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ABSTRACT 

This paper presents a procedure to break down the forecast function of a 
seasonal ARIMA model in terms of its permanent and transitory 
components. Both depend on the initial values at the forecast origin, but 
their structures are fixed and independent of this origino The permanent 
component is an estimate of the long-run projection of the corresponding 
economic variable and the transitory element describes the approach 
towards the permanent one. Within the permanent component a distinction 
is made between the factors that depend on the initial conditions of the 
system and those that are deterministic. The procedure is compared to other 
methods presented in the literature and illustrated in an example. 

KEY WORDS forecast function; long-term growth; seasonal components; 
trends; unit roots 

INTRODUCTION 

A disadvantage frequentIy attributed to ARIMA models is the difficu1ty in interpreting them in 
terms of the classical trend, seasonal, and irregular components (Chatfield, 1977; Harvey and 
Todd, 1983). A1though it is well known (Box and Jenkins, 1976) that the forecast function of a 
seasonal multiplicative ARIMA model can be represented as a combination of an adaptative 
trend and a seasonal component, until the work of Box et al. (1987) no simple, direct 
procedures had been developed for determining these components. These authors use the 
eventual forecast function together with signal extraction theory to perform a breakdown of the 
series into its components and they apply it to the IMA model (1.1) x (1.1), commonly known as 
the airline model. 

In this work these ideas are generalized to obtain a breakdown of the forecast function into a 
permanent term, which is produced by the model's non-stationary operators, and a transitory 
term, which is produced by the stationary operators. AIso, in seasonal series the permanent term 
can be easily broken down into trend and seasonal components, and the transitory term can be 
also be decomposed into a seasonal and a non-seasonal termo Sorne of the results presented in 
this paper appeared in a more preliminary form in Spanish in Peña (1989) and Espasa and Peña 
(1990). This paper generalizes these results and provides a more precise economic interpretation 
of the forecasting function for economic variables. 

In the application of time-series analysis to economic data, the decomposition of a series into 
components (such as trend and a residual with cyclical stationary behaviour, or trend, seasonal, 
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and residual, etc.) has attracted the attention of many authors. The procedures that have been 
proposed can be broadly classified in two groups: (1) full-information decomposition and (2) 
conditional decompositions. Examples of the first procedures are Box et al. (1978), Burman 
(1980), Hillmer and Tiao (1982), BeU and Hillmer (1984), MaravaU (1987), MaravaU and 
Gomez (1992), Maravall and Pierce (1987), and Harvey (1981, 1984). In these procedures the 
whole sample information is used to estimate the components. To achieve a unique 
decomposition it is usuaUy assumed that the components are driven by different and independent 
processes. This hypothesis is useful and has great advantages, but its economic foundation is not 
clear, because it could be expected that certain innovations entering into the system would alter 
at the same time the evolutions of aU the components. 

The conditional decompositions obtain, at each moment t, the components of a time series 
conditional to the sample information up to t, or sorne previous moment in time. Examples of 
these decompositions are Box et al. (1987), Beveridge and Nelson (1981), and Watson (1986). 
These procedures can be used in a contemporaneous way for estimating at each t the different 
components of the series, like Beveridge and Nelson (1981), or for decomposing the future. 
The contemporaneous application of the conditional procedures for the breakdown of the 
present value implies that with information until time t = T the components at t = 1, ... , Tare 
obtained with different information for each t. For instance, in the Beveridge and Nelson 
procedure the cyclical or transitory component c, is what was considered transitory at moment t 
and not what could considered as such at T. Under the latter assumption the cyclical component 
could be very different. The question is that to be conditional up to each moment t when one 
could use all the sample information does not seem very useful. 

For the future, the conditional decomposition is the on1y possible one and, as we will attempt to 
prove in this paper, it provides a useful tool for understanding the forecast function. As non
stationary time series do not have a stable and defined absolute mean, the forecast for a long horizon 
does not collapse to an absolute mean as is the case for stationary series. In this context it seems 
use fuI to decompose the forecast into one transitory part, which sooner or later collapses to zero, and 
a permanent part, which never approaches zero. This approach is useful in analysing how the 
innovations which arrive to a system will propagate in the future in a permanent factor-usually of a 
quasi-linear type-and in a stationary one. In addition, for series which show a maintained growth 
with time but with their levels oscillating considerably around an hypothetical trend, it could be of 
interest to analyse the change in the slope that occurs in the permanent component of the updated 
forecast each time there is an innovation. The forecasting robustness showed by ARIMA models is 
due to the fact that these models, with constant parameters, imply forecasting functions with a linear 
permanent component whose parameters change with time. 

Also, the decomposition suggested in this paper has sorne important advantages: it makes 
interpretation of the model easier; it is a useful diagnostic tool for identifying interventions 
which may affect the trend or seasonal parts (see Peña, 1989) and it offers a means of 
comparison between ARIMA model~ and models in state space representation either in their 
Bayesian form (Harrison and Stevens, 1976) or in their structural one (Harvey and Todd, 1983). 

