.65 4.81 4.29 2.27
LSE .18 .40 .74 1.28 .93 3.38 7.54 13.22 1.12 4.18 9.27 16.28

correspond to the true generated outliers, which are com-
pletely masked. When the procedure described in Section
3 is applied, a set of 256 outliers are detected that includes
the 120 true generated outliers. Also, the value for the ro-
bust scale improves by 11% with respect to the one of the
LSE fit.

The proportion 3% was chosen to represent a real sit-
uation, because in many datasets a proportion larger than
this is not expected. However, to check the procedure in a
more contaminated situation, we have also modified 10%
of the data points. The observations for these 400 points
have been changed as before; that is, by using the value .02
for the response variable and 11.5 for the first explanatory

variable. Again, although the 400 outliers have the same
value for the response variable and the first regressor, they
have very different values for the rest of 53 explanatory
variables, and in this way we can check the behavior of the
procedure with a large number of outliers of different size,
leverage, and distribution on the X space. As before, the
univariate procedures fail to identify any member of the set
of 400 outliers, and only 51 points (several of them good
data points) have a predicted residual larger than 2.5. The
400 generated outliers are completely masked. When the
proposed procedure is applied, the 400 outliers are clearly
identified, and the improvement on the robust scale is
now 17.6%.

Table 4. Median Squared Errors for p = 3

x0 = 1 x0 = 5 x0 = 10

Outliers (%) Estimate m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4

5 PR1 .13 .14 .14 .13 .14 .11 .12 .12 .14 .12 .13 .13
PR2 .14 .14 .13 .13 .17 .12 .13 .12 .16 .12 .14 .12
PR3 .20 .18 .17 .17 .19 .15 .16 .15 .19 .15 .16 .17
PR4 .15 .15 .15 .14 .18 .12 .14 .13 .17 .13 .14 .14
LSE .10 .11 .13 .19 .45 1.62 3.46 6.06 .85 3.18 7.03 12.56

10 PR1 .16 .20 .16 .12 .18 .13 .12 .12 .22 .12 .12 .11
PR2 .18 .21 .16 .13 .28 .14 .12 .13 .46 .12 .12 .12
PR3 .29 .27 .18 .15 .74 .16 .14 .16 .94 .16 .16 .15
PR4 .22 .23 .18 .14 .76 .15 .12 .13 1.01 .15 .13 .13
LSE .11 .18 .27 .43 .69 2.51 5.52 9.82 .98 3.72 8.28 14.58

15 PR1 .28 .32 .21 .13 .92 .14 .12 .13 1.10 .13 .13 .12
PR2 .31 .37 .22 .14 1.01 .14 .13 .12 1.16 .15 .14 .12
PR3 .49 .73 .24 .16 1.26 .22 .14 .16 1.32 .23 .17 .15
PR4 .36 .54 .30 .15 1.13 .29 .13 .13 1.27 .27 .16 .13
LSE .13 .28 .48 .78 .81 3.02 6.63 11.73 1.03 3.91 8.83 15.53

20 PR1 .42 .57 .50 .13 1.18 .16 .13 .12 1.24 .18 .14 .12
PR2 .50 .93 .61 .14 1.28 .31 .13 .13 1.30 .52 .15 .12
PR3 .68 1.65 2.43 .24 1.54 4.47 .23 .16 1.52 4.83 .23 .14
PR4 .56 1.23 1.96 .32 1.35 4.29 .25 .15 1.42 4.90 .25 .14
LSE .16 .37 .68 1.20 .89 3.33 7.42 13.01 1.07 4.06 9.09 15.96
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Table 5. Null Behavior for p = 3

Estimate PR1 PR2 PR3 M1 LS

Average of false outliers 1.88 1.92 4.15 2.47
Mean squared error .16 .17 .24 .19 .11
Median squared error .12 .12 .16 .13 .10

