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Abst rac t  

In manufacturing science, process capability indices play a role analogous to eco- 
nomic indices in government statistics. The existing capability indices are passive 
devices whose main role is to retroactively monitor process capability. They have 
been developed under the restrictive assumption of process stability, and the pro- 
cedures for using them are based on ad hoc rules. Using the normative point of 
view for decision making, it can be shown that some of the indices are, at best, 
convoluted special cases of a more general strategy; they can be justified only under 
special assumptions, and the manner in which they are currently used could lead 
to incoherent actions. The available process capability indices should therefore be 
abandoned and replaced by procedures that are normative, and also proactive with 
respect to both, prediction and control. An approach towards achieving this goal 
is proposed. 

K e y  Words:  Process capability indices, quality control, manufacturing science, 
tolerances, control variables. 
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1 Introduct ion 

A process capability index is a dimensionless measure tha t  is used to quantify 
the performance of a manufacturing process vis-a-vis the process parame- 
ters and the product  specifications. Process capability indices - henceforth 
PCI  - have recently a t t rac ted  much at tent ion in engineering design, man- 
ufacturing science, and quality assurance. Indeed, in the manufactur ing 
sciences they hold a status akin to tha t  held by economic indicators, like 
the consumer price index, in government statistics. These indices have 

been used to assess, and to monitor, the quality of units produced by a 
manufactur ing process, and thus serve as indicators of the overall capa- 
bility of a manufactur ing system. Their  purpose is to ensure (but only 
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retrospectively) that the number of nonconforming items in a batch are 
below a specified limit. 

One of the simplest, and perhaps the most commonly used index, is 
what is known as the "six sigma" index, denoted by Cp [cf. Harry and 
Lawson (1992)]. This index has been used to estimate the proportion of 
parts that do not meet engineering specifications. The Cp index, originally 
proposed by Juran (1974), has its foundation in a fundamental result of 
probability, namely Tchebychev's inequality; see for example Billingsley 
(1986), p. 75. The essence of this inequality is the result that the proba- 
bility of any random variable deviating from its mean by more than three 
times its standard deviation is small - at most 0.1. This inequality, though 
sharp, is too broad and too general to be of much practical value; it de- 
mands of the user only a knowledge of the variance. Consequently, despite 
its common use by industry, enhancements and refinements of Cp have been 
proposed, most of these in the literature on statistical quality control. Each 
enhancement requires added knowledge of some aspect of the distribution 
of the random variable. That is, the enhancements assume more than just 
a knowledge of the variance. An overview of the various PCI's, and a brief 
discussion of their properties, is given in Section 2. The overview is not 
intended to be an exhaustive survey; its purpose is to give the reader a 
flavor of the developments. A more complete perspective is in the recent 
monograph by Kotz and Lovelace (1997). 

It is important to note that the PCI's have, to date, played only a 
passive role in the manufacturing sciences. The functions of assessing and 
monitoring are not predictive nor are they proactive, and thus the available 
PCI's mainly serve as policing devices. Whereas this by itself is a needed 
activity, a much more useful role can be served by the PCI's if they can also 
be used to predict and to control the quality of future output. The theme 
of this paper is to advocate and to develop the idea that process capability 
indices be made to serve the dual role of assessing and monitoring current 
quality, as well as predicting and controlling the quality of future output. 
This theme is developed in Section 3. Section 4 pertains to a demonstration 
of how the various indices behave when confronted with some real and 
simulated data. 
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2 P r o c e s s  c a p a b i l i t y  i n d i c e s :  a n  o v e r v i e w  

2.1 P r e l i m i n a r i e s  

Let X be some characteristic of interest of a manufactured product,  such 
as say the diameter of a pin, or the length of a shaft. The  engineering or 
design specifications for X are generally stated in terms of a "nominal" or 
a "target value", say T. That  is, T is that  value of X which will satisfy 
the design engineer's criteria for the opt imum performance of the product.  
Now manufacturing the product so that  X exactly equals T is prohibitively 
expensive, and so it is common practice to specify upper  and lower "specifi- 
cation" limits, USL and LSL, respectively, and to require that  X be within 
these limits. We do not concern ourselves here with the question of how 
USL and LSL ought to be specified, though this too is a mat ter  of fun- 
damental  importance and should be addressed by the dictates of coherent 
decision making [cf. Singpurwalla (1992)]. 

The physical processes that  manufacture the part  are generally subject 
to many sources of variation, starting from the quality of the raw material 
to the aging and wear-out of the manufacturing equipment.  Consequently, 
X is a random quantity (or random variable), whose distribution is often 
assumed to be a Gaussian with a mean, say #, and a variance, say a 2. In 
manufacturing parlance, the variance a 2 is referred to as the natural tol- 
erance of X. When working with the PCI 's  it is also a common practice 
to assume that  both  # and a 2 do not change with time; i.e. the process 
is stable, or what is known in quality control, as in statistical control. The 
assumption of a Gaussian distribution for X is perhaps reasonable, because 
often X is a quantity that  can be measured, and measurements being sub- 
jected to symmetric errors are, by tradition - since the time of Gauss - 
assumed to be Gaussian. However, Bernardo and Irony (1996) raise issue 
with this assumption. 

The question which arises is as to whether the design engineer's compro- 
mise in going from the ideal T to the upper  and lower specification limits 
(the USL and the LSL), is matched by the manufacturer 's  ability to meet 
such a compromise vis-a-vis the assumed # and a 2 mentioned above. The 
PCI 's  were introduced to address this matter.  But  before describing the 
PCI 's  some additional notat ion that  is useful in the subsequent text needs 
to be introduced. The quantity (USL-LSL) is known as the specification 
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interval; it is denoted by 2d, where d is the half length of the specifica- 
tion interval. The mid point of the specification interval, denoted by M, is 
(USL+LSL)/2. 

2.2 The traditional indices: their chronological development 

It was stated before that the earliest index, namely Cp, was introduced by 
Juran in 1974, and that Cp has its foundation in Tchebychev's inequality 
which requires a knowledge of only 0 "2. This index, defined as 

USL-LSL d 
c p =  (2.1) 

does not involve the process mean p. Suppose that the target value T equals 
M, the mid point of the specification interval, and that X has a Gaussian 
distribution. Observe that Cp is the ratio of the allowable spread of the 
process to its actual spread, and that if # coincides with T, then the value 
Cp -- 1 will imply that 99.7% of the produced items will fall within the 
specification limits. To see this, observe that 

P ( L S L < X < U S L )  = p ( L S L - / z  <_X-/J_<a USL-#)_a 

= r - r  = r - r  = .997, 

where Cp --- i, and ~b(x) is the distribution function of the unit Gaussian; 
i.e. 

'_~ 1 _ u 2 / 2  r  = - 

As long as # coincides with T, any value of Cp greater than one will 
increase the above probability, making the manufacturing process more ef- 
ficient. Since a 2 is unknown, it has to be inferred from the data, and to 
compensate for the uncertainties of estimation, industrial practice follows 
the dictum that Cp must be a minimum of 1.33 (instead of the afore- 
mentioned 1). The choice 1.33 is completely ad hoc; indeed for pilot (or 
qualification) runs, Cp is sometimes required to be in excess of 1.66. A 
possible explanation for this choice of Cp is that 1.66 corresponds, approx- 
imately, to a reject rate of one unit per million; see, for example, Juran 
and Gryna (1980). Since large values of Cp would increase the cost of man- 
ufacturing, the critical value of Cp should be based on a formal decision 
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theoretic development; see Section 2.3. The data needed to estimate a 2, 
mentioned above, is taken at certain specified points in time, called rating 
periods. The specification of the rating periods also appears to be based on 
arbitrary considerations. 

The numerical claim made above is valid only when/~ and T coincide. 
Should # not coincide with T, then Cp -- 1 will not yield the 99.7% figure 
cited before; it will be smaller. To see why, suppose that # is at (USL+T)/2; 
i.e. /~ is between the target value and the USL. Then 

P(LSL < X < USL) = #(1.5) - ~I,(-4.5) = .993, 

so that the proportion of nonconforming parts has more than doubled. 

To incorporate the effect of the process mean on the capability index, 
Cp was refined by introducing the index Cpk, where 

Cpk = Minimum [ 3a ' 3a J '  

and it is assumed that # 6 (LSL, USL). This refinement of C~, presum- 
ably originated in Japan, has often been attributed to Kane (1986). An 
appreciation of this choice, namely that of Cpk, can be obtained via an 
examination of Figure 1. 

I I 

I I ~, ~ 6a  ~1 
LSL M USL 

F i g u r e  1: Considerations in defining Cpk. 
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Figure 1 illustrates the fact that the largest value that # can take, and 
the allowable spread be still greater than the natural spread, is USL-3a; 
similarly, the smallest value that # can take is LSL+3a. These consid- 
erations suggest that ( U S L -  # ) / 3 a  >_ 1 and that ( # -  LSL)/3a > 1. 
Furthermore, the closer that # gets to the specification limit, the bigger is 
the likelihood of producing nonconforming parts; hence the appearance of 
a minimum in the formula for Cpk. Thus, when using Cpk, the process is 
judged capable if Cpk is one or greater, and since both # and (7 2 a r e  to be 
estimated from the data, industrial practice follows the rule that Cnk be 
greater than 1.33. There is a recent move in industry, especially that which 
supplies products for the government, to require that Cpk be much bigger 
than 1.33, but once again such decisions should involve a trade-off between 
costs of manufacture and the consequences of being out of specifications, 
not an arbitrary specification of some cut-off point. 

Verify, see Figure 1, that Cpk may also be written as 

and since 

d -  I~ - MI (2.2) 
Cpk - -  3a ' 

Cpk is smaller than Cp whenever # ~ M, and Cpk = Cp when # : M. 
Furthermore Cpk _> 1 implies that Cp _> 1, because the last term of (2.3) 
cannot be negative. The comparative behavior of Cp and Cpk has been 
illustrated by Fries and Richter (1993) who make the point that Cp > 1 
does not imply that Cpk >_ 1. 

It is interesting to note that both Cp and Cpk do not involve the target 
value T, unless it is tacitly assumed that T = M. Hsiang and Taguchi 
(1985) [and also Chan, Cheng, and Spiring (1988)], rectify this omission by 

replacing the natural tolerance of X, namely, a 2 d__ef E ( X  - #)2, with the 
quantity E ( X  - T) 2, in the denominator of Cp; in so doing, they introduce 
a new index C~nn. Since E ( X  - T) 2 = E ( X  - # + tz - T) 2, the index Cp 
now takes the form 

USL-LSL d 
Cpm = 6 v / E ( X  _ T) 2 = 3~/a 2 + (# _ T) 2 . (2.4) 

Cpk -- d -  [#3a- MJ = Cp J~ 3o- MI , (2.3) 
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Verify that since Cpm can also be written as 

an approximation to Cpm can be obtained by expanding a function of the 
form 1/V~- + x 2, and taking the first two terms to yield a new index 

= 1- 

this index was introduced by Gupta and Kotz (1997). 

2.2.1 I n t e r p r e t a t i o n  of  Cpm 

Whereas (2.4) does have the advantage that it incorporates all the relevant 
parameters, namely d,/~, T, and a 2, the geometric intuition which guided 
the construction of Cp and Cpk is now missing. Clearly, when p = T,  Cpm = 
Cp, and as # deviates from T, the denominator of (2.4) gets quadratically 
inflated; consequently, Cpm <_ Cp. This suggests that a deviation of the 
process mean # from the target T manifests as a de facto penalty whereby 
in the formula for Cp, the natural tolerance (i.e. the variance) of the process 
gets inflated. The penalty increases quadratically in I # -  T I, but it bears no 
relationship to the USL and the LSL. With the above interpretation, one 
would want Cpm to be at least one, because with # = T, Cpm = Cp, and 
the process is judged capable when Cp > 1. Recall that Cp was interpreted 
as the ratio of the allowable spread to the actual spread of the process. 
With this in mind, Cpm could be interpreted as the ratio of the allowable 
spread to the actual spread, where the latter is the natural tolerance of the 
process plus an inflation factor that depends on the deviation of p from T. 

There is another perspective on Cpm. Conceptually, the difference be- 
tween Cp and Cpm is that in constructing the former the denominator is 
E ( X  - #)2, whereas in the latter it is E ( X  - T) 2. The intuition behind Cp 
is straightforward - a comparison between the allowable and the natural 
(manufacturing) tolerance. How does one extend this intuition when the 
divisor is E ( X  - T)2? One possibility is to view (X - T) 2 as a loss incurred 
when X deviates from T, so that E ( X  - T) 2 is the (weighted) average loss 
incurred with the weights determined by the Gaussian distribution of X 
with mean # and variance a 2. Under this interpretation, the requirement 
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that  Cpm _> 1, implies that  the maximum value that  the average loss can 
take is d2/9. It is not necessary that  the loss be a quadratic function of 
IX - TI; it could be any function of IX - T I, such as say IX - TI a, for 
-cx~ < a < 4-oo. A traditional loss function is the indicator function, tak- 
ing the value 0 when LCL < X _< UCL, and a constant, say 1, otherwise. 

When such is the case the expected loss is 2@ (LSo-SoL-~L-), so that  

Cvm > 1 iff 

One may inquire about the necessity of choosing the number  six in the 
denominator term of (2.4) when E(X  - T) 2 is interpreted as a loss. The 
only rationale for choosing the six is the equivalence between Cprn and Cp 
when/~ = T, and the fact that  Cp carries with it a natural  interpreta- 
tion. Similarly, choosing the square root of E ( X  - T) 2 not only ensures 
equivalence with Cp, but  like Cp, it makes Cprn a dimensionless quantity. 

2.2.2 Limiting behavior of Cp, Cpk, and Cpm 

Observe that  both Cp and Cpk become arbitrarily large as a 2 .~ 0, irrespec- 
tive of where the process is centered; i.e. p -- T or p ~ T. By contrast Cpm 
is bounded by the quantity d/3(I # - TI) as a 2 $ 0, and this is attractive. 
Since I# - TI < d/3Cpm, the value C~,n = 1 implies that  the process mean 
p lies within the middle third of the specification range d. 

Finally, whereas Cp is able to provide a probability of nonconformance 
(recall that  P(LSL < X < USL) -- @(3Cp) - @(-3Cp)), Cvk and Cpm do 
not. However, both  Cpk and Cpm provide an upper bound on the proba- 
bility of non-conformance. These bounds turn  out to be 2@(--3Cpk) and 
2@(-3Cprn), respectively; see Pearn et al (1992). 

2.2.3 Sensitivity to departures from target value 

Because Cp is independent of the target value T, it is robust against de- 
partures of the process mean # from T. This of course is a drawback of 
Cp. To display this lack of sensitivity, Kushler and Hurley (1992), also 
Wallgren (1996 - personal communication),  plot a = d/3Cp versus ( # -  T); 
see Figure 2. Specifically, if Cp = c, then a plot of d/3c versus (# - T )  will 
be a constant at d/3c. By contrast, if Cpk = c, and T = M, then a plot of 
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a = d =t= ~ c  T will display the feature tha t  in order to keep Cpk a constant 
at c, a will have to decrease linearly as I # -  TI increases (see Figure 2), and 
it will be zero when I# - TI = d; a is d/3c when I# - TI ---- 0, as is to be 
expected. To investigate the sensitivity of Cpm to departures  of # from T, 
suppose that  Cpm = c; then (2.4) defines the equation to a semi-circle ( a 
cannot take negative values) with radius d/3c, and origin at (# - T) = 0: 

o2 + ( ,  _ T)2 = (d/3c)2; 

see Figure 2. 

Y f l m . e t  r 

The Case , f  
Cpm = c y 

Idlr~ 

8 disc d 

) "['ha ~ efCp= e 
% 

'1['1o Case , fC~k - �9 

,~ Vt im, d ( j . T  ) 

F i g u r e  2: Sensitivity of Cp, Cpk, and Cpm. 

Figure 2 shows, that  for the case Cp = Cpk = Cpm = c, a small deviation 
from the target value calls for a large reduction in a for the case of Cpk 
as compared to that  of Cpm. That  is, for small deviations of # from T, 
Cpk is more sensitive than  Cpm. However, the si tuation reverses when the 
deviations become large. Specifically, as soon as I# - TI >- 2d/( 9c2 + 1), 
Cpm becomes more sensitive than  Cpk. Thus, if a choice between Cpk and 
Cpm is to be based on sensitivity to departures of # from T, then one must  
have a priori information about  the extent of the disparity between/~ and 
T, and also about  the values of Cpk and Cpm. For example, if d -- 1, and 
if Cpk = Cpm = 1, then Cpk will be preferred to Cpm if it is expected tha t  
I# - TI < 1 /5 .  