This work is structured as foUows: the next section defines the permanent and transitory terms 
of the prediction function of an ARIMA model and describes the breakdown of the permanent 
term into trend and seasonal components. The third section discusses an economic interpretation 
of the components of the forecast function. The fourth section shows how these components 
are determined on the basis of the ARIMA model's prediction by solving a system of linear 
equations. The fifth section compares our approach with other decompositions suggested in the 
econometric literature, as those of Beveridge and Nelson (1983) and Watson (1986). The final 
section presents sorne applications. 
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2. SEASONAL MODELS, THEIR FORECAST FUNCTIONS AND THEIR COMPONENTS 

Seasonal models and their forecast functions 
A linear stationary stochastic process without deterministic components can be represented 
according to Wold's theorem by: 

x, = 'JI(L)a, (1) 

where 'JI(L) = 1 + 'JI,L + 'JI2L
2 + .,. is an infinite convergent polynomial in the lag operator L, 

and a, is generated by a white-noise stochastic process. Approximating this polynomial by 
means of a ratio of two finite-order polynomials the ARMA representation is obtained; 

ifJ(L)X,= O(L)a, (2) 

where 'JI(L) = [ifJ(L)r'O(L) and the operator ifJ(L) has all the roots outside the unit circ1e so 
that the process is stationary. Usually it is also assumed, as we do in this paper, that the roots of 
O(L) are also outside the unit circ1e and then the process is invertible. For seasonal processes, 
Box and Jenkins (1976) simplify equation (2) by factorizing the polynomials into two 
operators, one on L and another on U, where s is the seasonal periodo 

Many economic time series do not have a stable and defined mean and need to be transformed 
before Wold's theorem can be app1ied to them. In the Box-Jenkins tradition, experience shows 
that by differencing, regular and seasonally, one very often obtains a transformed series which 
could be considered generated by model (2). This means that if X, is the series of interest, one 
may end up applying Wold's theorem to W, = MsX, - ,u(t), where ~ = 1 - L is the regular 
difference operator, ~s = 1 - U is the seasonal difference operator, and ,u is a time polynomial of 
finite order (m - 1). Then the resulting model for X, is 

(3) 

which is known as the seasonal multiplicative ARIMA model. When m equals one the time 
polynomial is a constant that will be denoted by ,u. In this paper we deal only with integer values 
for d. Calling CPr(L) = ifJp(L)c'bp(U2~d~s; r=p+d+s(l +P); O*m(L) = O/L)8 Q (U); 
p=q+sQ; c=~p(L)c'bp(U),u(h) and X,(h) the prediction of X'+h from the origin 1, we see 
that this prediction is given by: 

r v 

X,(h) = I cp,X,(h - i) + I e/a,+h_j + e (4) 

where the predictions X,(h - i) coincide with the values observed when the horizon is negative, 
and the disturbances a,+h_j are zero if h > j and identical to the estimated values if j?!- h. 

For h> p the MA part of the model will have no direct effect on prediction. Consequently, 
for a relatively distant time horizon the so-called eventual forecast function is obtained: 

X,(h) = cp,X,(h - 1) + ... + cp,x,(h - r) + e (5) 

The number of differences in equation (3) is 0= d + 1 and this shows that, even in the 
case of m = 1, the solution of equation (5) tends to infinity if o is equal to or greater than 
two or if o is one and ,u is different from zero. This indicates that the unit root factors 
induce long-term projections which do not seem acceptable for economic variables. The 
question is that the unit value for one of the roots of cp,.(L) implies a discontinuity from 
values just over one and with the sample sizes available it is not possible to distinguish 
between both alternatives which have almost identical implications for short- and medium
term projections. Therefore, in practice, the unit root assumption does not cause a serious 
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problem, but it certainly cannot be taken to represent the very long-term projection of 
economic variables. This problem will be better illustrated in the next section once the 
decomposition of the solution of equation (5) had been discussed, but it must be pointed 
out that the structure of Xt +h as h -+ 00 cannot be derived from finite samples. Nevertheless 
any dynamic model which could be specified to explain the generation of data in a sample 
will have in it a particular structure for long-term projection. The analyst, at most, could 
discriminate if one structure is preferable to another to explain data, and in this respect the 
unit root assumption has done well. 

The solution of the difference equation (5) provides the structure of the forecast function, as 
given by the following theorem. 

Theorem. The general solution to the homogenous difference equation 

A (L)Zt = O, (6) 

where A(L) = 1 + a1L + ... + a,,[} is a finite polynomial in the lag operator which can be 
factorized as: 

A(L) = P(L)Q(L) (7) 

where the polynomials P(L) and Q(L) are prime (they do not have common roots), can always 
be written as: 

Zt=Pt+qt (8) 

where the sequences Pt and qt are the solutions corresponding to each prime polynomial, that is, 
they verify: 

P(L)pt = Q(L)qt = O 

The proof of this theorem is given in the Appendix. 

