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ABSTRACT

This paper compares the structure of three models for estimating fumre
growth in a time series. It is shown that a regression model gives minimum
weight to the last observed growth and maximum weight to the observed
growth in the middle of the sample period. A first-order integrated ARIMA
model, or 1(1) model, gives unifonn weights to all observed growths.
Finally, a second-order integrated ARIMA model gives maximum weights
to the last observed growth and minimum weights to the observed growths
at the beginning of the sample period. The forecasting performance of
these models is compared using annual output growth rates for seven
countries.
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INTRODUCTION

An important problem in modeling economic time series is forecasting the future growth of a
given time series. Assuming that a linear model is appropriate for the data, the procedures most
often used are as follows:

(1) Detrend the observed data by regressing the observations on time, and use the residuals
from this regression to build a stationary time series model. The series is forecasted by
adding the values of the deterministic future trend and the forecast of the stationary
residual.

(2) Differentiate the series, test for unit roots and if the series is assumed to be integrated of
order one (1(1)) build a stationary ARMA model in the first difference of the series.
Typically models built in this way include a constant for many economic time series.

(3) Differentiate twice the series and build the ARMA model on the second difference of the
process that is assumed to be 1(2). Then in most cases the 1(2) model does not include a
constant term.

The decision between these three procedures should be made by testing the number of unit roots
in the time series model. However, the available tests are not very powerful, specially for short
time series, and therefore it is important to understand the consequences of using these models.
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Let Z,, be the time-series data and let us call b,-Z,- Z,_, the observed growth at time /. It is
shown in this paper that the estimate of future growth by the three procedures can be written as

where the coefficients to, are a weighting function, that is, w, > 0 and I ŵ  = 1. The next section
of this paper proves that linear regression gives minimum weights to the last observed growth
and maximum weights to the observed growth in the middle of the sample. The third section
shows that an 1(1) model with a constant term gives a unifonn weight throughout the sample,
that is, a>, = n'\ The fourth section shows that an 1(2) model gives maximum weight to the last
observed growth and minimum to the oldest values. The fifth section compares these models in
forecasting annual output growth for seven countries in the period 1960-91. The final section
contains some conclusions.

REGRESSION ON TIME

Let us call Z, the observed time series and let us assume for simplicity that the sample size is
n = 2 m + l . Let r= {-m,..., 0, . . . ,+m}. Then the least squares estimator of the slope in the
regression on time

Z,=^o+^it+u (1)

is given by

Z_,) (2)

Calling bi = Z,-Z,^^, for t=-m + l,...,m, the observed growth at each period, we note that

Z,-Z_,=

and, after some straightforward manipulations that are shown in Appendix 1, the estimate of the
slope can be written as

'̂ y(̂ > + ^ - y ) (3)
7=1

where the weights are given by

and add up to one. Therefore the estimated growth ^^ is a weighted mean of all the observed
growths bj, such that the maximum weights are given to fo, and b^ that correspond to the
observed growth in the middle of the sample period, and the minimum weights are given to b^
and foi_™, the first and last observed growth.

The estimator (3) has an interesting interpretation. On the assumption that the linear model
(1) holds, the 2m values fo, {t= -m+ 1, ...m) are unbiased estimates for^. These estimates are
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correlated and have covariances

,b,,,) = E[{b, -

Therefore, the covariance matrix of these 2m estimates is the Toeplitz matrix:

0

V =
-a" la" .

0 -CT

-CT
2 «_2

(5)

It is easy to show (Newbold and Granger, 1974) that given a vector B of unbiased estimators of
a parameter Q with covariance matrix V, the best (in the mean squared sense) linear unbiased
estimator of d given by

where 1' = (1 1... 1). Now, the inverse of the Toeplitz matrix (5) has been studied by Shaman
(1969), who obtained the exact inverse of a first-order moving average process. As V can be
interpreted as the covariance matrix of a non-invertible (0=1) first-order moving average
process, then V"' = \v^\ will be given by

_
'7

2m+1
1 = 1,..., 2m

and Vy = Vy,. Therefore

(2m+ 1)

2m 2m - 1 2m - 2
2 m - 1 2 ( 2 m - l ) 2(2m-2)
2m - 2 2(2m - 2) 3(2m - 2)

1
2
3

2 m - 1
2m

(7)

It is proved in Appendix 1 that the estimator (3) can also be obtained by applying (6) to the
unbiased but correlated estimates b,.