I0  N. D. Singpurwalla 

2.2.4 T h e  index  G'pmk a n d  its gene ra l i za t i on  Cp(u, v) 

To devise an index that is more sensitive to departures of # from T, Pearn, 
Kotz, and Johnson (1992) introduced a new index, the index Cpmk, which 
takes its numerator (denominator) the numerator (denominator) of Cpk 
(Cpm); that is, Cprnk is hybrid: 

d -  I# - M] (2.5) 
Cpmk = 3via 2 + (# _ T) 2 �9 

An interpretation of the denominator of (2.4) in terms of a weighted 
loss was given in Section 2.2.1. It was stated there, that in order to have 
Cprn _> 1, the maximum value for the average loss was limited to d2/9 or 
equivalently to (USL-LSL)2/36. The numerator of (2.5) differs from that of 
(2.4) by an amount ]# - M]. Thus, were one to interpret the denominator 
of (2.5) as the weighted loss, then the numerator of Cpmk restricts this loss 
to (d - [# - M[)2/9, which when/~ deviates from M is smaller than d2/9, 
the maximum allowable average loss under Cpm. Thus in Cprnk, there is a 
de facto penalty for # deviating from M, and the penalty manifests itself 
by restricting the loss incurred when ~ deviates from T by a quadratic 
function of (d - ]/~ - MI). When/~ -- M, this penalty vanishes. Because of 
these considerations, the index Cp,nk is judged to have attractive features. 

Like Cprn and Cpk, Cpmk limits the probability of nonconformance to 
2r and when T = M, Cprnk is bounded above, as a 2 $ 0, as 
Cpmk < d/(31# - T]) - I" Viinnaman (1995) shows that among all the 
indices presented thus far, Cprnk is the most sensitive to departures of # 
from T. 

Whereas the index Cpm had the attractive feature that it incorporated 
the parameters d, #, T, and 6 2, i t  did have a glaring omission; namely, 
the parameter M. The index Cnm k rectifies this deficiency, and in doing 
so makes the indices Cp, Cpk, and Cpm, its special cases. This feature was 
exploited by Viia-maman, who introduced the index 

d - ul# - M[ (2.6) 
Cp(u, v) : 3V/a 2 + v(# - T) 2' 

which with u -- O, v -- O, reduces to Cp, with u -- i ,  v -- O, reduces to Cpk, 
and with u ---- O, v ---- 1, reduces to Cpmk. 
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The parameters u and v of (2.6) are not just indexing devices whose 
main purpose is to act as binary "switches". They need not be restricted to 
the values 0 and 1. Indeed larger values of u and v serve to make Cp(u, v) 
more and more sensitive to departures of # from T. 

2.2.5 S u b s e q u e n t  developments: generalizations and refinements 

Much of the recent statistical literature on PCI's focuses on issues such as 
sample sizes needed to estimate # and cr 2, t es t s  of hypotheses about the in- 
dices, the effects of skewness [cf. Pearn et al (1992), Wright (1995)] and the 
effects of correlations between the observed values of X, when estimating 
the indices. Also considered, are issues such as asymmetric and one sided 
tolerances [cf. V~innman (1996 a, b)]; asymmetric tolerances occur when 
T r M. Other suggestions involve the use of Bayesian ideas to reduce the 
sample sizes required for estimation [cf. Cheng and Spiring (1989)], and 
multivariate versions of the P c r s  [cf. Taam, Subbaiah, and Liddy (1993), 
Wierda (1993), and Chen (1994)]. Bayesian ideas have also been used by 
Bissell (1990) and Pearn and Chen (1996) to produce estimators of Cpk 
that have good frequentist properties. 

2.3 Discussion and critique of the PCI's  

In all the work that has been referenced thus far, there is a strong underlying 
assumption, namely that the process under study is stable (or in statistical 
control). This implies that within any two rating periods, the underlying 
distribution which generates the indices does not change (over time). Thus 
gradual drifts in the process mean and/or the process variance are not 
allowed. [However, in going from one rating period to the other, the process 
could be out of control, and the PCI's are designed to detect such limits]. 
Furthermore, one of the key issues, namely how the PCI should be actually 
put to use appears to be short changed. The dictum that  Cp and Cpk 
should be 1.33 for production runs, and bigger that 1.66 for qualification 
runs, is completely ad hoc. More disturbing is the current move in industry 
which wants to set the lower limits on the indices to be much greater than 
1.33 (or 1.66). What  would be the consequences of such a move, especially 
if it is arbitrary, on the costs of manufacturing? Will the consumer end 
up paying for this ad hoc move which can be achieved by reducing cr 2 or 
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by increasing d? The passive role played by the PCI's as pure monitoring 
devices was mentioned before, but needs to be repeated, because it is indeed 
a drawback. 

The normative approach for the control of quality is based on deci- 
sion theoretic considerations. It provides a vehicle for accomplishing both, 
the retroactive function of assessment and monitoring, and the proactive 
functions of prediction and control. Furthermore, the normative approach 
is able to integrate the three tasks of assessment, prediction, and control 
within an interactive and unifying framework. Here, one monitors the ob- 
servable X (rather than the unobservable #), and makes a decision to con- 
tinue production, to modulate it, or to stop it, based on the consequences of 
the deviation of X from T. The decision is proactive and is dictated by the 
predictive distribution of X and the utilities associated with the deviation 
of X from T, and also the utilities associated with a control of the process. 

To the best of knowledge, the work of Bernardo and Irony (1996) ap- 
pears to be first to have introduced the normative approach in the context 
of PCI's. Their work considers the two decisions, to continue production 
or to stop it; it is overviewed in the next section. The incorporation of the 
third decision, namely control is introduced here; it is discussed in Section 
3. 

2.4 T h e  n o r m a t i v e  a p p r o a c h  to  p rocess  capability 

The normative approach to process capability, pioneered by Bernardo and 
Irony (1996), also starts with the assumption of process stability (i.e. sta- 
tistical control); however, as will be pointed out later, this requirement 
can be eased. It departs from the traditional approaches by emphasiz- 
ing decision making based on predictive values, and in so doing paves the 
path towards proactiveness in manufacturing based on process capability 
analysis; however, it falls short by not incorporating the issue of control. 
Since some of the traditional PCI's turn out to be special cases of the nor- 
mative set-up, the work of Bernardo and Irony is to be classified a signal 
contribution to the literature on process capability analysis. This accolade 
is deserving, because it essentially says that when the available CPr s  are 
viewed in the broader context of decision making, they become at best, 
convoluted special cases of a more encompassing strategy. Given below is 
an overview of Bernardo and Irony's development supplemented with other 
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features and at tractive properties that  have not been remarked upon by 
the above authors.  

Let 0 < T1 < T2 < . . .  < Ti-I  ( Ti ( . . . ,  denote the rating periods, and 
suppose tha t  at Ti measurements  x i l , . . . ,  xin, are taken on some at t r ibute  
of interest, on any n items tha t  were produced during the t ime period 
[Ti-1, Ti); see Figure 3. 

T O - 0  

N i Items Manufactured 
(of which R i axe Conforming) 

I I I I ~ "~ 
�9 Time 

T 1 T 2 �9 . .Ti_ 1 T i Ti+l 

n measurements (Xil . . . . .  Xin ) axe taken �9 

F i g u r e  3: Il lustration of rating periods and sample measurements.  

At Ti two tasks have to be undertaken: i) an assessment has to be made 
if a specified proportion of the Ni items that  were manufactured during the 
period [Ti-1, ~ )  has met  the engineering tolerances or not; and ii) a decision 
has to be made whether  to continue production as is, during the coming 
period [~ ,Ti+I) ,  or to intervene in the production process and make the 
needed changes. If it is assumed that  the process is stable, both  within 
and between the rating periods, then the above two tasks boil down to a 
common calculation. The "continue production as is" decision is denoted 
dl, and the "intervene" decision, by d2. The  7~'s, Ni's, i ---- 1, 2 . . . ,  and the 
n are assumed to be fixed and known; an investigation about  the op t ima l  
choice for ~ and n would be worthwhile. Let 

xi(n) = (x i l , x i2 , . . .  ,Xin), and 

X i+ (Ni+i) = 

the former represents observed data, and the latter, the unobserved values 
of the characteristic of interest for the future production.  
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Coherent decision making [cf. Bernardo and Smith (1994), Chapter 1], 

requires that the utilities b/(dt, xi+l (Ni+I)) de~ b/(dl), and b/(d2, xi+l (Ni+I)) 

clef b/(d2), be specified, where bl(dj, xi+l (Ni+l))  is the consequence of choos- 

ing decision dj, j -- 1, 2, when X i+l(Ni+l)  takes the value Xi+l(Ni+l) .  Let 

7r ( xi+ 1 ( Ni+ 1 ) lxi (n) ) be the predictive distribution of X i+ 1 ( Ni+ l ), the future 

observables, given xi (n) ,  the observed data from the latest rating period. 

This predictive distribution is relatively straightforward to compute if the 
process is in control. Then, the expected utility of decision dj, j = 1, 2, is 

~(dj) = f l~ (dj, xi+ 1 (Ni+I))71 (Xi+l (Ni+I)I x~ in)) d X~+l(N~+ 1 ). (2.7) 

Decision dl is chosen if ~(dl )  > ~(d2); otherwise d2 is chosen. The above 
rule is a consequence of the principle of maximizat ion of  expected util- 
ity. Whereas enunciating this principle is straightforward, implementing 
it tends to be demanding, and this could be the only excuse for justifying 
a use of the traditional PCI's. 

To simplify matters suppose that AT/ = N, i ---- 1, 2 , . . . ,  and suppose 
that Ri of the Ni produced items were to conform to specifications. Of 
course at time Ti, R/+I is unknown, and at time 2q-1, R/ can only be 
known if n -- Ni. A simple form of the utility of decision dl (continue as 
is) could be 

lg(dl ) = 9Ri+l  - C i  N - Ri+l) - IN,  

where g is the profit from delivering a good item, C is the penalty in- 
curred by delivering a defective item, and l is the cost of manufacturing an 
item. The utility of d2, the action to intervene, could take different forms, 
depending on the nature of intervention. 

If the intervention involves inspecting every manufactured item and 
repairing all nonconforming ones, then 

U(d2) -- g N  - h N  - r ( N  - R/+I) - IN,  

where h is the cost of inspecting each item and r is the cost of repairing a 
failed item. If the intervention involves freezing the production to overhaul 
the entire manufacturing system, then a fixed cost Q is incurred, plus gen- 
erally there is a cost due to opportunity lost in supplying the N items. If 
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q denotes the unit cost of lost opportunity, then H(d2) = - Q  - qN.  If Q is 
amortized over the next k rating periods then, b/(d2) could be of the form 
H(d2) = - Q / k  - qN.  In any case, it turns out to be so that H(dl )  - / g (d2 )  
is of the form aRi+l - bN + Q,*, and Q* a constant greater than or equal 
to 0. With the above simplification, decision dl is chosen if [see (2.7)] 

N 

(aRi+l - bN + Q*)lr(P~+llN, x i (n ) )  >_ O, 
R4+1:0 

or that 

aE(R/+IIN, xi(n)) - bN + Q* = a .  N .  P ( X  e Alxi(n)) - bN + Q* >_ O, 

if the Xi+l,1, Xi+1,2,... ,Xi+l,N~+~ are judged to be (conditionally) inde- 
pendent and identically distributed, and where A is the specification inter- 
val [LSL, USL]. Equivalently, decision dl is chosen iff 

P ( X  E Alxi(n)) _> 
bN - Q* b Q* 

- ( 2 . 8 )  
a N  a a N  

In words, the essence of (2.8) is that production for the rating period 
[Ti,Ti+l) should be continued as is, only if the expected proportion of 
conforming items in the rating periods [Ti-1, Ti) and [T/, Ti+l) exceeds a 
threshold. The left hand side of (2.8) is the predictive distribution of X, 
and the threshold, which is the right hand side of (2.8), is related to the 
underlying costs. When bi(dl) = ghi+l - C ( N  - Ri+I) - IN,  Q* = "0 and 
the threshold is simply b/a, where a = g + C - r and b = a - h, which 
for h _> 0 is always less than or equal to a. With H(d2) = - Q / k  - qN,  
Q* = Q / k ,  a = g + C, and b = C + l - q. 

Since the left hand side of (2.8) is always positive, and bounded between 
0 and 1, a must be greater than or equal to b, irrespective of the form of 
H(d2). Since a >_ b, the first term on the right hand side of (2.8) is always 
less than or equal to one, and if N is made large so that ~ is very small, 
the right hand side of (2.8) can also be bounded between 0 and 1. If Q * / N  
is larger than b, then the right hand side of (2.8) is negative, in which case 
the decision dl, to continue production as is, is always taken. 

How does one relate the condition (2.8) to that required of the tradi- 
tional PCI's? Recall that the PCI's are often required to take values greater 
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than 1. If P(X E Alxi(n)) is set equal to u, then one strategy would be 

to take a monotonic transformation of the terms on both  sides of (2.8). 
A possibility, and the one proposed by Bernardo and Irony, is the probit 
transform which results in the criterion: 

choose dl iff l ~ - l ( u ) > _ l ( ~ - l ( b N ~ Q * ~  (2.9) 
V V \ alv / 

where r  was defined in Section 2.2, and v is some positive constant, 
whose role will become clear later. The quanti ty 

1r = l ( ~ - l ( p ( x  �9 Alxi(n))), (2.10) 
v V 

has been defined by Bernardo and Irony as the Bayes capability index, 
denoted CB(v). Instead of the probit transform one may also consider the 
log-odds transform of the type log l_u-u. 

If the predictive distribution of X (given xi(n)), is a Gaussian with 

mean # and variance a 2 - and this can be made to happen under some 
very general conditions involving n large - then 

p ( X E A , x , ( n ) ) = ~ ( U S L - - # ) -  ~ ( L S L - # ) ,  (2.11) 

and now (2.9), the case of the probit transform reduces to the statement: 

choosed, iff 1 r  -1 ( r 1 6 2 1 6 2  1 (bN-__Q*) 
v - v \ aN ' 

which with v = 6 boils down to the condition: 

choose dl iff \ 6 a  ) - > \ aN . (2.12) 

Note that  the # and the a 2 of the predictive distribution of X are 
based on the prior distribution of X and the sample mean and sample 
standard deviation of the collection xi(n). Incorporation of the prior dis- 

tr ibution makes the predictivity feature of CB (v) more realistic vis-a-vis 
known changes in the manufacturing process. Thus, in using CB(~), the 
premise of process stability is not an essential one. 
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The left hand side of (2.12) is precisely Cp, the PCI introduced by 
Juran. The right hand side of (2.9) with v = 6 is interesting to analyze. For 
example, if ~@-i(bN-Q*)aN is required to be 1 (or greater), then @ - i ( ~ )  

bY-Q* = (I)(6) ~ 1, or that ( a -  b) = must be at least 6, in which case 
-Q*/N,  which, since Q* >_ 0 can only happen if b >_ a. Thus, requiring Cp 
to be at least one leads to a contradiction, compelling one to the claim that 
the traditional use of the process capability index, Cp, leads to incoherence! 

Suppose now that # is not centered at M, but is in the vicinity of LCL in 
such a way that (USL - #) >> (# - LSL); also suppose that (USL - #) >> a. 
That is, the process is said to be non-centered but potentially capable. Then 

(I)(USa-~L-) ~ 1, and with u = 1/3, the left hand side of (2.9) becomes 

(o .))= (1o 

since (# - L S L )  >> ( U S L -  #). 

Conversely, if (# - LSL) >> (USL - #), and again if (# - LSL) >> a, 

r = cpk. then the left hand side of (2.9) would be ~ 3~ J 

With v = 3, the right hand side of (2.9) would be 1 if ~ = (I)(3) = 
.9985 ~ 1, so that here again requiring that Cpk be greater than 1 leads to 
incoherence. 

To summarize, the normative approach for process capability analysis is 
able to produce the indices Cp and Cpk but only under the assumptions of 
specific forms of the utility function - namely of the indicator type discussed 
in Section 2.2.1 - and under the probit transform ~. Furthermore, the 
indices are produced when n tends to be large, and when the process is 
non-centered, but is potentially capable. Finally, the indices as traditionally 
used, lead to incoherent actions. 