(9) 

To apply this theorem, let us note that the eventual forecast function can be written, for h > p: 

fj>*(L)(fldflsXt(h) - /-l(h» = O (10) 

where fj>*(L) = fj>p(L)«I>p(L') and the L operator acts on the index h, and 1, the origin of the 
prediction, is fixed. The stationary operator fj> * (L) has aH the roots outside the unit circle, and 
the operator (1 - LS) can be written: 

(1 - U) = (1- L)S(L) (11) 

where S(L) = (1 + L + ... + U-1). This operator has s - 1 roots, aH of them in the unit circle. If 
s is even, these s - 1 roots include L = -1 and other s - 2 complex conjugated roots with a unit 
module and distributed symmetricaHy in the unit circle. ConsequentIy, the stationary operators 
fj> * (L) and the non-stationary ones I:!.'d/is have no root in common, and the eventual forecast 
function can always be broken down into two components: 

Xt(h) = Pt(h) + lt(h) 

where 

(1) pt(h) is the permanent component of the long-term forecast, which is determined only by 
the non-stationary part of the model and is the solution to: 

/id/isPt(h) = /-l(h) (12) 
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(2) t,(h) is the transitory component, which is determined by the stationary autoregressive 
operator. This component defines the approach towards the permanent component and is 
given by: 

(13) 

In the next section we study the form of these components on the basis of the ARIMA model 
and the following section shows how to calculate them. 

The transitory component 
The transitory component of the eventual forecast functíon is the solution to equation (13). The 
general solution to this homogenous difference equation, assuming that the n = p + Ps roots of 
the polynomialljJ*(L) are different, is 

t,(h) = b\r)G~ + ... + b~r)G~ (14) 

where Gil, ... , G;I are the roots of the autoregressive polynomial and b}') are coefficients 
depending upon the origin of the prediction. Since the operator ljJ * (L) is stationary, the terms Gj 

will be all in module les s than one. ConsequentIy, 

lim t,(h) = 'i:.bJ) lim G/ = O (15) 
h~oo h~oo 

and the transitory component will be zero in the long termo This same reasoning is valid when a 
identical roots exist, since in that case the term associated with a equal roots, G, will be: 

[b\')+b~r)h+ .. ·+b~)ha-I]Gh (16) 

which will tend once more to zero when h ~ 00 if I G I < 1. ConsequentIy, the transitory 
component specifies how the transition towards the permanent component is produced and it 
disappears for high prediction horizons. When the roots are real equation (14) consists of a 
mixture of damped exponentials, if two roots are complex they produce a damped sine wave. 

The transitory component can be decomposed into a seasonal and a non-seasonal part by 
using the roots of the operators ljJp(L) and 4>p(U). For monthly data s= 12, and a seasonal 
autoregressive polynomial of the type (1 - 4>IL 12) has twelve roots, ten of them complex that 
will produce harmonic functions and they can be interpreted as short-term cyc1es within the 
year. The real negative root will produce a cyc1e of two months. 

The permanent component 
By using the factorisation (11) the permanent component of the long-term forecast function 
(12) can be written as follows: 

(17) 

According to the theorem in the previous subsection the solution to this equation can, in tum, be 
broken down into two terms associated with the prime polynomials ~d+1 and S(L). The first, 
which we will call the trend component, T" will be the solution of: 

~d+IT,(h) = e (18) 

where c=p,(h)· [s(L)r l
, the second, which we will call the seasonal component, E" is the 

solution of: 

(19) 
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It can be immediately checked that these components satisfy equation (17). In the next 
subsection their properties are analysed. 

The trend component 
The trend component of the model is the solution of equation (18) which can be written: 

Tf(h) = c~t) + c\tlh + ... + C~tlhd + C~hd+l + c;hd+2 + ... + c*mhd+m (20) 

This trend is. in the general case. a polynomial of degree d + m and has d + 1 coefficients 
c~tl • ... , c~t) varying with the origin of the prediction and m coefficients c ~, ... , c ~ which are 
fixed. For m = 1. 

ct = fl 
sed + 1)! 

If there are no seasonal differences the order of the polynomial is max [O. (d - 1)] if ¡,t = O and 
(d + m - 1). whereas if there is a seasonal difference the trend polynomial is of degree d if 
¡,t(t) = O and (d + m) otherwise. 

The seasonal component 
The seasonal component of the modelo the solution of equation (19). is a function of period s 
with values summing zero each s lag. We will call 

Shf) = Ef(h). h = 1 •...• s 

the s coefficients of equation (19). which are the seasonal coefficients of the forecast function. 
It should be noted that the seasonal coefficients must verify the restriction 

so we have only (s - 1) unknown coefficients to be determined by the initial conditions. The 
superscript t in the seasonal coefficients indicates that these coefficients vary with the origin of 
the prediction and are updated as new data arrive. 

