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Gibbs Sampling Will Fail in Outlier Problems 
With Strong Masking 

Ana JUSTEL and Daniel PENA 

This article discusses the convergence of the Gibbs sampling algorithm when it is 
applied to the problem of outlier detection in regression models. Given any vector of 
initial conditions, theoretically, the algorithm converges to the true posterior distribution. 
However, the speed of convergence may slow down in a high-dimensional parameter 
space where the parameters are highly correlated. We show that the effect of the lever- 
age in regression models makes very difficult the convergence of the Gibbs sampling 
algorithm in sets of data with strong masking. The problem is illustrated with examples. 

Key Words: Bayesian analysis; Leverage; Linear regression; Scale contamination. 

1. INTRODUCTION 

The intensive attention that Gibbs sampling (Geman and Geman 1984; Gelfand and 
Smith 1990) has received in applied work is due to its mild implementation requirements 
together with its programming simplicity. In a Bayesian parametric model this algorithm 
provides an accurate estimation of the marginal posterior densities, or summaries of these 

distributions, by sampling from the conditional parameter distributions. Furthermore, the 

algorithm converges independently of the initial condition and, in many applications, 
in a few iterations. However, several authors have indicated problems of convergence 
with Gibbs sampling. Gelman and Rubin (1992) showed the importance of the initial 
conditions in the speed of convergence of the algorithm in a high-dimensional parameter 
problem. Matthews (1993) gave an example in which the Gibbs sampler seemed to 

converge when in fact it had not. Hills and Smith (1992) stressed that the number of 
iterations to achieve convergence is a function of the starting values and the correlation 
structure of the stochastic process generated by the Gibbs sampling. They concluded that 
the higher the correlation the more serious the convergency problem. Polson (in press) 
analyzed a convergence rate bound that can be used to choose the number of iterations 
to guarantee desired sampling accuracy. The running time depends on the effects of 
correlation and dimension. Smith and Roberts (1993) and Mengersen and Robert (in 

press) pointed out that when the parameter distribution is bimodal, the Gibbs sampling 

Ana Justel is a Graduate Student and Daniel Pefia is Professor, Department of Statistics and Econometrics, 
Universidad Carlos III de Madrid, Madrid, Spain; e-mail: ajustel@eco.uc3m.es. 

)1996 American Statistical Association, Institute of Mathematical Statistics, 
and Interface Foundation of North America 

Journal of Computational and Graphical Statistics, Volume 5, Number 2, Pages 176-189 

176 

This content downloaded from 163.117.20.121 on Thu, 03 Dec 2015 09:48:56 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


GIBBS SAMPLING WILL FAIL IN OUTLIER PROBLEMS 

iterations may be trapped in one of the modes, reducing the probability of reaching 
convergence. 

This article shows that outliers can make very unlikely the convergence in linear 

regression problems with strong masking. If there are outliers that mask or swamp other 
observations, the parameter structure will be highly correlated and convergence will 
usually not be reached in a reasonable amount of iterations. In addition, the algorithm 
may provide a false idea of the posterior probabilities. In summary, in data sets with 
masked high leverage outliers, the Gibbs sampling iterations are stable around wrong 
limit values for thousands of iterations. 

This article is organized as follows. Section 2 presents the Gibbs sampling application 
to detect outliers in linear regression problems by using the scale contaminated regression 
model and examines the algorithm convergence in some examples. Section 3 analyzes the 
reasons of the slow convergence of the algorithm in data set with masked high leverage 
outliers and justifies that this problem does not depend on the particular model used to 
generate the outliers. Section 4 gives final comments. 

2. GIBBS SAMPLING IN THE 
SCALE CONTAMINATED MODEL 

2.1 IMPLEMENTATION OF THE GIBBS SAMPLER 

The lack of homogeneity in the sample is frequently modeled with a mixture of dis- 
tributions. In this article, we shall focus on identifying outliers in the scale contaminated 
normal model introduced by Tukey (1960), which has been studied by, among others, 
Box and Tiao (1968). In this model, it is assumed that the data may come from a central 
distribution with high probability, (1 -a), and from a contaminated distribution with 
low probability, a, and that the observations y = (Yl,..., y,)' are generated by 

Yi X + Ui i= l,...,n, (2.1) 

where xi = (1, xi,... Xip)' are nonrandom variables; n is the sample size; P E RP+l 
is a vector of unknown parameters, and ui is a random variable with a normal mixture 
distribution, 

ui - (1 - a) N(0, a2) + N(, k ) i 1,... n. (2.2) 

Thus, a is the prior probability that each observation has a N(x'i3, k2a2) distribu- 
tion. We assume that the contamination a and the scale parameter k are known, and also 
that X = (x ,..., x)' is a full rank matrix. 

