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Abstract 

This paper presents a simple diagnostic tool to assess the sensitivity of the posterior mode in the presence of an 
infinitesimal contamination in the prior distribution. The proposed diagnostic measure is easy to compute and can be used 
as a first step in judging the robustness of the Bayesian inference. The procedure is illustrated in the estimation of the 
mean of a normal distribution. Some extensions of this diagnostic measure to the multivariate case and credibility intervals 
are briefly discussed. (~ 1997 Elsevier Science B.V. 

Keywords: Bayesian robustness; Influence function; Mixture of distributions 

1. Introduction 

As eliciting prior distributions is not an easy task and a prior distribution is needed in Bayesian inference, 
it is not surprising that reference priors and robustness to the prior distribution are two important lines of 
Bayesian research. Robust Bayesian Analysis includes not only the study of the prior distribution but the 
whole process of inference. Berger (1994) presents an overview of this topic and gives many references. 

The standard approach in prior robustness is to consider a whole set of prior distributions, instead of a single 
one, and study the range of a certain measure of interest when the prior varies over this class. Some references 
to this field are Berger (1984, 1990, 1994), Cuevas and Sanz (1988), Moreno and Cano (1991), Delampady 
and Dey (1994), Moreno and Pericchi (1993), Pericchi and Walley (1991), Wasserman (1992) and Pefia and 
Zamar (1995). Gustafson et al. (1995) study the local sensitivity of general functionals of the prior using 
several distances between distribution, obtaining interesting results, and Gustafson and Wasserman (1995) 
investigate diagnostics for small prior changes over a k-dimensional parameter space. Recently, Gustafson 
(1996) investigates the local sensitivity of posterior expectations. 

We are interested in deriving a simple (preliminary) sensitivity analysis tool and concentrate on a single 
(although central) feature of the posterior distribution, namely the posterior density mode. 

We have chosen the posterior mode by the following reasons: (a) The mode is one of the most sensitive 
features of the posterior distribution. We are more likely to pick up potential sensitivity problems by looking 
at the mode than at other location measures (e.g. the mean); (b) Simplicity. We could look at other location 
and dispersion summaries but this would make the sensitivity analysis more complex. (c) The mode is the 
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most likely value for the parameter, according to the Bayesian analysis. The diagnostic tool we derive is the 
posterior mode influence function (PMIF), that is obtained by computing the directional (Gateaux) derivative of 
the posterior density mode on the direction of a "contaminating" prior, normalized by the standard deviation 
of the posterior distribution. This function shows the effect of a small degree of uncertainty in the likelihood 
of some values of the prior domain. As a very small amount of contamination cannot be regarded as a change 
in the prior opinion, if it produces a large change in the posterior mode we can conclude that the Bayesian 
inference is sensitive to the prior specification. 

The PMIF can be easily obtained by taking advantage of the fact that the posterior density mode, 0", under 
mild regularity conditions, satisfies the equation 

8 lnp(O[y) 0. 
d0 

The rest of the paper in organized as follows. Section 2 develops the basic theory. Section 3 applies it 
to study the sensitivity of the estimation of the mean in the normal case. Section 4 discusses some possible 
extensions of the procedure to multivariate problems and credibility intervals. Section 5 includes some final 
remarks. 

2. The sensitivity of the posterior mode 

Suppose that we are interested in a parameter O. We have some prior distribution, n0(0), and we observe 
a random sample x=(xl, . . . ,xn) from the distribution f(x[O). Then, the posterior distribution of 0 is given 
by 

po( OIx ) = kno( O)U f (xilO). (1) 

Under mild regularity assumptions, the mode of this posterior distribution satisfies the equation 

a log po(OIx) _ n~(O) + S-" f'(xilO) = 0, (2) 
aO no(O) z_..,, f(xilO---- ~ 

where 

f '  (xilO) = df  (xilO) 
O0 

Suppose now that instead of the single prior n0(0) we consider the class of e-contaminated prior distributions 
defined by 

rff0) = (1 - Qn0(0) + eq(O), (3) 

where 0 < e < 1 and q E -~, where .~ is a class of contaminating distributions. Then, the new posterior distri- 
bution is given by 

p(Olx) = 2(x)po(Ofx) + (1 - 2(x))q(Olx), (4) 

where po(OIx) and q(OIx) are the posterior distributions obtained from the priors n0(0) and q(O) and 

(1 - e)m(xlno ) 
, ~ ( x )  = 

m(xl~) 

where m(xl~zo ) is the marginal distribution obtained from ~0: 

m(xlno) = f f(xlO)no(O ) dO, 
d 

(5) 