The long-term forecast function 
As we have seen. in the long term the transitory component of the eventual forecast function 
will be zero and only the permanent component remains. That is. for a very large h 

Xf(h) = Tf(h) + Ef(h) 

where Tf(h) is a polynomial trend and Ef(h) is the seasonal component which is repeated evely 
s periodo 

ECONOMIC INTERPRET ATION OF THE COMPONENTS OF THE UNIV ARIA TE 
FORECAST FUNCTION 

In this section we attempt to analyse the type of information provided by the forecast function 
corresponding to an economic variable. We have followed Espasa and Cancelo (1993. Section 
2.8), but here we give a more precise economic interpretation of the forecasting function. The 
predictions described in the previous section for different values of h are the expectations at 
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moment t on the values of the variable in t + 1, t + 2, ... , conditioned to past values of the 
series. From now on we make the standard assumption in linear system analysis that these 
conditional expectations always exist. 

If the parameters of the ARIMA model are known, the value X'+h can be broken down as 
following way: 

X'+h =X,(h) + e'+h 

where e'+h denotes the prediction error which is equal to 

(21) 

(22) 

Equation (21) divides the observed value X'+h into two independent parts (1) X,(h), the 
expectation for X'+h which we have at moment t; and (2) e'+h' the effect of the surprises which 
occurred between t + 1 and t + h, which is obtained as a weighted sum of the corresponding 
innovations. 

When h tends to infinity, the forecast function indicates the long-term value to which the 
variable would tend if in the future the stochastic innovations or disturbances which affect the 
system were zero. Therefore, giving high values to h the forecast function describes the 
conditional long-term projection of the economic variable in question. Thus, in the case of a 
variable which after differencing once is stationary with zero mean, the limit of the forecast 
function is a constant and we will conclude that conditional on the values of the system at the 
forecasting origin t, the projection of the variable tends to a stable value, b&t). In (t + k) the 
system would have suffered from innovations a,+ 1, ••• , a'+b the conditions of the system would 
have changed and at this origin (t + k) the projection of the variable will tend to a stable future 
value, but a different one, bg+k ). In fact, [bg+ k ) - bg)] measures the long-term effect of the 
innovations arrived to the system between t and t + k. In all other cases of non-stationary mean 
level, the limiting forecasting function of model (3) does not tend to a stable value but evolves 
according to a time polynomial. 

In conclusion, on the one hand, the forecast function enables us to quantify the different term 
univariate expectations for a particular phenomenon; on the other, the trend of the forecast 
function describes the long-term projection path towards which this phenomenon is moving at 
each moment t. 

In adding comments to the concept of integrated variables defined in Engle and Granger 
(1987) we will say that a variable generated by an ARIMA model is integrated of order (o, m) 
if for stationarity it needs to be differentiated o times and the differenced transformation has a 
mathematical expectation given by a time polynomial of order (m - 1). If in the previous case 
the mathematical expectation of the differenced transformation is a constant, we see that such 
expectation follows a polynomial of order O = m - 1. In this case it is important to distinguish 
the situation in which the expectation is not zero from the one in which it is. In the former case, 
and consequentIy with our definition of m, we would say that m equals one and the long-term 
projection will be given by a polynomial of order (o + m - 1). But when the expectations is not 
only constant but also zero, then we will say that m = O and the long-term projection will be 
given by a polynomial of the order (o + m - 1) if O;¡¡, 1 and of order zero if 0=0. For this 
convention for the values of m and from what has been seen in the previous section, we note 
that the order of integration fully describes the polynomial structure of the trend of the forecast 
function, which will be of the order max(O, o + m - 1). The trend is purely stochastic in the 
sense that all its coefficients are determined by the initial conditions of the system, if m is zero, 
and it is mainly deterministic if mis different from zero. 

This definition of integration makes explicit the presence or otherwise of a constant or a time 
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polynomial in the differenced series due to the importance which, as we shaH see, they have. If 
o + m adds to zero or one the forecasting function tends to a constant, the value of which will 
be purely deterministic if o is zero, or it will be determined by the initial conditions if o is one. 
If o + m adds to more than one, the forecasting function does not tend to a stable value, but 
evolves according to a polynomial structure that, in the long term, will depend on the coefficient 
corresponding to the greatest power, since compared to it, aH other powers have a negligible 
contribution. Now, at least this coefficient will be deterministic if m is equal to or greater than 
one, in which case the long-term projection of the variable could also be considered to be 
deterministic. This means that the factor which contributes most to this path is not altered by 
changes in the conditions of the system, and therefore if that was the case, the development of 
an economic theory to explain in this situation the long-term path of a variable (Le. 
consumption) in terms of another (e.g. income) would not be of much help. On the contrary, if 
m is zero aH the parameters of the trend of the forecast function depend on the initial 
conditions of the system. In such cases the long-term projection is determined by a time 
polynomial of the order (B - 1), but the parameters of this polynomial change as new 
disturbances reach the system. 