6.2 Simulation Results

The performance of the procedure was also investigated
by Monte Carlo simulation. The model used to generate the
data is

yi = β1xi1 + β2xi2 + · · · + βpxip + βp+1 + εi, 1 ≤ i ≤ n,

where for 1 ≤ i ≤ 40−n0, the vectors (yi, xi1, xi2, . . . , xip)
are independent random samples from an N((0, 0, 0, . . . , 0), I)
and thus correspond to the case β1 = β2 = · · · = βp+1 = 0.
For n − n0 + 1 ≤ i ≤ n, the observations are independent
samples from an N((y0, x0, 0, . . . , 0), .01I). This design does
not have any loss of generality due to the affine, regression,
and scale equivariance of the method and the sphericity of
the distribution of the regressors.

Three procedures based on the minimization of a ro-
bust scale were applied to estimate the parameters and
detect outliers. The first procedure (PR1) is the one de-
scribed in Section 3, using an M scale S. Given a sample
e1, . . . , en, S(e1, . . . , en) is defined by the solution of

1
n

n∑
i=1

ρ
(ei

S

)
= b,

where ρ is defined by

ρ(u) =




3.048u2 if |u| < .810

2.763u8 − 11.783u6

+ 16.057u4 − 5.926u2

+ 1.792 if .81 ≤ |u| ≤ 1.215

3.20 if |u| > 1.215

and b = 3.2/2 = 1.6. The function ρ so defined is twice
differentiable, and b was chosen so that S has breakdown
point .5. Moreover if u is N(0, 1), then E(ρ(u)) = 1. There-
fore, S is Fisher consistent for the standard deviation of a
normal variable of mean 0.

The second procedure (PR2) is the same as PR1 but re-
placing the zi’s by the vi’s and, according to the discussion
given in Section 4, it is directly related to the our earlier
procedure (Peña and Yohai 1995). The third and forth pro-
cedures (PR3 and PR4) are based on the LMSE and the
LTSE, both computed using the FSA. Then we applied to

Table 6. Percentage of Samples With All of the
Outliers Detected for p = 30

% Outliers = 10 % Outliers = 15

Estimate m = 2 m = 3 m = 2 m = 3

PR1 100 100 98 100
PR2 100 100 80 100
PR3 17 25 1 5

Table 7. Average of False Outliers for p = 30

% Outliers = 10 % Outliers = 15

Estimate m = 2 m = 3 m = 2 m = 3

PR1 6.93 6.82 4.84 4.79
PR2 9.25 8.78 14.52 5.87
PR3 38.69 34.11 55.41 52.61

these estimates the stage 2 of PR1 as described in Section
3. Finally, we also simulated the LSE.

We first consider the case of n = 40 and p = 3. Although,
as we show, the advantage of the procedure appears for a
larger number of independent variables, this case can illus-
trate that for the important case of similar, but not neces-
sarily identical outliers, the procedure can help improve the
high-breakdown methods. The values for x0 were chosen to
be 1, 5, and 10, and the contaminating slope, m = y0/x0,
was fixed at 1, 2, 3, and 4. The number of outliers was
taken as 2, 4, 6, or 8, corresponding to 5%, 10%, 15%, and
20% contamination. The Monte Carlo study was done with
500 replications. PR3 and PR4 compute the LMSE and the
LTSE by using the FSA with 300 random starts.

In Table 1 we show the percentage of Monte Carlo repli-
cations where the procedures detect all the outliers. In Table
2 we indicate the average of false outliers found by these
procedures. In Table 3 we present the mean squared errors
(MSEs), defined as follows. Let β(i), 1 ≤ i ≤ m be the
estimate corresponding to the replication i of one of the
procedures. Then the MSE is given by

MSE =
1
m

m∑
i=1

‖β(i)‖2,

where ‖ ‖ denotes Euclidean norm. In Table 4 we show
the median square errors (MNSEs), defined by

MNSE = median{‖β(i)‖2, 1 ≤ i ≤ M}

In Table 5 we show the null behavior of the different pro-
cedures; that is, when the samples do not contain outliers.