The procedure to apply the Gibbs sampling to outlier problems, following Verdinelli 
and Wasserman (1991), is to introduce a set of dummy variables and compute their 
posterior probabilities. Let 6 = (1,... ,Sn)' be a vector of classification variables, 
defined by 

J 1 if V(yi) k2c2 

l {0 if V(yi) a2. 
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A. JUSTEL AND D. PENA 

The marginal posterior probabilities for the classification variables can be obtained from 
the expression 

I i 

P(6i= l)= | .E E P(1 =-ji,...6 = 1 ,...,6n j, Y). (2.3) 
j-=0 jn =0 

The computation of the i marginal probability requires knowing the probabilities of 
all the possible configurations where 6i = 1. This means, for example, that for a sample 
size n = 40 we should compute 240 (approximately 1012 probabilities) to obtain the exact 

marginal probabilities (2.3). The Gibbs sampling computational advantages seem to be 

very useful in detecting multiple outliers in this problem. 
The basic requirement for the Gibbs sampler is to be able to draw samples from 

the conditional distributions. It is easy to show that the conditional distributions for the 

parameters in the model (2.1) and (2.2) with noninformative priors p(3, a) oc a-l, are 
as follows. 

1. For each i, 6i y, 3, a2 has a Bernoulli distribution with success probability 

afN(ui/ka) 
pi ckfN(u2/ka) (2.4) 

fN (ui/ka) + k(1 - a)fN(ui/a)' 

where fN is the standard normal density function. Conditional to the parameters 
of the model, the 6's are independent variables. 

2. The distribution of the vector 3 \ y, 66,a2 is Np+l (&, a2(X'VX)-'), where 

3= (X'VX)-'X'Vy 

and V is a diagonal matrix with elements vii = k-2 if 6i = 1 and vii = 1 

otherwise. 
3. The distribution of a2 [ y, 6, P is Inverted- X2. Therefore, defining the standarized 

errors u = (yt - x,3)/a(l + 6i(k - 1)), it follows that 

n 

u2 yI Y,6, 3 X2 
i=\ 

The Gibbs sampling iterations usually start from an arbitrary vector of initial values 

(a(0), 6(), 3(0)). In the first iteration, the samples are generated as follows: 

draw a(1 from y draw a rl) m from f(aly, 6(?),/30) 

draw 6(l) from f(6 Iy, a(),/ ()) 

draw /3() from f(l y, a(l),6()). 

Replicating the same scheme s times, we obtain the sequence (a('), 6( ),/3(1)),..., 
(a(S),6(S),/ (s)). Geman and Geman (1984) proved that, under regularity conditions, 
this sequence converges in distribution to (a, 6, /). After s iterations and replicating the 
same scheme r times, it may be possible to make inference for the mean, variance or 
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GIBBS SAMPLING WILL FAIL IN OUTLIER PROBLEMS 

any other characteristic of the parameter posterior distribution by using the independent 
and identically distributed samples 

(s) (s) 

a(s) 
a6(s) 

o(s) a(s) 

I ),..., cr 

Gelfand and Smith (1990) recommended the sample estimate of 

Pi = E,,a2 [P(6i = 1 y,l3, a2)], that is, 

r 1 
fN ((Yi - x3()) /ks)) 

r a fN ( 
- 

i)) /kg )) + k(l - a) fN ((i - 

(2.5) 
This estimate incorporates the information from an equivalent sample of the other param- 
eters and it is more efficient than the sample mean. This result was proved by Gelfand 
and Smith (1990) for independent samples, and by Liu, Wong, and Kong (1994) in the 

general case. Alternatively, it is possible to estimate pi with the last r iterations from 
an unique sequence as long as we desire. Although running the algorithm only once 

may save computational time, it has the disadvantage that the samples are identically 
distributed but are not independents. As a result of this, and considering that the space 
parameter dimension (the sample size plus the parameters in the model) is moderate, 
our next examples always run the Gibbs sampling in parallel sequences and use (2.5) to 
estimate pi. In addition, we will see in Section 3 that in this problem the Gibbs sampling 
convergence is very sensitive to the initial conditions. By running sequences in parallel 
we may avoid conclusions that depend on the selection of only one initial parameter 
vector. For a most detailed description of the Gibbs sampling performance we refer the 
reader to Gelfand and Smith (1990) and Casella and George (1992). 