To complete the description of the long-term projection of an economic variable we must 
specify the magnitude of the uncertainty we have about it. This uncertainty is expressed by et +h 

in equation (21) when h tends to infinity. If the process is stationary, in which case 0=0, the 
polynomial 'IjJ(h) which enters the definition (22) of et+h is convergent and the variance of et+h 
when h tends to infinity is finite. This result is true even when bearing in mind the uncertainty 
associated with the estimation of the parameters (see Box and Jenkins, (1976, Appendix A7.3). 
In such a case, we say that the uncertainty regarding the future, however far off it may be, is 
limited. If o is not zero, 'IjJ(h) does not converge, and the variance of et+h tends to infinity with 
h, so we can say that uncertainty regarding the future is not bounded. 

Note that in a structural economic model (SEM) where exogenous variables are generated by 
non-stationary ARIMA models, long-term predictions are also generated on the endogenous 
variables with non-bounded uncertainty. The difference with respect to the ARIMA predictions 
can be found simply in the fact that the uncertainty may tend to infinity slower and with a 
greater delay. 

The characteristic of the long-term projections derived from the ARIMA models with the 
most common values for o and m are shown in Table 1. An ARIMA model with (o + m = 2) 
implies that in the long term, projection of the corresponding variable tends to infinity. Such a 
characteristic may be considered as unacceptable in economics, but note that if m = O simply 
substituting one of the positive unit roots included in the differentiations by (0.999) -1 will be 
sufficient for the law of the long-term projection to become a constant. However, the way in 
which this constant value would be achieved depends on the transitory component of the 
prediction function It(O), defined in equation (13). As this component will in this case have a 
term bIt) (0.999)h it will not be canceHed out in the medium term and, in practice, this will not 
be distinguished from the first mentioned in which (o + m) equaHed two. 

Consider the foHowing example in which we have: (1) an eventual forecasting function with 
two unit roots and (2) another one with one unit root and a second root (0.999) -l. In the latter 
case the long-term projection will be given by 

(23) 

In equation (23) when h tends to infinity Xt +h tends to bg) (permanent component) but the 
transitory component (- bIt) . 0.999 h

) indicates that the value bg) will be attained subtracting the 
factor b l ·0.999\ which decreases with h but does not cancel for moderate values of h. Since 
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the substructing factor becomes smaller as h increases, in equation (23) we have an increasing 
function from (b~t) - bIt) . 0.999) for h = 1 to bót) for h = oo. In the short and medium term the 
forecasting function in equation (23) grows almost 1inearly and is very similar to the forecasting 
function corresponding to case (1): 

f3gl + f3\t) h (24) 

for f31t\> O. Suppose that b~t) = bIt) = 1, f3¡tl = 0.001 and f3gl = O. Then for h = 1, 10, 100 and 
400 the corresponding forecasting values with equation (23) are 0.001, 0.010, 0.095 and 0.330 
and the values using equation (24) are 0.001, 0.010,.0.100 and 0.400. For h = 1000 with 
equation (24) we obtain the unit value and this function increases growing regularly for longer 
horizons. With equation (23) the growth in the forecasted va1ues is increasingly smaller and for 
a very long horizon the forecasted value collapses to unity. Therefore in the very long term both 
functions are very different, but for medium-term projections they are very similar. In fact, the 
long term in economics cannot be estimated, since it is not possible to discriminate, with the 
available sample sizes, between different altematives, like those mentioned in the aboye 
example. Therefore, when using unit roots we say that an economic variable follows a quasi
linear growth path we mean simply that in the medium term it tends to follow such a behaviour 
path. 

For the long run we can refute the idea that real variables tend to infinity and we could prefer 
to say that they tend to collapse to finite values. This can be contemplated thinking of unit roots 
as not just unity but as being very close to one. 

Another aspect of unit roots is that they imply that the uncertainty about the future increases 
with an horizon without limit. There is líttle doubt that, in general, our uncertainty about short
and medium-term projections increases with the time horizon. Thus, for variables with growth, 
the integration order (2, O) indicates that the uncertainty about the future rate of growth 
increases with time and in the long run this uncertainty is infinite. On the other hand, the 
integration order (1,1) implies no uncertainty about the long-run rate of growth given the 
parameters of the ARIMA model. Both are extreme hypotheses and possibly both incorrecdy 
represent the real world, but the first seems a better approximation. Again, substituting a unit 
root by another very close to unity from aboye, we obtain large finite uncertainty for the long
run rate of growth. Table I shows the severe restrictions on the characterization of the long-term 
projection of an economic variable that the inclusion of constants in the ARIMA models 
implies. 

Having seen that the parameters of the forecast function of an ARIMA model, and 
specifically the slope of the trend of the permanent component, change with time, it is 
important to analyse how we can calculate them. The next section is devoted to this topic. 