What has been discussed so far pertains to decision making at Ti. As 
stated before, it assumes that the process is stable from one rating period to 
the next. The question of assessment at Ti is rather straightforward, since 
the proportion of the Ni (or Ni = N) items produced during [Ti-1, Ti) that 
conform to specifications is simply P ( X  6 AIxi(n)), which for large n is 
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given as 

All of the above calculations are based on the premise that the process 
is stable within and between rating periods. As discussed in Section 3, 
appropriate adjustments can be made if the process experiences a drift 
either within or between rating periods, or if the Xi's cannot be judged 
independent. This facility is not available with the traditional indices. 

To conclude, the normative approach-as presented above-provides a ve- 
hicle for assessment and action, the former being retroactive and the latter 
being predictive, but not proactive. Can this approach be enhanced so 
that it is also proactive in the sense of being able to influence the quality 
of future production? The answer to this question is in the affirmative; it 
is explored next. 

3 T h e  c o n t r o l  o f  p r o c e s s  capability 

The normative approach to process capability, discussed in Section 2.3, as- 
sumed that the process is stable or in statistical control, both between any 
two rating periods, and also when going from one period to the next. It is 
because of this assumption that a common predictive distribution, namely 
P(X  E A]xi(n)), was able to serve two roles: i) to obtain E(Ri+I]N, xi(n)) 
for making decisions about the future production (i.e. the production dur- 
ing the interval [Ti, Ti+l)),and ii) for assessing the proportion of conform- 
ing items manufactured during the period [Ti-l,Ti). Clearly, under the 
assumption of process stability, the decision to "continue production as 
is" is equivalent to the judgment that the proportion of units that meet 
specifications is a desirable one. But process stability excludes drifts and 
sudden shifts that characterize the realities of manufacturing, and thus this 
assumption is fundamentally idealistic. 

As a starting step towards weakening the assumption of process stabil- 
ity, assume that the process is stable between any two rating periods, but 
that it can gradually drift, or experience drastic changes, in going from one 
period to the next. This premise is also implicit in the material of Section 
2.2 on the traditional indices, but what is different here is that a model 
which describes how the process can drift is explicitly specified. In order to 
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develop a mechanism for controlling the process, such explicit specifications 
are a requirement. 

Following the notat ion of Section 2.3, suppose that  

Xiq_ 1 --: Oiq_ 1 q- r i+l  (3.1) 

where 0iq-1 is some parameter, called the state of nature, and ri+l is a 
disturbance term (a random error), assumed Gaussian, with mean 0 and 
variance 5 2 - assumed known; i : 1, 2 . . . .  Under the set-up of (3.1), 0i+1 
can be viewed as a proxy for X/+I. To describe the drift of the process, 
assumed to be generally smooth, suppose that  

0i+1 -- 0i + wi+l, (3.2) 

where like ri+l, wi+l is also a disturbance term, assumed Gaussian with 
mean 0 and variance A2. The ri's and the wi's are assumed to be indepen- 
dent of each other and also independent among each other. For purposes 
of control, a new variable Yi, called the controller, needs to be introduced, 
and associated with Y/is a coefficient Hi+l which in some sense describes 
the leverage that  the controller exerts on the state of nature, 0i. The role 
of 1~ is to keep 0/+1, a proxy for the observables of the future product ion at 
the target value T; this is so because Xi+l : 0i+1 + ri. Thus the equation 

~iq-1 -:  ~i "q- Hiq-l Yi "}- Wi-t-1, (3.3) 

describes the evolution of the state of nature from one rating period to 
the other, as dictated by the controller Y/. Accordingly, controlling the 
process boils down to the optimal specification of 1~ in the light of the 
costs associated with setting l~ and the deviation of 0i+1 from the target 
T. Observe that  when controlling the process, the decision is no more to 
continue as is or to stop the production. Rather, the aim is to adjust the 
process so that  production will not have to be stopped and the product  
quality is the desired quality. This is in contract to the decision problems 
of Section 2. Also, Equations (3.1) and (3.3) are prototypes. They can 
be generalized to suit situations more complex than the one considered 
here. Indeed very often, (3.3) is a differential equation whose nature is 
determined by the physics of the manufacturing process. 

Under the set-up of Equations (3.1) and (3.3), it can be shown (see the 
Appendix), that  given 1~ and xi(n), the predictive distribution of Xi+l (i.e. 
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the value of X in the interval [Ti, Ti+l)) is a Gaussian with a mean #i+1 
and variance a2+1 = Ei, say, where: 

#i+l = Hi-}-l~ -}- Oi, 

0"~ : H~Y~_~ + ~ - 1  + R~(R~ + 02) -~[~ i ( . )  - ( H ~ _ ~  + ~_1)], 
Ri  = E i - 1 +  )2,  and 

Ei Ri 2 62)-1 (3.4) = - R i  (Ri  + . 

To evaluate the above iteration, starting values 0"0 and. ~0 have to be 
specified, and ~i(n)  = 1 n Y]j=I x i j .  The starting values 0o and Z0 go to 
determine the prior distribution. 

The issue that now remains to be addressed pertains to the choice of 
1~. Recall, that the role of the controller ~ is to ensure that 8i+1 is as 
close as is possible to the target T. This is to be achieved by trading-off 
the costs of control, that is, the cost of adjusting Y~, versus the loss due to 
#i+t's deviation from T. 

Suppose that CI(0i+I,Y/) is the total cost incurred when the state of 
nature is 8i+1 and the controller is set at 1~. Suppose that C1(0i+1, Yi) can 
be broken up as 

C1(0i+1, Yi) = (Y~ - mi)2el i  + (0i+t - T)2C2i, (3.5) 

where rni is that setting of Yi which results in the smallest cost; for example, 
mi  = 0 or mi  = Yi-1 ,  and  Cli is the unit cost incurred when Y/ deviates 
from rni by a unit amount. Similarly, C2i. Note that (0i+1 - T )  2 reflects 
the loss incurred when Oi+t deviates from the target T, and this factor is 
analogous to considerations which lead to the index Cvm - see Section 2.2.1. 

Using the standard arguments for normative decision making - see the 
Appendix for details - it can be shown that the value of 1~ which minimizes 
the total expected cost is given by 

Y / =  (Cli + H2+1C2(i+1)) - l(Climi + Hi+tC2(i+D ( T  - Oi)). 

Under the above set-up, the decision dl of Section 2.4 becomes "set 
the controller to Y/and continue production during the interval [Ti, Ti+l)" ,  
and decision d2 of Section 2.4 becomes "set the controller to Y/, inspect 
every manufactured item and repair all nonconforming ones" or it becomes 
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"overhaul the entire manufacturing system, set the controller to Y1, and 
resume manufacturing". If the utilities bl(dt) and/d(d2) are of the forms 
specified in Section 2.4, then decision dl will be chosen iff 

o o \ ~-~: / \ o~+1 - /~  ~N" (3.6) 

A final issue that remains to be addressed pertains to measuring process 
capability for a process that is under the control of a controller. For this, 
what is needed is an assessment of P(Xi e Alxi(n),]~_l) given that Y/-1 

was chosen in accordance with (3.6). 

Once again, it can be argued, using the prior to posterior iterative steps 
described in the Appendix, that given xi(n) and Y/-1, the entity Xi (i.e. 

the value of X in the interval [Ti-t,Ti) has a Gaussian distribution with 
mean #i and variance ~ ,  where: 

~i = ~,  and 32 = ~i + ~ ,  (3.7) 

where 0i and ~i were defined in (3.4). 

Thus P(Xi �9 A[xi(n), Yi-t) is given by 

and (3.8) may be used to characterize process capability under stochas- 
tic control. Equivalently, one may proceed along the lines suggested by 
Bernardo and Irony, and follow the logic subsequent to (2.9) to define Cs (u) 
a s  

I~ - I  (p(X,  E AIx,(n),Yi_I)) (3.9) 

as the stochastically controlled process capability index, abbreviated as SCPCI. 

4 C o m p a r a t i v e  p e r f o r m a n c e  o f  i nd i ce s :  a n  e m p i r i c a l  a n a l y -  
sis 

To explore the comparative performance of the indices described before, an 
empirical analysis involving simulated, as well as real data are coIrsidered. 
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One set of simulated data consists of 1000 independent observations, Xi, 
i = 1,. . .  , 1000, generated from each of the following four distributions (for 
notation, see the Appendix): 

a) Xi '~ ./V'(1, 1); 

b) Xi "~ A/'(1 + (.01)i, 1); 

c) Xi ,,~ A/'(1,1 + (.001)i); 

d) Xi "0 A/'(1 + (.01)i, 1 + (.001)i). 

Also considered were 1000 correlated observations generated via the an- 
toregressive process: 

e) Xi = (0.1)Xi_l + a 2, with a~ N Af(0, 1); a~'s being mutually inde- 
pendent. 

Each rating period was assumed to comprise of 100 observations; this 
would ensure that the calculated sample means and variances are of credible 
quality. The upper (lower) specification limit is taken to be 4.10 (-1.90), 
and the target value is 1.10; these choices are arbitrary. 

For each rating period - and there are ten in all - the indices Cp, Cpk, 
Cprn, and Cprnk are computed, using the formulae given in Section 2, with 
#(a) replaced by the sample mean (standard deviation), of each rating 
period. The values of the indices are shown in Table 1 for the data sets 
generated via a), b), c), d), and e). Also shown in Table 1 is the probability 
that any observation within a rating period belongs to the interval [-1.90, 
4.10], given the sample mean and the sample standard deviation for that 
period; see Equation (2.11). The sample means and the sample standard 
deviations of all the 1000 observations from each of the five generating 
mechanisms a), b), c), d), and e) turned out to be (.974, 1.004), (5.979, 
3.066), (.969, 1.234), (5.974, 3.146), and (-0.029, 1.008), respectively. 

An examination of the entries in Table 1 shows that for the data gener- 
ated via a), none of the traditional indices are consistently greater than one. 
For example, the index Cp is as low as .876 (for the rating period six) and 
Cpmk as low as .805. Consequently, each of the traditional indices would 
call for an unwarranted stopping of the process at one rating period or the 
other. By contrast, the Bayes capability index would call for stopping the 
process at the 6-th rating period if (with the Q* of Equation (2.8) equal to 
zero), b/a > .990, where b = a - h. Effectively, the Bayes capability index 
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would stop the process if h, the cost of inspection was a miniscule (say 
about .01) fraction of a. Recall that  a :- g + C - r, where g is the profit for 
delivering a good unit, C, the penalty for delivering a defective unit, and r 
the cost of repairing a defective unit  prior to its delivery. Clearly, in the 

Data  
set Index C v 
a 0.976 1.036 1.032 1.042 1.056 0:876 0.985 1.076 0.935 0.977 
b 0.952 0.995 0.954 1.008 1.023 0.880 0.952 1.050 0.898 0.995 
c 0.950 0.970 0.923 0.898 0.877 0.703 0.767 0.812 0.688 0.699 
d 0.928 0.937 0.863 0.876 0.860 0,708 0.752 0.804 0.673 0.713 
e 0.965 1,033 1,032 1.051 1,040 0.879 0.977 1,086 0,934 0.962 

Data  
set Index Cvk 
a 0,923 0,969 0.976 1.032 1.052 0,818 0.920 1.037 0,884 0.960 
b 0,843 0,561 0.209 -0.160 -0.517 -0.675 -1.050 -1,539 -1.599 -2.141 
c 0,897 0.904 0.871 0.892 0.867 0,649 0.710 0.781 0.646 0,691 
d 0,823 0.530 0.191 -0.142 -0.441 :0.538 -0,822 -1.177 -1.193 -1.539 
e 0,588 0.617 0.630 0.693 0,702 0.525 0.583 0,683 0.570 0.627 

Data  
set Index Cpm 
a 0.964 1 .016  1 .018  1 . 0 4 2  1 . 0 5 6  0.863 
b 0.905 0 .606  0 .390  0 . 2 7 7  0.216 O. 184 
c 0.938 0.952 0.912 0.897 0.877 0.694 
d 0.885 0.594 0.384 0.273 0.213 0.183 
e 0.639 0.646 0.658 0.716 0.730 0.603 

..... Data  

0.967 1.069 0.924 0.976 
0.156 0.134 0,119 0.105 
0.756 0.809 0,683 0.698 
0.156 0.133 0,118 0.104 
0.631 0.693 0,631 0.678 

set Index Cprnk 
a 0,911 0.949 0.962 1.032 1.051 0,805 
b 0.802 0.342 0.086 -0.044 -0.109 -0.142 
c 0.887 0.887 0.860 0.892 0.867 0.641 
d 0.785 0.336 0.085 -0.044 -0.109 -0.139 
e 0,389 0,385 0.402 0.472 0.493 0.360 

0.904 1.029 0,874 0,959 
-0.172 -0.196 -0.212 -0.226 
0,699 0,778 0,641 0,690 
-0.170 -0.195 -0,210 -0.225 
0.376 0,436 0.385 0,442 

Data  
set P(LSL < X < USLIxi(1000)) 

a 0.996 0,998 0.998 0.998 0.998 0.990 0.996 0.999 0.994 0.997 
b 0.994 0.954 0.735 0,316 0.060 0,021 0.001 0.000 0.000 0,000 
c 0.995 0.996 0.994 0.993 0.991 0.963 0.977 0.985 0.960 0.964 
d 0.992 0,944 0 .717  0.335 0.093 0.053 0.007 0,000 0.000 0,000 
e 0.961 0.968 0.971 0.981 0.982 0.942 0.960 0.980 0.956 0.970 

Table  1: Comparative performance of indices based on simulated data. 

case of the data set generated by a), the behavior of the Bayes capability 
index is more in keeping with reasonable action as compared to the tradi- 
tional indices. But can this claim be extended to the case of the data sets 
generated by the other mechanisms? 

For data generated via b) and d), both of which incorporate an upward 
trend, the traditional indices do indeed reflect reasonable behavior (save 
an occasional lapse by Cp), with the index Cpm k having a distinct upper 



24 N. D. Singpurwalla 

hand - it is unforgiving from the very start! For data generated by b), the 
Bayes capability index will stop the process at the 1-st rating period only 
if h < .006a, and will allow the process to continue production at the 5-th 
rating period if the cost of inspection h > .94a - an unrealistic situation. 
The basic import of the above is that index Cpmk appears to be much 
more responsive to an upward trend in the mean than the Bayes capability 
index which tends to be lethargic. However, it should be borne in mind 
that, as computed, the Bayes capability index has not incorporated, via its 
prior distribution, an upward trend in the mean, and has assumed that the 
process is stable within a rating period. In actuality trends in the process 
means are generally hard to foretell; thus the need for modifying the Bayes 
capability index in the direction of a stochastically controlled version is 
germane. Finally, a comparison of the performance of the Bayes capability 
index with regards to the data generated by b) and by d) suggests that 
for the rating periods four and above, the index is more supportive of the 
decision to continue production in the case of d) than in the case of b). 
Such partial behavior of the Bayes capability index in the presence of the 
heteroschedasticity in d) is contrary to expectation. One solution would 
be to enhance the Bayes capability index (and for that matter also the 
stochastically controlled process capability index) by its robustification; see 
for example Meinhold and Singpurwalla (1989), and the references therein. 
A similar thought arises when one compares the behavior of the Bayes 
capability index for the data sets generated by a) and by c). The weak 
sensitivity of the Bayes capability index to the heteroschedasticity in c) 
could be made pronounced by an appropriate robustification of the index. 

An examination of the entries in Table 1 also shows that for the data 
set generated by c), the index Cpmk appears to have an edge over the other 
traditional indices. But this feature may also raise a concern as to whether 
the index Cpmk is overly sensitive, and that its cautious behavior could be 
economically unwarranted. This matter can be explored by comparing the 
behavior of the index Cpmk and the Bayes capability index, vis-a-vis the 
data set generated by e). 

Recall that e) describes an autoregressive process of order one, whose 
mean value is zero, and whose variance is 1/(1 - (.1) 2) ~ 1; see p. 58, of 
Box and Jenkins (1976). Furthermore, p(k), the autocorrelation function 
of this process at lag k, is of the form p(k) : (.1) k. Thus for all intents 
and purposes, the Xi's generated via e) may be regarded as being the 
realizations of independent and identically normally distributed random 
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variables with mean 0 and variance ~ 1. For these data, the index Cpmk 
dictates that the process be stopped at all the ten rating periods, whereas 
the Bayes capability index allows the process to continue production at all 
the rating periods (unless of course h < .058a, in which case the process 
will be stopped at the 6-th rating period). The indices Cpk and Cpm would 
lead to decisions similar to those of Cpmk, but the decisions based on the 
index Cp would be closer in tune to those based on the Bayes capability 
index. Why this disparity of decisions based on the index Cpmk and the 
Bayes capability index? The answer lies in the fact that the index Cpm k 
inflicts penalties whenever the sample mean of a rating period deviates from 
the target T, and also from the midpoint M, whereas the Bayes capability 
index penalizes whenever a unit fails to belong to its specification limits. 
In the case of data generated via e), the sample means are in the vicinity of 
0, whereas the target value is 1.1 . Thus, the sensitivity of Cpm k c a n  only 
be judged in the light of the realism of its associated penalties. To obtain 
compatibility between Cprnk and the Bayes capability index, the/g(dl)  and 
•(d2) of Section 2.4 should be modified so that there are costs associated 
with deviations of X from T and M. 