2.2 EXAMPLES 

We analyze the performance of the outlier detection procedure based on the Gibbs 
sampling in four examples. In the first one it is applied to a much analyzed real data set 
where the convergence is very fast and the outliers are immediately identified. However, 
as it is revealed in the next examples, based on real and simulated data, if there are 
outliers that mask or swamp other observations, the algorithm convergence may not be 
achieved in a reasonable number of iterations. In addition, Gibbs sampling may provide 
a false idea of the probabilities because the series may be stable around wrong limit 
values. 

The algorithm is always run 1,000 times (in parallel) with different initial values. 
The last iteration of each performance is used to compute the outlier posterior probability 
estimates p^ i given by (2.5). These probabilities will be represented in the graphs by 
a bar for each data point. Among the possibilities for selecting the initial values, the 
designed criterion is to select 6(O) = 1 with c probability. Then ,(0) is the generalized 
least square estimate (GLS), /(0) = (X'V(0)X)- X'V(?)y, in which V(?) is a diagonal 
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Figure 1. Results of the Gibbs Sampler With the Stack Loss Data. (a) Posterior probabilities for each data point 
being an outlier after 500 iterations; (b) posterior probabilities as a function of the iteration number. 

matrix with diagonal elements l/k2r2 if 6 = ) = 1, and l/a2 otherwise. It is not necessary 
to specify the initial value for the variance because it is the first parameter computed in 
the iterations. 

2.2.1 Example 1 

The "stack loss data" is a group of real data from a plant for the oxidation of ammonia 
to nitric acid; 21 diary observations were collected for three explanatory variables and one 

response variable. This data has been studied with different methods for outlier detection 
and data 1, 3, 4, and 21 are found to be outliers (see, for example, Daniel and Wood 
1980; Rousseeuw and van Zomeren 1990). Moreover, some authors add observation 2 
to this list. The data may be found in Daniel and Wood (1980), as well as a description 
of the experiment. 

The outlier posterior probabilities after 500 iterations of the algorithm are represented 
in Figure la. The results confirm that data 1, 3, 4, and 21 are outliers, with probabilities 
greater than .5. Moreover, Figure lb shows the series of posterior probabilities for each 
data point as a function of the iteration number. It can be seen that convergence is reached 
in a few iterations (less than 200). 

2.2.2 Example 2 

The set of data generated by Hawkins, Bradu, and Kass (1984) is a typical example 
of masking. It includes 75 observations of four variables. Figure 2 shows all the two- 
dimensional scatter plots that can be obtained by taking pairs of variables. The first 14 

points are high leverage data and of those the first 10 are outliers which mask each other 
and swamp the 4 nonoutliers. The outliers will not be easily detected because of the 

masking and swamping. 
After 2,000 iterations of the Gibbs sampling, Figure 3a shows clearly that the 10 

outliers are not identified and that there is a large swamping effect for observations 11 
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Figure 2. Matrix Plot for the Hawkins, Bradu, and Kass Data. 

to 14, whose probabilities of being outliers are almost one. The series seems to have 

converged in a few iterations and this wrong result is not modified after 30,000 iterations 
(see Fig. 3b). 

2.2.3 Example 3 

The third set of data is built following Rousseeuw (1984). These are 50 obser- 
vations with 30 good data points generated from a linear model given by the equation 
yi = 2 + xi + ui, where xi is a random variable with uniform distribution on (1,4) and the 

(a) (b) 
1- - 1- 

0.8- 0.8- 

2 0.6- - 0.6- 
Q Q. 

o o 0.2- 0 0.4- s 0 4- 02 0.2 - 

0 20 40 60 0 1 2 3 
Observation Iteration 104 

Figure 3. Results of the Gibbs Sampler With Hawkins, Bradu, and Kass Data. (a) Posterior probabilities for 
each data point being an outlier after 2,000 iterations; (b) posterior probabilities as a function of the iteration 
number. 
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UA u 
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2- 

0 
0 2 4 6 8 

x 

Figure 4. Scatterplot of the Rousseeuw Data. 

errors are normally distributed with standard deviation .2. The 20 outliers are generated 
from an independent normal distribution with mean vector p, = (7,2)' and standard 
deviations .5. The scatterplot of these points is shown in Figure 4, where it can be seen 
two groups of points. The group on the right corresponds to the bad data, observations 
1 to 20, that are 40 per cent of the sample. 