THE DETERMINATION OF THE COMPONENTS OF THE FORECAST FUNCTION 

General approach 
The results of the previous sections indicate that the eventual forecast function of a seasonal 
ARIMA model can be written: 

d n 

Xt(h) = I cjtlh j + S~l + I b;G~ (25) 
j=O ;= 1 

To simplify the analysis we are assuming that ¡,t = O. Then n = p + Ps and the equation is valid 
for h > q + sQ. However, d + s + p + sP initial values are required to determine this. Therefore, 
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Table 1. Characteristics of the long-term projection derived from the ARIMA model corresponding to an 
economic variable 

<5 + m, nature of the 
long-term projectiona (<5, m)b 

O. Nulllong-term (O, O) 
value 

l. Stable long-term (O, 1) 
value (1, O) 

2. Linear growth (1, 1) 

(2, O) 

Influence of initial 
conditions on the 
long-term 
projection 

None 

None 
Determine the 
equilibrium value 
Determine the 
ordinate in the 
origin of the 
straight line, but 
have no influence 
on its slope 
Determine the 
two parameters 
which define the 
line 

Uncertainty regarding long-term 
projection 

On the leve! 

Finite 

Finite 
Infinite (it grows 
linearly) 
Infinite (it grows 
linearly) 

Infinite (it grows 
quadraticly) 

On the growth rates 

Null (growth is zero) 

Null (growth is zero) 
Null (growth is zero) 

Finite 

Infinite (it grows 
linearly) 

a el is the total number of differentiations required by the variable to become stationary. 
b m = O implies that the mathematical expectancy or the stationary series is zero. 
m = 1 implies that this mathematical expectancy is not null. 

from k> q + sQ - d - s - p - sP the predictions will already be related to each other according to 
equation (25). 

In practical applications the exact order of the ARIMA model and the parameters values are 
unknown, and they are estimated from the sample data. Then, the coefficients of equation (25) 
are obtained using the predictions generated by the estimated model. There are two procedures 
to obtain these coefficients. The first is to generate as many predictions as parameters and to 
solve the resulting system of equations. Equation (25) has d + 1 parameters ej , s - 1 seasonal 
parameters (since a coefficient can be expressed as the sum of the others with a changed sign) 
and n coefficients b¡. Therefore, we need to generate a number of predictions equal to 
R = d + 1 + s - 1 + n = d + s + n. Calling the prediction vector Xr(R) and the parameter vector 8 
we can write from a certain moment h the following expression: 

Xr(h) 

X(h + R) 

1 1 

1 2 

R 

1 O 
O 1 

O 
1 

Gn 

GR 
n 

(r) 
Ca 

(r) 
ed 

S~r) 

S(r) 
s- 1 

b~t) 

b(r) 
n 
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and the coefficient sIl) will be equal to - 'LJ:! Sr). Writing 

X,(R)=Me 
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where M is the data matrix which contains the known coefficients which multiply the parameter 
vector e, we can express e as: 

8=M- 1X,(R) (26) 

which enables all the parameters for the eventual forecast function to be obtained. 
The second procedure is first to obtain a value r high enough for the transitory component to 

be cancelled out. This value depends on the roots of 'the autoregressive polynomial and is 
determined in such a way that I C; I '" O, where C I is the root with the highest absolute value. A 
simple way of checking whether the transitory component is practically null for k> js consists, 
for the general case with d = 1, of taking the differences: 

X,(U+ l)s+k)-X,Us+k) 

which will be free of the seasonal effect, and to observe whether such a difference stays 
practically constant for positive values of k. In this case we shall say that from a prediction 
horizon js, the transitory component is practically zero. For example, this implies that with 
monthly data the annual differences between the monthly predictions will be constant from a 
certain year onwards. Thus taking the expression of the general predictions and eliminating 
from it the transitory component we can set up a system of equations to determine the 
coefficients of the trend equation and the seasonal coefficients, which are in general those of 
interest. Let us note sorne specific cases. 

The airline model 
A seasonal ARIMA model much used for representing the evolution of monthly economic 
series is the so-called airline model: 

M I2X, = (1- OIL)(l - 9 12L 12)a, (27) 

According to the previous discussion, the forecast equation of this model for k> O can be 
written: 

X,(k) = bg) + blt)k + S~I) 

and contains 13 parameters. By equalizing the predictions for k = 1, 2, ... , l3 obtained with 
model (27) with the structural form, we shall have: 

X,(l) 

X,(12) 
X,(l3) 

1 

12 
l3 

1 O 

O O 
O 

oo. O b6r) 

b;r) 

sir) 

1 
O S(t) 

12 

a system of 13 equations and 14 unknowns which with the restriction 'LSjt) = O enables the 
parameters bg), bl') and the seasonal coefficients SF) to be obtained. By subtracting the first 
equation from the last and dividing by twelve, we obtain directly 

(1) X,(13) - X,(l) 
bl = (28) 

12 

11
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By adding the first 12 equations the seasonal coefficients are cancelled out, and we obtain: 

X = J... ~ X (k) = b(t) + b(t)(1 + ... + 12) 
t 12 L... t o I 12 

I 

which gives 

(29) 

Finally, the seasonal coefficients are obtained by: 

SP) = X/j) - 6g) - 6\t)j (30) 

lt must be noted that if the ARIMA model is specified on the logarithmic transformation of 
X, then the coefficient bIt) can be interpreted as growth rate and the coefficients Sj measure the 
seasonal structure as a percentage of one on the level of the series. 