Table 1 shows that in the case of low-leverage outliers
(x0 = 1), the more powerful procedure is, in general, PR3.
Instead, for higher-leverage outliers (x0 = 5, 10), PR1 is
always better or equal than PR3, which outperforms PR4.
Tables 2, 3, and 4 show better behavior of PR1 with respect
to PR3.

Table 5 presents the null behavior of the procedure. As
would be expected, all robust estimates are less efficient
than the LSE in this case, but the most efficient robust pro-

Table 8. Mean Squared Errors for p = 30

% Outliers = 10 % Outliers = 15

Estimate m = 2 m = 3 m = 2 m = 3

PR1 .28 .28 .42 .28
PR2 .31 .31 1.64 .30
PR3 6.54 12.62 9.36 18.72
LSE 4.31 9.45 4.60 10.11
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Table 9. Median Squared Errors for p = 30

% Outliers = 10 % Outliers = 15

Estimate m = 2 m = 3 m = 2 m = 3

PR1 .28 .28 .27 .28
PR2 .30 .29 .33 .30
PR3 7.20 14.25 9.00 18.93
LSE 4.29 9.41 4.55 10.09

cedure is PR1. Of course, one can improve the efficiency of
the robust estimates increasing C3, but at the cost of losing
robustness and outlier detection power.

To determine the performance of the proposed procedure
for the most interesting case of a large number of indepen-
dent variables, we consider the case of p = 30 and n = 200.
Because the behavior for p = 3 of PR3 was superior to
PR4, and given the heavy computational load involved in
its simulation, this last method was deleted. The PR3 proce-
dure was now computed with 15 random starts. This value
may seem too low; however, the computation of each repli-
cation took about 5.5 minutes on a 266 MHz Pentium PC
using a FORTRAN program, and this prevents us from in-
creasing this number significantly. The computation of each
replication of PR1 or PR2 took about 35 seconds using a
MATLAB program. This increase in the computational time
forced us to make a more limited Monte Carlo study. We
made 100 replications for each of the three procedures. In
this case we took x0 = 10 and fixed the contaminating
slope, m = y0/x0, at 2 and 3. The number of outliers was
taken as 20 and 30, corresponding to 10% and 15% contam-
ination. Tables 6–10 show the results of the Monte Carlo
studies for p = 30.

Table 6 shows that PR1 is much more powerful than PR3,
and the difference between these two procedures increases
with the fraction of outliers. Tables 7, 8, and 9 confirm,
in general terms, the result of Table 6. Finally, Table 10
shows roughly a loss of efficiency of the robust procedures
with respect to least squares similar to the one found in
Table 5.

7. CONCLUDING REMARKS

The robust estimate presented herein can be used suc-
cessfully in regression problems with a large number of ex-
planatory variables where high-breakdown estimates based
on the minimization of a robust scale are not feasible with
the available computer power. It may also be used to im-
prove these estimates by combining solutions provided by
approximate methods (e.g., subsampling) with those gener-
ated by our procedure. To be specific, suppose that β̂(1) is
a solution to the minimization problem

β̂ = argmin S(e1(β), . . . , en(β)),

Table 10. Null Behavior for p = 30

PR1 PR2 PR3 LS

Average of false outliers 14.93 19.95 24.27
Mean squared error .31 .37 .42 .19
Median squared error .31 .37 .41 .18

which has been computed using an approximate procedure.
Let β̂(2) be the estimate that we propose in the article. Then
define

β̂ =




β̂(1) if S(e1(β̂(1)), . . . , en(β̂(1))) < S(e1(β̂(2)), . . . ,

en(β̂(2)))

β̂(2) if S(e1(β̂(2)), . . . , en(β̂(2)) < S(e1(β̂(1)), . . . ,

en(β̂(1))).