The final probabilities and the series are shown in Figure 5a and Figure 5b, re- 

spectively. After 30,000 iterations, it can be seen that the first 20 observations-the 
outliers-are not identified when the series seem to converge. 

2.2.4 Example 4 

The Hertzsprung-Russell diagram of the star cluster CYG OB1 showed in Figure 6 
is a real data example. Two variables are observed in 47 stars in the direction of Cygnus. 

(b) (a) 

1 - 

8- 

6- 

4- 

2- 

n .. ... .... ... .... . ~ I 11 . . 
0 20 40 0 1 2 3 

Observation Iteration 104 

Figure 5. Results of the Gibbs Sampling With Rousseeuw Data. (a) Posterior probabilities for each data point 
being an outlier after 30,000 iterations; (b) posterior probabilities as a function of the iteration number. 
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3E. ANALYSIS OF THE GIBBS SAMPLING CONVERGENCE 
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-0 

ID 0* * - 

_ - 
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3.5 4 4.5 
Log temperature 

Figure 6. Hertzsprung-Russell Diagram of the Star Cluster CYG OB1. 

The independent variable (x) is the logarithm of the effective temperature at the surface 
of the star and the dependent variable (y) is the logarithm of the light intensity. The 
values were provided by Rousseeuw and Leroy (1987). The scatterplot shows that four 
outliers exist (observations 11, 20, 30, and 34) which correspond with giant stars. 

This example shows that the convergence problem observed in the previous examples 
may also appear in real data sets. It can be seen in Figure 7a and Figure 7b that after 
10,000 iterations the outliers are not identified and the series seems to conv erge. 

3. ANALYSIS OF a fHE GIBBS SAMtPLING CONVERGENCE 

The examples in the previous section have shown that the direct application of the 
Gibbs sampling will be a bad procedure for outlier detection in certain data sets because 
the posterior probability series may seem to converge around false values. 

(a) (b) 
0.15- - 0.15- 

' F 
D ._ 

Q 0.1- - Q 0.1- 
0 0 

o o 
0.05- - ) 0.05- - 

o.T L 

0 10 20 30 40 0 5000 10000 
Star Iteration 

Figure 7. Results of the Gibbs Sampling With Data of the Hertzsprung-Russell Diagram of the Star Cluster 
CYG OBI. (a) Posterior probabilities for each data point being an outlier after 10,000 iterations; (b) posterior 
probabilities as a function of the iteration number. 
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15, 

10- 
Q) 

0" 

-10 0 10 20 30 -10 0 10 20 30 
Data 

Figure 8. Frequency Histogram of n = 40 Data Generated From a Normal Mixture Distribution. 

One reason for this is the masking problem. If outliers mask or swamp each other, 
their 6 variables are high correlated and, also, the parameter space dimension (the 
sample size plus the parameters in the model) rises with the sample size. Smith and 
Roberts (1993) indicated that high-dimensional parameter space and high correlation 
will slow down the convergence, but the problem is more serious that the one indicated 

by these authors. For instance, the data in Figure 8 is a sample of a two normal mixture 
(contamination is 30% of the data) in which these two conditions will appear. The prob- 
abilities in Figure 9a and the series in Figure 9b show that the convergence is slow, as 

expected, but it is eventually achieved. This is not the case in the regression examples 
in Section 2.2. The principal difference among these two situations is the role that lever- 

age plays in the regression model. If the initial assignation of the classification variables 
includes as good data points many of the high leverage outliers that cause masking and/or 

(a) (b) 
1- 

0.8- 

2 0.6- 
o_ 

o) *I 0.4- 
co 
Q 0.2 ' 

n,1~l,1 ,,,1l,!,l,,t,l 11J,,l 
0 10 20 30 40 0 5000 10000 

Observation Iteration 

Figure 9. Results of the Gibbs Sampling With Data Generated From a Mixture Normal Distribution. (a) Posterior 
probabilities for each data point being an outlier after 10,000 iterations; (b) posterior probabilities as a function 
of the iteration number. 
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Figure 10. Posterior Probabilities After 200 Iterations When the Outliers are Initially Assigned to the Contam- 
inated Distribution. (a) Hawkins, Bradu, and Kass data; (b) Rousseeuw data. 

swamping, the regression coefficients will be biased, the residuals at these points will be 

very small, and the probability of these points to be classified as outliers will be low in 
the next iterations. 