General models with a dift'erence of each type 
Any ARIMA model which has as non-stationary operators AAs and ¡,t = O has a permanent 
component of the forecast function which is the sum of a linear trend and a stable 
seasonal component. To determine the parameters b, which measure the linear trend, and 
the seasonal coefficients Sj' we will use the fact that, taking k = si + j high enough for the 
stationary terms to be negligible, and equalling the predictions to the permanent 
component: 

S~) = Xt(k + s + 1) - Xt(k + 1) 

s 

sg) = Xt - SI (k + s ~ 1 ) 

st) = X(k+ j) - 60 - 61(k+ j) 

(31) 

(32) 

(33) 

These equations are analogous to (28) and (30), where X is now the average of the s 
observations in the interval (k + 1, k + s). 

COMPARISON WITH OTHER DECOMPOSITIONS 

It is interesting to compare the decomposition suggested in this paper to others presented in the 
literature. Beveridge and Nelson (1981) and Watson (1986) have studied the decompbsition of 
first-order integrated linear processd with a non-seasonal structure. Beveridge and Nelson 
started from the W old representation 

Mt = ¡,t + tp(L)at 

and stating the polynomialtp(L) can a:1ways be decomposed as 

tp(L) = tp(1) + Atp*(L), 

proposed the following representation for the series Xt: 

Xt=Pt+Tt 

(34) 

(35) 

(36) 

12
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where 

~ 

Pr = tp(1) I at-j + ¡,t 
j=o 

T,= tp*(L)a, 

For instance, suppose that tp(L) is a MA(1) process. Then, as 

M, = ¡,t + (1 - OB)a, 

the resúlting decomposition is: 

and 
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(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

Thus, the permanent component is a random walk with drift and the transitory component a 
white-noise process. Watson (1986) used a similar approach for the permanent component 
(a random walk with drift) but followed a model-based approach for the transitory 
component allowing different degree of correlation between the innovation in the 
components. 

The decomposition suggested in this paper differs from both in several aspects: 

(1) It is a decomposition not of the series itself but of the forecast function. 
(2) It can be applied to any ARIMA model, seasonal or not, whereas the previous 

decompositions applies only to non-seasonal first-order integrated ARIMA models. 
(3) It is unique, as proved in the theorem, whereas the previous decompositions are noto 

For instance, the decomposition of the forecast function for model (39) is, for k> O: 

X,(k) = Pt(k) + T,(k) 

P,(k) = P(~ + ¡,tk 

T,(k) = O 

that is, it contains only a linear function with slope ¡,t. 

AN APPLICATION TO SERIES OF THE SPANISH ECONOMY 

In this section an estimate is made, for a certain sequence of months, of the trend growth rate 
derived from the forecast function of the following series of the Spanish economy: imports, 
exports and the consumer price index for services. The use of the above-mentioned rate in a 
relatively complete short-term analysis of an economic phenomenon is put forward and 
described in Espasa and Cancelo (1993, Chapter 6). Following their terminology, in a univariate 
ARIMA model, we will call inertia to the rate 01 growth 01 the trend 01 the lorecast lunction, 
which will be given by the parameter b¡ defined in equation (31), when the model is specified 
on the logarithmic transformation of the variable. 

13
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Regarding Spanish foreign trade on non-energy goods, the following univariate monthly 
models were built to explain imports (M) and exports (X): 

M l2 ln Mt= M l2 AlMt+ (1- O.77L)(l- 0.72L I2 )at 
a=0.092 

M l2 In Xt = M l2 AlXt + (1 - 0.83L)(1 - 0.72L I2 )at 
a= 0.117 

(43) 

(44) 

in which AlM and AIX are particular intervention analyses which have no effect upon the slope 
of the forecast function. Therefore, henceforth we will ignore them. 

The original series with their corresponding trends are given in Figure 1 and the inertias 
are shown in Figure 2. The trends have been estimated using the X-ll-ARIMA 
procedure. 

Figure 2 shows these inertias from January 1986, the month in which Spain joined the EEC, 
to December 1989. Thus, this figure illustrates what happened to Spanish overseas trade in 
nominal terms from that date. Obviously, on the basis of this description, no causal analysis can 
be made, since these models do not incorporate the determining variables of M and X that are 
responsible for the trend changes. Nevertheless, the mere description of these changes is in fact 
of interest in itself. However, it must be pointed out that the trend evolutions shown in Figure 2 
refer to the sale and purchase of goods in nominal terms and, therefore, prices are also 
influencing these same trend movements. 