This estimate will have at least the same breakdown point
as β̂(1) and, in some cases, will be better with almost no
additional computational work. We believe that, in any case,
the incorporation of solutions that use information about the
structure of the points, as made by the proposed procedure,
is a way to improve any resampling scheme.

As it is shown in Tables 2 and 8 of our Monte Carlo study,
the estimate proposed in this paper gives directly an useful
diagnostic tool to identify multiple outliers. However, the
sensitivity components z1, . . . , zp can be used directly as a
diagnostic method to identify multiple outliers. The proce-
dure will be similar to the one that we described in earlier
work (Peña and Yohai 1995), but using these vectors in-
stead of the influence components v1, . . . ,vp. Because the
results of our Monte Carlo shows that the zi’s are more
powerful than the vi’s in detecting outliers, we can expect
this change to improve the procedure.

APPENDIX: PROOF OF THEOREM 1

Let X0 be the n × p matrix whose ith row is x′
i and y0 =

(y1, . . . , yn)′. Because of the equivariance of the procedure, we
can assume without loss of generality that V0 = X′

0X0 = Ip and
X′

0y0 = 0. The latter condition implies that the LSE using these
n observations is 0. Let X be the (n + m) × p matrix whose ith
row is x′

i, and y = (y1, . . . , yn, y∗, . . . , y∗)′. Let xi, 1 ≤ i ≤ p
denote the ith columns of X, and let Vn.m(x∗) denote the subspace
of Rm+n spanned by {x1, . . . ,xp}. Observe that the elements of
Vn.m(x∗) have the last m coordinates identical.

It is easy to prove that the LSE is

β̂ =
my∗x∗

1 + m‖x∗‖2 , (A.1)

and we then derive that

e∗ = y∗ − β̂′x∗ =
y∗

1 + m‖x∗‖2 (A.2)

and

ej = yj − β̂′x = yj − mx′
jx

∗y∗

1 + m‖x∗‖2 , 1 ≤ j ≤ n. (A.3)

Moreover, it also holds that

hii = h∗ =
‖x∗‖2

1 + m‖x∗‖2 , n + 1 ≤ i ≤ n + m, (A.4)

and

lim
‖x∗‖→∞

hii = lim
‖x∗‖→∞

h∗ =
1
m

, n + 1 ≤ i ≤ n + m, (A.5)

and because
∑n+m

i=1 hii = p, we get

lim
‖x∗‖→∞

hii = 0, 1 ≤ i ≤ n. (A.6)
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Put rj = x′
jx

∗/‖x∗‖; because X′
0X0 = Ip, it is clear that

|rj | ≤ 1, 1 ≤ j ≤ n. (A.7)

Because the observations xj , 1 ≤ j ≤ n, are in general position,
it may be proved that there exists γ > 0 such that for all x∗,

#{j: 1 ≤ j ≤ n, |rj | > γ} ≥ n − p + 1. (A.8)

In fact, suppose that (A.8) does not hold. Then there exists a se-
quence x∗

i such that if we call ai = x∗
i /‖x∗

i ‖, then

#
{

j: 1 ≤ j ≤ n, |a′
ixj | ≤ 1

i

}
≥ p, ∀ i.

Therefore, because ‖ai‖ = 1, and because there exists only a
finite number of subsets of xj’s with p elements, there exists a
subsequence ih and xj1 , . . . ,xjp , such that limh→∞ aih = a and

|a′
ih

xjk | ≤ 1
h

, 1 ≤ k ≤ p, ∀ h.