Let 6(0) be the initial configuration to start the algorithm and let 3S(O be the gen- 
eralized least square estimate using 6b(). In the first iteration, b6l) = 1 with probability 
p) given by (2.4), in which 3 is substituted by 0(0) and a by the standard deviation 
drawn in the first iteration. The probability p.l) can be expressed as 

(1) (l+^ d-.ex, (0)2 (3.1) p(l) (1+ k a-'(l-a) exp(2- (3.1)21U 

where u(0) I- x',f) and I = 1 k- 2. For large k, the probability (3.1) only 
depends on the residual u() ((1) is the same for all of them) and it will be close to one 
when is large, and close to zwhen larg, n l r hen u) is small. 

Let So = (Xo, Yo) be the observations that are classified as good in the initial 
conditions. For large k, V(?) is approximately the identity matrix and, therefore, u( 
will be the least square residual using the subsample (Xo, Yo). If this subsample contains 
several high leverage outliers, the coefficient 3(0) will be biased and the least square 
residuals at these points will be small. Therefore, they will have a very low probability 
of being selected as outliers in the next iteration. The only chance of detecting these 
outliers will be when all of them are classified as outliers in the drawing from the 
condit l ional distribution (3.1). For instance, if we have 10 outliers and p) = .01, this 

probability is 10-20. 
The solution to this problem begins with the correct initial assignation of the group 

of masked outliers. For Examples 2 and 3 analyzed in Section 2.2, the graphs in Figure 10 
show the probabilities when, at least, the outliers are initially assigned to the contaminated 
distribution. As it can be seen, convergence is reached very quickly. 

One may wonder if the lack of convergence shown in the examples is due to the 
particular model used. For instance, instead of the scale contaminated model (2.1) and 
(2.2) we may have assumed the mean-shift model used by Guttman (1973) and Guttman, 
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Dutter, and Freeman (1978) or, even, assume no particular model for the generation of 
the bad data, as advocated by Geisser (1991) and Pettit and Smith (1985). However, as 
shown by Pefia and Guttman (1993) for large k, as assumed in this article, the probabilities 
computed by the Tukey (1960) model, the mean-shift model and the predictive approach, 
in which no model for the generation of the outliers is used, are essentially the same. The 
reason is that for large k, model (2.1) and (2.2) allows any departure from the central 
model, which is equivalent to allowing any mean-shift or any source of heterogeneity 
(see also Guttman and Pefia 1993). 

We have also considered a most general nonparametric hierarchical model. In this 
model, the observations are generated by (2.1) but now the error distributions are 

ui . (1 - ac) N(0, a2) + a N(hi, ' 272) i = 1,... , n. (3.2) 

As different level and scale parameters for the contaminated distribution have to be 
estimated using only one observation, the model is unidentified, except when some ob- 
servations share a common parameter. For this to happen, the distribution of the pairs 
Oi = (hi, 72) should be discrete. Therefore, to complete the prior structure we consider 
the following distributions: 

Oi G 
G Dirichlet process (t, Go) 

Go ~ N(m, b) x Inv - Gamma (u/2, v/2) 
/i - Gamma (ao, bo), 

where G is an unknown bivariate distribution, p is the total mass and Go is the prior 
expectation of the Dirichlet process (Ferguson 1973). 

Escobar (1994) proposed the use of Gibbs sampling in problems that involve Dirich- 
let process priors and showed that 

9O I Y O(i) ' 7n+ lGi + E 7rj I(0=oj), (3.3) 
jsi 

where O(i) = (i,... ,On-1, On+1 ,..., On), Irrn+1 + Eji 7rj = 1, and IA is the unit point 
mass at A. Equation (3.3) means that in the Gibbs sampling iterations the parameter 
Oi is one of the values in O(i) with probability irj oc f(yi I Oj), and with probability 
7rn+l c f f(yi I 0) dGo(0) is drawn from Gi; that is the posterior distribution of Oi 
given the data yi and the prior distribution Go. Nevertheless, we use the modified scheme 
of the Gibbs sampling introduced by MacEacher (1994) and implemented by Miiller, 
Erkanli, and West (1992) in the nonparametric estimation of the regression function. The 

parameter vector is augmented with n group indicators s = (sl,..., s,) which hold that 
si = si = j if and only if Oi = i, = 0j, where 0* = (90,..., O)' is the vector of the 
k < n distint values in 0 = (01,..., On)'. The conditional distributions for 6, 3, and a2 
have the same structure as model (2.1) and (2.2) and are given in the appendix, as well 
as the conditional distributions of s, 0*, and ti. 