(6) 
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and m(xln) is the marginal distribution obtained from n: 

m(xln ) = / f(x]O)n(O) dO. (7) 

To study the sensitivity of the posterior density p(OIx) when the prior moves away from n0 in the direction 
of q, we focus on the mode of p(OIx) which satisfies the equation 

G(O(e), e) = 3(0(e)) + ~n(O(e)) = 0 (8) 

where 3 ( 0 ) =  n'(0)/n(0) is the score function of the prior and ~n(O)= ~f'(xilO)/f(xi]O) is the score of the 
likelihood. Then, for the general prior (3) 

3(0) = (1 - e)n~(0) + eq'(O) (9) 
(1 - e ) n 0 ( 0 )  + eq(O)" 

Let 0"o and 0 be the mode of the posterior densities po(OIx) and p(Olx) respectively, that are obtained from 
the corresponding prior densities no(0) and n(0). Under regularity assumptions on q and no, the derivative 
of O(e) with respect to e at e = 0  is obtained from (8) as follows: 

, , ^  
-no(Oo) + no (Oo). ,~ ~ - - ~ / =  ° + q'(~o) 

=o = no(~o) 

-no(Oo) + n;(Oo) L de ] + q(Oo) n;(Oo) 

tn0(~0)]2 + \ ~ j,=o 

Dropping the argument 0"0 to simplify the notation and denoting 

\--~--~ )~=o 
we get 

Observe that when n is large the leading term in the denominator in (11) is ~h" which is of order n and 
negative. Suppose that no and q are both unimodal. Then, if q~ > 0 and n~ < 0 it follows that/~o > O, as one 
would expect. Also, if q' < 0  and n~ > 0  then Oo <0 .  Eq. ( l l )  can be rewritten as 

d [ q(O) ] 1 (12) O°----d-6 L~o-d-O)J o=~o O(n)'  

where 

O(n) = ~ ' ,  
\ no ] no 
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is positive for large n. Note that, 00---* 0 when n ~ cx~, which is consistent with the well known result that 
the prior is expected to have small influence when the sample size is large. 

Two difficulties with the interpretation of (11) are: (1) 00 depends on the measurement units of the data, 
and (2) it needs to be interpreted in comparison to the spread of the posterior distribution. A possible way 
to overcome these problems is to standardize this measure. Therefore, we define the posterior mode influence 
function (PMIF) as 

00 
PMIF(n0,q) - DT(po(O]x))' 

where DT(po(O[x)) is the posterior standard deviation under the central prior, n0. Typically, PMIF will be 
of order O(x/-n ) and one may then consider stabilizing this measure by multiplying it by v/-n. However, this 
normalization is not used in this paper. 

One may consider using as a diagnostic tool the supremum of PMIF(n0, q) over a given class .~, 

PMS - sup PMF(n0, q) 
qE.~ 

which will be called the posterior mode sensitivity (PMS). However, the PMS may diverge to infinity due 
to the effect of some unrealistic sequence of prior distributions in .~. Consequently, we recommend the direct 
use of the PMIF to better understand the effect of different types of prior uncertainty. 

The choice of the "direction" q depends on the situation at hand. For instance, in the case of a normal 
prior illustrated in Section 3, we consider q =N(#I ,  c52) for different values of #1 and 32. The reasons for this 
choice are the computational simplicity and the interpretability of the results in terms of "change in the mean" 
and "change in the variance" (which are easy to communicate). Another possibility is the use of shifted and 
rescaled Student-t distributions with several degrees of freedom. The Student-t approach is, of course, more 
general and retains the interpretability features of the normal approach but loses in terms of computational 
simplicity. 

Of course, here we are only looking at a particular feature of the posterior distribution and a more global 
analysis could be done by comparing the posterior distributions p(OIx) and po(O[x) themselves. This compar- 
ison can be made, for instance, by using the Kullblack-Leibler divergence or any other relevant measure of 
distance. See Guftanson et al. (1995). However, the study of the mode of the posterior distribution appears 
to be a simple and natural way to judge the sensitivity of the inference to local perturbations in the prior 
distribution. 

To simplify the presentation of this section we have avoided the statement of the assumption under which 
our derivations are rigorous. However, it is clear that if the mode is well defined under the initial prior, and 
n0, q and f are differentiable our derivation are justified. They may also be justified under milder assumptions, 
but the previous conditions cover most cases of practical importance. 