4.1 Comparative performance against real data 

In Table 2,  some data on tool wear abstracted from Grant and Leavenworth 
(1974) is presented. The data gives the sample means and the ranges of 
13 groups of observations, each group consisting of five observations; the 
ranges are viewed as a proxy for the sample standard deviations. The 
upper and lower specification limits for these data were 0.6480 and .6400 
respectively, and the target value T is 0.6440 [cf. Spiring (1991)]. 

Also shown in Table 2 are the values of Cpm, Cpmk, and the probability 
that an observation within a rating period (in this case a group) belongs to 
the interval [.6400, .6480], given the sample statistics for that interval. The 
values of the indices Cp and Cpk for this data set turn out to be substantially 
greater than one, for all the rating periods; they are not shown in Table 2 .  

An examination of the entries in Table 2 shows that whereas the indices 
Cp and Cpk would allow the process to continue as is, throughout the life- 
cycle of the tools, the indices Cpm and Cpmk will act differently, except 
say at rating periods six through ten. According to Spiring (1991) the 
large fluctuations in the indices Cpm and Cpmk are the manifestations of 
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Group Sample Sample 
Number Mean Range 

5 
6 
7 
8 
9 
10 
11 
12 
13 

.6417 

.6418 

.6424 

.6431 

.6433 

.6437 

.6433 

.6436 

.6441 

.6444 

.6456 

.6457 

.6454 

Cpm Cpmk 
.0011 .511 .217 
.0016 .524 .236 
.0010 .727 .436 
.0015 1.136 .881 
.0009 1.546 1.276 
.0010 2.546 2.355 
.0014 1.383 1.141 
.0004 2.805 2.525 
.0006 5.013 4.887 
.0011 2.119 1.907 
.0009 .731 .438 
.0007 .694 .399 
.0009 .830 .539 

P(LSL _< X _< USL]x(5)) 

.939 

.870 

.992 

.980 
1.000 
1.000 
.990 
1.000 
1.000 
.999 
.996 
.999 
.998 

Table  2: Comparative performance of indices for tool wear data. 

not only the process capability but also the presence of other assignable 
causes of tool wear. That is, the process capability indices have also served 
as aids for identifying other causes. In contrast to the behavior of Cprn 
and Cpmk, the Bayes capability index leads to actions that mimic those 
dictated by the indices Cp and Cpk. Here again, the cause for this disparity 
is penalty for deviation from target which the indices Cpm and Cpm k levy; 
the Bayes capability index penalizes only when there is a failure to belong 
to a specification interval. Here again, compatibility between the Bayes 
capability index and the indices Cp,n and Cpmk c a n  be achieved if the 
utility functions of Section 2.4 can be justifiably modified. 

Like the fluctuations of C~,n and Cp,nk, the fluctuations of P(LSL < 
X <_ USL]x(5)) may be used to detect assignable causes. However, the 

entries of Table 2 suggest that the fluctuations of the latter appear to be 
less pronounced than those of the former, so that P(LSL <_ X <_ USL]x(5)) 

may not be a very revealing indicator of assignable causes. 



The stochastic control of process capability indices 27 

4.2 P e r f o r m a n c e  of  indices  for a p rocess  u n d e r  s tochas t i c  control 

To illustrate the comparative behavior of the indices for process with and 
without a controller, 50 observations were generated via the mechanisms 
given by Equations (3.1) and (3.2), and the Equations (3.1) and (3.3). The 
starting value 00 was described as 00 ~ N'(5, 1), and the parameters 62 
and )2 were taken to be 2 and 1, respectively. The coefficient Hi+l of the 
controller Y/ - see Equation (3.3) - was taken to be 2, and T was set at 
5. To incorporate the scenario of an unconstrained or "best case" control, 
the coefficients Cli and C2i of Equation (3.5) were set at zero. The number 
of rating periods was chosen to be 10 so that each rating period has five 
observations. The upper (lower) specification limit was taken to be 6.73 
(3.27). 

Figure 4 shows plots of the data generated via Equations (3.1) and 
(3.2), and via Equations (3.1) and (3.3). The effect of the controller 3~ in 
centering the data around its target T :- 5 is apparent. Tables 3 and 4 show 
the comparative behavior of each of the indices for the data generated as 
described, with and without the controller. 

V~duea 
of X i 

With Coutroller 

Paring Period i 
IO 20 30 40 50 

F i g u r e  4: Plots of date generated with and without a controller. 
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Rating 
Period 

i 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

cp 
Without  With 
Control Control 

.544 .475 

.648 .610 

.530 .418 

.976 .992 

.791 .941 

.878 .611 

.684 .641 

.749 .593 

.646 .696 

.782 .576 

cpk 
Without  With 
Control Control 

C~m 
Without  With 
Control Control 

.151 .219 

.576 .316 

.409 .355 
-.522 .416 
-.953 .346 
-.516 .453 
-.310 .584 
-.354 .530 
-.490 .533 
-.334 .470 

.203 .217 

.365 .264 

.286 .237 

.122 .286 

.086 .265 

.118 .318 

.125 .364 

. 1 2 5  .336 

.105 .361 

.129 .317 

Tab le  3: Comparative performance of indices for processes with and with- 
out a controller. First part 

An examination of the entries in Tables 3 and 4 show that  after an initial 
period of adjustment,  the controller comes into action and tends to increase 
the probabilities of coverage (see the last two columns of Table 4), and also 
the values of the all the indices, save the index Cp. The reason behind Cp's 
lack of responsiveness to the controller is that  there is no provision in Cp 
to reflect target values which is what the controller works towards. 

To summarize, the results of the empirical investigations suggest that 
the Bayes capability index and its stochastically controlled version are 
meaningful devices that  perform in consort with the other traditional in- 
dices. However, they possess the advantage of having an interpretive value. 
These normative indices can stand further improvements via a considera- 
tion of alternate utility functions and their robustification. 
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Cpmk P(LSL < X < USL]xi(5)) 

Rating Without With Without With 
Period Control Control Control Control 

i 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

-.051 .015 
.295 .042 
.176 .175 

-.203 -.002 
-.242 -.026 
-.206 .175 
-.191 .308 
-.194 .274 
-.215 .215 
-.190 .216 

.389 .466 

.726 .542 

.607 .523 

.O02 .495 

.000 .437 

.004 .657 

.O36 .725 

.022 .687 

.011 .718 

.023 .657 

Table  4: Comparative performance of indices for processes with and with- 
out a controller. Second part. 
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A p p e n d i x  

The development here starts with the ( a priori) assumption that given 
xi(n), the unknown parameter 0i has a Gaussian distribution with mean 

and variance ~i, for i = 0, 1, 2, . . . .  The starting values 00 and Z0 have 
to be specified by the user. The above assumption will be denoted by the 
notation "(Oilxi(n)) ,., Af(~, ~i)"; this notation will also be used if Oi is a 

vector quantity, in which case 0i will also be a vector and ~i a matrix. 

Since the ri's and the wi's of Equations (3.1) and (3.3) are serially and 
contemporaneously independent, and since by construction 0j-1 is inde- 
pendent of wj, j -- 1, 2 , . . . ,  it follows that given xi(n), the vector displayed 
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below has the distributional form: 

Oi-1 
Wi 

ri 

) ( 10 0)) 
x i _ , ( n )  ~ A f  , 0 )2  0 . (A.1) 

0 0 0 (f 2 

Furthermore, (3.1), (3.2), and their underlying assumptions imply that 
given 1~-1, the vector below may be written as: (o,) (11 o)(o,_1) 

Y i - 1  = + w i  . 

)(4 H i Y i - 1  1 1 1 ri 

Consequently, it follows from (A.1) that: 

I ' ~ - l , ~ i - , ( n )  ~ N 

x~ H~_~ + ~_~ 

(A.2) 

where Ri has been defined in (3.4). The result preceding (3.4) and (3.7) 
now follows from the conditional distribution properties of the multivariate 
state of nature 0i+1, and the historical data until and including the time 
interval [Ti-l,Ti); this data is the collection of vectors x l (n ) , . . .  ,xi(n). 

At node/)2 an estimator of 0i+1, say Oi+t, will be selected - based on the 
predictive distribution of X i+l(Ni+l), and the subsequent to this nature 

will yield 0i+1. The terminal utility is of the form given by (3.5) and the 
aim is to choose 1~ and ~+1 that minimize (3.5). 

According to standard results of normative decision making [cf. Bernar- 
do and Smith (1994)], ~+1 is the expected value of the posterior distribu- 
tion of 0i+1, were one to know X i+l(Ni+l). Averaging over the predictive 

distribution of X i+l(Ni+l), one has, at node T~I, the expected utility in 

selecting ~+1, were the controller to be set to Yi. At l)1, that value of 
Yi which maximizes normal distribution (cf. Meinhold and Singpurwalla 
(1983)), and the relationships (3.1)-(3.3). 

For the optimal choice of Yi, the decision tree given in Figure A1 is 
helpful. In the mentioned decision tree, at decision node :Dr, the controller 
is set to its optimal value Y1. This results in the potentially observable 

R)) 
(A.3) 
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sequence Xi+I(Ni+I) = (Xi+I , I , . . . ,  Xi+1,1~+1). At 791, one has knowledge 

of the target T for the above expected utility is chosen. The prescribed 
scheme boils down to maximizing the quantity 

e l i ( Y / -  mi) 2 Jr (Hi+llCi H- O / -  T)2C2i 

yielding the result given in Section 3. 

Data(x_ l(n) . . . . .  .xi(n)) 

J 
] 
-I 

Controller ~ Observables 
Yi X-i+1(Ni+l) 

_l ~2 
-I 

Target Value T 

Utility 
f 

~tState of Nature ( ,  
0i+1 

A 

Estimator Oi+ 1 

F igu re  AI :  Schemata for optimal control of process indices. 
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D I S C U S S I O N  

G. Box 
University of Wisconsin, USA 

I agree with the author that  the value of capability indices is highly 
dependent on long term stability of the process and I would add that,  the 
second law of thermodynamics ensures that  no process is ever in such a 
state of control. This does not mean, of course, that  the ideas of Shewhart 
and Deming concerning process monitoring based on the NIID stationarity 
approximation are useless. This approximation has over the years resulted 
in the detection and elimination of thousands of problems and so produced 
improvement of a host industrial processes, demonstrat ing once more that  
all models are wrong, but some models are useful. 
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However, while for the detection of assignable causes we need only to 
approximate fairly short t ime behavior, capability indices are concerned 
with long term process behavior, for which the stationarity approximation 
is likely to be inadequate. As the author implies, stationarity of the process 
output  can then only be induced by appropriate process adjustment.  Such 
adjustment  is possible by feedback control or by feedforward control, or 
both. If, by such control, the output  from the process is rendered stationary 
and so varies about a fixed mean then standard capability indices can be 
used and the problem posed by the author will be solved. Furthermore, if 
given the particular product ion circumstances, smallest process variation 
about the target can be achieved then maximum possible process capability 
will be obtained. 

To devise suitable feedback control procedures, we must first abandon 
the IID approximation and I agree with the author  that  to then represent 
non- stationarity process disturbances, that  would occur if no control were 
instituted, the "noisy random walk" he postulates in his equation 3.1 et 
seq. is known to provide a very valuable model. Some of the considerations 
that  point to its central importance are as follows. 

1. Consider the standardized variogram V k = Var (  X t +  k - X t )  / V a r ( X t +  l - 

Xt). For the IID model, Vk ---- 1 for all k (implying, for example, that  
observations made a hundred hours apart will be no more discrepant than 
observations taken one hour apart). For the noisy random walk however, 
Vk increases linearly with k - a result that  makes sense (see for example 
Box and Kramer (1992)). The rate at which Vk increases depends on an 
important  parameter which I will here call ~r. In the author 's  notation it 
satisfies the equation ~2/(~2 = (1 - ~r)2/r. 

2. For the noisy random walk the value Xt+l is such that  

Xt+1 = Xt + at+1 (i) 

where -~t is an exponentially weighted moving average (EWMA) with 
smoothing constant ~ such that 

X t = (1  - -  7r ) (X  t -~- ~ X t _  1 n t- ?r2Xt_2 n t - . . .  ) ,  0 _< r _< 1, (2) 

and (at} is a sequence of IID random variable (which we will call white 
noise) having mean zero and aa : (~/v ~ (see e.g. Box and Lucefio (1997)). 
Thus given data  {Xt} up to time t the function that  provides a minimum 
mean square error (MMSE) forecast/estimate of Xt+l is the EWMA Xt. 
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2. It  is easy to see that  the model (1) may be writ ten as a stochastic 
difference equation in either of the two forms 

(a) Xt+l  - 2X t  = at+t - r a t  or (b) ~'t - 7rXt-1 = (1 - Ir)Xt.  (3) 

This model is called an integrated moving average (IMA) a special case 
of the "ARIMA" models of Box and Jenkins. Model building using (re- 
constructed) industrial process disturbances data  has led, with surprising 
frequency, to the choice of this IMA model. 

At this point however, I part  company with the author, because to 
achieve efficient feedback in a quality control context there a r e a  number 
of further considerations that  must be taken into account. 

Process Dynamics:  There may be inertia and possibly pure delay in the 
control system so that  the effect of a change in the input  may not be fully 
experienced at the output  in one time interval. Frequently the relation 
between the input  to the control system Yt and its effect Yt at the output  
can be approximated by a first order difference equation of the same form 
as 3(b) and such that  

: ( 1 -  (4) 

For a so-called "responsive system" where an adjustment  is fully effective 
at the output  in one time interval and ~o = 0 and f = 0. 

M i n i m u m  Mean Square Error Control: In the unusual circumstance when 
there is no limitation on the extent or the frequency of the compensating 
manipulat ion using (3) and (4) assuming a responsive system, MMSE con- 
trol may be obtained by continually making an adjustment  of the simple 
form 

Yt - Yt-1 = Yt = c l e t  -t- c2et-1, (5) 

where et is the error (deviation from target data) at t ime t and the constants 
where Cl and c2 are simple functions of r and ~ (given, for example, by 
Box and Jenkins (1968)). 

Equation (5) then corresponds to a discrete form of the control engi- 
neer's PI  proportional plus integral) control since then 

t 

Yt = k le t  + k2 E e i ,  (6) 
i= l  
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where kl '= -c2 and k2 = Cl + c2. Furthermore, for such control et = at 
so the controlled process is stationary white noise. It can be further shown 
that such control is equivalent to continually arranging that an EWMA of 
past adjustments Yt with smoothing constant (just cancels an EWMA of 
past disturbances Xt with smoothing constant Ir (Box and Lucefio (1997)). 

Constrained Linear Control: Unfortunately this MMSE of control may not 
be much use because frequently it requires excessively large adjustments 
{Yt} at input. Constrained linear adjustment schemes which produce an 
uncontrolled minimum of 

+ (7) O'y 

have therefore been studied by, among others, Whittle (1963), Box and 
Jenkins (1968), MacGregor (1972), and Astrm and Wittenmark (1984). 
These schemes can give remarkably large reductions in a 2 for very small 
increases in a 2, but they tend to be complicated and not easily derived or 
put into practice. 

Constrained PI  Control: It has recently been shown (Box and Lucefio (1995, 
2 is constrained by minimization 1997)) that simple PI control in which ay 

of (7) can produce control schemes which are very nearly as good as opti- 
mal linear control. Furthermore, if desired, such schemes may be put into 
practice manually using a chart no more difficult to apply than a Shewhart 
chart (see e.g. Box and Jenkins (1970)). 

Minimizing Frequency of Adjustment and o/Sampling: The above schemes 
allow for adjustment each time the process is observed. Such frequent ad- 
justment is often inconvenient and costly. Assuming a responsive system 
with a disturbance given by 3(a) it can be shown that for a given increase 
in the output standard deviation (ISD) the average interval between ad- 
justments (AAI) is minimized by using an EWMA chart with the position 
of the limit lines determined not by probability considerations, but by the 
desired values of the AAI and ISD. Equivalently, this system is optimal for 
a fixed cost of adjustment and a quadratic off-target loss function (Box and 
Jenkins (1963)). More recently (Box and Kramer (1992), Box and Lucefio 
(1994)) simultaneous minimizing of frequency of the adjustment has been 
included. 