Suppose now that an ARMA model is fitted to the residuals of the regression model (1). Then
the equation for the /i-steps-ahead forecast is

where n,[K) is the forecast of the zero mean stationary process fitted to the residuals. As for a
stationary process the long-run forecast converges to the mean, rf,(/i) -» 0, and the parameter jOj
is the long-run estimated growth of the time series.

FORECASTING GROWTH WITH AN 1(1) MODEL

The ARIMA approach in modelling time series with trend is to differentiate the data and then fit
a stationary ARMA process. Assuming that a difference is enough to obtain a stationary series,
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that is, the series is integrated of order one or 1(1), the fitted model is

VZ,=^ + n, (8)
where n, follows an ARMA model

n, = IV,a,-i (9)

The process [a,] is a Gaussian white-noise process and the series {V,l converge, so that n,, is a
zero mean stationary process. Calling V to the covariance matrix of n,, the estimate of ^ in
model (8) is given by the generalized least squares estimator

^=( l 'V- ' l ) - ' ( l 'V- ' f t ) (10)

where the vector b has components b, = VZ,. Assuming that n, is stationary and invertible it is
well known (see Fuller, 1976) that 6= \fn S fc, is asymptotically unbiased for ^ with variance

When n is large, the expected growth h periods ahead is given by

and it will be estimated by

where n,{h) is the /i-steps-ahead forecast of the stationary process n,. As for h large the rf,
will go to zero, the mean value forecast, the long-run growth will be estimated by p . As

the long-run growth will be estimated simply by using the first and last observed values. Also,
this estimate can be interpreted as a weighted average with unifonn weighting of the observed
growths h,.

FORECASTING GROWTH WITH AN 1(2) MODEL

Some economic time series require differencing twice to obtain a stationary model. Then the
series is called integrated of order two or 1(2), and the model used is

V'Z, = «, (12)
where

n,=IV,a,-, (13)

and the process [a,] is a Gaussian white-noise process. The series (V,} converge so that n, is a
zero mean stationary and invertible process. The /i-steps-ahead forecast from model (12) can be
written

Z,(h) = $^" + ̂ l"h+n,(h) (14)

where ^Q'" and 4*'' depend on the origin of the forecast and n,{h) is the /i-steps-ahead forecast
of the zero mean stationary process. Again, as the forecast n,(h) will go to zero, the long-run
growth will be estimated by ^/". To understand the structure of ;3/" let us consider first the
simplest case in which n, follows an MA(1) process, n, = (1 -6B)a,. Then the forecast for any
lag h is given by

Uh) = ̂ M + M"h (15)
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because n,(l) is a constant. Let us obtain the form of j8f" as a function of the observed growths
VZ,. Assuming that the origin is t=T-l, then we can obtain y3o*̂ "'* in model (15) using the two
forecasts Zj-.i (1) and Z^.i (2) as follows:

and substracting the first equation from the second.

which leads to

, + ebr.2 + 0' b,_3...] (16)

that is, the forecasted future growth is an exponentially weighted average of past observed
growths.

In general, it is easy to show that

where the a^ coefficients depend on the moving-average structure of the process and behave like
' structure of weights.

FORECASTING INTERNATIONAL GROWTH RATES

In order to illustrate the performance of the three models compared in this paper we have
applied them to forecast gross national product for seven countries in the period 1960-91. Many
sophisticated models have been used to forecast intemational growth rates and tuming points.
See, for instance, Garcia-Ferrer et al. (1987), Zellner and Hong (1989), Min and Zellner
(1993), and the references in these papers. Our objective here is not to build the 'best' model to
forecast annual output growth, but to illustrate the forecast accuracy for different forecast
horizons of the three models analysed in the paper.

The data we use are given in Appendix 2 and represent gross national product in the period
1960-91 for the United States, Japan, and the five largest countries of the European Union
(France, Germany, Italy. Spain, and the United Kingdom).

Four models are used for the logarithm of the gross nationat product. The first (Ml) is the
linear regression on time given by equation (1). The second (M2) is a random walk with drift,
that is model (8) with n, = a,. The third is an IMA (2, 1) model, that is, model (12) with
n, = (l-6B)a,. The fourth is a random walk without drift on the rate of growth In Y,(Y,_i,
where Y, is gross national product, and it is equivalent to the third model with ^ = 0. Note that
the forecast from any of these four models is a linear trend. In the first the slope is obtained by a
given maximum weight to the observed growth in the middle of the sample; in the second the
slope gives equal weight to all observed growths; in the third the weights decrease
exponentially; and in the fourth only the last observed growth is taken into account to build the
forecast. Therefore, Ml gives, relatively, minimum weight to the more recent data whereas M4
gives them the maximum weight.