3. An application to the estimation of  the mean of  a normal distribution 

To illustrate the diagnostic tool presented in the previous section, suppose that we want to estimate the 
mean of a normal population, 0, and let us assume that n0(0),,~ N(p0, ag), x/O ~ N(0, a2), and,  for simplicity, 
a 2 is known. Then, the posterior mode, 00, is given by 

Oo = g2#° + n g ~  a 2 + n ~  (13) 



D. Pe~a, R. Zamar I Statistics & Probability Letters 36 ~1997) 205-212 209 

and the standard deviation of the posterior distribution is 

Gp = ¢0-o/. o2 + 0-2. (14) 

Because of the symmetry we assume without loss of generality that 2 >//0/> 0 and therefore O0 > 0. 
Suppose now that the prior distribution is ~ (0 )= (1  -e)ZCo(0)+ eq(O), with q ( O ) = N ( # l , 6 2 ) .  Then, as 

~bn = n(2-  0"0)/0- 2, ~bn ~ = --n/0- 2, ~z~ = - [(00-//0)/0-021~0, n~t= [((~0_g0)/0-02)2_ 1/0-02]rro, and q' = [(//0-00)/62]q, 
from (8) we obtain 

PMIF(//t,6) = ~ [ d l -  ~d2]  exp{0.5(d 2 - d 2 ) } ,  (15) 

where dl = (0o-//o)/0-0 and d2 = (Oo-#1)/3. Not surprisingly, the PMIF is directly proportional to the posterior 
standard deviation which converges to zero when n ~ cx~. This is consistent with the stable estimation property 
of Bayesian procedures (Savage, 1963). Moreover, the PMIF is inversely proportional to the variance of the 
contaminating distribution: a flat contamination can hardly affect the posterior mode. The PMFI increases with 
dl= n0-o(2-//0)/(0"2+ nag), that is, the posterior mode is less robust when there is a big discrepancy between 
the prior mean and the sample mean. Finally, the PMFI decreases when d2 is large. Therefore, the posterior 
mode is more robust when there is a big discrepancy between the modes of the posterior and contaminating 
distributions. 

In order to better understand the combined effect of #L and 6 we consider the following three cases. 
Case 1://1 = 00. One notices in this case that IPMIF(0o,6)I ~ c~ as 6---~0, and the sign is determined by 

that of dl. Therefore, the posterior mode tends to move towards the prior mean, and it is most sensitive to 
a point mass contamination at Oo (provided that d l ¢  0, i.e. Oo ¢ Po). The practical conclusion from this result 
is that small uncertainty in the value of Zto(0) far from 0"0 has less effect than small uncertainty on values 
around 00. 

Case 2: ( 0 o -  Po)(O0-//1 ) >  0. In this case the sign of PMIF is opposite to the sign of (00- / /0)  for values 
of 6 smaller than 30, where 

-//1) 
--  / /0) '  

and it has the same sign of (0o - Po) for values of 6 larger than 3o. The practical conclusion from this result 
is that relatively spiky contaminations (3 < 6o) moves the posterior mode away from the sample mean, and 
relatively flat ones (3 > 30) moves 0 towards the sample mean. The two values of maximum influence are 
given by 

62~ = [(did3 + 3) + x/(dld3 + 3) 2 - 4did3], (16) 

where d3 --- (00 - #l)/tr0. The minus (plus) sign produces the largest displacement towards (away from) the 
sample mean. 

Case 3:(00 - ~)(00 - #1) < 0. In this case the sign of PMIF is determined by that of dl. Therefore, the 
contamination always moves the posterior mode towards the sample mean. The maximum value is given by 
(16) with the plus sign (this is the only positive root since did3 <0).  The practical conclusion from this result 
is that any type of small uncertainty will move the posterior mode closer to the sample mean. 
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3.1. Symmetric contamination 

If the uncertainty only concerns the tails of the prior distribution one can make a even simpler analysis 
by restricting attention to the symmetric normal mixture model (Pl =Po). In this case, using (15) and the 
relation 6d2 = aodl one finds that 

PMIF(6) = ap-~d. [1 _ a g l e x p { O . 5 d , (  J _ ag)}6 z J . (17) 

Assuming, without loss of generality, that d l >  0, the PMFI is positive when 6 > ao, and negative otherwise. 
In other words, a small increase in the prior variance moves the posterior mode away from the prior mean 
and towards the sample mean, as one may expect. 

The PMFI has a positive and a negative maximum values achieved at 

2 
62,= -~[(dl 2 + 3)-4- ¢(d• + 3) 2 - 4d2], (18) 

where the plus (minus) sign produces the positive (negative) maximum. Observe that when dl is small, 
62 ~ 3a g. and 62 ~ 0. This means that when the data and the prior agree, the most damaging symmetric 
contamination has a variance that is three times that of the prior. 