In summary then, I agree with the author that to  obtain a meaningful 
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CP index requires allowance for nonstationarity of the disturbance. This 
may best be done, however, by first using an appropriate system of feed- 
back control which taking account of circumstances of the problem produces 
smallest (stationary) variation about the target value. Standard CP indices 
may then be applied and maximum process capability obtained. Although 
such feedback systems for quality control have been under development for 
more than thirty years, it is disturbing to find there is no overlap between 
the author's references and those contained in this discussion. Finally, de- 
velopment of improved quality control can take place only if quality control 
practitioners themselves can understand and use the methods presented. 
With this in mind the material described above has been brought together 
at a suitably accessible level in a recent book (Box and Lucefio (1997)). 
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The need to reduce dimensionality arises in many fields and by far the 
most widely used method of achieving such is via the construction of one 
or more indices on more or less intuitive grounds; formal methods of di- 
mension reduction do of course exist but are not that  commonly employed. 
Note, however, the extensive economic literature on the construction and 
properties of index numbers. 

In specific applications a more explicit formulation of objectives will 
nearly always be better in some sense and Professor Singpurwalla's very 
interesting analysis of a quality control situation exemplifies this. 

One important  aspect of standardized indices is that  they facilitate 
comparison of different situations. A biomedical application is the use 
of body mass index, weight divided by height squared; while a different 
combination of weight and height may well lead to a more sensitive analysis 
in the context of any one specific application, the standard index has some 
value when used across different studies. 

Professor Singpurwalla emphasizes the normative aspects of the formal 
decision analysis and I have no wish to dissent from this. At the same time 
the normative analysis is only as good as the numbers put  into the analysis 
for specific features. In such discussions of industrial quality there may 
well be a temptat ion to undervalue such aspects as long-term goodwill of 
customers and thus to underrate long term high quality; for a brief historical 
discussion, see Cox (1990). 

I was glad to see that  Professor Singpurwalla does not assume a process 
in statistical control. There is an interesting historical and philosophical 
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issue connected with this. The pioneers of statistical quality control, es- 
pecially W.A. Shewhart, emphasized the importance of control because it 
implied absence of assignable causes, i.e. total randomness was identified 
with a process essentially incapable of improvement. Modern thinking has, 
for a number  of different reasons moved somewhat away from that.  
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1 I n t r o d u c t i o n  

It is a pleasure to congratulate the author on an interesting and important  
paper that  points out the difficulty of the use of existing process capa- 
bility indices, which are typically in industry. Viewing as an engineering 
decision-making problem, the author  attacks the core of the problem such 
as whether to intervene in a product ion process or not, to accept or reject a 
production batch or whether to review the managerial action need or not. 
The author demonstrates that  some of the s tandard process capability in- 
dices can evolve in special cases under artificial assumptions from a very 
general methodology. Using the normative approach to process capability, 
the author develops a unified method with respect to both,  prediction and 
control. Finally, the author  relaxes the assumption of process stability and 
develops a nice dynamic model which describes how the process can drift. 

This is a very nice expository paper and I hope it will have significant 
impact on the use of process capability indices in practice. I will comment 
on three issues which are not considered in this paper. In Section 2, I 
will discuss certain small sample features, in the sense that,  often it is 
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unreasonable to assume that the predictive distribution is normal. I will 
consider the situation when the predictive distribution is a scale mixtures of 
normals which includes in particular a Student t-distribution. Section 3 is 
devoted to modelling situations when there is an evidence that the process 
distribution is not symmetric. I develop a new skew-normal distribution 
to model situation. Finally in Section 4, I mentioned about multivariate 
extension. 

2 P r e d i c t i v e  d i s t r i b u t i o n  as  s ca l e  m i x t u r e s  o f  n o r m a l s  

Suppose x l , . . .  , xn are the actual measurements which is assumed to be 
normal with mean # and variance (7 2, then it is well known that (see, 
for example, Geisser (1993)) under the standard "noninformative" prior 
~r(#, a) or a -1, the predictive distribution is Student t with n - 1 degrees 
of freedom. Thus, for small sample size n, it is unreasonable to assume 
normality of the predictive distribution. In fact, often for small n, it is 
reasonable to assume that the predictive distribution belongs to a large 
class of scale mixtures of normals, which is defined as follows. Suppose we 
assume the i th measurement 

xi ~ N (tt, k( A )a 2) (2.1) 

and 

)` ~ ( 2 . 2 )  

where k(),) is a positive function of a one-dimensional positive-valued scale 
mixing variable A and r(A) is a mixing distribution which is either discrete 
or continuous. The class of scale mixtures of normals is quite rich and 
includes Student t, logistic, symmetric stable and exponential power fam- 
ily distributions. Taking k(),) = 1 and the mixing distribution ~r({1}) = 
1, the scale mixture reduces to the usual normal distribution. Student 
t-distribution with u degrees of freedom is generated by taking k(),) = 1/:k 
and A ,,, g(u/2 ,  u/2), i.e., ~r(A) o( Av/2-1exp{-~A} .  A logistic distribu- 
tion is obtained by taking k(A) = 4), 2 where ), follows an asymptotic Kol- 
mogorov distribution with density ~r(),) = S Y~'~= 1(-  1 )k+l k 2 Aexp{ - 2 k  2)`2 }. 

It follows immediately, that using (2.1) and (2.2), one can easily simu- 
late the predictive distribution, for example, using Theorem 1 of Bernardo 
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& Irony (1996). In general, a Monte Carlo estimate of 

P(x e AlD) = fA(27rk(A))1/2a-1/2exp ( 
n } 

k-l(A) E ( x i  _ #)2 7r(A)dAdxi, 
2tr2 i=1 

(2.3) 

where 7) = {xi(n)} is the current data, can be obtained using sampling 
based approach e.g., Gibbs sampler (Gelfand & Smith (1990)). Therefore, 
Bayesian capability index can be easily computed. 

3 S k e w e d  p r e d i c t i v e  d i s t r i b u t i o n  

Often in a production process, there is a presence of trend, i.e., the process 
mean can shift upwards or downwards. Assuming a symmetric distribution 
in such scenario is not justified. Even when sample size is large, the predic- 
tive distribution may not be symmetric. To model such scenario, suppose 
x l , . . . ,  xn are the actual values, i.e., a random sample from some fixed un- 
derlying distribution and the observed measurements y l , . . .  , Yn are related 
to x t , . . .  ,Xn as 

Yi = x i + S z i  (3.1) 

where zi is (the measurement error random effect) and 5(-oo < 5 < cr is 
an unknown parameter, indicating skewness. Under the assumption that 
xi ,,, N(#,a2) ,  i = 1 , . . .  ,n  and z~s are exchangeable with a pdf g(z), 
equation (3.1) defines a general class of skewed normal distribution. In 
particular, when z~s are exchangeable with half normal pdf, i.e., 

g ( z )  = z > 0 

then it can be show that tt, e pdf of Yi is 

(3.2) 

which is called a skew-normal distribution with skewness parameter ~. Here 
qv and �9 denote the standard normal pdf and cdf respectively. Clearly when 

= 0, there is no measurement error. A simpler version of (3.3) is given in 

f(Y ) = \ 
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in Azzalini & Dalla Valle (1996). Now from (3.3), it can be shown that  the 
mean of l~ is 

= E[E(Y Iz)] = g + (3.4) 

/ " 2 - _  

where 5 ~ = 5~/~ can be treated as the parameter  which detects the u n -  
w 

known shift of the process mean. Now under a hierarchical set up, put t ing 
prior on g, 6 2 and 5, one can fit a hierarchical Bayes model and obtain the 
posterior predictive distribution and a Monte Carlo estimate of P(x E AID ) 
using sampling based approach. The details are omit ted here and will be 
reported elsewhere. The basic idea is to develop a Metropolis-Hastings 
algorithm along a Gibbs sampler. 

4 M u l t i v a r i a t e  p r o c e s s  c a p a b i l i t y  

The use of process capability indices in connection with multivariate mea- 
suraments has created more controversy and suffers from more drawbacks 
than it's univariate counterpart.  The univariate measures of process capa- 
bility indices are not always directly extendable to multivariate problems. 
See Kotz & Johnson (1993) and Niverthi (1998), for detailed references. 
However, the normative approach taken by the author  is directly extend- 
able to the multivariate problem, which is mentioned in Bernardo & Irony 
(1993). In the univariate problem, the specification of the tolerance region 
A is usually the interval (L, U) where L and U are respectively lower and 
upper  specification limit. Thus, for multivariate problem, if the tolerance 
region is a well defined set e.g., a p-dimensional rectangle, where p is the 
number of variables, then P(x E AID ) can be obtained easly. The model 
described in Section 2, can also be extended easily to the multivariate sce- 
nario. 

However, the specification of the tolerance region in the multidimen- 
sional case is often specified as 

g = x : h ( x  - T )  <_ ro (4.1) 

where r0 is prespecified and h is a known positive function, e.g., 
h(x - T) = Ix - TI v, r, a constant, and T is the target value. Fortunately, 
a Monte Carlo estimate of P(vID ) can be obtained using a sampling based 
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approach. Bayes capability index can be defined using an inverse monotonic 
cdf tranformation, e.g., r  on P(~ID) where �9 is again the standard 
normal cd /  

Another advantage of using the sampling based approach is that one 
can find samples from the posterior predictive distribution of h(x - T)ID. 
Now following Chen (1994), one can define a multivariate process capability 
based on posterior predictive distribution as 

MCb = r/ro 

where r is defined as P(h(x  - T) <_ r iD ) = 7, where V is, say the upper 95 
percentile of the posterior predictive distribution of h(z - T)[D. 

Another approach for the multivariate problem is to develop vector val- 
ued process capability indices from a Bayesian perspective. Niverthi (1998) 
considered this in detail. Finally, the author has made a very significant 
contribution, for which he is to be complimented. 
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A. Fries 
Institute for Defense Analyses, USA 

Five years ago I was approached at work by someone from a differ- 
ent division in the midst of supporting an ongoing Defense Science Board 
(DSB) study and documenting their findings and recommendations. (As 
I understand it, DSBs are occasionally convened by the U.S. Department 
of Defense to review current policies and procedures, and to provide in- 
dependent advice to the Secretary of Defense.) Apparently this particular 
DSB, focusing on engineering in the manufacturing process, had received 
several briefings on current industry practice, including the standard use of 
the Cp and Cpk Process capability Indices (PCIs). I was asked to help co- 
author an appendix on the subject to introduce and define the terms, and, 
more importantly, to establish minimum sample size requirements (Fries 
and Richter, 1993). The tone of the request and accompanying dialogue 
seemed to be that the conclusion had already been reached that Cp and 
Cpk were the way to go, and that the only outstanding question was how 
small could one make the inspection sample sizes. After some preliminary 
reading and follow-up reviews of the literature, I pointed out some problems 
with this presumption, all of which I am gratified to note have also been 
reported by Professor Singpurwalla in "The Stochastic Control of Process 
Capability Indices". 

This backdrop takes to me to my first substantive comment. The first 
two sections of the subject paper provide an expository summary of tradi- 
tional PCIs, highlighting their interrelationships, what they actually mea- 
sure, and what they do not. Of primary importance is that there are several 
common misconceptions entailed in their ordinary interpretation. My only 
complaint about this material is that it is five years too late to help me 
with my PCIs "assignment"! 

Another key observation made by Professor Singpurwalla, which in my 
previous exposure to the topic regrettably took me longer to fathom and 
appreciate than it should have, is that the strong assumption of process sta- 
bility implicitly accompanies routine applications of PCIs. This realization 
and its practical consequences did not necessarily please those who desired 
to minimize the burden of sampling and testing, beginning with the earli- 
est stages of product development and production. I strongly concur with 
Sinpurwalla's veneration of the normative approach to process capability, 
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pioneered by Bernardo and Irony (1996), but am prompted to raise several 
questions. 

First, the assertion is made that at the end of a rating period the as- 
sessment whether a prescribed portion of the items manufactured during 
that period met specifications is equivalent to deciding whether to continue 
production as is or to intervene. My sense is that the degree of compli- 
ance, e.g., 100 percent or marginal, might influence one's determination 
of intervening or not. For that matter, a persistent pattern of progres- 
sively worsening compliance might also trigger an intervention, even when 
no individual breach of engineering tolerances has been manifested. A cor- 
responding methodological query is whether the predictive distribution of 
future observables for the next rating period should be conditioned on all 
past observed values vice merely those from the last rating period? 

Another set of questions relates to the general form of the difference be- 
tween the utilities of decisions to continue production as is and to intervene, 
as reported in the discussion preceding Equation (2.8). Does the analytical 
form given there, expressed as a R  - b N  -t- Q* with a > b, hold specifically 
for the second pair of utility functions presented (here I openly admit my 
personal ignorance of some of the key cost terminologies) and more gener- 
ally for other representations? Do there exist any rational utility functions 
for which the common PCIs are coherent (in the sense of Bernardo and 
Smith (1994), Chapter 1)? 

Third, it is not clear what is truly Bayesian about the "Bayes" capability 
index, CB(V),  defined in Equation (2.10), in the sense that "subjective 
probability" does not appear to enter directly into the calculations? More 
thoughts on Bayesian considerations appear below. 

In Section 3 of the subject paper, Professor Singpurwalla directly con- 
fronts the "ugly beast" of process instability and seeks not only to tame 
it but also to "control" it. This is a truly ambitions undertaking and he 
clearly deserves both our admiration and respect. It should not be surpris- 
ing, however, that, as with any initial excursion into uncharted territory, 
progress is incremental and open to debate. Obviously, if the problem were 
easy, the "optimal" solution would already be available and universally ac- 
knowledged. Two classes of comments and questions follow, ones specific 
to the particular construct pursued in the subject paper, and others that 
apply generally to the broad concept of process control. 
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My guess is that many practitioners would find it difficult, if not im- 
possible, to implement the "control" approach outlined in Section 3. One 
major obstacle I conjecture would be a fundamental lack of understanding 
of what the terms Yi and Hi physically represent. For instance, even if the 
cost parameters were known how does one calculate the right-hand-side of 
Equation (3.4)? For that matter, how does a computed value of Yi translate 
into a specific process intervention action? 

It is certainly fair to demand that any "control" methodology be readily 
comprehensible and robust to unintended interpretations. Other general 
issues include: 

Should adjustments be made after each inspection period?; i.e., why 
"mess" with a process that is not exhibiting any (strong) symptoms 
of undesired performance? 

Should information be utilized from previous inspection periods, vice 
just the latest? 

How can the subjective assessments of product developers and en- 
gineers be incorporated into determinations, both at the beginning 
of manufacturing and subsequently after each inspection period and 
intervention event? 

In summary, Professor Singpurwalla's paper is an impressively useful 
contribution to the theory and application of PCIs. The overview of cur- 
rent methodologies is especially informative, for neophytes and experienced 
practitioners alike. Further, his solitary intrepid foray into the realm of 
process "control" should serve to engage the remainder of the statistical, 
operations research, and industrial engineering communities, to develop al- 
ternative approaches, and to discuss and test out (in the real world as well 
as in simulation studies) their relative merits and weaknesses. That is, after 
all, how progress is attained. 
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J.K. Ghosh  
Indian Statistical Institute, India, and Purdue University, USA 

Professor Singpurwalla provides a very il luminating review of existing 
PCI 's  and goes on to discuss their relevance to a Bayesian as well as other 
more appropriate Bayesian options. 

I have seen the PCI 's  before in my interactions with colleagues in Qual- 
ity Control but  had not been impressed by any but  the simplest mea- 
sure. Professor Singpurwalla's review makes them sensible and attractive 
by throwing light on their evolution. I find this section very useful. 

The Bayesian sections are important  for what they promise rather than 
what  they achieve. In particular this may be the best way to handle mul- 
tivariate problems. The two more fundamental  problems are to take these 
sections a step further where they can be implemented and test the imple- 
mentations for some robustness against misspecification of prior, utilities, 
model. The prior should capture the notion of a substantial change, a sort 
of change point, when the process goes out of control. The utilities should 
contain a term that  measures the damage to a process which is left out of 
control for too long. A related problem in optimal stopping is posed and 
solved in a simple case by Shirayev (1978). 

The discussion of the role of the PCI 's  in the Bayesian approach is 
interesting but  incomplete for the following reasons. The deduction of 
(2.11) from the previous step is incorrect because �9 -1 does not operate 
in so simple a way on the difference of two O-terms. The equation (2.10) 
and its predecessor also seem odd because of the inclusion of a completely 
arbitrary v. How can an arbitrary v add insight ? A more promising line 
may be to take a normal model and a conjugate prior. Such a combination 
should lead to something like a PCI-based decision rule. 