Therefore,

lim
h→∞

|a′
ih

xjk | = |a′xjk | = 0, k = 1, . . . , p,

contradicting the fact that the xj’s are in general position.
Using (A.3) and (A.1), we get

ej = yj − rj‖β̂‖ = ‖β̂‖
(

yj

‖β̂‖ − rj

)
, (A.9)

and by (A.2) and (A.1),

|e∗| =
‖β̂‖

‖x∗‖m
. (A.10)

Let F be the diagonal matrix defined by

F =
W2

‖β̂‖2
, (A.11)

and denote the first n diagonal elements of F by fj , and the last
m by f∗. Take

ε = min

(
γ2

48p3n2 ,
1

2n1/2

)
. (A.12)

We show that there exists M1 such that if ‖x∗‖ > M1, then
there exists v = (v1, . . . , vn, v∗, . . . , v)Vn,m(x∗) such that

‖v‖ = 1 (A.13)

and

|vi| ≤ ε, i = 1, . . . , n. (A.14)

In fact, take M1 =
√

p/ε. Then, if x∗ = (x∗
1, . . . , x

∗
p)′ and

‖x∗‖ > M1, there exists i such that |x∗
i | > 1/ε. Then xi =

(x1i, . . . , xni, x
∗
i , . . . , x∗

i ) ∈ Vn,m(x∗), and because |xij | ≤ 1 and
‖xi‖ ≥ 1/ε, we obtain that v = xi/‖xi‖ ∈ Vn,m(x∗) and satisfies
(A.13) and (A.14).

From (A.13) and (A.14), we obtain that

1 = ‖v‖2 ≤ nε2 + mv∗2, (A.15)

and thus, using (A.12), we get

v∗ ≥
(

1 − nε2

m

)1/2

>
1

2m1/2 ≥ 1
2n1/2 . (A.16)

Moreover, using (A.5), (A.6), (A.9), (A.10), (A.11), and (A.14),
if m > 1, then there exists M2 such that if ‖x∗‖ > M2 and

‖β̂‖ > M2, then

r2
j

2
< fj =

e2
j

(1 − h2
ii)‖β̂‖2

=
1

(1 − h2
ii)

(
yj

‖β̂‖ − rj

)2

< 2, 1 ≤ j ≤ n, (A.17)

and

f∗ =
1

(1 − h∗2)m2‖x∗‖2 < ε. (A.18)

Put M = max(M1,M2). In the rest of the proof we assume
that ‖β̂‖ > M and ‖x∗‖ > M. Because the eigenvalues of H are
0 or 1, then ‖HFv‖ ≤ ‖Fv‖, and because by (A.14), (A.17), and
(A.18), ‖Fv‖ < 3

√
nε, we get

‖HFv‖ < 3n1/2ε. (A.19)

Now let V = {v1, . . . ,vp} be a set of orthonormal eigenvectors
corresponding to the nonnull eigenvalues of HW2. Then they are
also eigenvectors of HF, and the corresponding eigenvalues are
denoted by λ1, . . . , λp. Because V is also a orthonormal base of
the eigenvectors of H corresponding to the eigenvalue 1, and v
belong to this subspace, we can write

v =
p∑

i=1

θivi, (A.20)

and because by (A.13) |θi| ≤ 1, 1 ≤ i ≤ p, using (A.16), we get
that there is i0 such that

|θi0 | ≥ v∗

p
>

1
2pn1/2 (A.21)

and

|v∗
i0 | ≥ v∗

p
>

1
2pn1/2 . (A.22)

Moreover, applying HF in both sides of (A.20),

HFv =
p∑

i=1

θiλivi, (A.23)

and by (A.19) and (A.21) we get that λi0 < 6pnε. Using the
fact that vi0 is also an eigenvector of H corresponding to the
eigenvalue 1, we get

|v′
i0Fvi0 | = |v′

i0HFvi0 | = λi0‖vi0‖2 = λi0 < 6pnε. (A.24)

Now, by (A.17) we get

|vi0,j |2r2
j

2
< 6pnε, (A.25)

and, by (A.8),

#

{
j: 1 ≤ j ≤ n, |vi0,j |2 <

12pnε

γ2

}
≥ n − p + 1.

Therefore, by (A.12) and (A.22), we get

#{j: 1 ≤ j ≤ n, |vi0,j | < |v∗
j |} ≥ n − p >

n + m

2
,

and the theorem is proved.

[Received May 1996. Revised October 1998.]
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