On the other hand, when d~ is large, that is, the data and the prior are not consistent, it is easy to see 
that when dl --* ~ ,  62 ~ ao 2 and 62 ~ ~ .  Therefore when dl is large the posterior mode can only be moved 
towards the sample mean and the most damaging symmetric contamination has a large variance close to d21 a2. 

Although the PMS is always infinite for all ao, we note that the PMIF goes to zero (infinity) when ao goes 
to zero (infinity). A non-informative prior leads to a very non-robust posterior mode whereas a strong prior 
belief produces the most robust situation. 

4. Some possible extension 

The simple tools presented in the previous section can be generalized in two directions. The first, and most 
obvious one, is to consider the case of a vector parameter case. The second, is to consider the sensitivity of 
credibility intervals. 

4.1. Vector parameters 

For the multivariate case, let 0 be a k × I vector of parameters. Then the posterior density is given by (1) 
where now xi and 0 are vectors. We will consider a family of multivariate prior distributions 

g ( 0 ) = ( 1  - e)n0(0) + eq(O), (19) 

where 0 < e <  1 and q E.,~, where .~ is a class of multivariate contaminating distributions. The analog of (2) 
is 

v log p(Olx) = v log g(0) + ~ v log f ( x i l O )  = O, (20) 

where XTh(t) is the gradient of h. Letting 

r< o, ao,,<l (21) 
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we obtain the following generalization of (8) 

.T 
00 = (n0H - (Vn0)(VX0) T -~- 71702 ~/nt)--I (qVrc0 - n0Vq) (22) 

provided that the inverse exists. In this equation H is the Hessian matrix for n0, given by 

f 02n(O) } (23) 
n =  {h,j} = 0= 0 

~ '  is the Hessian matrix for the log-likelihood function and (~Trco) and (~Tq) are column vectors representing 

the gradients of no and q evaluated at 0 = 0o. 
We define the PMIF in the vector case as 

PMIF(n0, q) = Z o 1/200, (24) 

where Zo is the posterior covariance matrix of 0 under n0. 

4.2. Credibility region 

Following the notation in (6) and (7), let A = m(x]r~0), B = m(xlq ) and el and e2 be defined by the equations 

= p(t lx)  dt = p(t lx)  dt (25) 

where 0 < a < 1/2 and p(tlx ) is given by (4). It is not difficult to see that 

(del(e)  ~ = ~B - A f~lo~ q(t)f(xlt  ) dt (26) 
d l=k l (q )=  \ de J ~ = o  Arto(ct)f(xlc~) 

where c~' is defined by the first equality in (25) with e = 0. Analogously, 

~B + A fc7 q(t)f(xlt)  dt (27) 
O2=k2(q) = Ano(c~)f(xle~) 

where c* is given by the second equality in (25) with e = 0. 
Clearly, the sensitivity of the length of the credibility region can be measured by 62 - 61. In the particular 

case of symmetry of the posterior density under re0, we have that 

* ( X )  

A[ff_t q(t) f (xl t)dt  + f~  q(t)f(xlt)dt] - B 

62 - 61= A p( c t ) f (xlc 7) 

Notice that in our approach the coverage probability is kept constant and we study the changes in the 
credibility intervals due to the contamination on the prior. The alternative approach of keeping the interval 
boundaries fixed and studying the changes in the coverage probabilities have been considered by several 
authors (see, for instance, De la Horra and Femhndez (1994)). Both approaches are complementary. One can 
easily imagine situations where the coverage probability changes very little which the extremes of the credible 
intervals are greatly affected by changes an the prior distribution and vice versa. 
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5. Concluding remarks 

Assessing robustness in Bayesian inference requires consideration to the prior and to the likelihood. 
In this paper we have presented a single diagnostic statistic, the posterior mode influence function PMIF, 
for studying the sensitivity o f  the estimation to local changes in the prior distribution. The statistic is very 
simple to compute, and provides a first step in the analysis of  robustness. I f  the PMIF is large, the inference 
is not robust to the prior. On the other hand, i f  PMIF is small, further studies should be made to assess the 
sensitivity of  other characteristics o f  interest in the posterior distribution to changes in the prior and /o r  the 
likelihood. 

As shown in Section 4, these simple tools can be easily generalized to cover other more complicated 
situations, such as the vector parameter  case and credibili ty interval (and regions). A more complete study o f  
these problems will be the subject of  further research. 
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