R e f e r e n c e s  
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M. A. G6mez-Villegas 
Universidad CompIutense de Madrid, Spain 

Let me begin with my sincere congratulations to the author. This is, as 
far I know, the second time that  Professor Singpurwalla uses the Bayesian 
methodology, to make clear existing aspects of the frequentist approach, the 
other one is his landmark paper with Menhold(1983) about understanding 
the Kalman filter. 

The  paper has two principal parts, the first one is dedicated to contem- 
plate the capability indices in the quality control, from the point of view of 
the bayesian decision theory and the second one to predict and to control 
the quality of future output  using a dynamic linear model. 

I am going to concentrate the discussion on three main points about 
what I would like to know the author  opinion. 

Why not to determine a credible interval? Once the possibility of tra- 
ditional indices to measure the quality of a manufactured product  has been 
seen, why not obtaining a credible set C using the predictive distribution 
of 7r(R/+l I N,x_(n)) that  satisfies P(Ri+I �9 C ] N,x__(n)) >_ 1 - c~? If, in 
the notat ion of the paper, the interval (LCL, MCL) is contained in C the 
process is in control. In this way the introduction of the utility function 
gives a meaning to 1 - a, it would be 

b Q* 
--<l-a, 

a aN- 

in the simplification supposed in the paper. Are not all the other considered 
aspects an ad hoc behaviour too? 

Robustness The considered procedure depends fairly on the ratings pe- 
riods Ti, where the control is done, and the number n of items observed 
in each period [Ti-l,Ti). May the author give any idea of how is this 
repercussion or how could it be dealt with? 

Closely connected with the above comment  and with reference to the 
control of process capability, a Kalman filter is used. An empirical analysis 
involving simulated and real data  is considered where all the observations 
are normal. An important  application would be the validation of the model 
with the errors sources distributed as Student distributions, in the line of 
Meinhold and Singpurwala (1989) or Gir6n and Rojano (1994), also relevant 
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is GSmez, GSmez-Villegas and Marin (1998) where a multivariate genera- 
lization of the power exponential distribution is given. 

R e f e r e n c e s  
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T. Z. Irony 
The George Washington University, USA 

1 Introduct ion 

I would like to congratulate Nozer Singpurwalla for a clear, thoughtful and 
comprehensive overview and critique of Process Capability Indices (PCI). 
He gave us an excellent historical picture of the development of capabil- 
ity indices and the clear interpretations provided in his article are greatly 
needed in the industrial engineering and quality assurance communities. 
In fact, I would like to see his article widely disseminated among those 
communities, in order to generate some thought and discussion that would 
facilitate the acceptance of the new Bayesian Capability Indices presented 
here. 

2 Capabi l i ty  analysis: a decision problem 

I commend the author for agreeing that PCI's should be used for making 
decisions and consequently should be conceived under a formal decision 
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theoretical framework. According to his article, "the traditional capability 
indices have been playing a passive role", which is "to retrospectively ensure 
that the number of nonconforming units in a batch is bellow a specified 
limit". By traditional PCI's we mean 

Cp, Cpk, Cpm, Cp,nk and Cp(u, v). 

I would like to reinforce Singpurwalla's criticism because PCI's have been 
used to make decisions and I believe that they were conceived with this 
idea in mind. The fact that Cp should be in excess of 1.66 in pilot (qual- 
ification) runs means that the process is not qualified (not accepted) if 
Cp < 1.66. Moreover, PCI's have also been used for making predictions. 
Deming [(1982 - Chapter 7); (1989 - Chapter 11)] stresses repeatedly the 
importance of stability or statistical control of a process (or exchangeabil- 
ity in the Bayesian parlance) because "a process out of control has no 
predictive value". Practitioners perform capability analysis with the idea 
that past performance should predict future behavior, and Deming warned 
that this would hold only if the process is stable. For all this reasons I 
strongly agree that the traditional capability indices have been inadequate 
for not being constructed according to the normative approach dictated by 
Decision Theory, and I thank Singpurwalla for recognizing the Bayesian 
Capability Index as a step in the right direction. 

3 I n c o h e r e n c e  and the  tradit ional  c a p a b i l i t y  i n d i c e s  

I would like to comment on Singpurwalla's analysis of utility functions. 
According to his notation, decision should be made iff 

P ( X  �9 A I x_i(n)) >_ b Q* a-a- -N '  where a = (g+C-r)  and b = (g+C-r - i ) .  

Here, a > b, unless i, the cost of inspecting each item is null. 

Consequently, he notes, if Q*/N is larger than b,the right hand side 
is always negative in which case decision to continue production as is, is 
always made. I would like to mention that this is an extreme case in which 
the cost of stopping the production is so high that it would be better to 
accept the whole batch even if all items are nonconforming. This situation 
is not admissible and if it happens, the tolerance limits should be revised. 
Otherwise, there is no point in performing capability analysis, just keep 
producing because anything will be better than stopping. 
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Another point raised by the author which I found very interesting is 
that requiring Cpk to be greater than 1 would lead to incoherence when 
regarded under a decision theoretic framework. That  could be avoided if 
the batch size, N, is very large and the cost of inspecting an item, i, is 
small, because in fact r = 0.9985 < 1, and if N is large enough, one 
could have @, 

b = - ~ - + 0 . 9 9 8 5 a  and b < a .  

The same would hold for Cp since r < 1, but to avoid incoherence, the 
value of N would have to be huge. In capability analysis, the probabilities 
of producing conforming items are usually extreme (greater than 0.999) 
and cannot always be approximated by 1. 

4 A r e m a r k  o n  t h e  C o n t r o l  o f  P r o c e s s  C a p a b i l i t y  

Although the idea of Control of Process Capability appears to be natural 
and straightforward, it will generate major controversy among the qual- 
ity assurance community, mainly due to Juran's and Deming's criticism of 
overadjustment. In fact, I also have a problem envisioning how to auto- 
matically control a production based in a mathematical model, without a 
major decision making process involving management and experts in t h e  
system. 

One of Deming's major contributions was to discuss and to emphasize 
the importance of the stability of a system, i.e. the importance of maintain- 
ing the system in statistical control. According to him, the significance of 
the concept of a stable process was already highlighted by Shewart. A sta- 
ble process is a process subjected only to "common (or assignable) causes 
of variation", which reflect the natural variation of the process. A stable 
process has a definable identity and capability and its behavior in the fu- 
ture is predictable. On the other hand, a process goes out of statistical 
control whenever one or more "special causes of variation" arise. 

Deming stresses that in order to analyze any process, to use it to make 
predictions, and to define its capability, it must be in statistical control. 
Moreover, in order to improve a system, statistical control must be achieved 
first (Deming and Juran). They explain this idea by stating that there are 
two distinct ways to improve a system: 



52 N. D. Singpurwalla 

1. To achieve stability : this is done by removing the special causes of 
variation. The discovery and removal of a special cause of variation is 
usually responsibility of someone who is connected directly with the 
operations that yield the available data. 

2. To improve the whole process: this may be done only by management 
who can modify the system as whole. 

Consequently, the issue of controlling the system is very complex, and con- 
trol cannot be achieved automatically. Every time there is a drift in the 
system, a search must be conducted in order to find and to remove the 
special cause of variation that caused such a drift. The action of adjust- 
ing the system every time there is a drift will lead to what Deming called 
"overadjustment" [Deming (1982) - pp. 116; Deming (1988)- pp. 327] and 
the system will branch off more and more away from the target. This idea 
is illustrated by Deming's (and Lloyd Nelson's) celebrated "funnel exper- 
iment". It is also important to mention the work of Grubbs (1983) when 
talking about the problem of optimum convergence to the target. 

In summary, Prof. Singpurwalla's idea of using the mathematical model 
for process control and for obtaining the Control of Process Capability must 
be utilized with caution. The controller should be used only when a special 
cause of variation is located and only in order to eliminate such a cause. It 
would be nice to have an example of how the controller would be defined 
in practice. 
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W. Kliemann 
Iowa State University, USA 

1 C o n t r o l  o f  P r o c e s s  C a p a b i l i t y  I n d i c e s  

A Bayesian approach to process capability indices (PCI's) is a new area, 
initiated by Bernardo and Irony (1996). The current paper by Singpurwalla 
suggests the inclusion of control theoretic aspects into this framework. The 
idea goes roughly like this: Let {Ti; i E N} be an increasing sequence (of 
time points) and let {Xi; i E N} be the process variable of interest at time 
~ .  This variable is given as Xi = 0i + ri, where 0i is the important process 
parameter, and ri is a disturbance term. The control Yi affects 0i via 
0i = 0i-1 + HiYi-1 + wi, where Hi describes the amount of influence of the 
controller Yi-t o n the parameter Oi, and wi is another disturbance term. 
Hence control of 0i has to be understood as parameter tuning according 
to some objective function C(Oi, Yi-1). Since the underlying process is not 
modelled dynamically, this leads to a static optimization problem, which 
can be solved explicitly for quadratic objective functions separating Oi and 
1~-1, as shown by Singpurwalla in his paper. 

However, one should think of the Bayesian decision framework as being 
dynamic in the following sense: At time Ti+l a decision is made based on 
the data Di+t (in the interval [Ti,Ti+l)) and prior information, according 
to (static) utility function(s) and a decision criterion, whose acceptance de- 
pends on the predictive distribution P(Xi+I E "lDi+l). SingpurwaUa takes 
this idea one step further by adding a control component and a correspond- 
ing objective function C(Oi+l, Yi): In a first step the control parameter YLis 
chosen such that C( Oi+ l , Yi) is optimal. Here Yi = f ( Cti, C2i, mi, Hi, T, Oi), 
where Cli, C2i, mi are parameters of C, T is the target value of the process, 
and ~ is an estimator of ~, depending on ~-1,  model parameters, and the 
data Di in [Ti-l,Ti). In a second step, at time Ti+l, a decision is made 
based on the data Di+t of the process with optimal control setting Yi ~ 
using the predictive distribution P(Xi+I e .IDi+l, Yi~ 

The goal of the additional control step is to tune 1~ such that P(Xi+I E 
AiDi+t ' yO), with A the tolerance region of X, becomes large, while pe- 
nalizing high control cost. Singpurwalla achieves this using the objective 
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function C(0i+1, ~ )  = ( Y / -  mi)2Cli + (Oi+t - T)2C2i, which involves two 
separate quadratic terms penalizing cost (deviations from the minimal cost 
setting mi) and deviations form the process target value T. Note that 
separation and quadratic cost lead to the explicit optimal solution y/0. 

The second term of the objective function is interesting. Like the PCI 
Cpm it takes into account deviation from T. In the presented setup, the 
utility function(s) H do not depend on T, nor does the decision criterion. 
Hence a training of the process to the midpoint M of the tolerance region A 
will, in general, lead to larger values of P(Xi+I  E A]Di+I, y/0). Therefore, 
the proposed strategy is consistent with the described decision setup if 
T -- M. In this case the quantity (with A -- [25, U]) 

\ ~ri+l ] O'i+t 

may be used for decisions related to process capability. If T r M, a conflict 
between the two steps in the decision process may arise. This conflict can be 
resolved, e.g., via including the target value T in the utility function(s) H, 
resulting in a different value with which the predictive probability P(Xi+I E 
AIDi+I ' y/0) is compared, or via different weights of the variable X on the 
intervals [L,T] and IT, U], in analogy to the PCI Cpm. In a Bayesian 
decision theoretic context, the first option is, of course, preferable. 

It remains to discuss the properties of the proposed 'stochastically con- 
trolled process capability index' CBi (V). We will do so for the uncontrolled 
case, since the arguments are,similar and easily adapted to the controlled 
situation. 

2 B a y e s i a n  I n t e r p r e t a t i o n  o f  P r o c e s s  C a p a b i l i t y  I n d i c e s  

In this section we use the following notation based on the paper under 
discussion: A = [L, U] is the specification interval or tolerance region with 
midpoint M,  X is a random variable, describing the process parameter of 
interest, P ( X  E .IDi) =: P ( X  e .) is the distribution of X given the data 
Di, �9 : ~ -+ [0, 1] is the cdf of P, which we assume for notational simplicity 
to be strictly monotone with inverse ~ i - t  and density r  �9 : ]R -+ [0, 1] is 
the standard Gaussian cdf with inverse (I) -1 and density qo. The univariate 
setup is chosen for notational convenience, all arguments are easily adapted 
to the multivariate case. 
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A Bayesian decision setup, as developed in Bernardo and Irony (1996) 
or the current paper, leads to the choice of a strategy dl (interpreted as 
'continue operation of the process') iff the expected proportion of conform- 
ing items exceeds a certain threshold B, i.e. iff 

P ( X  E A) > B. (2.1) 

The specific form of B given in paper is 

B ~- b Q (2.2) 
a aN 

where a is related to the profit of a conforming item, b to the cost of 
producing an item, N is the total number of items produced in a time 
interval [7~, 7~+1), and Q represents a fixed cost. Note that the criterion 
(2.1) is invariant under strictly monotone increasing transformations. 

In order to relate the criterion (2.1) to traditional PCI's, we consider 
x 

the transformation q~v : ~ --+ [-q/(Y), 1 - ~(y)], ~y(x) = f ~b(u)du, and 
Y 

we denote by q:7. 1 its (strictly monotone increasing) inverse function. The 
transformation ~u can take on negative values, but as we will see, it serves 
our purposes. We obtain q )LI (p(x  �9 A)) = ~I/LI(LI/L(U)) = U and 
~ L I ( 0 )  = ~ L I ( ~ L ( L ) )  = L, hence U -  L = q ~ l ( p ( x  �9 A ) ) -  q~Ll(0). 
Therefore the criterion (2.1) is equivalent to 

- 1 [ ~ L I ( B ) _  ~L 1(0)] (2.3) Cv _ U6aL _ 651 [@LI(P(X 6 A)) - ~LI(0)] >__ ~ . 

In this formula the variance o 2 of X is assumed to be known. Similar 
expressions can be derived using q~u and @M- 

For the interpretation of the PCI Cpk we consider the case ~u > M, 
where # is the mean of X, again assumed to be known - the case # < M 
is completely analogous using ff2v. Setting w.l.o.g. # = 0, we obtain as 
above: Criterion (2.1) is equivalent to 

U 1 
�9 L I ( p ( x  �9 A)) _> 3~e;LI(B).  (2.4) C p k -  3o - 3a 

If the predictive distribution of X is Gaussian with mean # and variance 
a 2, then the criteria above specialize to 

Cp : 1 [(~L1 (~ (~-~-) --~ (~--~)) -n] ~ ~ [~LI(B)-L] (2 .5)  
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and 

These criteria should be compared to Singpurwalla, Formulas (2.9), (2.10) 
and above (2.11), as well as Bernardo and Irony (1996), Formula (17). The 
Bayes capability index in these papers is defined as 

CB = ~r e A)). (2.7) 

Let us consider a modified index, given by (for/~ > M) 

C~ = ~r  e A)). (2.8) 

(If there is compelling reason to assume that the predictive distribution 
P(X E -) of X is not Gaussian, then @~1 should be used. The arguments 
below remain valid for this case, with the obvious modifications.) We obtain 
for P(X E .) ,'., .hf(#, ,72) with known/~ and a, which we set w.l.o.g, to be 
~u = 0, a = 1: 

1. The Bayesian decision criterion (2.1) leads to acceptance of the strategy 
dl iff 

U 

r > B, (2.9) 

L 

which means in terms of CB 

and in terms of C~ 

3CB 

f ~o(u)du > B 
--r 

(2.1o) 

3% 

f  o(u)du > B, 
L ' 

(2.11) 
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which is equivalent to (2.4) with Cb = Cpk, while (2.3) results in 

L+6C$ 

f  (u)du > B 
L 

(2.12) 

2. The criteria for the acceptance of the strategy dl boil down to the same 
inequality for the indices CB, C~, and C~, since different transformations 
for the r.h.s. B in (2.1) are used. Note that CB < C~ if both describe 
P(X  E A). On the other hand if the value of the Bayesian PCI's is equal, 

3c 

CB = C~ = c, then f r > 

larger B-values, while C~ retains 

3c 

f cp(u)du, and CB leads to acceptance of 
L 

the established interpretation for Cpk. 

3. The Bayesian criterion (2.9), as well as the derived criteria (2.11) and 
Oo 

(2.12) determine an upper limit f 7~(u)du =: C for the acceptance of the 
L 

strategy dl : dl will not be accepted if B > C < 1. The index CB, on the 
other hand, increases for CB --+ c~ to 1, resulting in a different upper limit. 