We have used the period 1960-79 to fit the models and 1980-91 to check their forecasting
performance. Ml has been fitted by least squares to the 20 points, the parameter fi in M2 (see
equation (8)) has been estimated with equation (11), and the parameter 0 in M3 has been
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estimated by maximum likelihood for the seven countries with the results given in Table L M4
does not require any parameter estimation.

Table n presents the forecasting accuracy of the four models for three forecast horizons: one,
two, and three steps ahead. The procedure used to build this table is as follows:

(1) The fitted models were employed to generate twelve one-step-ahead forecasts, eleven two-
step-ahead forecasts, and ten three-step-ahead forecasts for the years 1980-91. Models
Ml and M2 were re-estimated to include all past data prior to the forecast origin. The
parameter d in M3 was always kept fixed to 0.7, the mean value for the seven countries
(see Table I). We have checked that re-estimating the parameter 0 with each new data
improves very few results, but makes model M3 more expensive in computing time. In this
way the updating of the forecast equation is very simple in all the models used. Finally,
M4 does not need any parameter estimation.

(2) The error of the three types of forecasts were computed for each of the seven countries. As
an overall measure of accuracy we have used the mean squared error of the forecast. This
measure has been computed for the three forecast horizons: one (SI), two (S2) and three
(S3) steps-ahead.

It can be seen that for the one-step-ahead forecast 1(2) models are the best in six of the seven
countries. Only for the United States are the 1(1) forecasts slightly better than those generated
by the 1(2) models. The 1(2) models are also the best for two and three-steps-ahead forecasts for

Table I. Maximun likelihood estimation of the moving average parameter

France Germany Italy Japan Spain UK USA

0.62 0.84 0.83 0.52 0.3 0.95 0.93

Table II. Mean squared error of the one, (SI), two, (S2), and three, (S3), steps-ahead forecasts for the
four models

SI
S2
S3

SI
S2
S3

SI
S2
S3

SI
S2
S3

Ml
0.0120
0.0166
0.0220

Ml
0.0084
0.0120
0.0162

Ml
0.0252
0.0340
0.0435

Ml
0.0032
0.0043
0.0054

]

M2
0.0003
0.0012
0.0026

M2
0.0003
0.0014
0.0031

M2
0.0006
0.0025
0.0051

M2
0.0006
0.0015
0.0024

France
M3

0.0001
0.0005
0.0010

Italy
M3

0.0002
0.0011
0.0025

Spain
M3

0.0002
0.0009
0.0022

USA
M3

0.0007
0.0019
0.0033

M4
0.0001
0.0006
0.0011

M4
0.0002
0.0013
0.0037

M4
0.0002
0.0007
0.0019

M4
0.0007
0.0029
0.0065

SI
S2
S3

SI
S2
S3

SI
S2
S3

Ml
0.0066
0.0093
0.0125

Ml
0.0320
0.0432
0.0569

Ml
0.0022
0.0029
0.0030

Germany
M2

0.0004
0.0015
0.0031

M3
0.0003
O.OOU
0.0024

Japan
M2

0.0005
0.0019
0.0043

M3
0.0001
0.0004
0.0008

United Kingdom
M2

0.0007
0.0019
0.0031

M3
0.0007
0.0023
0.0043

M4
0.0002
0.0011
0.0031

M4
0.0002
0.0007
0.0014

M4
0.0005
0.0024
0.0061
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five of the seven countries. However, for the United States and the UK the 1(1) model provides
better forecasts than the best 1(2) model. As can be expected, the forecasting performance of the
deterministic linear trend is very poor for all horizons.

The main conclusion from this exercise is that, on average, 1(2) models, even the simplest
ones that do not require any estimation, seem to be best for forecasting intemational growth in
the countries considered in this example.

