Discussion: Second-generation time-series models: A comment
Pena, Daniel

Journal of Forecasting; Mar 1994; 13, 2; ABI/INFORM Complete

pg. 133

Journal of Forecasting, Vol. 13, 133—140 (1994)

Discussion

Second-generation Time-series Models:
A Comment on ‘Some Advances in
Non-linear and Adaptive Modelling in
Time-series Analysis’, by Tiao and Tsay

DANIEL PENA
Department of Statistics and Econometrics, Universidad Carlos Il
de Madrid

INTRODUCTION

This is an excellent paper and I have enjoyed reading it very much. It blends together many
of the components of what can be considered the second generation of time-series models:
non-linearity, Bayesian inference of changing parameters using the Gibbs sampling, outlier
models, long-memory series and adaptive forecasting. These techniques are illustrated by
means of a thought-provoking analysis of three economic time series. I draw three main
conclusions from this paper: (1) it is very useful to compare models by looking at their out-of-
sample forecast performance for different lags; (2) Bayesian inference using Gibbs sampling
is a very promising tool for time-series analysis; (3) we should learn more about the
relationship between outlier analysis and non-linear time-series modelling. Also, each example
suggests some specific comments, as follows.

THE GNP DATA

The authors fit a linear AR(2) to the rate of growth of real GNP. Then they find that a four-
regime TAR model produces better forecast and also leads to a better understanding of the
data.

In order to check if the parameters of the linear AR(2) model are changing over time, I split
the sample into two periods: the first from observation 1 to 85, and the second from 86 to 177.
Then 1 estimated an AR(2) model for each period and built an analysis of covariance-type
F-statistics. The F-value is 1.34 and therefore there is no evidence of parameter changing over
time. Then I checked the data robustness of the AR(2) model by computing the univariate
influence measure suggested by Pefia (1990). The most influential points are the 13th (D = 0,36)
and 19th (D = 0,29), and given the small values of the statistic the model seems to be robust
to the data. The outlier identification approach by Chen et al. (1991) identifies point 13 as an
innovational outlier and point 134 as an additive outlier. In order to check the effect of the
13th point I interpolated it assuming that it is an innovational outlier by using intervention
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analysis (Pefia and Maravall (1991)). The estimated model was
(1 —0.37B - 0.12B%)y, = 0.0037 + 0.0390/ ' + q, )

where 7/'® = 1 for £ =13 and 7}* = 0 otherwise. When checking the residuals from this model
points 97 and 134 now appeared as additive outliers. When the three points are assumed to
be missing and interpolated as additive outliers, the second AR coefficient became not
significant (¢ = 0.42) and the following model was obtained:

J:=0.0041 + 0.46 3, + a; 2)

where y(13) = y(13) — 0.0311, $(97) = y(97) — 0.0281; 7(134) = y(134) + 0.0298. As model (2)
is very similar to the one obtained by the authors for Regimes III and IV in the TAR model,
we conclude that these three points determine the order of the AR linear model for the
complete period. Also, this analysis shows the relationship between outliers and non-linear
modelling: the three points that are outliers in the linear model are accommodated in the TAR
model, with a corresponding reduction in the residual sum of squares.

The TAR model presents two interesting features: (1) it is non-stationary, because regime
I has an explosive root, (2) it offers an interesting interpretation of the asymmetric behaviour
of the real GNP during recession and expansion periods. On the other hand, the linear AR(2)
model leads to the following forecasting equation for x; =log GNP;:

()= AP + A10.56)' + AP(-0.23)' + 0-0076/ 3)

where 4§, A" AY are constants that depend on the origin of the forecast, 0.56 and —0.23
are the roots of the AR(2) polynomial and 0.0076 is the slope, that is, very approximately the
mean of the stationary series y, = Vx;, and therefore it is estimated by

1

- 2 Xn— X1
= i= =0.007 4
d n—l;y n—1 @

Model (2) for the corrected data leads to a similar forecasting function:
(/) = BY + BY(0.43)! + 0.0075!/ )

where, again, apart from some transitory effects, the forecast will be a deterministic linear
trend with a slope very approximately estimated by (4).
One wonders if a more adaptive forecasting equation such as

2D =AP+ B4+ T,

where 7} is some transitory component and 3 depends on the forecast origin would result in
a smaller forecast error. For instance, the model

¢(B)V 2x;= (1 - 0B)a
will forecast with an adaptive slope given by
Be=(1—0)[Vxe+0VX—1 + 82VX, 2 + -]

and the slope will be estimated giving more weight to the last observed growth rate. Taking
a second difference, the following model is obtained:

V5 = (1 — 0.48B)a; (6)

and although this is similar to model (2) it has a larger residual variance.
Table I shows the mean squared errors of forecast for different lags with model (2) and (6)
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when applying a similar post-sample forecast exercise as described in the paper with the
difference that here the same parameters are used in all the subseries instead of re-estimating
them as in the second Section. That is, the models have been estimated in the period (1, 103)
and out-of sample forecast of one to 12 steps ahead are computed with origin 104, ..., 163.
Table I shows the result of this exercise. It can be seen that the AR(2) provides a better forecast
and, therefore, the non-stationary and more adaptive structure of the IMA(1,1) does not help
in this case. Note also that the difference between both models increases with the lag, which
suggests that this type of comparation could be useful to discriminate between competitive
models.