4. Let us consider the interpretation of the various PCI's in terms of un- 
derlying utilities, represented in B. In economically meaningful situations, 

b i.e. a > b > 0, Q > 0, we have B <_ ~ < 1, and hence an upper limit C < 1 
on the 1.h.s. of (2.1) makes sense. Of course, all four criteria (2.9)-(2.12) 
can be satisfied for certain parameter combinations with b > a, but these 
combinations will not occur in practice. Infact, non of the criteria requires 
b > a to hold for the acceptance of strategy dl, and hence none of them is 
incoherent, including the traditional PCI's in (2.11) and (2.12). 

5. The Bayesian framework leads to another interesting observation about 
the traditional PCI's. In practice, their values are usually chosen with 
the 3a- interpretation of the Gaussian distribution in mind. If the actual 
distribution of the variable X is non-symmetric, has heavy tails, or if p 

with C~ = Cp as in (2.3) and (2.5). 

Note that C~ = C~ for # = M = T. For known # and a, both of these 
indices are equivalent to the established PCI's, i.e. C~ ,.~ Cpk (for # _> M) 
and C~ ~ Cp. On the other hand, the Bayesian index CB is asymptotically 
equivalent to Cpk, compare Bernardo and Irony (1996), Formulas (18) and 
(19), and Singpurwalla. 
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deviates from the midpoint M of the specification interval, then (often 
arbitrary) 'adjustments' are made. Formulas (2.11) and (2.12) show a way 
of how to formulate the choice of Cp and Cpk as optimization problems in 
the Bayesian decision context, which reads for C~ (with # > M) as follows: 
Minimize c > 0 such that 

under the constraint 

3c 

f r --+ min 
L 

3c 

f r >_ B. 
L 

oo 

The optimal solution, for continuous r and B < f r is obviously 
L 

C O - ~ I / L I ( B ) ,  

and Cpk = C o results in a justifiable choice of the PCI. Reasoning for the 
index Cp is similar. 

6. The expression derived in Theorem 1 of Bernardo and Irony (1996) for 
the index CB remains true for the index C~ as presented in (2.7), if the 
transformation (I)L1 is used instead of r A similar expression, with the 
obvious modifications, a/so holds for the index C~ from (2.11). 

7. We emphasize again that all arguments above hold, mutatis mutandis, 
for arbitrary cdf's �9 with continuous density r and if a proper defini- 
tion of ~L t is used, for any cdf. Thus the Bayesian decision approach to 
PCI's and stochastically controlled PCI's yields far-reaching justification 
and guidelines for process capability indices, which retain the traditional 
interpretation of the established standards if C~ is used. Note that analo- 
gous observations can be made using (I)u and (I)M. 

R e f e r e n c e s  
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S. K o t z  
The George Washington University, USA 

To paraphrase August de Morgan's assessment of Laplace's contribu- 
tions as published in The Dublin Review 3 (1837), p.348: 

"Singpurwalla never attempted the investigation of a subject 
without leaving upon it the marks of difficulties conquered: 
sometimes indirectly . . . .  " Indeed, it should be evident to 
anyone familiar with Singpurwalla's work that he is a "thinker 
about probability and statistics" and not merely and indefatiga- 
ble calculator or an sympathetic dogmatist-although it is posible 
that these three aspects may have been combined. 

The paper under review is no exception and it bears the unmistaken 
features of his outstanding and often provocative research in the field of 
reliability theory for over some twenty years. 

The first part of the paper (Introduction and Sections 2.1-2.3) provides 
a lucid and compact assessment of the historical developments and the cur- 
rent state of the theory of process capability indices. There are a few minor 
inconsequential imprecisions and lacunas inevitable in any short review of 
a rather vast subject which has been so popular and controversial in the 
last decade or so. A comparison with a parallel description presented in 
Kotz and Johnson's (1993) volume and especially in the forthcoming Kotz 
and Lovelace's (1998) more elementary monograph might be instructive. 

It is only in subsection 2.4 and in a brief Section 3 that the author 
presents his innovative ideas emphasizing the normative approach to pro- 
cess capability and his suggestion for controlling process capability, with a 
laudable aim to weaken the assumption of process stability inherent in all 
the "classical" PCI's. 

The arguments in Section 2.3 which essentially lead to sequential PCI's 
are imbued with the well known concepts of probabilistic decision making 
in which the expected utility plays a pivotal role, are cleverly and grace- 
fully combined. The argument results in the basic equation (2.8) which is 
no doubt an interesting result, certainly worthy of further investigation and 
refinement. The author seems to overemphasize the drawbacks involved in 
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the possible lack of coherence of the "initial" (primitive) process capabil- 
ity indices Cp and Cpk which are also marked by several other defects.As 
the article on "Coherence" by Patrizia Berti and Pietro Rigo (Dept. of 
Statistics, University of Florence)-to appear in the forthcoming Volume 3 
of the Encyclopedia of Statistical Sciencies (Update)-convincingly shows 
incoherence is often an inevitable property of many useful and appropriate 
summary indices and occurs in various natural situations. The choice of 
the utility of decisions dl ("continue productions as it is") and that of d2 
("intervene") are admittedly somewhat simplistic albeit convenient for an 
easy derivation of the final conclusion -Equation (2.8). Equation (2.11) is, 
however, more problematic where the Gaussian (predictive) distribution of 
X is assumed. Under this assumption the problem of the sampling dis- 
tributions of Cp, C~k, Cprn and even other more refined indices has been 
quite satisfactorily solved within the classical framework (see, e.g., Kotz 
and Johnson (1993)) and the conclusion here reached by Singpurwalla may 
seem (at least for an uninitiated) to be reiterating the obvious. 

The last Section of the paper is potentially most promising and illu- 
minating. The models proposed are admittedly only prototypes. Again 
the (unjustified?) Gaussian asssumption plays an important role and the 
decomposition of the total cost given by (3.3) resembles too much the clas- 
sical approach which is justly criticized by Singpurwalla. Further weeding 
out and refinements are required to render the writer's bold ideas suitable 
for practical applications, especially due to strong rift existing between the 
theoreticians and practitioners in this particular area. 

At this early stage the author of these short comments can only offer 
an unqualified endorsement and recommendation to pursue further this 
promising avenue towards a more meaningful and flexible assessment of 
process capabilities. The writer is certainly on a right track. 
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D.V. Lindley 
United Kingdom 

Knowing nothing of the engineering associated with the use of PCI's, it 
is perhaps foolish to comment. However, I will stick my neck out and offer 
some general remarks, because there is at least a prima facie case, demon- 
strated in this paper, that theory can be applied with useful engineering 
consequences. Hopefully an engineer will be provoked by my folly to think 
afresh about the problem behind PCI's and, in the worst scenario, will 
have light shed on the process. The best scenario would have the current 
procedure fundamentally altered. 

Singpurwaila, as Bernardo & Irony (1996), are surely right to point 
out that the engineer has a decision problem: he has to choose between a 
number of actions. An index based purely on Tchebychev's inequality may 
be adequate, but only consideration of potencial acts can demonstrate this; 
probability cannot be enough. As these authors point out, utility must also 
be introduced. Let us consider the ingredients in the engineer's problem. 

At any time in the production process, there are items already manu- 
factured and potencial items to be made in the future. Decisions concern 
both types. The manufactured items may be accepted or rejected. The 
future production may be retained with the same process in the past, or 
there may be some intervention. Utilities have to be considered for these 
possibilities. It is somewhat disappointing to see such simple, and maybe 
unrealistic, forms used at the moment. For example, is it really sensible 
to impose upper and lower limits? Is it realistic to say that an item just 
above the upper is hopeless, whereas one just below is fine? A function 
with a maximum at the target value and decreasing either side, often in an 
unsymmetric way, may be more realistic than the 0-1 form used here. It is 
regrettable that statisticians are so casual about utility, failing adequately 
to relate its value to the practicalities of the problem. 

From considerations of utility one has to pass to probability. Here the 
statistician is on more familiar ground and has provided a range of ideas. A 
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most valuable reference here is the book by West & Harrison (1989) which 
explores a class of probability models and associated decisions that would 
appear to apply to the type of data to which PCI's refer. In many respects 
they generalize the sound ideas that are used in Section 3 of the present 
paper. 

I do not elaborate, since to do so sensibly requires active collabora- 
tion between engineer and statistician. It is the engineer's (or perhaps 
consumer's) utilities that are relevant, not the statistician's, whose role is 
limited to articulation of the practice. But were I do elaborate, we all know 
what the engineer would say - it is too complicated; something like d/3a is 
required. They are surely right, but with modern computing facilities the 
end product of these complicated deliberations on probability and utility 
can be simple. The choice of action demands maximization and expec- 
tation, two procedures which have been extensively studied by computer 
scientists and statisticians. It is possible to imagine a program where the 
engineer inputs the specific data and where the output is the optimum act; 
even an index if that is what is preferred. All the complexity lies within 
the computer. The consultation between engineer and statistician and the 
statistician's writing of the program will be complicated. But once done, 
the operation of decision is easy. Furthermore, if the program has flexibil- 
ity in the provision of adjustable parameters that accommodate shifts in 
utility or probability, the one program can suffice for many applications. 

It is my view that statisticians have not woken up to possibilities of 
practical applications of decision analysis, especially through intelligent use 
of computers; and, in particular, to the appreciation that engineers are not 
limited to simple expressions but can employ much better methods without 
any extra on-line burden. The present paper encouragingly moves us in the 
direction of the implementation of the ideas here outlined. 

R e f e r e n c e s  
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M.F.  McGrath 
Sarnoff Corporation, USA 

1 I n t r o d u c t i o n  

In the late 1980s and early 1990s, leading manufacturing companies, such 
as Motorola and Texas Instruments, adopted a "six sigma" philosophy of 
customer satisfaction through total quality. At the heart of the 6a philos- 
ophy is a belief that nearly perfect quality is essential for a product line or 
a company to survive in a global competitive marketplace. The term 6a 
connotes a goal that products and processes should experience, on average, 
only 3.4 defects per million opportunities. The goal is admedly ad hoc. It is 
based on the premise that the old rule of thumb for the mean and variance 
of a capable process (that ~ -4- 3a be within specification limits) is not good 
enough. Instead, the goal should be # • 6a. Design engineers and man- 
ufacturing operations managers have developed procedures using Process 
Capability Indices (PCIs) as a way to manage progress toward this goal. 
The commercial success of these leading companies has inspired widespread 
adoption of the philosophy and management procedures throughout indus- 
try. Today, procedures using PCIs (particularly Cp and Cpk) have become 
common in engineering, manufacturing and quality control practices around 
the world. 

Professor Singpurwalla's paper provides a much needed framework for 
understanding the implications of alternative PCIs, and for bridging the gap 
from 6a philosophy to practice. He has approached this subject primarily 
from the standpoint of assessing and controlling manufacturing processes. 
From this standpoint, the paper identifies serious deficiencies in current 
practice, including the ad hoc nature of setting requirements and the use 
of PCIs solely as retrospective indicators. Beyond providing an extremely 
valuable expository framework, Professor Singpurwalla proposes a new PCI 
and a procedure that can be used both for assessing and controlling pro- 
cesses. 

I would like to offer two comments from a different standpoint, that 
of design engineering. The first comment suggests a resolution for the 
apparent dilemma of incoherence resulting from ad hoc specification of Cp 
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(Section 2.4 of the paper). The second suggests a possible direction for a 
better linkage between design engineering and manufacturing operations, 
based on Professor Singpurwalla's proposed process control procedure and 
its associated PCI. 

2 R e s o l v i n g  t h e  a p p a r e n t  i n c o h e r e n c e  c a u s e d  b y  a d  h o c  
g o a l s  

What  matters  ult imately to the designer is that  P(X E A I H) be close to 1, 
where X is some key characteristic, A is the interval [LSL,USL], and H rep- 
resents historical data  on the process that  generates X. For complex prod- 
ucts involving n components and processes, each with critical characteristic 
Xi, the standard engineering practice is to assume independence and com- 
pute t he  Rolled Throughput  Assembly Yield as YRT = I] P(Xi E Ai[Hi) 
for i = 1 , . . .  , n. When n is large, designers must select components and 
processes with values of P(Xi E Ai ]Hi) very close to 1 in order for YR~r 
to be acceptably high - hence the dictum that  each process should have a 
goal of 6a quality. 

The attractiveness of focusing on a PCI, rather than directly on P(Xi E 
Ai [Hi), is that  the PCI combines several controllable variables or param- 
eters of product  and process design. Engineers often use such indices to 
characterize designs and structure tradeoff studies - for example, evaluating 
alternative airfoil shapes using lif t /drag ratio as a figure of merit. Section 
2.2 of the paper provides an insightful discussion of the evolution of PCIs 
from Cp to Cpk, Cpm and other indices that  take progressively more control 
variables into account. 

The  6a goal is equivalent to requiring Cp > 2 in steady state production. 
Since this is difficult to measure or achieve in product ion start-up, an ad 
hoc requirement such as Cp > 1 may be imposed initially, with an expecta- 
tion of subsequent improvements to the process. Section 2.4 of the paper, 
"The Normative Approach to Process Capability", demonstrates that,  un- 
der reasonable assumptions regarding cost, such ad hoc requirements can 
lead to incoherence. The problem here may simply be a question of deciding 
which cost assumptions are reasonable. 

From the 6a philosophical viewpoint, accepting defective items can have 
disastrous (to management) financial consequences - including loss of mar- 
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ket share, declining stock prices and even demise of the company - to say 
nothing of adverse consequences to the consumer. The effect of requiring 
Cp > 1 is, implicitly, to set a very high value for C, the loss from accepting 
a defective item. The implied value of C may be several orders of magni- 
tude larger than the other unit  costs in the utility functions of Section 2.4 
(v~z.: g, the unit  profit from accepting a good item; v the unit  manufac- 
turing cost; q, the unit  opportunity loss when product ion is stopped; and 
Q*/N,  the amortized cost of fixing the production system). When C is 
much larger than  the other costs, we can resolve the apparent incoherence 
discussed following equation (2.11) as follows. 

First, in equation (2.9) we redefine the quanti ty r  - Q*)/aN] 
as r162 - r  where r - r  = (bN - Q*)/aN.  This 
interpretation is consistent with the definition of Cp, which assumes a nor- 
mal distribution centered between the upper and lower specification limits. 
Then, in the discussion following equation (2.11), we find that  requiring 
Up -- 1 means that  r162 - r  --- 6, so Z0 = 3, in which case 
(bY  - Q * ) / a g  = .9973. 

When C is much larger than any of the variables g, v, q or Q*/N,  
the quanti ty takes the form ( C -  51)/(C + 52), where 0 _< 5i << C for 
i = 1, 2. Hence requiring Cp > 1 implies that  (C - 51)/(C + 52) > .9973, a 
condition which can be met if C is larger than  (51 + 52) by a factor of 400 or 
more. From management 's  "big picture" viewpoint, it may be reasonable to 
believe that  accepting a defect on a one dollar i tem could cost the company 
$800. Had we imposed the condition Cp > 2 (i.e. the 6a goal), it turns 
out C must  be larger than the other cost variables by a factor of about 
109 - an unreasonable penalty for accepting a defective item. Thus, the ad 
hoc requirements imposed by management,  even if they are not incoherent, 
may lead to actions that  cannot be economically justified. This is a main 
point of the paper, and one which deserves wholehearted agreement. 

3 Better linkage between design engineering and manufac- 
turing operations 

In Section 3, Professor Singpurwalla proposes a method for active control 
of process capability, one that  removes the restrictive assumption of process 
stability. This method explicitly addresses total expected costs and uses 
a minimum cost control function. This process can be characterized with 
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a PCI called Cbi (v), the stochastically controlled process capability index. 
Two pragmatic questions arise: (1) Can this method be implemented in 
practice, given the difficulty of quantifying the cost of quality? (2) Are 
design engineers prepared to start using such a new index, given their inertia 
to date in adopting indices more advanced than Up and Cpk? 

Regarding total expected costs, it is clear from the foregoing discussion 
that assigning a value to the cost of accepting a defective item is highly 
subjective and highly influential. A healthy debate among the company's 
business managers, design engineers and process managers may be needed 
to reach consensus on the cost function, which is a precondition to the 
stochastic process control procedure. In fact, this debate may turn out to 
be one of the most positive features of the new approach. Perhaps the best 
way to get started toward implementation would be to focus on a "problem" 
process currently in operation that is falling short of its PCI goals and is 
not stable. The benefits of the new stochastic process control method could 
be demonstrated in such an example, first through simulation and then in 
actual practice. 