We have applied this model to the examples in Section 2.2, finding the same results 
that are shown there in all the four cases. 
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4. CONCLUDING REMARKS 

The Gibbs sampling can be used for outlier detection as Verdinelli and Wasser- 
man (1991) showed in the estimation of the mean for a normal model. When outliers 
are isolated, Gibbs sampling avoids the 2' necessary computation to obtain the marginal 
posterior probabilities in the scale contaminated regression model. However, when the 
set of data has many outliers that mask each other, Gibbs sampling will fail and posterior 
distributions are poorly estimated. An erroneous initial classification of the observations 
will conduct the algorithm to a wrong solution along thousands of iterations. The exam- 

ples have shown that, in regression, high leverage may avoid convergence completely. 

APPENDIX: CONDITIONAL DISTRIBUTIONS FOR 'THE 
NONPARAMETRIC MODEL (2.1) AND (3.2) 

The conditional distributions for the parameters in model (2.1) and (3.2) are as 
follows: 

1. For each i, 6i I y, 2, 2, s, 0* has a Bernoulli distribution with success probability 

aofN((ui - h )/0r7) 
i 
afN((Ui 

- 
h*i )/ ) + (1 -a )Tr~fN(Ui/0)' 

2. The distribution of the vector 3 y, a2,6, s, * is Np+i (3s,c2(X'VsX)- )), 
where ̂  = (X'VsX)- X'Vs(y- H), H, = (6 h* . ., ,h*)' and V, is 
a diagonal matrix with elements (1 + 6i(r2T - 1))- . 

3. The distribution of a2 y,3, 6, s, 0* is Inverted - Gamma (n/2, or2/2), where 
2 = (y - X3 - Hs)'Vs(y - X3 - HS). 

4. Let S(i) be the vector s when si is eliminated and let nij be the number of group 
indicators in s(i) equal to j. Then the number of different indicators is 

k - 1 if i sj and j 5 i 
k(i) = 

k otherwise. 

In order to compute 7ri, = P(si = j y, p3, 2, 6, s(i), 0*, ) we consider two 
cases: 

(a) When bi = 1, the probability 7ri, is given by 

C nij rj fN((ui - 
hj)/rj*) for j = 1,..., k 

C C r7i fN((Ui - h )/lari) for j = k(i) + 1, 

where C = (7ri,k(,)1+ + Eji wi,j)-l. Note that 7ri,k()+I is proportional to 

f f(Yi I O)dGo(0) and it is approximated by the density of a N(xi/3 - 
h* 2,rs2*) ( i h 'S 0 r t 

(b) When 6i = 0, the probability 7ri,j is given by 

nij/(p,+ n-1) for j = 1,..., k) 
ri,j | /=~l/(pl + n- 1) for j = k(i) + 1. 
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5. For j = ,..., k, we define the sets I1 = {i i i = 1 and si = j} and call n* to 
the size of Ij. Then the conditional distributions of h1 and rj are: 

h* I y,l ,a,6, s,r* , N(mj,bj) 

T2* I y,/, 2, , s, h* Inverted - Gamma (n 
+U v v 

) 
v 

2 ' 2 ' 

where bj = (b-2 + 7-2c-2n*) 1, mj = bj (b2m + 2* -2 i, and 

Vj = 5-2 _^C; hj)2. vj = a _ 
(U 

6. The conditional distribution of p, is computed by augmenting the parameter vec- 
tor with an artificial variable rq (see Escobar and West 1995). The conditional 
distributions are given by 

r7I Y, P Beta(p + l, n) 

A I y, s, r ~ 7r Gamma(al,bl) + (1 -7r) Gamma(al - 1, b), 

where 7r = (a, - l)/(al - 1 + nbl), a, = ao + k and bl = bo - log(). 
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