A procedure that may be useful to identify non-linear relationships is to plot y; versus y:-«
and try to find what pattern will indicate TAR behaviour. First, note that a Gaussian
autoregressive process will display linear behaviour, that is, E(y:|y:-«) is a linear function of
¥i—«. Let us consider this expectation for a simple TAR(2,2,2) model with two regimes and
threshold lag y.-». Then

EW|yi-1) = POi-1) [68° + ¢ Vpe1 + 3P E(Ve—2 | ye-1))
+(1 = Pi-1) [¢8 + 0Py 1 + SPE(yi-2| yi-1)] @)

where P(y:-1) = P(y1-2 < r|y:-1) and r is the threshold. Now, when y;-: takes values near
the mean of the marginal distribution f(y:-1), then P(y,-1) is roughly constant and equal to
P(y:_2 < r). However, when y,_; goes towards —oo then P(y;—2 <r|y:-1) goes to one
(assuming a positive correlation between y,—; and y;-2) and when y,_;— o then
P(y-2 < r|yi-1) goes to zero. Taking this into account and assuming that E(y:-2 [ye—1) is
roughly a linear function of y,_; it is clear from model (7) that E(y:|y.-1) will be a linear
function of y,_; in the central values of y,— and will display a different slope when y:-, is
very small or very large. The slope in the extremes will be determined mainly by the coefficients
of both regimes.
On the other hand, when we reach the threshold lag

EWDi|yi-2) =68 + ¢VEi=1|yi-2) + 88"y, if yia <r

and

E(i|y-2) =08 + 6 PEWi—1|yi-2) + 68Pye-a, if yioa =1

Now according to the previous result, E(y,—1|y:—2) is a linear function of y.-» in the central
part and it will show different slopes in the extremes. Therefore it is clear that E( Vel ye-2) will
have a breaking point around the value y,_» =r, and will be approximately, apart from end
effects, piecewise linear.

These result suggest a simple identification tool for TAR models. Let us estimate E(y:|ye-«)
for k=1,2,... and look for non-linear patterns. If E(y:|y.—1) displays some non-linear
behaviour in the extremes and is linear in the central part this suggests TAR behaviour. The
threshold variable y;_q4 can be identified by searching for a clear break in the slope of the curve
E(y¢|yi-a), that it is not present for k < d and remains for k > d.

Table I. 107* mean squared errors of forecast

1 2 3 4 5 6 7 8 9 10 11 12
AR(2) 1.03 109 1.13 113 1.10 110 1.04 1.00 0.88 0.88 0.87 0.88
IMA(1,1) 1.23 151 173 1.8 1.83 193 192 198 1.54 153 156 1.86
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Figure 1.
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Non-parametric estimator of E(X,|X;-1) for the GNP data. The bandwidth is 0.005 (n = 0.05)
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Figure 2. Non-parametric estimator of E(X,|X,-;) for the GNP data. The bandwidth is 0.005 (n=0.05)
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Figure 3. Non-parametric estimator of E(X,| X;-3) for the GNP data. The bandwidth is 0.005 (n = 0.05)

Figure 1 shows a non-parametric estimate of Ely, | ¥.-1] for the GNP data. This curve has
been estimated using a normal kernel K(x — x;/#) and bandwith & = 0.005. That is,

Ki(x— yi-1)[h]
IZK[(x— ye-1)[h)

It can be seen that the curve is approximately linear in the middle, and displays some non-
linearity in the extremes. This indicates TAR behaviour.

Figure 2 shows E[y| y.—2]. The graph suggests a breaking point in the slope around zero.
This implies that y,_» is a threshold variable and zero the threshold value. The behaviour of
Ely:|yi-3] is in agreement with these assumptions (Figure 3) as well as the curves E[y, | y:-«]
for k > 4 (not shown to save space).

In summary, this analysis confirms that the TAR model seems to capture the relevant
features of the data. Also, as shown earlier, it accommodates the outliers found with the linear
modelling, stressing the need for further research into the relationship between outliers and
non-linear behaviour.

E[}’r!}’t—l] =Xy &)

THE MONTHLY RETAIL PRICE FOR UNLEADED GASOLINE
The analysis of influential observations and outliers in this set of data shows several

innovational outliers. This suggests the random variance-shift model as an interesting
alternative. The procedure seems to work very well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



138 Journal of Forecasting Vol. 13, Iss. No. 2

In my experience with Gibbs sampling applied to outlier problems I have found that when
there is strong masking, a very large number of iterations are needed in order to identify the
outliers. The problem seems to be that when the parameter space is large and the joint
distribution is multimodal, as is usually the case in outlier problems with a strong masking
effect, if the starting point is very close to a local maximum and far from the global maximum
of the distribution, the probability of moving towards the global maximum is very low. This
behaviour has been shown by Justel and Pefia (1994) in regression problems with strong
masking and, although it does not seem to be a problem in this set of data, it may occur in
all masking problems.