Regarding the question of acceptance by designers, thanks to Professor 
Singpurwalla's unifying framework, the change to a new PCI need not be 
traumatic. If necessary, the new index Cbi(v) can be translated into an 
equivalent value for one of the traditional PCIs, but now based on cost 
and process control considerations. As confidence is gained with the new 
method, and engineers become familiar on an intuitive level with Cbi(V), 
the translation step will no longer be needed. 

In sum, this paper is a singular contribution, both in its unique unifying 
framework and in its promising step forward from process assessment to 
process control. If pragmatic implementations can be worked out in process 
control operations, migration of the new PCI into design engineering (or at 
least translation into terms design engineers are comfortable with) cannot 
be far behind. Professor Singpurwalla may indeed have sown the seeds of 
a revolution - one where product designers and process planners start to 
structure tradeoffs based on costs and process control considerations rather 
than traditional rules of thumb. 
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This is an interesting paper and I want to congratulate the author 
and the editors of TEST for the interesting topic they have chosen. Some 
of the most important ideas about quality of processes and products were 
introduced by statisticians, and the study of quality problems has generated 
some key advances in statistical ideas, as the Neyman-Pearson theory of 
statistical testing, the decision theory by Wald, the idea of sequential tests 
and many others. Quality problems is an area in which Bayesian decision 
theory ideas are especially useful, but although this fact has been recognized 
long ago (see for instance Cox 1960 or Hamburg, 1962) the research on this 
area has not yet had a clear influence in the way quality control is applied 
in practice. All these reasons made this paper especially welcome. I will 
concentrate my discussion in two points: (1) the use of Process Capacity 
Indexes (PCI) as a tool for process control, (2) the particular time series 
model advocated in section 3 of the paper. 

Starting with the first point, this paper generalizes the approach by 
Bernardo and Irony (1996) in which better PCI are derived from formal 
decision theory ideas. The approach is ingenious and elegant, have some 
nice mathematical properties, and can be useful in the initial application 
of process control in which the emphasis is on inspection. I agree that, 
with this objective, the Bayesian capability index is a good contribution, 
superior to traditional ones. However, I do not believe that PCI are useful 
in the most important stage in which the objective of the control is process 
improvement. 

The standard way in which process control for measurements is imple- 
mented is by using control charts for the mean and the variability (range or 
standard deviation) of small samples taking during the process operation. 
The objective of this operation is to keep the process in state of control and 
identify assignable causes which may affect the process in order to improve 
it. Note that, in this approach, the information about the specifications 
limits is never considered. In fact, plotting in the control charts the speci- 
fication limits instead of the variability of the statistic under consideration 
is generally considered as a very dangerous practice. In short, the specifi- 
cation limits are what we wish, whereas the variability is what we get and 
it is always a danger to take one for the other. 
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Capacity indexes have been introduced as descriptive measures to relate 
our wishes and our realities and the paper proposes to use it to guide action 
through a formal decision problem. This proposal is similar to the approach 
followed in acceptance sampling, are in which Bayesian decision theory has 
a long tradition (see for instance, Hamburg, 1962). However, this approach 
takes out of the analysis the key ingredient of process control : looking 
for assignable causes and reducing process variability. All products coming 
from the process can be good (if we have a large capability) and still we 
want to know how to reduce the variability and improve the process. The 
PCI are not designed for this objective. 

For instance, consider the simulated cases in section 4. In case a) the 
process is in state of control, and if we use the standard approach by taking 
subgroups of size 100, as done in section 4 (which by all means is a very large 
size for industrial practice) we did not find any reason to stop the process. 
This is in contrast with the result using capability indexes, including the 
BCI. In case b) in which the mean of the process has an upward trend. 
The 3a limits for the mean chart will be .3 (if the standard deviation is 
estimated from the first group in my simulation the limit will be .35). As 
the mean of the expected mean for the first group will be 1.5 (we get 1.48 
in a simulation) the process will be stopped immediately and the problem 
investigated. A better approach is to monitor the process by using small 
samples of size 4 or 5 and apply the usual rules to identify trends, in this 
way the upward trend will be detected before the fist 100 observations are 
produced and the problem corrected. Similar comments can be extended 
to the other cases. However, the behavior of the capability indexes depend 
on the specification limits that are in the example completely arbitrary. If 
instead of (4.10, -1.90) we take a larger interval, all the capacity indexes can 
call for continuing the process, failing to identify that a trend has appeared. 

The limitations of the PCI for process control has been already recog- 
nized in the literature. See for instance Bissell (1994), pag 244. 

In summary, I would not recommend capability indexes for process con- 
trol. They are not suited for identifying changes, keeping the process in 
control and improving it by reducing the variability. Rather they come from 
inspection ideas, similar to acceptance sampling, which has been dismissed 
by leading industries since the quality revolution in the 80's. I do believe 
that decision theory ideas are useful in quality control and a good example 
is the approach by Taguchi who has shown how to establish specification 
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limits using this ideas. 

My second comment is directed to the time series model considered 
in Section 3. In the paper, following a suggestion by Bernardo and Irony 
(1996),a dynamic model tis introduced to allow for autocorrelation among 
the observations. The model is equivalent to assuming that the measure- 
ment follows the IMA(1,1) model 

Xi+l --- Xi  ~- ai+l - )~ai 

where the parameter A depend on the ratio between the two process noises, 
ri, wi. This model has a long tradition in quality control (Roberts, 1959) 
and the exponentially weigthed average chart derived from it is an stan- 
dard tool for quality control (for instance, it is incorporated in the simplest 
standard statistical software for beginners as Statgraphics). The use of this 
model as a reference one to approximate the process time series structure 
has been study by Montgomery and Mastrangelo (1991). The use of adap- 
tive control on this process has also been widely investigated (see Box and 
Lucefio, 1997). 
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Rejoinder by N.D. Singpurwalla 

The contributions of the twelve discussants reinforces my view that of- 
ten it is the "discussion" that is the crux of a paper. I am grateful to all for 
taking the time to comment, and for their ideas. The discussions revolve 
around five themes: the control of indices, the nature of utilities, robust- 
ness, incoherence, and practical implementation. With respect to control, 
Professors Box and Kliemann, who appear to be favorably dispositioned, 
suggest enhancements, each with his own orientation. I do not view this (to 
quote Professor Box) as "parting company with the author"; rather, it is 
leading the way. The absence of an overlap in references is to be attributed 
to "guilt by ignorance". The Box-Lucefio (1997) reference is a valuable lead, 
arid if Box-Jenkins (1970) is any guide, this may revolutionized the prac- 
tice of statistical quality control. The notion that feedforward/feedback 
be used to induce stationarity of the process and gain maximum possible 
process capability, is intriguing. It suggests that the entropy of the process 
be incorporated in the utility function. It also suggests an accommodation 
between the classical and the normative approaches for dealing with the 
process capability indices. Professor Kliemama who has made signal contri- 
butions to the mathematics of control theory, has de facto produced a paper 
of his own. Whereas I am not clear as to what he means by the statement 
"the underlying process is not modeled dynamically", I am in agreement 
with the suggestion that if the utility functions in the normative approach 
were to incorporate the target value T, then the conflict between the two 
steps in the decision process which arises when T r M will be resolved. 
If by a discussion of the properties of the "stochastically controlled pro- 
cess capability index", Professor Kliemaun implies its relationship with the 
traditional indices, then such an exercise will be futile, since the latter are 
passive entities. Professors Irony and Pefia are not in favor of controlling 
the process capability indices on grounds that reducing process variability is 
the aim of control, not ensuring that X belongs to its specification interval. 
There may be some merit to this concern, especially, if as Professor Cox 
points out, indices are a vehicle for reducing dimensionality. Incidentally, I 
find this perspective on indices an imaginative one, worthy of further explo- 
ration; for example the statistics of object identification. Professor Irony's 
claim that the traditional indices are also used for decision making and 
prediction should be recognized under the understanding that the former 
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is not normative, and that the latter assumes process stability. Professors 
Gomez-Villegas, Pefia, and Dr. Fries draw attention to the important de- 
cisions of optimal sample size selection and choice of rating periods. These 
in principle can be addressed under the normative approach the control 
theorists have been doing itbut with the added baggage of specifying the 
appropriate utilities and the optimization over several decision variables. 
Ironically, it is Dr. Fries, who with Dr. McGrath, while being in favor of 
the idea of controlling the indices, question if the methodology can be put 
to actual practice. Both Drs. Fries and McGrath interact with industry 
and so their concern about implementation is taken seriously. But there 
may also be an opportunity here, because, by virtue of their positions, they 
can put into practice the theme epoused by Professor Lindley, who claims 
that advances in computer technology can put decision theory at the hands 
of users who need not know its detailed inner workings. 

Many of the discussants have, in one form or the other, commented on 
the underlying utilities; Professor Kotz dismisses them as being too simplis- 
tic! Professor Cox suggests an expansion of the utilities to include customer 
goodwill; this consideration requires thinking about utilities over several fu- 
ture periods rather than just the next period as is done in the paper. This 
suggestion also meshes with Professor Kliemann's who advocates notion of 
"dynamic utilities". Dr. Fries' comment that in practice intervention is 
based on a pattern of progressive worsening, rather that just a violation of 
th specification interval, also suggests an elaboration of the utility function. 
However, there is a dilemma here because industrial practice simultaneously 
requires a consideration of several caveats, and then demands that the pro- 
posed procedures be easy to implement. These requirements are conflicting; 
however, they can now be harnessed with the assistance of modern com- 
puting. Professor G6mez-Villegas raises the matter of obtaining a credible 
set of coverage ( 1 -  a), and then investigating if the specification interval is 
contained in it. Such an approach would be normative only if utilities can 
be mapped into probabilities; i.e. if we could meaningfully relate (1 - c 0 
with our (b /a-  Q/aN). I do not see a natural way to make this connection. 
On the matter of robustness concerns have been expressed by Professors 
Cox, Dey, Ghosh, GSmez-Villegas, and Kotz. Professor Kotz is wondering 
if the Ganssian assumption is key to the paper. However, as Professors 
Dey and Kliemann show, the methodology easily extends to alternatives. 
Indeed Professor Dey considers several, to include non-symmetric, logistic, 
symmetric stable, and the exponential power family. Though not directly 
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so, Professor Dey also brings in the role of computer based sampling ap- 
proaches in process capability analyses. Like control, robustness mandates 
the involvement of computer technology for process capability assessment. 
Professor Gomez-Villegas' robustification of the control model is a natural 
next step. Besides robustness, Professor Ghosh raises several other issues 
which I will now attempt to address. Change points in the process, if an- 
ticipated in advance can be incorporated in the normative approach either 
via the system equation (3.2), or via the assumption of the joint distribu- 
tion of the Xi's. The assumption of process stability is not essential in the 
normative approach, and this is one of its virtues. A use of the normal 
(Gaussian) model and conjugate prior is implicit in the assumption that 
the posterior distribution of X, (with or without a controller), is a Gaus- 
sian. I am in agreement with Professor Ghosh, that the arbitrary r adds no 
insight. Its purpose however, is to relate the Bayes capability index with 
the traditional indices; as such it may be viewed as a scaling parameter. I 
acknowledge, with some embarrassment, the error leading to (2.12) [(2.11) 
in Professor Ghosh's discussion]. This error was also noted by Professors 
Lindley (in his cover letter to me), and Kliemann, who has shown see his 
discussion that 

ch~176 dl iff cp def USL-  LSL > I [ ~Ll - -6 \ aN j - L S L  . ]  

A matter with which I take exception is Professor Ghosh's statement about 
"mis-specification of prior". This, it appears, is a contradiction; a subjec- 
tive Bayesian endeavors to specify an honest prior. Robustness studies are 
still germane because different individuals may have different priors, and yet 
all could arrive at the same decision. Interestingly, Dr. Fries, asks "What 
is truly Bayesian about the Bayes Capability Index? Subjective probabil- 
ity does not appear to enter . . . "  This is really a question for Bernardo 
and Irony to address, but my view is that in making the assumptions of 
exchangeability and Gaussianity, subjective considerations were involved. 
Furthermore, it is not so that all Bayesians take a subjective view of prob- 
ability; personally, I do. In taking the normative view for decision making 
one subscribes to the Bayesian paradigm, and hence the index proposed 
by Bernardo and Irony is legitimately Bayesian. Related to the matter of 
robustness is the question raised by Dr. Fries about conditioning on the 
posterior distribution. Should we condition on the entire past or just the 
previous past? This is a good point because conditioning on the entire past 
will make the procedure lethargic to sudden changes in the process mean; 
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that is, it will be slow to respond to a shift in the process. Alternatively, 
conditioning on the previous past will make the procedure overly sensi- 
tive to the slightest change. Robustifying the model  using heavy tailed 
distributions has been the traditional approach for addressing this issue. 
Incorporating the controller could be another. Combining the two may 
provide the most economical approach, but his matter can only be resolved 
in the context of a specific application, involving specific utilities. Clearly 
the point raised by Dr. Fries is one that needs more attention. 

Lastly, on the matter of incoherence, Dr. Fries inquires if there exist 
any (the emphasis is his) utilities for which the traditional process capabil- 
ity indices are coherent, and Professor Irony attempts to argue incoherence 
away via limiting considerations. I remain to be convinced of the latter, 
but as far as the former is concerned the incoherence argument rests on the 
principle that it takes only one counter-example to disprove a theorem. The 
same argument holds with respect to Dr. McGrath's attempts at resolv- 
ing the incoherence. Dr. McGrath also invokes the "Rolled Throughput 
Assembly Yield" practice for justifying the dictum of Six Sigma quality 
goal. It should be recognized that the engineering practice of assuming 
independence to obtain YRT ---- 1-I~ P(Xi E A IHi ) is conservative, if the 
Xi's are positively dependent (e.g. exchangeable), so that the Six Sigma 
quality goal is desirable for the consumer so long as the costs of manufac- 
turing to this level of quality are not passed on to the consumer. Indeed, 
the practical rationale for using a normative approach for developing pro- 
cess capability indices is an explicit consideration of costs via profits and 
penalties. It is also useful to bear in mind that the procedures proposed 
here pertain to the manufacturer's decisions. It is the manufacturer's util- 
ities and probabilities that are considered. The adversarial nature of the 
consumer manufacturer relationship alluded to by Dr. McGrath has been 
treated elsewhere [cf. Lindley and Singpurwalla (1991, 1993)]. Professor 
Kliemaun denies incoherence of the traditional indices on the grounds that 
none of the criteria require ba for adopting decision dl .  However, the argu- 
ment of incoherence is based on a reverse of the above logic. For example, 
if Cp (or Cpk) is taken to be one or greater, then the normative criteria 
lead to the conclusion that ba, which cannot happen because b = ah, and 
h0. Whereas I am not in agreement with Professor Kliemaun's position on 
incoherence, I do applaud his introduction of the new indices C~ and C~ 
and their exact relationship to Cpk and Cp. Incidentally, I am wondering 
if the right hand sides of Kliemaun's formulae (3a) and (4a) should involve 



7'4 N. D. SingpurwaIla 

- 1  the terms r  (B) instead of the quoted eL l (B)?  

Closing Comments 

When Professor Bernardo first contacted the discussants, some more 
than the number who have responded, I felt like being thrown in the lion's 
den. This was especially so, because many of the discussants have a lion-like 
stature. The thought of responding to each seemed Herculean. However, 
it so happened that a pattern of comments evolved. More important, the 
issues raised by one discussant were addressed by another, reducing my 
task to that of simply synthesizing the discussion. Much of the discussion 
pertained to the laudatory comments on Professors Bernardo and Irony's 
pioneering paper. It is gratifying to have been the agent for providing a 
platform of visibility to this work. 

The discussion has also drawn attention to two conflicting principles 
that drive industrial practice. The first being the need to account for as 
many caveats as practitioners can possibly think of, and the second being 
the desired to have procedures that  are easy to implement. The Six Sigma 
quality goal is in full accord with the simplicity principle, and appears to be 
the rave of modern manufacturing [cf. Conlin (1998)]. However, it nowhere 
comes close to the first principle; indeed, the normative argument, which 
incorporates costs, shows that the Six Sigma goal could lead to incoherence. 
The solution therefore lies with computer technology and the computational 
sciences. These not only provide the needed tools for normative decision 
making, as Professor Lindley asserts, but can also facilitate a consideration 
of computer intensive statistical techniques as Professor Dey advocates. 
Finally, I can't resist but say a few words about my friend Professor Sam 
Kotz. Surely, he is incoherent! Who else would write the first paragraph of 
his discussion? But then perhaps, as he quotes "incoherence is an inevitable 
property of many useful and appropriate summary indices, and occurs in 
various natural situations". Is he implying that even God is incoherent? 
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