CONCLUSION

We have compared three time-series models in this paper. The three models forecast future
growth by using a weighted average of the observed growths in the sample. Linear regression
gives minimum weight to the last observed growth and maximum weight to the centre of the
sample period. This implies that, for instance, if we use this method to forecast next year's
gross national product (GNP) with a sample of 40 data, we are saying that the most informative
item to forecast 1994 growth is the growth in 1974, whereas the last observed growth in 1993
receives a weight equal to the one in 1954. If we use an 1(1) model, the growth is forecast by
using a uniform weighting in all the years in the sample. In the GNP example the observed 1993
growth is as relevant as the one observed in 1960 or 1965 for forecasting 1994 growth. The
logical requirement that the most relevant year to forecast GNP growth are the last observed
growth is only accomplished by using an 1(2) model. In particular, an ARIMA (0, 2,1) model
leads to an exponentially weighting of last observed growths.

Many econometric papers and some well-known books on time series (see, for instance,
Brockwell and Davis, 1987, p. 25) use least squares regression on time as an altemative to
diflFerencing for removing a trend in a time series. However, the logical implications of both
procedures are seldom analysed. It is important to stress that if a series follows an 1(2) model
but we detrend it by least squares regression on time, the residuals from this fit do not provide,
in general, a sound basis for fitting an ARMA model, and the forecast perfomance of the
procedure may be poor.
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APPENDIX 1

Using

and
m - f+1

1=1 j = t i = l 2

we have
m

0:=J]wj(bj + b,_j) (A2)
;=i

where

and the sum of all the weights tOj adds up to one:

- l m m

On the other hand, let 1' = (1 , . . . , 1) be a vector of 2m ones. Then using equation (7)

l'V"' = (m, (2m - 1), - (2m - 2),..., - (2m - / + 1),..., m)

and
lm .

Therefore the estimate is given by
lm

3f(2m-/+l) ,
. i — m
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However,

2m
3(m - j + l)(m + j) ,

1) '"^

y 3(m+;)(m-y+l)
jtt 2m(2m+l)(m+l)

in agreement with equation (A.2).

APPENDIX 2

Year

1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5

France

843 797
945 321
075 117
186 077
328 572
439 832
567 050
687 399
801 853
997 718
169 517
320 319
455 696
642 994
741 918
729 687
893 818
031 470
167 773
300 036
359 708
411 784
513 213
548 895
616 372
700 143
813 350
917 827
126 894
320 876
440 386
501 546

Germany

856 480
891 267
933 451
962 240

1 026 340
1 081 450
1 111 960
1 108 750
1 169 990
1 257 090
1 321 400
1 361 160
1 419 120
1 488 190
1 492 080
1 471 220
1 549 800
1 593 910
1 641 640
1 709 170
1 727 510
1 730 520
1 714 140
1 740 900
1 789 350
1 823 180
1 863 770
1 890 280
1 960 510
2 027 330
2 130 500
2 209 640

Italy

299 823
322 014
341 991
363 885
374 066
386 290
409 409
438 795
467 514
496 023
522 366
530 750
545 077
583 826
615 520
599 197
638 619
660 174
684 480
725 461
756 197
760 366
761 991
769 370
790 036
810 580
834 262
860 422
895 397
921 714
942 271
955 817

Japan

63 530
68 758
74 883
84 091
93 910
99 376
109 947
122 132
137 866
155 068
171 674
178 993
193 712
208 484
207 197
213 123
222 098
232 566
243 891
257 390
266 741
276 287
285 022
292 721
305 208
320 419
328 839
342 340
363 592
380 735
400 627
418 347

9
11
12
13
14
15
16
16
18
19
20
21
23
25
26
26
27
28
28
28
29
28
29
30
30
31
32
34
35
37
38
39

Spain

997 409
268 160
388 150
577 180
255 234
146 669
244 187
949 235
067 357
676 720
512 121
465 753
215 030
023 181
429 127
572 397
450 289
229 612
642 478
654 512
027 187
975 987
429 760
082 958
524 354
321 697
323 992
147 515
910 027
611 409
973 365
839 726

UK

201 042
207 630
209 774
217 831
229 627
235 432
239 850
245 261
255 247
260 529
266 433
271 734
281 202
301 667
296 503
294 236
302 201
309 155
320 439
329 601
322 432
318 195
323 576
335 406
343 232
356 096
370 860
388 750
405 512
414 053
416 206
406 842

1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4

USA

864 700
854 445
952 558
096 600
213 900
336 100
473 400
536 400
641 400
715 800
714 400
791 800
934 400
086 600
068 400
043 500
193 800
336 400
490 000
579 200
563 800
632 900
551 800
675 000
900 700
016 649
119 600
243 300
410 600
525 300
555 000
496 100