We can deduce from Figure 2 that trend growth expectation in nominal imports 
increased systematical1y throughout 1986 and first three quarters of 1987. Then this 
expectation stabilized, with minor oscillations, at around 23% until the second half of 
1989, when it started the decrease very slowly. As a result, a worsening (increasing) of 
perspectives for Spanish imports of around four percentage points has occurred during this 
periodo 

With exports there was a movement from a growth expectation of 18% at the beginning of 
1986 to an expectation of around 14% at the end of that year and during 1987. Since then 
expectations have remained fairly stable. 

In conclusion, we can say that the perspectives for imports worsened (increased) 
progressively in 1986 and 1987, having a relatively stable evolution from that time until the 
second half of 1989, when an improvement occurred. As for expectations for exports, 
although they worsened (declined) during 1986, they maintained a fairly high level during the 
last three years of the sample considered. If the evolutions of imports and exports are 
compared in order to have a better understanding of the Spanish trade deficit at the end of 
1989, a conclusion at that time was that given that the level of imports was higher than that of 
exports it was necessary at least for the growth rates expected in both series to equal each other 
fairly quickly. Also, insofar as expbrt growth could be considered as optimistic, given the 
level of world commercial activity and the relative level of Spanish prices compared to the 
rest of the world, to bring these rates together must require a significant reduction in import 
growth. 

In the consumer price index for the Spanish economy the component measuring the prices of 
services, which we shall call IPCS, has been showing fairly uneven behaviour with regard to the 
component measuring the prices for non-energy manufactured goods. Both components make 
up the IPSEBENE, the consumer price index for services and non-energy manufactured goods, 
which represents 77.54% of the IPC, and it is an appropriate index on which to analyse 
underlying inflation or the inflationary trend. 

14
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Figure 1. Original data and estimated trend for the Spanish imports and exports series 

579 

By using the sampIe from May 1984 to January 1989, the following modeI has been 
estimated: 

M In IPeS = AIS + (l - O.85L 12) 
12 , '(l _ O.32L3) a, 

a=O.OO14 

where AIS, are interventions required by this indexo These interventions include a step effect 
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Figure 2. The rate of growth of the trend in the forecast function in the Spanish Imports and Exports 
series 

• 
which begins in January 1986 and is due to the introduction of value added tax. From this model 
a calculation has been made of the inertia of the IPCS (corrected for interventions) during the 
period from January 1986 to December 1989. These calculations are shown in Figure 3. It can 
be seen that during these years the medium-term growth expectations of this index have always 
remained aboye 7%. It can also be noted that during 1986 expectations on this index increased. 
That is, unlike with the prices of non-energy manufactured goods, Spain's entry into the EEC 
meant no improvement in expectations for the prices of services. This result is not surprising if 
it is borne in mind that joining the EEC scarcely brought with it greater competitiveness in the 
Spanish service sector. Figure 3 also shows that throughout 1987 there was a slight improvement 
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Figure 3. The rate of growth of the trend in the forecast function in the Consumer Price Index for Services 
in Spain 

(falI) in the IPCS inertia, which disappeared completely in 1988, and in 1989 this deterioration 
in the prices of services continued. AH this represents a grave threat to the IPC since the 
services component accounts for 34.24% of this indexo 

APPENDIX: PROOF OF THE THEOREM 

It can be immediately proved that the condition is sufficient and that equation (3) is a solution of 
equation (1). Because of the commutability of the operators. 

P(B)Q(B)Zt = P(B)Q(B)(pt + qt) = Q(B)P(B)pt + P(B)Q(B)qt = O 

Let us now prove that the condition is necessary, that is, that any solution of equation (1) can 
be written as in equation (3). From Bezout's theorem (see Queysanne, 1964, p.408) if P(B) and 
Q(B) are prime, then two polynomials TI (B), T2(B) exist such that: 

therefore: 

and calling 

1 = TI (B)P(B) + T2 (B)Q(B) 

Zt = TI (B)P(B)Zt + T2(B)Q(B)Zt 

TI (B)P(B)Zt = qt 

T2(B)Q(B)Zt = Pt 

(Al) 

(A2) 

17
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therefore 

Zr= qr+Pr 

and multiplying both equations (Al) and (A2) by Q(B) and P(B) respectively: 

Q(B)qr = TI (B)P(B)Q(B)Zr = TI (B)A(B)Zr = O 

P(B)Pr = T2(B)P(B)Q(B)Zr = T2(B)A(B)Zr = O 

which proves that any solution can be written in the form of equations (3) and (4) indicated in 
the theorem. In order to prove that the breakdown is unique, let us as sume another breakdown: 

where q; and P; verify equation (4). Then: 

q; = TI (B)P(B)q; + T2 (B)Q(B)q; = TI (B)P(B)q; 

= TI (B)P(B)(q; + p;) = TI (B)P(B)(qr + Pr) 

= TI (B)P(B)qr = (l - T2 (B)Q(B»qt = qt 

Analogously, it is proved that Pr must be identical to p;. 
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