Also, the authors suggest several alternative approaches for analying this set of data. More
research is needed on the theoretical relationship among these approaches and on efficient
procedures to discriminate among them.

ADAPTIVE FORECASTING

Adaptive forecasting is a very brilliant and challenging idea: as any fitted model may be wrong,
we could reduce the cost of fitting an incorrect model by using a different set of parameter
values for each forecasting horizon. The parameters to be used for forecasting / periods ahead
are obtained by minimizing the / periods ahead residual sum of squares.

It is easy to find situations in which adaptive forecasting will work. For instance, suppose
that the first difference, y:, of some observed time series, X,, follows an AR(1) model, but the
series has an additive outlier at f = 7, that is,

Xt= Z;+w

10)
X =2 t#T

where Z; follows an ARI(1,1) model. Then, after differencing, stating y, = V.X,, z, = VZ,, we
will have

=2 t# T, T+1
yr=23rt+w 11

Yr+1=2T+1— @

where z; follows an AR(1) model. The model identified for y, will also be AR(1) and the
parameter ¢ will be estimated by the first autocorrelation coefficient of the observed y..

Suppose that adaptive forecasting is used to estimate the parameter for different lags. Then
the function to be minimized is Ze?(/), where

e()=yiri— 9D = Qa1+ dAsr-1+ - +0' la_,
and as
Ce()=Z(i-i—¢'y)

the estimator obtained by minimizing this function, ¢(/), will be

2o _ [EYer Y W_ 1/1
¢U)_( Tyf ) -
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Now, according to model (11) this estimator can be written as

In EZ[+LZI+W(ZT+L+ZT—L-ZT+1—L~ZT+1+L))1/,
)= I>1
+() ( T2/ + 20(@r — 2rs1) + 20°

$() = (EZzZrH + w@Zr-1+2re1 — Ir—21-2) — w2>
Lz + 2021 — 21+1) + 202

and ¢(1) will be more affected by the outlier than ¢(/), (/ > 1). Therefore $(/), for / > 2 will
be a more robust estimator of ¢ than ¢(1). For instance, Table II shows 100 simulations of
this estimator for /=2, different values of w and ¢ and a sample size of 100.

An additional usefulness of adaptive estimation is as a diagnostic tool to identify problems
with the model. For instance, Table III shows the value of ¢(/) as a function of / and the size
of the outlier. When w = 0, the no outliers case, similar values are obtained for all lags and
no clear pattern is found. On the other hand, as the size of the outlier increases, better results
are obtained by using a larger lag.

These results suggest that plotting ¢(/) on / could be an interesting diagnostic tool. A clear
trend in the estimation of the parameter will indicate the need for a closer examination of the
data to look for non-linearities, outliers and other sources of model inadequacy.

As a final example, let us assume that we want to discriminate between the two models

Vi=@Yi-1+p+ a (12)

Vy:= (1 — 6B)a, 13)

For large 6 and ¢ =1~ 6, both models display a similar behaviour and it is difficult to
discrin)inate between them. Suppose that we choose model (12) when model (13) is correct.
Then ¢ (/) is expected to increase with /, showing the non-stationary behavior, that will be more

obvious for lags greater than the first. Again, as Table IV shows, studying the evolution of the
parameters for different lags could be a useful diagnostic device.

Table II. Mean and standard deviation of two estimates of the AR(1) parameter in 100 simulations. In
all cases additive outliners of size has been added at positions 50 and 51 in a sample of size 100

¢=05 w="5 =05 w=3 ¢$=08, w=35 ¢=0.8, w=3
Mean Std Mean Std Mean Std Mean Std
c}(l) 0.23 0.09 0.38 0.09 0.59 0.10 0.68 0.09
®(2) 0.53 0.20 0.55 0.20 0.74 0.14 0.75 0.11

Table III. Mean values of (/) in 100 simulations as a function of
/ and w, the size of the additive outlier. The true value of ¢ is 0.8

!
1 2 3 4 S
w 0 0.78 0.78 0.77 0.76 0.76
5 0.59 0.73 0.74 0.74 0.73
7 0.43 0.67 0.70 0.71 0.71
10 0.25 0.60 0.69 0.69 0.70
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Table IV. Mean values of ¢(/) in 100 simulations from
an IMA(1,1) with several # values. The sample size is
100

0.8 0.38 0.58 0.69 0.74 0.75
0.6 0.70 0.81 0.85 0.87 0.88
0.4 0.87 0.91 0.92 0.93 0.93

CONCLUSIONS

I have learned a lot reading this paper. It is a fine example of the useful interaction between
theory and applications that can be found in the most important statistical advances. The
authors are to be congratulated for showing us new methods for time-series analysis and for
introducing useful new ideas that are improving our understanding of statistical models and
data analysis.
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